


This page intentionally left blank 



COMPUTER VISION
A MODERN APPROACH

second edition

David A. Forsyth
University of Illinois at Urbana-Champaign

Jean Ponce
Ecole Normale Supérieure

Boston Columbus Indianapolis New York San Francisco Upper Saddle River

Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto

Delhi Mexico City Sao Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo



Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook

appear on the appropriate page within text.

Copyright © 2012, 2003 by Pearson Education, Inc., publishing as Prentice Hall. All rights reserved.

Manufactured in the United States of America. This publication is protected by Copyright, and permission

should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or

transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To

obtain permission(s) to use material from this work, please submit a written request to Pearson Education,

Inc., Permissions Department, One Lake Street, Upper Saddle River, New Jersey 07458, or you may fax

your request to 201-236-3290.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trade-

marks. Where those designations appear in this book, and the publisher was aware of a trademark claim,

the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request

10 9 8 7 6 5 4 3 2 1

ISBN-13: 978-0-13-608592-8

ISBN-10: 0-13-608592-X

Vice President and Editorial Director, ECS:

Marcia Horton

Editor in Chief: Michael Hirsch

Executive Editor: Tracy Dunkelberger

Senior Project Manager: Carole Snyder

Vice President Marketing: Patrice Jones

Marketing Manager: Yez Alayan

Marketing Coordinator: Kathryn Ferranti

Marketing Assistant: Emma Snider

Vice President and Director of Production:

Vince O’Brien

Managing Editor: Jeff Holcomb

Senior Production Project Manager: Marilyn Lloyd

Senior Operations Supervisor: Alan Fischer

Operations Specialist: Lisa McDowell

Art Director, Cover: Jayne Conte

Text Permissions: Dana Weightman/RightsHouse,

Inc. and Jen Roach/PreMediaGlobal

Cover Image: © Maxppp/ZUMAPRESS.com

Media Editor: Dan Sandin

Composition: David Forsyth

Printer/Binder: Edwards Brothers

Cover Printer: Lehigh-Phoenix Color



To my family—DAF

To my father, Jean-Jacques Ponce —JP



This page intentionally left blank 



Contents

I IMAGE FORMATION 1

1 Geometric Camera Models 3

1.1 Image Formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.1 Pinhole Perspective . . . . . . . . . . . . . . . . . . . . . . . 4

1.1.2 Weak Perspective . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.3 Cameras with Lenses . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.4 The Human Eye . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.2 Intrinsic and Extrinsic Parameters . . . . . . . . . . . . . . . . . . . 14

1.2.1 Rigid Transformations and Homogeneous Coordinates . . . . 14

1.2.2 Intrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . 16

1.2.3 Extrinsic Parameters . . . . . . . . . . . . . . . . . . . . . . . 18

1.2.4 Perspective Projection Matrices . . . . . . . . . . . . . . . . . 19

1.2.5 Weak-Perspective Projection Matrices . . . . . . . . . . . . . 20

1.3 Geometric Camera Calibration . . . . . . . . . . . . . . . . . . . . . 22

1.3.1 A Linear Approach to Camera Calibration . . . . . . . . . . . 23

1.3.2 A Nonlinear Approach to Camera Calibration . . . . . . . . . 27

1.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Light and Shading 32

2.1 Modelling Pixel Brightness . . . . . . . . . . . . . . . . . . . . . . . 32

2.1.1 Reflection at Surfaces . . . . . . . . . . . . . . . . . . . . . . 33

2.1.2 Sources and Their Effects . . . . . . . . . . . . . . . . . . . . 34

2.1.3 The Lambertian+Specular Model . . . . . . . . . . . . . . . . 36

2.1.4 Area Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.2 Inference from Shading . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2.1 Radiometric Calibration and High Dynamic Range Images . . 38

2.2.2 The Shape of Specularities . . . . . . . . . . . . . . . . . . . 40

2.2.3 Inferring Lightness and Illumination . . . . . . . . . . . . . . 43

2.2.4 Photometric Stereo: Shape from Multiple Shaded Images . . 46

2.3 Modelling Interreflection . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.3.1 The Illumination at a Patch Due to an Area Source . . . . . 52

2.3.2 Radiosity and Exitance . . . . . . . . . . . . . . . . . . . . . 54

2.3.3 An Interreflection Model . . . . . . . . . . . . . . . . . . . . . 55

2.3.4 Qualitative Properties of Interreflections . . . . . . . . . . . . 56

2.4 Shape from One Shaded Image . . . . . . . . . . . . . . . . . . . . . 59

v



vi

2.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3 Color 68

3.1 Human Color Perception . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.1 Color Matching . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.1.2 Color Receptors . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.2 The Physics of Color . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

3.2.1 The Color of Light Sources . . . . . . . . . . . . . . . . . . . 73

3.2.2 The Color of Surfaces . . . . . . . . . . . . . . . . . . . . . . 76

3.3 Representing Color . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.1 Linear Color Spaces . . . . . . . . . . . . . . . . . . . . . . . 77

3.3.2 Non-linear Color Spaces . . . . . . . . . . . . . . . . . . . . . 83

3.4 A Model of Image Color . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.4.1 The Diffuse Term . . . . . . . . . . . . . . . . . . . . . . . . . 88

3.4.2 The Specular Term . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5 Inference from Color . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

3.5.1 Finding Specularities Using Color . . . . . . . . . . . . . . . 90

3.5.2 Shadow Removal Using Color . . . . . . . . . . . . . . . . . . 92

3.5.3 Color Constancy: Surface Color from Image Color . . . . . . 95

3.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

II EARLY VISION: JUST ONE IMAGE 105

4 Linear Filters 107

4.1 Linear Filters and Convolution . . . . . . . . . . . . . . . . . . . . . 107

4.1.1 Convolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.2 Shift Invariant Linear Systems . . . . . . . . . . . . . . . . . . . . . 112

4.2.1 Discrete Convolution . . . . . . . . . . . . . . . . . . . . . . . 113

4.2.2 Continuous Convolution . . . . . . . . . . . . . . . . . . . . . 115

4.2.3 Edge Effects in Discrete Convolutions . . . . . . . . . . . . . 118

4.3 Spatial Frequency and Fourier Transforms . . . . . . . . . . . . . . . 118

4.3.1 Fourier Transforms . . . . . . . . . . . . . . . . . . . . . . . . 119

4.4 Sampling and Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . 121

4.4.1 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

4.4.2 Aliasing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

4.4.3 Smoothing and Resampling . . . . . . . . . . . . . . . . . . . 126

4.5 Filters as Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5.1 Convolution as a Dot Product . . . . . . . . . . . . . . . . . 131

4.5.2 Changing Basis . . . . . . . . . . . . . . . . . . . . . . . . . . 132

4.6 Technique: Normalized Correlation and Finding Patterns . . . . . . 132



vii

4.6.1 Controlling the Television by Finding Hands by Normalized
Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.7 Technique: Scale and Image Pyramids . . . . . . . . . . . . . . . . . 134

4.7.1 The Gaussian Pyramid . . . . . . . . . . . . . . . . . . . . . 135

4.7.2 Applications of Scaled Representations . . . . . . . . . . . . . 136

4.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5 Local Image Features 141

5.1 Computing the Image Gradient . . . . . . . . . . . . . . . . . . . . . 141

5.1.1 Derivative of Gaussian Filters . . . . . . . . . . . . . . . . . . 142

5.2 Representing the Image Gradient . . . . . . . . . . . . . . . . . . . . 144

5.2.1 Gradient-Based Edge Detectors . . . . . . . . . . . . . . . . . 145

5.2.2 Orientations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

5.3 Finding Corners and Building Neighborhoods . . . . . . . . . . . . . 148

5.3.1 Finding Corners . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.3.2 Using Scale and Orientation to Build a Neighborhood . . . . 151

5.4 Describing Neighborhoods with SIFT and HOG Features . . . . . . 155

5.4.1 SIFT Features . . . . . . . . . . . . . . . . . . . . . . . . . . 157

5.4.2 HOG Features . . . . . . . . . . . . . . . . . . . . . . . . . . 159

5.5 Computing Local Features in Practice . . . . . . . . . . . . . . . . . 160

5.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

6 Texture 164

6.1 Local Texture Representations Using Filters . . . . . . . . . . . . . . 166

6.1.1 Spots and Bars . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6.1.2 From Filter Outputs to Texture Representation . . . . . . . . 168

6.1.3 Local Texture Representations in Practice . . . . . . . . . . . 170

6.2 Pooled Texture Representations by Discovering Textons . . . . . . . 171

6.2.1 Vector Quantization and Textons . . . . . . . . . . . . . . . . 172

6.2.2 K-means Clustering for Vector Quantization . . . . . . . . . . 172

6.3 Synthesizing Textures and Filling Holes in Images . . . . . . . . . . 176

6.3.1 Synthesis by Sampling Local Models . . . . . . . . . . . . . . 176

6.3.2 Filling in Holes in Images . . . . . . . . . . . . . . . . . . . . 179

6.4 Image Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

6.4.1 Non-local Means . . . . . . . . . . . . . . . . . . . . . . . . . 183

6.4.2 Block Matching 3D (BM3D) . . . . . . . . . . . . . . . . . . 183

6.4.3 Learned Sparse Coding . . . . . . . . . . . . . . . . . . . . . 184

6.4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

6.5 Shape from Texture . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

6.5.1 Shape from Texture for Planes . . . . . . . . . . . . . . . . . 187

6.5.2 Shape from Texture for Curved Surfaces . . . . . . . . . . . . 190



viii

6.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

III EARLY VISION: MULTIPLE IMAGES 195

7 Stereopsis 197

7.1 Binocular Camera Geometry and the Epipolar Constraint . . . . . . 198

7.1.1 Epipolar Geometry . . . . . . . . . . . . . . . . . . . . . . . . 198

7.1.2 The Essential Matrix . . . . . . . . . . . . . . . . . . . . . . . 200

7.1.3 The Fundamental Matrix . . . . . . . . . . . . . . . . . . . . 201

7.2 Binocular Reconstruction . . . . . . . . . . . . . . . . . . . . . . . . 201

7.2.1 Image Rectification . . . . . . . . . . . . . . . . . . . . . . . . 202

7.3 Human Stereopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

7.4 Local Methods for Binocular Fusion . . . . . . . . . . . . . . . . . . 205

7.4.1 Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

7.4.2 Multi-Scale Edge Matching . . . . . . . . . . . . . . . . . . . 207

7.5 Global Methods for Binocular Fusion . . . . . . . . . . . . . . . . . . 210

7.5.1 Ordering Constraints and Dynamic Programming . . . . . . . 210

7.5.2 Smoothness and Graphs . . . . . . . . . . . . . . . . . . . . . 211

7.6 Using More Cameras . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

7.7 Application: Robot Navigation . . . . . . . . . . . . . . . . . . . . . 215

7.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8 Structure from Motion 221

8.1 Internally Calibrated Perspective Cameras . . . . . . . . . . . . . . . 221

8.1.1 Natural Ambiguity of the Problem . . . . . . . . . . . . . . . 223

8.1.2 Euclidean Structure and Motion from Two Images . . . . . . 224

8.1.3 Euclidean Structure and Motion from Multiple Images . . . . 228

8.2 Uncalibrated Weak-Perspective Cameras . . . . . . . . . . . . . . . . 230

8.2.1 Natural Ambiguity of the Problem . . . . . . . . . . . . . . . 231

8.2.2 Affine Structure and Motion from Two Images . . . . . . . . 233

8.2.3 Affine Structure and Motion from Multiple Images . . . . . . 237

8.2.4 From Affine to Euclidean Shape . . . . . . . . . . . . . . . . 238

8.3 Uncalibrated Perspective Cameras . . . . . . . . . . . . . . . . . . . 240

8.3.1 Natural Ambiguity of the Problem . . . . . . . . . . . . . . . 241

8.3.2 Projective Structure and Motion from Two Images . . . . . . 242

8.3.3 Projective Structure and Motion from Multiple Images . . . . 244

8.3.4 From Projective to Euclidean Shape . . . . . . . . . . . . . . 246

8.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248



ix

IV MID-LEVEL VISION 253

9 Segmentation by Clustering 255

9.1 Human Vision: Grouping and Gestalt . . . . . . . . . . . . . . . . . 256

9.2 Important Applications . . . . . . . . . . . . . . . . . . . . . . . . . 261

9.2.1 Background Subtraction . . . . . . . . . . . . . . . . . . . . . 261

9.2.2 Shot Boundary Detection . . . . . . . . . . . . . . . . . . . . 264

9.2.3 Interactive Segmentation . . . . . . . . . . . . . . . . . . . . 265

9.2.4 Forming Image Regions . . . . . . . . . . . . . . . . . . . . . 266

9.3 Image Segmentation by Clustering Pixels . . . . . . . . . . . . . . . 268

9.3.1 Basic Clustering Methods . . . . . . . . . . . . . . . . . . . . 269

9.3.2 The Watershed Algorithm . . . . . . . . . . . . . . . . . . . . 271

9.3.3 Segmentation Using K-means . . . . . . . . . . . . . . . . . . 272

9.3.4 Mean Shift: Finding Local Modes in Data . . . . . . . . . . . 273

9.3.5 Clustering and Segmentation with Mean Shift . . . . . . . . . 275

9.4 Segmentation, Clustering, and Graphs . . . . . . . . . . . . . . . . . 277

9.4.1 Terminology and Facts for Graphs . . . . . . . . . . . . . . . 277

9.4.2 Agglomerative Clustering with a Graph . . . . . . . . . . . . 279

9.4.3 Divisive Clustering with a Graph . . . . . . . . . . . . . . . . 281

9.4.4 Normalized Cuts . . . . . . . . . . . . . . . . . . . . . . . . . 284

9.5 Image Segmentation in Practice . . . . . . . . . . . . . . . . . . . . . 285

9.5.1 Evaluating Segmenters . . . . . . . . . . . . . . . . . . . . . . 286

9.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287

10 Grouping and Model Fitting 290

10.1 The Hough Transform . . . . . . . . . . . . . . . . . . . . . . . . . . 290

10.1.1 Fitting Lines with the Hough Transform . . . . . . . . . . . . 290

10.1.2 Using the Hough Transform . . . . . . . . . . . . . . . . . . . 292

10.2 Fitting Lines and Planes . . . . . . . . . . . . . . . . . . . . . . . . . 293

10.2.1 Fitting a Single Line . . . . . . . . . . . . . . . . . . . . . . . 294

10.2.2 Fitting Planes . . . . . . . . . . . . . . . . . . . . . . . . . . 295

10.2.3 Fitting Multiple Lines . . . . . . . . . . . . . . . . . . . . . . 296

10.3 Fitting Curved Structures . . . . . . . . . . . . . . . . . . . . . . . . 297

10.4 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

10.4.1 M-Estimators . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

10.4.2 RANSAC: Searching for Good Points . . . . . . . . . . . . . 302

10.5 Fitting Using Probabilistic Models . . . . . . . . . . . . . . . . . . . 306

10.5.1 Missing Data Problems . . . . . . . . . . . . . . . . . . . . . 307

10.5.2 Mixture Models and Hidden Variables . . . . . . . . . . . . . 309

10.5.3 The EM Algorithm for Mixture Models . . . . . . . . . . . . 310

10.5.4 Difficulties with the EM Algorithm . . . . . . . . . . . . . . . 312



x

10.6 Motion Segmentation by Parameter Estimation . . . . . . . . . . . . 313

10.6.1 Optical Flow and Motion . . . . . . . . . . . . . . . . . . . . 315

10.6.2 Flow Models . . . . . . . . . . . . . . . . . . . . . . . . . . . 316

10.6.3 Motion Segmentation with Layers . . . . . . . . . . . . . . . 317

10.7 Model Selection: Which Model Is the Best Fit? . . . . . . . . . . . . 319

10.7.1 Model Selection Using Cross-Validation . . . . . . . . . . . . 322

10.8 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322

11 Tracking 326

11.1 Simple Tracking Strategies . . . . . . . . . . . . . . . . . . . . . . . . 327

11.1.1 Tracking by Detection . . . . . . . . . . . . . . . . . . . . . . 327

11.1.2 Tracking Translations by Matching . . . . . . . . . . . . . . . 330

11.1.3 Using Affine Transformations to Confirm a Match . . . . . . 332

11.2 Tracking Using Matching . . . . . . . . . . . . . . . . . . . . . . . . 334

11.2.1 Matching Summary Representations . . . . . . . . . . . . . . 335

11.2.2 Tracking Using Flow . . . . . . . . . . . . . . . . . . . . . . . 337

11.3 Tracking Linear Dynamical Models with Kalman Filters . . . . . . . 339

11.3.1 Linear Measurements and Linear Dynamics . . . . . . . . . . 340

11.3.2 The Kalman Filter . . . . . . . . . . . . . . . . . . . . . . . . 344

11.3.3 Forward-backward Smoothing . . . . . . . . . . . . . . . . . . 345

11.4 Data Association . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

11.4.1 Linking Kalman Filters with Detection Methods . . . . . . . 349

11.4.2 Key Methods of Data Association . . . . . . . . . . . . . . . 350

11.5 Particle Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350

11.5.1 Sampled Representations of Probability Distributions . . . . 351

11.5.2 The Simplest Particle Filter . . . . . . . . . . . . . . . . . . . 355

11.5.3 The Tracking Algorithm . . . . . . . . . . . . . . . . . . . . . 356

11.5.4 A Workable Particle Filter . . . . . . . . . . . . . . . . . . . . 358

11.5.5 Practical Issues in Particle Filters . . . . . . . . . . . . . . . 360

11.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 362

V HIGH-LEVEL VISION 365

12 Registration 367

12.1 Registering Rigid Objects . . . . . . . . . . . . . . . . . . . . . . . . 368

12.1.1 Iterated Closest Points . . . . . . . . . . . . . . . . . . . . . . 368

12.1.2 Searching for Transformations via Correspondences . . . . . . 369

12.1.3 Application: Building Image Mosaics . . . . . . . . . . . . . . 370

12.2 Model-based Vision: Registering Rigid Objects with Projection . . . 375



xi

12.2.1 Verification: Comparing Transformed and Rendered Source
to Target . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377

12.3 Registering Deformable Objects . . . . . . . . . . . . . . . . . . . . . 378

12.3.1 Deforming Texture with Active Appearance Models . . . . . 378

12.3.2 Active Appearance Models in Practice . . . . . . . . . . . . . 381

12.3.3 Application: Registration in Medical Imaging Systems . . . . 383

12.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388

13 Smooth Surfaces and Their Outlines 391

13.1 Elements of Differential Geometry . . . . . . . . . . . . . . . . . . . 393

13.1.1 Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393

13.1.2 Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 397

13.2 Contour Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

13.2.1 The Occluding Contour and the Image Contour . . . . . . . . 402

13.2.2 The Cusps and Inflections of the Image Contour . . . . . . . 403

13.2.3 Koenderink’s Theorem . . . . . . . . . . . . . . . . . . . . . . 404

13.3 Visual Events: More Differential Geometry . . . . . . . . . . . . . . 407

13.3.1 The Geometry of the Gauss Map . . . . . . . . . . . . . . . . 407

13.3.2 Asymptotic Curves . . . . . . . . . . . . . . . . . . . . . . . . 409

13.3.3 The Asymptotic Spherical Map . . . . . . . . . . . . . . . . . 410

13.3.4 Local Visual Events . . . . . . . . . . . . . . . . . . . . . . . 412

13.3.5 The Bitangent Ray Manifold . . . . . . . . . . . . . . . . . . 413

13.3.6 Multilocal Visual Events . . . . . . . . . . . . . . . . . . . . . 414

13.3.7 The Aspect Graph . . . . . . . . . . . . . . . . . . . . . . . . 416

13.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

14 Range Data 422

14.1 Active Range Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . 422

14.2 Range Data Segmentation . . . . . . . . . . . . . . . . . . . . . . . . 424

14.2.1 Elements of Analytical Differential Geometry . . . . . . . . . 424

14.2.2 Finding Step and Roof Edges in Range Images . . . . . . . . 426

14.2.3 Segmenting Range Images into Planar Regions . . . . . . . . 431

14.3 Range Image Registration and Model Acquisition . . . . . . . . . . . 432

14.3.1 Quaternions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433

14.3.2 Registering Range Images . . . . . . . . . . . . . . . . . . . . 434

14.3.3 Fusing Multiple Range Images . . . . . . . . . . . . . . . . . 436

14.4 Object Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

14.4.1 Matching Using Interpretation Trees . . . . . . . . . . . . . . 438

14.4.2 Matching Free-Form Surfaces Using Spin Images . . . . . . . 441

14.5 Kinect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

14.5.1 Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447



xii

14.5.2 Technique: Decision Trees and Random Forests . . . . . . . . 448

14.5.3 Labeling Pixels . . . . . . . . . . . . . . . . . . . . . . . . . . 450

14.5.4 Computing Joint Positions . . . . . . . . . . . . . . . . . . . 453

14.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453

15 Learning to Classify 457

15.1 Classification, Error, and Loss . . . . . . . . . . . . . . . . . . . . . . 457

15.1.1 Using Loss to Determine Decisions . . . . . . . . . . . . . . . 457

15.1.2 Training Error, Test Error, and Overfitting . . . . . . . . . . 459

15.1.3 Regularization . . . . . . . . . . . . . . . . . . . . . . . . . . 460

15.1.4 Error Rate and Cross-Validation . . . . . . . . . . . . . . . . 463

15.1.5 Receiver Operating Curves . . . . . . . . . . . . . . . . . . . 465

15.2 Major Classification Strategies . . . . . . . . . . . . . . . . . . . . . 467

15.2.1 Example: Mahalanobis Distance . . . . . . . . . . . . . . . . 467

15.2.2 Example: Class-Conditional Histograms and Naive Bayes . . 468

15.2.3 Example: Classification Using Nearest Neighbors . . . . . . . 469

15.2.4 Example: The Linear Support Vector Machine . . . . . . . . 470

15.2.5 Example: Kernel Machines . . . . . . . . . . . . . . . . . . . 473

15.2.6 Example: Boosting and Adaboost . . . . . . . . . . . . . . . 475

15.3 Practical Methods for Building Classifiers . . . . . . . . . . . . . . . 475

15.3.1 Manipulating Training Data to Improve Performance . . . . . 477

15.3.2 Building Multi-Class Classifiers Out of Binary Classifiers . . 479

15.3.3 Solving for SVMS and Kernel Machines . . . . . . . . . . . . 480

15.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481

16 Classifying Images 482

16.1 Building Good Image Features . . . . . . . . . . . . . . . . . . . . . 482

16.1.1 Example Applications . . . . . . . . . . . . . . . . . . . . . . 482

16.1.2 Encoding Layout with GIST Features . . . . . . . . . . . . . 485

16.1.3 Summarizing Images with Visual Words . . . . . . . . . . . . 487

16.1.4 The Spatial Pyramid Kernel . . . . . . . . . . . . . . . . . . . 489

16.1.5 Dimension Reduction with Principal Components . . . . . . . 493

16.1.6 Dimension Reduction with Canonical Variates . . . . . . . . 494

16.1.7 Example Application: Identifying Explicit Images . . . . . . 498

16.1.8 Example Application: Classifying Materials . . . . . . . . . . 502

16.1.9 Example Application: Classifying Scenes . . . . . . . . . . . . 502

16.2 Classifying Images of Single Objects . . . . . . . . . . . . . . . . . . 504

16.2.1 Image Classification Strategies . . . . . . . . . . . . . . . . . 505

16.2.2 Evaluating Image Classification Systems . . . . . . . . . . . . 505

16.2.3 Fixed Sets of Classes . . . . . . . . . . . . . . . . . . . . . . . 508

16.2.4 Large Numbers of Classes . . . . . . . . . . . . . . . . . . . . 509



xiii

16.2.5 Flowers, Leaves, and Birds: Some Specialized Problems . . . 511

16.3 Image Classification in Practice . . . . . . . . . . . . . . . . . . . . . 512

16.3.1 Codes for Image Features . . . . . . . . . . . . . . . . . . . . 513

16.3.2 Image Classification Datasets . . . . . . . . . . . . . . . . . . 513

16.3.3 Dataset Bias . . . . . . . . . . . . . . . . . . . . . . . . . . . 515

16.3.4 Crowdsourcing Dataset Collection . . . . . . . . . . . . . . . 515

16.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517

17 Detecting Objects in Images 519

17.1 The Sliding Window Method . . . . . . . . . . . . . . . . . . . . . . 519

17.1.1 Face Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 520

17.1.2 Detecting Humans . . . . . . . . . . . . . . . . . . . . . . . . 525

17.1.3 Detecting Boundaries . . . . . . . . . . . . . . . . . . . . . . 527

17.2 Detecting Deformable Objects . . . . . . . . . . . . . . . . . . . . . . 530

17.3 The State of the Art of Object Detection . . . . . . . . . . . . . . . 535

17.3.1 Datasets and Resources . . . . . . . . . . . . . . . . . . . . . 538

17.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 539

18 Topics in Object Recognition 540

18.1 What Should Object Recognition Do? . . . . . . . . . . . . . . . . . 540

18.1.1 What Should an Object Recognition System Do? . . . . . . . 540

18.1.2 Current Strategies for Object Recognition . . . . . . . . . . . 542

18.1.3 What Is Categorization? . . . . . . . . . . . . . . . . . . . . . 542

18.1.4 Selection: What Should Be Described? . . . . . . . . . . . . . 544

18.2 Feature Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544

18.2.1 Improving Current Image Features . . . . . . . . . . . . . . . 544

18.2.2 Other Kinds of Image Feature . . . . . . . . . . . . . . . . . . 546

18.3 Geometric Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

18.4 Semantic Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549

18.4.1 Attributes and the Unfamiliar . . . . . . . . . . . . . . . . . . 550

18.4.2 Parts, Poselets and Consistency . . . . . . . . . . . . . . . . . 551

18.4.3 Chunks of Meaning . . . . . . . . . . . . . . . . . . . . . . . . 554

VI APPLICATIONS AND TOPICS 557

19 Image-Based Modeling and Rendering 559

19.1 Visual Hulls . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 559

19.1.1 Main Elements of the Visual Hull Model . . . . . . . . . . . . 561

19.1.2 Tracing Intersection Curves . . . . . . . . . . . . . . . . . . . 563

19.1.3 Clipping Intersection Curves . . . . . . . . . . . . . . . . . . 566



xiv

19.1.4 Triangulating Cone Strips . . . . . . . . . . . . . . . . . . . . 567

19.1.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568

19.1.6 Going Further: Carved Visual Hulls . . . . . . . . . . . . . . 572

19.2 Patch-Based Multi-View Stereopsis . . . . . . . . . . . . . . . . . . . 573

19.2.1 Main Elements of the PMVS Model . . . . . . . . . . . . . . 575

19.2.2 Initial Feature Matching . . . . . . . . . . . . . . . . . . . . . 578

19.2.3 Expansion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579

19.2.4 Filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580

19.2.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 581

19.3 The Light Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584

19.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587

20 Looking at People 590

20.1 HMM’s, Dynamic Programming, and Tree-Structured Models . . . . 590

20.1.1 Hidden Markov Models . . . . . . . . . . . . . . . . . . . . . 590

20.1.2 Inference for an HMM . . . . . . . . . . . . . . . . . . . . . . 592

20.1.3 Fitting an HMM with EM . . . . . . . . . . . . . . . . . . . . 597

20.1.4 Tree-Structured Energy Models . . . . . . . . . . . . . . . . . 600

20.2 Parsing People in Images . . . . . . . . . . . . . . . . . . . . . . . . 602

20.2.1 Parsing with Pictorial Structure Models . . . . . . . . . . . . 602

20.2.2 Estimating the Appearance of Clothing . . . . . . . . . . . . 604

20.3 Tracking People . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 606

20.3.1 Why Human Tracking Is Hard . . . . . . . . . . . . . . . . . 606

20.3.2 Kinematic Tracking by Appearance . . . . . . . . . . . . . . . 608

20.3.3 Kinematic Human Tracking Using Templates . . . . . . . . . 609

20.4 3D from 2D: Lifting . . . . . . . . . . . . . . . . . . . . . . . . . . . 611

20.4.1 Reconstruction in an Orthographic View . . . . . . . . . . . . 611

20.4.2 Exploiting Appearance for Unambiguous Reconstructions . . 613

20.4.3 Exploiting Motion for Unambiguous Reconstructions . . . . . 615

20.5 Activity Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . 617

20.5.1 Background: Human Motion Data . . . . . . . . . . . . . . . 617

20.5.2 Body Configuration and Activity Recognition . . . . . . . . . 621

20.5.3 Recognizing Human Activities with Appearance Features . . 622

20.5.4 Recognizing Human Activities with Compositional Models . . 624

20.6 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 624

20.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 626

21 Image Search and Retrieval 627

21.1 The Application Context . . . . . . . . . . . . . . . . . . . . . . . . . 627

21.1.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 628

21.1.2 User Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 629



xv

21.1.3 Types of Image Query . . . . . . . . . . . . . . . . . . . . . . 630

21.1.4 What Users Do with Image Collections . . . . . . . . . . . . 631

21.2 Basic Technologies from Information Retrieval . . . . . . . . . . . . . 632

21.2.1 Word Counts . . . . . . . . . . . . . . . . . . . . . . . . . . . 632

21.2.2 Smoothing Word Counts . . . . . . . . . . . . . . . . . . . . . 633

21.2.3 Approximate Nearest Neighbors and Hashing . . . . . . . . . 634

21.2.4 Ranking Documents . . . . . . . . . . . . . . . . . . . . . . . 638

21.3 Images as Documents . . . . . . . . . . . . . . . . . . . . . . . . . . 639

21.3.1 Matching Without Quantization . . . . . . . . . . . . . . . . 640

21.3.2 Ranking Image Search Results . . . . . . . . . . . . . . . . . 641

21.3.3 Browsing and Layout . . . . . . . . . . . . . . . . . . . . . . 643

21.3.4 Laying Out Images for Browsing . . . . . . . . . . . . . . . . 644

21.4 Predicting Annotations for Pictures . . . . . . . . . . . . . . . . . . 645

21.4.1 Annotations from Nearby Words . . . . . . . . . . . . . . . . 646

21.4.2 Annotations from the Whole Image . . . . . . . . . . . . . . 646

21.4.3 Predicting Correlated Words with Classifiers . . . . . . . . . 648

21.4.4 Names and Faces . . . . . . . . . . . . . . . . . . . . . . . . 649

21.4.5 Generating Tags with Segments . . . . . . . . . . . . . . . . . 651

21.5 The State of the Art of Word Prediction . . . . . . . . . . . . . . . . 654

21.5.1 Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 655

21.5.2 Comparing Methods . . . . . . . . . . . . . . . . . . . . . . . 655

21.5.3 Open Problems . . . . . . . . . . . . . . . . . . . . . . . . . . 656

21.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

VII BACKGROUND MATERIAL 661

22 Optimization Techniques 663

22.1 Linear Least-Squares Methods . . . . . . . . . . . . . . . . . . . . . . 663

22.1.1 Normal Equations and the Pseudoinverse . . . . . . . . . . . 664

22.1.2 Homogeneous Systems and Eigenvalue Problems . . . . . . . 665

22.1.3 Generalized Eigenvalues Problems . . . . . . . . . . . . . . . 666

22.1.4 An Example: Fitting a Line to Points in a Plane . . . . . . . 666

22.1.5 Singular Value Decomposition . . . . . . . . . . . . . . . . . . 667

22.2 Nonlinear Least-Squares Methods . . . . . . . . . . . . . . . . . . . . 669

22.2.1 Newton’s Method: Square Systems of Nonlinear Equations. . 670

22.2.2 Newton’s Method for Overconstrained Systems . . . . . . . . 670

22.2.3 The Gauss–Newton and Levenberg–Marquardt Algorithms . 671

22.3 Sparse Coding and Dictionary Learning . . . . . . . . . . . . . . . . 672

22.3.1 Sparse Coding . . . . . . . . . . . . . . . . . . . . . . . . . . 672

22.3.2 Dictionary Learning . . . . . . . . . . . . . . . . . . . . . . . 673



xvi

22.3.3 Supervised Dictionary Learning . . . . . . . . . . . . . . . . . 675

22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization . . . 675

22.4.1 Min-Cut Problems . . . . . . . . . . . . . . . . . . . . . . . . 676

22.4.2 Quadratic Pseudo-Boolean Functions . . . . . . . . . . . . . . 677

22.4.3 Generalization to Integer Variables . . . . . . . . . . . . . . . 679

22.5 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 682

Bibliography 684

Index 737

List of Algorithms 760



Preface

Computer vision as a field is an intellectual frontier. Like any frontier, it is
exciting and disorganized, and there is often no reliable authority to appeal to.
Many useful ideas have no theoretical grounding, and some theories are useless
in practice; developed areas are widely scattered, and often one looks completely
inaccessible from the other. Nevertheless, we have attempted in this book to present
a fairly orderly picture of the field.

We see computer vision—or just “vision”; apologies to those who study human
or animal vision—as an enterprise that uses statistical methods to disentangle data
using models constructed with the aid of geometry, physics, and learning theory.
Thus, in our view, vision relies on a solid understanding of cameras and of the
physical process of image formation (Part I of this book) to obtain simple inferences
from individual pixel values (Part II), combine the information available in multiple
images into a coherent whole (Part III), impose some order on groups of pixels to
separate them from each other or infer shape information (Part IV), and recognize
objects using geometric information or probabilistic techniques (Part V). Computer
vision has a wide variety of applications, both old (e.g., mobile robot navigation,
industrial inspection, and military intelligence) and new (e.g., human computer
interaction, image retrieval in digital libraries, medical image analysis, and the
realistic rendering of synthetic scenes in computer graphics). We discuss some of
these applications in part VII.

IN THE SECOND EDITION

We have made a variety of changes since the first edition, which we hope have
improved the usefulness of this book. Perhaps the most important change follows
a big change in the discipline since the last edition. Code and data are now widely
published over the Internet. It is now quite usual to build systems out of other
people’s published code, at least in the first instance, and to evaluate them on
other people’s datasets. In the chapters, we have provided guides to experimental
resources available online. As is the nature of the Internet, not all of these URL’s
will work all the time; we have tried to give enough information so that searching
Google with the authors’ names or the name of the dataset or codes will get the
right result.

Other changes include:

• We have simplified. We give a simpler, clearer treatment of mathematical
topics. We have particularly simplified our treatment of cameras (Chapter
1), shading (Chapter 2), and reconstruction from two views (Chapter 7) and
from multiple views (Chapter 8)

• We describe a broad range of applications, including image-based mod-
elling and rendering (Chapter 19), image search (Chapter 22), building image
mosaics (Section 12.1), medical image registration (Section 12.3), interpreting
range data (Chapter 14), and understanding human activity (Chapter 21).

xvii



Preface xviii

• We have written a comprehensive treatment of the modern features, par-
ticularly HOG and SIFT (both in Chapter 5), that drive applications ranging
from building image mosaics to object recognition.

• We give a detailed treatment of modern image editing techniques, in-
cluding removing shadows (Section 3.5), filling holes in images (Section 6.3),
noise removal (Section 6.4), and interactive image segmentation (Section 9.2).

• We give a comprehensive treatment of modern object recognition tech-
niques. We start with a practical discussion of classifiers (Chapter 15); we
then describe standard methods for image classification techniques (Chapter
16), and object detection (Chapter 17). Finally, Chapter 18 reviews a wide
range of recent topics in object recognition.

• Finally, this book has a very detailed index, and a bibliography that is as
comprehensive and up-to-date as we could make it.

WHY STUDY VISION?

Computer vision’s great trick is extracting descriptions of the world from pictures
or sequences of pictures. This is unequivocally useful. Taking pictures is usually
nondestructive and sometimes discreet. It is also easy and (now) cheap. The de-
scriptions that users seek can differ widely between applications. For example, a
technique known as structure from motion makes it possible to extract a representa-
tion of what is depicted and how the camera moved from a series of pictures. People
in the entertainment industry use these techniques to build three-dimensional (3D)
computer models of buildings, typically keeping the structure and throwing away
the motion. These models are used where real buildings cannot be; they are set fire
to, blown up, etc. Good, simple, accurate, and convincing models can be built from
quite small sets of photographs. People who wish to control mobile robots usually
keep the motion and throw away the structure. This is because they generally know
something about the area where the robot is working, but usually don’t know the
precise robot location in that area. They can determine it from information about
how a camera bolted to the robot is moving.

There are a number of other, important applications of computer vision. One
is in medical imaging: one builds software systems that can enhance imagery, or
identify important phenomena or events, or visualize information obtained by imag-
ing. Another is in inspection: one takes pictures of objects to determine whether
they are within specification. A third is in interpreting satellite images, both for
military purposes (a program might be required to determine what militarily inter-
esting phenomena have occurred in a given region recently; or what damage was
caused by a bombing) and for civilian purposes (what will this year’s maize crop
be? How much rainforest is left?) A fourth is in organizing and structuring collec-
tions of pictures. We know how to search and browse text libraries (though this is
a subject that still has difficult open questions) but don’t really know what to do
with image or video libraries.

Computer vision is at an extraordinary point in its development. The subject
itself has been around since the 1960s, but only recently has it been possible to
build useful computer systems using ideas from computer vision. This flourishing



Preface xix

has been driven by several trends: Computers and imaging systems have become
very cheap. Not all that long ago, it took tens of thousands of dollars to get good
digital color images; now it takes a few hundred at most. Not all that long ago, a
color printer was something one found in few, if any, research labs; now they are
in many homes. This means it is easier to do research. It also means that there
are many people with problems to which the methods of computer vision apply.
For example, people would like to organize their collections of photographs, make
3D models of the world around them, and manage and edit collections of videos.
Our understanding of the basic geometry and physics underlying vision and, more
important, what to do about it, has improved significantly. We are beginning to be
able to solve problems that lots of people care about, but none of the hard problems
have been solved, and there are plenty of easy ones that have not been solved either
(to keep one intellectually fit while trying to solve hard problems). It is a great
time to be studying this subject.

What Is in this Book

This book covers what we feel a computer vision professional ought to know. How-
ever, it is addressed to a wider audience. We hope that those engaged in compu-
tational geometry, computer graphics, image processing, imaging in general, and
robotics will find it an informative reference. We have tried to make the book
accessible to senior undergraduates or graduate students with a passing interest
in vision. Each chapter covers a different part of the subject, and, as a glance at
Table 1 will confirm, chapters are relatively independent. This means that one can
dip into the book as well as read it from cover to cover. Generally, we have tried to
make chapters run from easy material at the start to more arcane matters at the
end. Each chapter has brief notes at the end, containing historical material and
assorted opinions. We have tried to produce a book that describes ideas that are
useful, or likely to be so in the future. We have put emphasis on understanding the
basic geometry and physics of imaging, but have tried to link this with actual ap-
plications. In general, this book reflects the enormous recent influence of geometry
and various forms of applied statistics on computer vision.

Reading this Book

A reader who goes from cover to cover will hopefully be well informed, if exhausted;
there is too much in this book to cover in a one-semester class. Of course, prospec-
tive (or active) computer vision professionals should read every word, do all the
exercises, and report any bugs found for the third edition (of which it is probably a
good idea to plan on buying a copy!). Although the study of computer vision does
not require deep mathematics, it does require facility with a lot of different math-
ematical ideas. We have tried to make the book self-contained, in the sense that
readers with the level of mathematical sophistication of an engineering senior should
be comfortable with the material of the book and should not need to refer to other
texts. We have also tried to keep the mathematics to the necessary minimum—after
all, this book is about computer vision, not applied mathematics—and have chosen
to insert what mathematics we have kept in the main chapter bodies instead of a
separate appendix.



Preface xx

TABLE 1: Dependencies between chapters: It will be difficult to read a chapter if you
don’t have a good grasp of the material in the chapters it “requires.” If you have not read
the chapters labeled “helpful,” you might need to look up one or two things.
Part Chapter Requires Helpful

I 1: Geometric Camera Models
2: Light and Shading
3: Color 2

II 4: Linear Filters
5: Local Image Features 4
6: Texture 5, 4 2

III 7: Stereopsis 1 22
8: Structure from Motion 1, 7 22

IV 9: Segmentation by Clustering 2, 3, 4, 5, 6, 22
10: Grouping and Model Fitting 9
11: Tracking 2, 5, 22

V 12: Registration 1 14
13: Smooth Surfaces and Their Outlines 1
14: Range Data 12
15: Learning to Classify 22
16: Classifying Images 15, 5
17: Detecting Objects in Images 16, 15, 5
18: Topics in Object Recognition 17, 16, 15, 5

VI 19: Image-Based Modeling and Rendering 1, 2, 7, 8
20: Looking at People 17, 16, 15, 11, 5
21: Image Search and Retrieval 17, 16, 15, 11, 5

VII 22: Optimization Techniques

Generally, we have tried to reduce the interdependence between chapters, so
that readers interested in particular topics can avoid wading through the whole
book. It is not possible to make each chapter entirely self-contained, however, and
Table 1 indicates the dependencies between chapters.

We have tried to make the index comprehensive, so that if you encounter a new
term, you are likely to find it in the book by looking it up in the index. Computer
vision is now fortunate in having a rich range of intellectual resources. Software
and datasets are widely shared, and we have given pointers to useful datasets and
software in relevant chapters; you can also look in the index, under “software” and
under “datasets,” or under the general topic.

We have tried to make the bibliography comprehensive, without being over-
whelming. However, we have not been able to give complete bibliographic references
for any topic, because the literature is so large.

What Is Not in this Book

The computer vision literature is vast, and it was not easy to produce a book about
computer vision that could be lifted by ordinary mortals. To do so, we had to cut
material, ignore topics, and so on.



Preface xxi

We left out some topics because of personal taste, or because we became
exhausted and stopped writing about a particular area, or because we learned
about them too late to put them in, or because we had to shorten some chapter, or
because we didn’t understand them, or any of hundreds of other reasons. We have
tended to omit detailed discussions of material that is mainly of historical interest,
and offer instead some historical remarks at the end of each chapter.

We have tried to be both generous and careful in attributing ideas, but neither
of us claims to be a fluent intellectual archaeologist, and computer vision is a very
big topic indeed. This means that some ideas may have deeper histories than we
have indicated, and that we may have omitted citations.

There are several recent textbooks on computer vision. Szeliski (2010) deals
with the whole of vision. Parker (2010) deals specifically with algorithms. Davies
(2005) and Steger et al. (2008) deal with practical applications, particularly regis-
tration. Bradski and Kaehler (2008) is an introduction to OpenCV, an important
open-source package of computer vision routines.

There are numerous more specialized references. Hartley and Zisserman
(2000a) is a comprehensive account of what is known about multiple view ge-
ometry and estimation of multiple view parameters. Ma et al. (2003b) deals with
3D reconstruction methods. Cyganek and Siebert (2009) covers 3D reconstruction
and matching. Paragios et al. (2010) deals with mathematical models in computer
vision. Blake et al. (2011) is a recent summary of what is known about Markov
random field models in computer vision. Li and Jain (2005) is a comprehensive
account of face recognition. Moeslund et al. (2011), which is in press at time of
writing, promises to be a comprehensive account of computer vision methods for
watching people. Dickinson et al. (2009) is a collection of recent summaries of the
state of the art in object recognition. Radke (2012) is a forthcoming account of
computer vision methods applied to special effects.

Much of computer vision literature appears in the proceedings of various con-
ferences. The three main conferences are: the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR); the IEEE International Conference on
Computer Vision (ICCV); and the European Conference on Computer Vision. A
significant fraction of the literature appears in regional conferences, particularly
the Asian Conference on Computer Vision (ACCV) and the British Machine Vi-
sion Conference (BMVC). A high percentage of published papers are available on
the web, and can be found with search engines; while some papers are confined to
pay-libraries, to which many universities provide access, most can be found without
cost.

ACKNOWLEDGMENTS

In preparing this book, we have accumulated a significant set of debts. A number
of anonymous reviewers read several drafts of the book for both first and second
edition and made extremely helpful contributions. We are grateful to them for their
time and efforts.

Our editor for the first edition, Alan Apt, organized these reviews with the



Preface xxii

help of Jake Warde. We thank them both. Leslie Galen, Joe Albrecht, and Dianne
Parish, of Integre Technical Publishing, helped us overcome numerous issues with
proofreading and illustrations in the first edition.

Our editor for the second edition, Tracy Dunkelberger, organized reviews
with the help of Carole Snyder. We thank them both. We thank Marilyn Lloyd for
helping us get over various production problems.

Both the overall coverage of topics and several chapters were reviewed by
various colleagues, who made valuable and detailed suggestions for their revision.
We thank Narendra Ahuja, Francis Bach, Kobus Barnard, Margaret Fleck, Martial
Hebert, Julia Hockenmaier, Derek Hoiem, David Kriegman, Jitendra Malik, and
Andrew Zisserman.

A number of people contributed suggestions, ideas for figures, proofreading
comments, and other valuable material, while they were our students. We thank
Okan Arikan, Louise Benôıt, Tamara Berg, Sébastien Blind, Y-Lan Boureau, Liang-
Liang Cao, Martha Cepeda, Stephen Chenney, Frank Cho, Florent Couzinie-Devy,
Olivier Duchenne, Pinar Duygulu, Ian Endres, Ali Farhadi, Yasutaka Furukawa,
Yakup Genc, John Haddon, Varsha Hedau, Nazli Ikizler-Cinbis, Leslie Ikemoto,
Sergey Ioffe, Armand Joulin, Kevin Karsch, Svetlana Lazebnik, Cathy Lee, Binbin
Liao, Nicolas Loeff, Julien Mairal, Sung-il Pae, David Parks, Deva Ramanan, Fred
Rothganger, Amin Sadeghi, Alex Sorokin, Attawith Sudsang, Du Tran, Duan Tran,
Gang Wang, Yang Wang, Ryan White, and the students in several offerings of our
vision classes at UIUC, U.C. Berkeley and ENS.

We have been very lucky to have colleagues at various universities use (of-
ten rough) drafts of our book in their vision classes. Institutions whose students
suffered through these drafts include, in addition to ours, Carnegie-Mellon Univer-
sity, Stanford University, the University of Wisconsin at Madison, the University of
California at Santa Barbara and the University of Southern California; there may
be others we are not aware of. We are grateful for all the helpful comments from
adopters, in particular Chris Bregler, Chuck Dyer, Martial Hebert, David Krieg-
man, B.S. Manjunath, and Ram Nevatia, who sent us many detailed and helpful
comments and corrections.

The book has also benefitted from comments and corrections from Karteek
Alahari, Aydin Alaylioglu, Srinivas Akella, Francis Bach, Marie Banich, Serge Be-
longie, Tamara Berg, Ajit M. Chaudhari, Navneet Dalal, Jennifer Evans, Yasutaka
Furukawa, Richard Hartley, Glenn Healey, Mike Heath, Martial Hebert, Janne
Heikkilä, Hayley Iben, Stéphanie Jonquières, Ivan Laptev, Christine Laubenberger,
Svetlana Lazebnik, Yann LeCun, Tony Lewis, Benson Limketkai, Julien Mairal, Si-
mon Maskell, Brian Milch, Roger Mohr, Deva Ramanan, Guillermo Sapiro, Cordelia
Schmid, Brigitte Serlin, Gerry Serlin, Ilan Shimshoni, Jamie Shotton, Josef Sivic,
Eric de Sturler, Camillo J. Taylor, Jeff Thompson, Claire Vallat, Daniel S. Wilker-
son, Jinghan Yu, Hao Zhang, Zhengyou Zhang, and Andrew Zisserman.

In the first edition, we said

If you find an apparent typographic error, please email DAF... with
the details, using the phrase “book typo” in your email; we will try to
credit the first finder of each typo in the second edition.

which turns out to have been a mistake. DAF’s ability to manage and preserve



Preface xxiii

email logs was just not up to this challenge. We thank all finders of typographic
errors; we have tried to fix the errors and have made efforts to credit all the people
who have helped us.

We also thank P. Besl, B. Boufama, J. Costeira, P. Debevec, O. Faugeras, Y.
Genc, M. Hebert, D. Huber, K. Ikeuchi, A.E. Johnson, T. Kanade, K. Kutulakos,
M. Levoy, Y. LeCun, S. Mahamud, R. Mohr, H. Moravec, H. Murase, Y. Ohta, M.
Okutami, M. Pollefeys, H. Saito, C. Schmid, J. Shotton, S. Sullivan, C. Tomasi,
and M. Turk for providing the originals of some of the figures shown in this book.

DAF acknowledges ongoing research support from the National Science Foun-
dation. Awards that have directly contributed to the writing of this book are
IIS-0803603, IIS-1029035, and IIS-0916014; other awards have shaped the view de-
scribed here. DAF acknowledges ongoing research support from the Office of Naval
Research, under awards N00014-01-1-0890 and N00014-10-1-0934, which are part
of the MURI program. Any opinions, findings and conclusions or recommendations
expressed in this material are those of the authors and do not necessarily reflect
those of NSF or ONR.

DAF acknowledges a wide range of intellectual debts, starting at kindergarten.
Important figures in the very long list of his creditors include Gerald Alanthwaite,
Mike Brady, Tom Fair, Margaret Fleck, Jitendra Malik, Joe Mundy, Mike Rodd,
Charlie Rothwell, and Andrew Zisserman. JP cannot even remember kindergarten,
but acknowledges his debts to Olivier Faugeras, Mike Brady, and Tom Binford. He
also wishes to thank Sharon Collins for her help. Without her, this book, like most
of his work, probably would have never been finished. Both authors would also like
to acknowledge the profound influence of Jan Koenderink’s writings on their work
at large and on this book in particular.

Figures: Some images used herein were obtained from IMSI’s Master Photos
Collection, 1895 Francisco Blvd. East, San Rafael, CA 94901-5506, USA. We have
made extensive use of figures from the published literature; these figures are credited
in their captions. We thank the copyright holders for extending permission to use
these figures.

Bibliography: In preparing the bibliography, we have made extensive use
of Keith Price’s excellent computer vision bibliography, which can be found at
http://iris.usc.edu/Vision-Notes/bibliography/contents.html.

http://iris.usc.edu/Vision-Notes/bibliography/contents.html


Preface xxiv

TABLE 2: A one-semester introductory class in computer vision for seniors or first-year
graduate students in computer science, electrical engineering, or other engineering or
science disciplines.
Week Chapter Sections Key topics

1 1, 2 1.1, 2.1, 2.2.x pinhole cameras, pixel shading models,
one inference from shading example

2 3 3.1–3.5 human color perception, color physics, color spaces,
image color model

3 4 all linear filters
4 5 all building local features
5 6 6.1, 6.2 texture representations from filters,

from vector quantization
6 7 7.1, 7.2 binocular geometry, stereopsis
7 8 8.1 structure from motion with perspective cameras
8 9 9.1–9.3 segmentation ideas, applications,

segmentation by clustering pixels
9 10 10.1–10.4 Hough transform, fitting lines, robustness, RANSAC,
10 11 11.1-11.3 simple tracking strategies, tracking by matching,

Kalman filters, data association
11 12 all registration
12 15 all classification
13 16 all classifying images
14 17 all detection
15 choice all one of chapters 14, 19, 20, 21 (application topics)

SAMPLE SYLLABUSES

The whole book can be covered in two (rather intense) semesters, by starting at
the first page and plunging on. Ideally, one would cover one application chapter—
probably the chapter on image-based rendering—in the first semester, and the other
one in the second. Few departments will experience heavy demand for such a de-
tailed sequence of courses. We have tried to structure this book so that instructors
can choose areas according to taste. Sample syllabuses for busy 15-week semesters
appear in Tables 2 to 6, structured according to needs that can reasonably be ex-
pected. We would encourage (and expect!) instructors to rearrange these according
to taste.

Table 2 contains a suggested syllabus for a one-semester introductory class
in computer vision for seniors or first-year graduate students in computer science,
electrical engineering, or other engineering or science disciplines. The students
receive a broad presentation of the field, including application areas such as digital
libraries and image-based rendering. Although the hardest theoretical material is
omitted, there is a thorough treatment of the basic geometry and physics of image
formation. We assume that students will have a wide range of backgrounds, and
can be assigned background readings in probability. We have put off the application
chapters to the end, but many may prefer to cover them earlier.

Table 3 contains a syllabus for students of computer graphics who want to
know the elements of vision that are relevant to their topic. We have emphasized
methods that make it possible to recover object models from image information;



Preface xxv

TABLE 3: A syllabus for students of computer graphics who want to know the elements
of vision that are relevant to their topic.
Week Chapter Sections Key topics

1 1, 2 1.1, 2.1, 2.2.4 pinhole cameras, pixel shading models,
photometric stereo

2 3 3.1–3.5 human color perception, color physics, color spaces,
image color model

3 4 all linear filters
4 5 all building local features
5 6 6.3, 6.4 texture synthesis, image denoising
6 7 7.1, 7.2 binocular geometry, stereopsis
7 7 7.4, 7.5 advanced stereo methods
8 8 8.1 structure from motion with perspective cameras
9 10 10.1–10.4 Hough transform, fitting lines, robustness, RANSAC,
10 9 9.1–9.3 segmentation ideas, applications,

segmentation by clustering pixels
11 11 11.1-11.3 simple tracking strategies, tracking by matching,

Kalman filters, data association
12 12 all registration
13 14 all range data
14 19 all image-based modeling and rendering
15 13 all surfaces and outlines

understanding these topics needs a working knowledge of cameras and filters. Track-
ing is becoming useful in the graphics world, where it is particularly important for
motion capture. We assume that students will have a wide range of backgrounds,
and have some exposure to probability.

Table 4 shows a syllabus for students who are primarily interested in the
applications of computer vision. We cover material of most immediate practical
interest. We assume that students will have a wide range of backgrounds, and can
be assigned background reading.

Table 5 is a suggested syllabus for students of cognitive science or artificial
intelligence who want a basic outline of the important notions of computer vision.
This syllabus is less aggressively paced, and assumes less mathematical experience.

Our experience of teaching computer vision is that no single idea presents any
particular conceptual difficulties, though some are harder than others. Difficulties
are caused by the tremendous number of new ideas required by the subject. Each
subproblem seems to require its own way of thinking, and new tools to cope with it.
This makes learning the subject rather daunting. Table 6 shows a sample syllabus
for students who are really not bothered by these difficulties. They would need
to have quite a strong interest in applied mathematics, electrical engineering or
physics, and be very good at picking things up as they go along. This syllabus sets
a furious pace, and assumes that students can cope with a lot of new material.

NOTATION

We use the following notation throughout the book: Points, lines, and planes are
denoted by Roman or Greek letters in italic font (e.g., P , Δ, or Π). Vectors are



Preface xxvi

TABLE 4: A syllabus for students who are primarily interested in the applications of
computer vision.
Week Chapter Sections Key topics

1 1, 2 1.1, 2.1, 2.2.4 pinhole cameras, pixel shading models,
photometric stereo

2 3 3.1–3.5 human color perception, color physics, color spaces,
image color model

3 4 all linear filters
4 5 all building local features
5 6 6.3, 6.4 texture synthesis, image denoising
6 7 7.1, 7.2 binocular geometry, stereopsis
7 7 7.4, 7.5 advanced stereo methods
8 8, 9 8.1, 9.1–9.2 structure from motion with perspective cameras,

segmentation ideas, applications
9 10 10.1–10.4 Hough transform, fitting lines, robustness, RANSAC,
10 12 all registration
11 14 all range data
12 16 all classifying images
13 19 all image based modeling and rendering
14 20 all looking at people
15 21 all image search and retrieval

usually denoted by Roman or Greek bold-italic letters (e.g., v, P , or ξ), but the

vector joining two points P and Q is often denoted by
−−→
PQ. Lower-case letters are

normally used to denote geometric figures in the image plane (e.g., p, p, δ), and
upper-case letters are used for scene objects (e.g., P , Π). Matrices are denoted by
Roman letters in calligraphic font (e.g., U).

The familiar three-dimensional Euclidean space is denoted by E
3, and the

vector space formed by n-tuples of real numbers with the usual laws of addition
and multiplication by a scalar is denoted by R

n, with 0 being used to denote the
zero vector. Likewise, the vector space formed by m× n matrices with real entries
is denoted by R

m×n. When m = n, Id is used to denote the identity matrix—
that is, the n × n matrix whose diagonal entries are equal to 1 and nondiagonal
entries are equal to 0. The transpose of the m × n matrix U with coefficients uij

is the n×m matrix denoted by UT with coefficients uji. Elements of Rn are often
identified with column vectors or n × 1 matrices, for example, a = (a1, a2, a3)

T is
the transpose of a 1 × 3 matrix (or row vector), i.e., an 3 × 1 matrix (or column
vector), or equivalently an element of R3.

The dot product (or inner product) of two vectors a = (a1, . . . , an)
T and

b = (b1, . . . , bn)
T in R

n is defined by

a · b = a1b1 + · · ·+ anbn,

and it can also be written as a matrix product, i.e., a · b = aTb = b
T
a. We denote

by |a|2 = a · a the square of the Euclidean norm of the vector a and denote by d

the distance function induced by the Euclidean norm in E
n, i.e., d(P,Q) = |−−→PQ|.

Given a matrix U in R
m×n, we generally use |U | to denote its Frobenius norm, i.e.,

the square root of the sum of its squared entries.



Preface xxvii

TABLE 5: For students of cognitive science or artificial intelligence who want a basic
outline of the important notions of computer vision.
Week Chapter Sections Key topics

1 1, 2 1.1, 2.1, 2.2.x pinhole cameras, pixel shading models,
one inference from shading example

2 3 3.1–3.5 human color perception, color physics, color spaces,
image color model

3 4 all linear filters
4 5 all building local features
5 6 6.1, 6.2 texture representations from filters,

from vector quantization
6 7 7.1, 7.2 binocular geometry, stereopsis
8 9 9.1–9.3 segmentation ideas, applications,

segmentation by clustering pixels
9 11 11.1, 11.2 simple tracking strategies, tracking using matching,

optical flow
10 15 all classification
11 16 all classifying images
12 20 all looking at people
13 21 all image search and retrieval
14 17 all detection
15 18 all topics in object recognition

When the vector a has unit norm, the dot product a·b is equal to the (signed)
length of the projection of b onto a. More generally,

a · b = |a| |b| cos θ,

where θ is the angle between the two vectors, which shows that a necessary and
sufficient condition for two vectors to be orthogonal is that their dot product be
zero.

The cross product (or outer product) of two vectors a = (a1, a2, a3)
T and

b = (b1, b2, b3)
T in R

3 is the vector

a× b
def
=

⎛
⎝a2b3 − a3b2
a3b1 − a1b3
a1b2 − a2b1

⎞
⎠.

Note that a× b = [a×]b, where

[a×]
def
=

⎛
⎝ 0 −a3 a2

a3 0 −a1
−a2 a1 0

⎞
⎠.

The cross product of two vectors a and b in R
3 is orthogonal to these two

vectors, and a necessary and sufficient condition for a and b to have the same
direction is that a× b = 0. If θ denotes as before the angle between the vectors a
and b, it can be shown that

|a× b| = |a| |b| |sin θ|.



Preface xxviii

TABLE 6: A syllabus for students who have a strong interest in applied mathematics,
electrical engineering, or physics.
Week Chapter Sections Key topics

1 1, 2 all; 2.1–2.4 cameras, shading
2 3 all color
3 4 all linear filters
4 5 all building local features
5 6 all texture
6 7 all stereopsis
7 8 all structure from motion with perspective cameras
8 9 all segmentation by clustering pixels
9 10 all fitting models
10 11 11.1–11.3 simple tracking strategies, tracking by matching,

Kalman filters, data association
11 12 all registration
12 15 all classification
13 16 all classifying images
14 17 all detection
15 choice all one of chapters 14, 19, 20, 21

PROGRAMMING ASSIGNMENTS AND RESOURCES

The programming assignments given throughout this book sometimes require rou-
tines for numerical linear algebra, singular value decomposition, and linear and
nonlinear least squares. An extensive set of such routines is available in MATLAB
as well as in public-domain libraries such as LINPACK, LAPACK, and MINPACK,
which can be downloaded from the Netlib repository (http://www.netlib.org/).
In the text, we offer extensive pointers to software published on the Web and to
datasets published on the Web. OpenCV is an important open-source package of
computer vision routines (see Bradski and Kaehler (2008)).

http://www.netlib.org/


Preface xxix

ABOUT THE AUTHORS

David Forsyth received a B.Sc. (Elec. Eng.) from the University of the Witwa-
tersrand, Johannesburg in 1984, an M.Sc. (Elec. Eng.) from that university in
1986, and a D.Phil. from Balliol College, Oxford in 1989. He spent three years
on the faculty at the University of Iowa, ten years on the faculty at the University
of California at Berkeley, and then moved to the University of Illinois. He served
as program co-chair for IEEE Computer Vision and Pattern Recognition in 2000
and in 2011, general co-chair for CVPR 2006, and program co-chair for the Euro-
pean Conference on Computer Vision 2008, and is a regular member of the program
committee of all major international conferences on computer vision. He has served
five terms on the SIGGRAPH program committee. In 2006, he received an IEEE
technical achievement award, and in 2009 he was named an IEEE Fellow.

Jean Ponce received the Doctorat de Troisieme Cycle and Doctorat d’ État
degrees in Computer Science from the University of Paris Orsay in 1983 and 1988.
He has held Research Scientist positions at the Institut National de la Recherche en
Informatique et Automatique, the MIT Artificial Intelligence Laboratory, and the
Stanford University Robotics Laboratory, and served on the faculty of the Dept. of
Computer Science at the University of Illinois at Urbana-Champaign from 1990 to
2005. Since 2005, he has been a Professor at Ecole Normale Superieure in Paris,
France. Dr. Ponce has served on the editorial boards of Computer Vision and
Image Understanding, Foundations and Trends in Computer Graphics and Vision,
the IEEE Transactions on Robotics and Automation, the International Journal of
Computer Vision (for which he served as Editor-in-Chief from 2003 to 2008), and
the SIAM Journal on Imaging Sciences. He was Program Chair of the 1997 IEEE
Conference on Computer Vision and Pattern Recognition and served as General
Chair of the year 2000 edition of this conference. He also served as General Chair
of the 2008 European Conference on Computer Vision. In 2003, he was named an
IEEE Fellow for his contributions to Computer Vision, and he received a US patent
for the development of a robotic parts feeder.



This page intentionally left blank 



P A R T O N E

IMAGE FORMATION



This page intentionally left blank 



C H A P T E R 1

Geometric Camera Models

There are many types of imaging devices, from animal eyes to video cameras and
radio telescopes, and they may or may not be equipped with lenses. For example,
the first models of the camera obscura (literally, dark chamber) invented in the
sixteenth century did not have lenses, but instead used a pinhole to focus light rays
onto a wall or translucent plate and demonstrate the laws of perspective discovered
a century earlier by Brunelleschi. Pinholes were replaced by more and more sophis-
ticated lenses as early as 1550, and the modern photographic or digital camera is
essentially a camera obscura capable of recording the amount of light striking every
small area of its backplane (Figure 1.1).

FIGURE 1.1: Image formation on the backplate of a photographic camera. Figure from
US NAVY MANUAL OF BASIC OPTICS AND OPTICAL INSTRUMENTS, prepared
by the Bureau of Naval Personnel, reprinted by Dover Publications, Inc. (1969).

The imaging surface of a camera is in general a rectangle, but the shape of
the human retina is much closer to a spherical surface, and panoramic cameras may
be equipped with cylindrical retinas. Imaging sensors have other characteristics.
They may record a spatially discrete picture (like our eyes with their rods and
cones, 35mm cameras with their grain, and digital cameras with their rectangular
picture elements, or pixels), or a continuous one (in the case of old-fashioned TV
tubes, for example). The signal that an imaging sensor records at a point on its
retina may itself be discrete or continuous, and it may consist of a single number
(as for a black-and-white camera), a few values (e.g., the RGB intensities for a
color camera or the responses of the three types of cones for the human eye),
many numbers (e.g., the responses of hyperspectral sensors), or even a continuous
function of wavelength (which is essentially the case for spectrometers). Chapter 2

3



Section 1.1 Image Formation 4

considers cameras as radiometric devices for measuring light energy, brightness, and
color. Here, we focus instead on purely geometric camera characteristics. After
introducing several models of image formation in Section 1.1—including a brief
description of this process in the human eye in Section 1.1.4—we define the intrinsic
and extrinsic geometric parameters characterizing a camera in Section 1.2, and
finally show how to estimate these parameters from image data—a process known
as geometric camera calibration—in Section 1.3.

1.1 IMAGE FORMATION

1.1.1 Pinhole Perspective

Imagine taking a box, using a pin to prick a small hole in the center of one of its
sides, and then replacing the opposite side with a translucent plate. If you hold that
box in front of you in a dimly lit room, with the pinhole facing some light source,
say a candle, an inverted image of the candle will appear on the translucent plate
(Figure 1.2). This image is formed by light rays issued from the scene facing the
box. If the pinhole were really reduced to a point (which is physically impossible,
of course), exactly one light ray would pass through each point in the plane of the
plate (or image plane), the pinhole, and some scene point.

pinhole

image
plane

virtual
image

FIGURE 1.2: The pinhole imaging model.

In reality, the pinhole will have a finite (albeit small) size, and each point in the
image plane will collect light from a cone of rays subtending a finite solid angle, so
this idealized and extremely simple model of the imaging geometry will not strictly
apply. In addition, real cameras are normally equipped with lenses, which further
complicates things. Still, the pinhole perspective (also called central perspective)
projection model, first proposed by Brunelleschi at the beginning of the fifteenth
century, is mathematically convenient and, despite its simplicity, it often provides
an acceptable approximation of the imaging process. Perspective projection creates
inverted images, and it is sometimes convenient to consider instead a virtual image
associated with a plane lying in front of the pinhole, at the same distance from it
as the actual image plane (Figure 1.2). This virtual image is not inverted but is
otherwise strictly equivalent to the actual one. Depending on the context, it may
be more convenient to think about one or the other. Figure 1.3 (a) illustrates an
obvious effect of perspective projection: the apparent size of objects depends on
their distance. For example, the images b and c of the posts B and C have the
same height, but A and C are really half the size of B. Figure 1.3 (b) illustrates



Section 1.1 Image Formation 5

another well-known effect: the projections of two parallel lines lying in some plane
Φ appear to converge on a horizon line h formed by the intersection of the image
plane Π with the plane parallel to Φ and passing through the pinhole. Note that
the line L parallel to Π in Φ has no image at all.

(a) ddd

O

A

B

b
c

aC

Π

(b) Φ

h

L

O

Π

FIGURE 1.3: Perspective effects: (a) far objects appear smaller than close ones: The
distance d from the pinhole O to the plane containing C is half the distance from O to the
plane containing A and B; (b) the images of parallel lines intersect at the horizon (after
Hilbert and Cohn-Vossen, 1952, Figure 127). Note that the image plane Π is behind the
pinhole in (a) (physical retina), and in front of it in (b) (virtual image plane). Most of
the diagrams in this chapter and in the rest of this book will feature the physical image
plane, but a virtual one will also be used when appropriate, as in (b).

These properties are easy to prove in a purely geometric fashion. As usual,
however, it is often convenient (if not quite as elegant) to reason in terms of reference
frames, coordinates, and equations. Consider, for example, a coordinate system
(O, i, j,k) attached to a pinhole camera, whose origin O coincides with the pinhole,
and vectors i and j form a basis for a vector plane parallel to the image plane Π,
itself located at a positive distance d from the pinhole along the vector k (Figure
1.4). The line perpendicular to Π and passing through the pinhole is called the
optical axis, and the point c where it pierces Π is called the image center. This
point can be used as the origin of an image plane coordinate frame, and it plays an
important role in camera calibration procedures.

Let P denote a scene point with coordinates (X,Y, Z) and p denote its image



Section 1.1 Image Formation 6

P

O

d

k

i

jΠ

c

p

FIGURE 1.4: The perspective projection equations are derived in this section from the
collinearity of the point P , its image p, and the pinhole O.

with coordinates (x, y, z). (Throughout this chapter, we will use uppercase letters
to denotes points in space, and lowercase letters to denote their image projections.)
Since p lies in the image plane, we have z = d. Since the three points P , O, and p

are collinear, we have
−→
Op = λ

−−→
OP for some number λ, so⎧⎨

⎩
x = λX
y = λY
d = λZ

⇐⇒ λ =
x

X
=

y

Y
=

d

Z
,

and therefore ⎧⎪⎪⎨
⎪⎪⎩

x = d
X

Z
,

y = d
Y

Z
.

(1.1)

1.1.2 Weak Perspective

As noted in the previous section, pinhole perspective is only an approximation of the
geometry of the imaging process. This section discusses a coarser approximation,
called weak perspective, which is also useful on occasion.

Consider the fronto-parallel plane Π0 defined by Z = Z0 (Figure 1.5). For any
point P in Π0 we can rewrite Eq. (1.1) as{

x = −mX,
y = −mY,

where m = −
d

Z0
. (1.2)

Physical constraints impose that Z0 be negative (the plane must be in front
of the pinhole), so the magnification m associated with the plane Π0 is positive.
This name is justified by the following remark: consider two points P and Q in

Π0 and their images p and q (Figure 1.5); obviously, the vectors
−−→
PQ and −→pq are

parallel, and we have ||−→pq|| = m||−−→PQ||. This is the dependence of image size on
object distance noted earlier.



Section 1.1 Image Formation 7

Π0

Π
O

-Z 0

q

p
Q

P

i

k

j
d

FIGURE 1.5: Weak-perspective projection. All line segments in the plane Π0 are projected
with the same magnification.

When a scene’s relief is small relative to its average distance from the camera,
the magnification can be taken to be constant. This projection model is called weak
perspective, or scaled orthography.

When it is a priori known that the camera will always remain at a roughly
constant distance from the scene, we can go further and normalize the image coor-
dinates so that m = −1. This is orthographic projection, defined by{

x = X,
y = Y,

(1.3)

with all light rays parallel to the k axis and orthogonal to the image plane π
(Figure 1.6). Although weak-perspective projection is an acceptable model for many
imaging conditions, assuming pure orthographic projection is usually unrealistic.

O

k

i

jΠ

Qq

p P

FIGURE 1.6: Orthographic projection. Unlike other geometric models of the image for-
mation process, orthographic projection does not involve a reversal of image features.
Accordingly, the magnification is taken to be negative, which is a bit unnatural but sim-
plifies the projection equations.



Section 1.1 Image Formation 8

1.1.3 Cameras with Lenses

Most real cameras are equipped with lenses. There are two main reasons for this:
The first one is to gather light, because a single ray of light would otherwise reach
each point in the image plane under ideal pinhole projection. Real pinholes have a
finite size, of course, so each point in the image plane is illuminated by a cone of
light rays subtending a finite solid angle. The larger the hole, the wider the cone
and the brighter the image, but a large pinhole gives blurry pictures. Shrinking
the pinhole produces sharper images but reduces the amount of light reaching the
image plane, and may introduce diffraction effects. Keeping the picture in sharp
focus while gathering light from a large area is the second main reason for using a
lens.

Ignoring diffraction, interferences, and other physical optics phenomena, the
behavior of lenses is dictated by the laws of geometric optics (Figure 1.7): (1) light
travels in straight lines (light rays) in homogeneous media; (2) when a ray is reflected
from a surface, this ray, its reflection, and the surface normal are coplanar, and the
angles between the normal and the two rays are complementary; and (3) when a
ray passes from one medium to another, it is refracted, i.e., its direction changes.
According to Snell’s law, if r1 is the ray incident to the interface between two
transparent materials with indices of refraction n1 and n2, and r2 is the refracted
ray, then r1, r2, and the normal to the interface are coplanar, and the angles α1

and α2 between the normal and the two rays are related by

n1 sinα1 = n2 sinα2. (1.4)

n

r

1α

α2

2

1

n2

α1

1r r’1

FIGURE 1.7: Reflection and refraction at the interface between two homogeneous media
with indices of refraction n1 and n2.

In this chapter, we will only consider the effects of refraction and ignore those
of reflection. In other words, we will concentrate on lenses as opposed to catadioptric
optical systems (e.g., telescopes) that may include both reflective (mirrors) and
refractive elements. Tracing light rays as they travel through a lens is simpler
when the angles between these rays and the refracting surfaces of the lens are
assumed to be small, which is the domain of paraxial (or first-order) geometric
optics, and Snell’s law becomes n1α1 ≈ n2α2. Let us also assume that the lens
is rotationally symmetric about a straight line, called its optical axis, and that all
refractive surfaces are spherical. The symmetry of this setup allows us to determine



Section 1.1 Image Formation 9

O
F’ F

z -Z

ff
-y

Y

p

P

FIGURE 1.8: A thin lens. Rays passing through O are not refracted. Rays parallel to the
optical axis are focused on the focal point F ′.

the projection geometry by considering lenses with circular boundaries lying in a
plane that contains the optical axis. In particular, consider a lens with two spherical
surfaces of radius R and index of refraction n. We will assume that this lens is
surrounded by vacuum (or, to an excellent approximation, by air), with an index
of refraction equal to 1, and that it is thin, i.e., that a ray entering the lens and
refracted at its right boundary is immediately refracted again at the left boundary.

Consider a point P located at (negative) depth Z off the optical axis, and
denote by (PO) the ray passing through this point and the center O of the lens
(Figure 1.8). It easily follows from the paraxial form of Snell’s law that (PO) is
not refracted, and that all the other rays passing through P are focused by the thin
lens on the point p with depth z along (PO) such that

1

z
− 1

Z
=

1

f
, (1.5)

where f = R
2(n−1) is the focal length of the lens.

Note that the equations relating the positions of P and p are exactly the same
as under pinhole perspective projection if we take d = z since P and p lie on a ray
passing through the center of the lens, but that points located at a distance −Z
from O will be in sharp focus only when the image plane is located at a distance z
from O on the other side of the lens that satisfies Eq. (1.5), the thin lens equation.
Letting Z → −∞ shows that f is the distance between the center of the lens and the
plane where objects such as stars (that are effectively located at Z = −∞) focus.
The two points F and F ′ located at distance f from the lens center on the optical
axis are called the focal points of the lens. In practice, objects within some range
of distances (called depth of field or depth of focus) will be in acceptable focus. As
shown in the problems at the end of this chapter, the depth of field increases with
the f-number of the lens, i.e., the ratio between the focal length of the lens and its
diameter.

Note that the field of view of a camera, i.e., the portion of scene space that
actually projects onto the retina of the camera, is not defined by the focal length
alone but also depends on the effective area of the retina (e.g., the area of film that
can be exposed in a photographic camera, or the area of the sensor in a digital
camera; see Figure 1.9).



Section 1.1 Image Formation 10

film
a

φ
lens

f

FIGURE 1.9: The field of view of a camera. It can be defined as 2φ, where φ
def
= arctan a

2f
,

a is the diameter of the sensor (film, CCD, or CMOS chip), and f is the focal length of
the camera.

A more realistic model of simple optical systems is the thick lens. The equa-
tions describing its behavior are easily derived from the paraxial refraction equation,
and they are the same as the pinhole perspective and thin lens projection equations,
except for an offset (Figure 1.10). If H and H ′ denote the principal points of the
lens, then Eq. (1.5) holds when −Z (resp. z) is the distance between P (resp. p)
and the plane perpendicular to the optical axis and passing through H (resp. H ′).
In this case, the only undeflected ray is along the optical axis.

H’ HF’ F

P

z

f f

-Z

Y

-y

p

FIGURE 1.10: A simple thick lens with two spherical surfaces.

Simple lenses suffer from a number of aberrations. To understand why, let us
remember that the paraxial refraction model is only an approximation, valid when
the angle α between each ray along the optical path and the optical axis of the
length is small and sinα ≈ α. This corresponds to a first-order Taylor expansion of
the sine function. For larger angles, additional terms yield a better approximation,
and it is easy to show that rays striking the interface farther from the optical axis
are focused closer to the interface. The same phenomenon occurs for a lens, and
it is the source of two types of spherical aberrations (Figure 1.11 [a]): Consider a
point P on the optical axis and its paraxial image p. The distance between p and
the intersection of the optical axis with a ray issued from P and refracted by the
lens is called the longitudinal spherical aberration of that ray. Note that if an image
plane Π were erected in P , the ray would intersect this plane at some distance from



Section 1.1 Image Formation 11

the axis, called the transverse spherical aberration of that ray. Together, all rays
passing through P and refracted by the lens form a circle of confusion centered
in P as they intersect Π. The size of that circle will change if we move Π along
the optical axis. The circle with minimum diameter is called the circle of least
confusion, and its center does not coincide (in general) with p.

(a)

e
Pp

Π

(b)

(c)

FIGURE 1.11: Aberrations. (a) Spherical aberration: The gray region is the paraxial zone
where the rays issued from P intersect at its paraxial image p. If an image plane π were
erected in p, the image of p in that plane would form a circle of confusion of diameter e.
The focus plane yielding the circle of least confusion is indicated by a dashed line. (b)
Distortion: From left to right, the nominal image of a fronto-parallel square, pincushion
distortion, and barrel distortion. (c) Chromatic aberration: The index of refraction of a
transparent medium depends on the wavelength (or color) of the incident light rays. Here,
a prism decomposes white light into a palette of colors. Figure from US NAVY MANUAL
OF BASIC OPTICS AND OPTICAL INSTRUMENTS, prepared by the Bureau of Naval
Personnel, reprinted by Dover Publications, Inc. (1969).

Besides spherical aberration, there are four other types of primary aberrations
caused by the differences between first- and third-order optics, namely coma, astig-
matism, field curvature, and distortion. A precise definition of these aberrations is
beyond the scope of this book. Suffice to say that, like a spherical aberration, the
first three degrade the image by blurring the picture of every object point. Distor-
tion, on the other hand, plays a different role and changes the shape of the image



Section 1.1 Image Formation 12

FIGURE 1.12: Vignetting effect in a two-lens system. The shaded part of the beam never
reaches the second lens. Additional apertures and stops in a lens further contribute to
vignetting.

as a whole (Figure 1.11 [b]). This effect is due to the fact that different areas of
a lens have slightly different focal lengths. The aberrations mentioned so far are
monochromatic, i.e., they are independent of the response of the lens to various
wavelengths. However, the index of refraction of a transparent medium depends on
wavelength (Figure 1.11 [c]), and it follows from the thin lens equation (Eq. [1.5])
that the focal length depends on wavelength as well. This causes the phenomenon
of chromatic aberration: refracted rays corresponding to different wavelengths will
intersect the optical axis at different points (longitudinal chromatic aberration) and
form different circles of confusion in the same image plane (transverse chromatic
aberration).

Aberrations can be minimized by aligning several simple lenses with well-
chosen shapes and refraction indices, separated by appropriate stops. These com-
pound lenses can still be modeled by the thick lens equations, but they suffer from
one more defect relevant to machine vision: light beams emanating from object
points located off-axis are partially blocked by the various apertures (including the
individual lens components themselves) positioned inside the lens to limit aberra-
tions (Figure 1.12). This phenomenon, called vignetting, causes the image bright-
ness to drop in the image periphery. Vignetting may pose problems to automated
image analysis programs, but it is not quite as important in photography, thanks to
the human eye’s remarkable insensitivity to smooth brightness gradients. Speaking
of which, it is time to have a look at this extraordinary organ.

1.1.4 The Human Eye

Here we give a (brief) overview of the anatomical structure of the eye. It is largely
based on the presentation in Wandell (1995), and the interested reader is invited
to read this excellent book for more details. Figure 1.13 (left) is a sketch of the
section of an eyeball through its vertical plane of symmetry, showing the main
elements of the eye: the iris and the pupil, which control the amount of light
penetrating the eyeball; the cornea and the crystalline lens, which together refract
the light to create the retinal image; and finally the retina, where the image is



Section 1.1 Image Formation 13

formed. Despite its globular shape, the human eyeball is functionally similar to
a camera with a field of view covering a 160◦ (width) × 135◦ (height) area. Like
any other optical system, it suffers from various types of geometric and chromatic
aberrations. Several models of the eye obeying the laws of first-order geometric
optics have been proposed, and Figure 1.13 (right) shows one of them, Helmoltz’s
schematic eye. There are only three refractive surfaces, with an infinitely thin
cornea and a homogeneous lens. The constants given in Figure 1.13 are for the
eye focusing at infinity (unaccommodated eye). This model is of course only an
approximation of the real optical characteristics of the eye.

20mm 15mm

0.42mm

H

H’

F’ F

FIGURE 1.13: Left: the main components of the human eye. Reproduced with permission,
the American Society for Photogrammetry and Remote Sensing. A.L. Nowicki, “Stere-
oscopy.” MANUAL OF PHOTOGRAMMETRY, edited by M.M. Thompson, R.C. Eller,
W.A. Radlinski, and J.L. Speert, third edition, pp. 515–536. Bethesda: American Society
of Photogrammetry, (1966). Right: Helmoltz’s schematic eye as modified by Laurance
(after Driscoll and Vaughan, 1978). The distance between the pole of the cornea and the
anterior principal plane is 1.96 mm, and the radii of the cornea, anterior, and posterior
surfaces of the lens are respectively 8 mm, 10 mm, and 6 mm.

Let us have a second look at the components of the eye one layer at a time.
The cornea is a transparent, highly curved, refractive window through which light
enters the eye before being partially blocked by the colored and opaque surface of
the iris. The pupil is an opening at the center of the iris whose diameter varies from
about 1 to 8 mm in response to illumination changes, dilating in low light to increase
the amount of energy that reaches the retina and contracting in normal lighting
conditions to limit the amount of image blurring due to spherical aberration in the
eye. The refracting power (reciprocal of the focal length) of the eye is, in large
part, an effect of refraction at the the air–cornea interface, and it is fine-tuned
by deformations of the crystalline lens that accommodates to bring objects into
sharp focus. In healthy adults, it varies between 60 (unaccommodated case) and
68 diopters (1 diopter= 1 m−1), corresponding to a range of focal lengths between
15 and 17 mm.

The retina itself is a thin, layered membrane populated by two types of
photoreceptors—rods and cones. There are about 100 million rods and 5 million
cones in a human eye. Their spatial distribution varies across the retina: The mac-
ula lutea is a region in the center of the retina where the concentration of cones is
particularly high and images are sharply focused whenever the eye fixes its attention
on an object (Figure 1.13). The highest concentration of cones occurs in the fovea,



Section 1.2 Intrinsic and Extrinsic Parameters 14

a depression in the middle of the macula lutea where it peaks at 1.6 × 105/mm2,
with the centers of two neighboring cones separated by only half a minute of visual
angle. Conversely, there are no rods in the center of the fovea, but the rod density
increases toward the periphery of the visual field. There is also a blind spot on the
retina, where the ganglion cell axons exit the retina and form the optic nerve.

The rods are extremely sensitive photoreceptors, capable of responding to a
single photon, but they yield relatively poor spatial detail despite their high number
because many rods converge to the same neuron within the retina. In contrast,
cones become active at higher light levels, but the signal output by each cone in
the fovea is encoded by several neurons, yielding a high resolution in that area.
As discussed further in Chapter 3, there are three types of cones with different
spectral sensitivities, and these play a key role in the perception of color. Much
more could (and should) be said about the human eye—for example how our two
eyes verge and fixate on targets, and how they cooperate in stereo vision, an issue
briefly discussed in Chapter 7.

1.2 INTRINSIC AND EXTRINSIC PARAMETERS

Digital images, like animal retinas, are spatially discrete, and divided into (usually)
rectangular picture elements, or pixels. This is an aspect of the image formation
process that we have neglected so far, assuming instead that the image domain is
spatially continuous. Likewise, the perspective equation derived in the previous
section is valid only when all distances are measured in the camera’s reference
frame, and when image coordinates have their origin at the image center where the
axis of symmetry of the camera pierces its retina. In practice, the world and camera
coordinate systems are related by a set of physical parameters, such as the focal
length of the lens, the size of the pixels, the position of the image center, and the
position and orientation of the camera. This section identifies these parameters.
We will distinguish the intrinsic parameters, which relate the camera’s coordinate
system to the idealized coordinate system used in Section 1.1, from the extrinsic
parameters, which relate the camera’s coordinate system to a fixed world coordinate
system and specify its position and orientation in space.

We ignore in the rest of this section the fact that, for cameras equipped with
a lens, a point will be in focus only when its depth and the distance between the
optical center of the camera and its image plane obey Eq. (1.5). In particular, we
assume that the camera is focused at infinity, so d = f . Likewise, the nonlinear
aberrations associated with real lenses are not taken into account by Eq. (1.1). We
neglect these aberrations in this section, but revisit radial distortion in Section 1.3
when we address the problem of estimating the intrinsic and extrinsic parameters
of a camera (a process known as geometric camera calibration).

1.2.1 Rigid Transformations and Homogeneous Coordinates

This section features our first use of homogeneous coordinates to represent the
position of points in two or three dimensions. Consider a point P whose position
in some coordinate frame (F ) = (O, i, j,k) is given by

−−→
OP = Xi+ Y j + Zk.



Section 1.2 Intrinsic and Extrinsic Parameters 15

We define the usual (nonhomogeneous) coordinate vector of P to be the vector
(X,Y, Z)T in R

3 and its homogeneous coordinate vector as the vector (X,Y, Z, 1)T

in R
4. We use bold letters to denote (homogeneous and nonhomogeneous) coordi-

nate vectors in this book, and always state which type of coordinates we use when
it is not obvious from the context. We also use a superscript on the left side of
coordinate vectors when necessary to indicate which coordinate frame a position is
expressed in. For example, FP stands for the coordinate vector of the point P in
the frame (F ). Homogeneous coordinates are a convenient device for representing
various geometric transformations by matrix products. For example, the change of
coordinates between two Euclidean coordinate systems (A) and (B) may be rep-
resented by a 3 × 3 rotation matrix R and a translation vector t in R

3, and the
corresponding rigid transformation can be written in nonhomogeneous coordinates
as

AP = RBP + t, (1.6)

where AP and BP are elements of R
3. In homogeneous coordinates, we write

instead
AP = T BP , where T =

(
R t

0T 1

)
, (1.7)

and AP and BP are this time elements of R4.
Before going further, let us recall a few facts about rotations. Rotation matri-

ces form a mulitplicative group. From an analytical viewpoint, they are character-
ized by the facts that (1) the inverse of a rotation matrix is equal to its transpose,
and (2) its determinant is equal to one. It can also be shown that any rotation
matrix can be parameterized by three Euler angles, or written as the product of
three elementary rotations about the i, j, and k vectors of some coordinate sys-
tem. As shown in Chapters 7 and 14, other parameterizations—by exponentials of
antisymmetric matrices or quaternions for example—may prove useful as well. Ge-
ometrically, the matrix R in Eq. (1.6) also represents the basis vectors (iB, jB ,kB)
of (B) in the coordinate frame (A)—that is, the matrix R in Eq. (1.6) is given by:

R def
=
(
AiB,

AjB,
AkB

)
=

⎛
⎝iA · iB jA · iB kA · iB
iA · jB jA · jB kA · jB
iA · kB jA · kB kA · kB

⎞
⎠, (1.8)

and, as shown in the problems at the end of this chapter, Eq. (1.6) easily follows
from this definition. By definition, the columns of a rotation matrix form a right-
handed orthonormal coordinate system of R3. It follows from properties (1) and (2)
that their rows also form such a coordinate system. One may wonder what happens
when R is replaced in Eq. (1.7) by some arbitrary nonsingular 3×3 matrix, or when
the matrix T itself is replaced by some arbitrary nonsingular 4×4matrix. As further
discussed in Chapter 8, the coordinate frames (A) and (B) are no longer separated
by rigid transformations in this case, but by affine and projective transformations
respectively.

As will be shown in the rest of this section, homogeneous coordinates also
provide an algrebraic representation of the perspective projection process in the
form of a 3×4 matrix M, so that the coordinate vector P = (X,Y, Z, 1)T of a point
P in some fixed world coordinate system and the coordinate vector p = (x, y, 1)T of



Section 1.2 Intrinsic and Extrinsic Parameters 16

0c

c
x

y

y

x

Normalized
image plane

Physical
retina

O

c

k

j

Pp
p

Pinhole
i

FIGURE 1.14: Physical and normalized image coordinate systems.

its image p in the camera’s reference frame are related by the perspective projection
equation

p =
1

Z
MP . (1.9)

1.2.2 Intrinsic Parameters

It is possible to associate with a camera a normalized image plane parallel to its
physical retina but located at a unit distance from the pinhole. We attach to this
plane its own coordinate system with an origin located at the point ĉ where the
optical axis pierces it (Figure 1.14). Equation (1.1) can be written in this normalized
coordinate system as ⎧⎪⎪⎨

⎪⎪⎩
x̂ =

X

Z

ŷ =
Y

Z

⇐⇒ p̂ =
1

Z

(
Id 0

)
P , (1.10)

where p̂
def
= (x̂, ŷ, 1)T is the vector of homogeneous coordinates of the projection p̂ of

the point P into the normalized image plane, and P is as before the homogeneous
coordinate vector of P in the world coordinate frame.

The physical retina of the camera is in general different (Figure 1.14): It is
located at a distance f �= 1 from the pinhole (remember that we assume that the
camera is focused at infinity, so the distance between the pinhole and the image
plane is equal to the focal length), and the coordinates (x, y) of the image point p
are usually expressed in pixel units (instead of, say, meters). In addition, pixels may
be rectangular instead of square, so the camera has two additional scale parameters



Section 1.2 Intrinsic and Extrinsic Parameters 17

k and l, and ⎧⎪⎪⎨
⎪⎪⎩

x = kf
X

Z
= kfx̂,

y = lf
Y

Z
= lf ŷ.

(1.11)

Let us talk units for a second: f is a distance, expressed in meters, for example,
and a pixel will have dimensions 1

k × 1
l , where k and l are expressed in pixel×m−1.

The parameters k, l, and f are not independent, and they can be replaced by the
magnifications α = kf and β = lf expressed in pixel units.

Now, in general, the actual origin of the camera coordinate system is at a
corner c of the retina (in the case depicted in Figure 1.14, the lower-left corner,
or sometimes the upper-left corner, when the image coordinates are the row and
column indices of a pixel) and not at its center, and the center of the CCD matrix
usually does not coincide with the image center c0. This adds two parameters x0

and y0 that define the position (in pixel units) of c0 in the retinal coordinate system.
Thus, Eq. (1.11) is replaced by {

x = αx̂ + x0,
y = βŷ + y0.

(1.12)

Finally, the camera coordinate system might also be skewed, due to some
manufacturing error, so the angle θ between the two image axes is not equal to
(but of course not very different from) 90 degrees. In this case, it is easy to show
that Eq. (1.12) transforms into⎧⎨

⎩
x = αx̂− α cot θŷ + x0,

y =
β

sin θ
ŷ + y0.

(1.13)

This can be written in matrix form as

p = Kp̂, where p =

⎛
⎝x
y
1

⎞
⎠ and K def

=

⎛
⎜⎜⎝
α −α cot θ x0

0
β

sin θ
y0

0 0 1

⎞
⎟⎟⎠. (1.14)

The 3×3 matrix K is called the (internal) calibration matrix of the camera. Putting
Eqs. (1.10) and (1.14) together, we obtain

p =
1

Z
K
(
Id 0

)
P =

1

Z
MP , where M def

=
(
K 0

)
, (1.15)

which is indeed an instance of Eq. (1.9). The five parameters α, β, θ, x0, and y0
are called the intrinsic parameters of the camera.

Several of these parameters, such as the focal length, or the physical size
of the pixels, are often available in the EXIF tags attached to the JPEG images
recorded by digital cameras (this information might not be available, of course, as
in the case of stock film footage). For zoom lenses, the focal length may vary with



Section 1.2 Intrinsic and Extrinsic Parameters 18

time, along with the image center when the optical axis of the lens is not exactly
perpendicular to the image plane. Simply changing the focus of the camera will
also affect the magnification because it will change the lens-to-retina distance, but
we will continue to assume that the camera is focused at infinity and ignore this
effect in the rest of this chapter.

1.2.3 Extrinsic Parameters

Equation (1.15) is written in a coordinate frame (C) attached to the camera. Let
us now consider the case where this frame is distinct from the world coordinate
system (W ). To emphasize this, we rewrite Eq. (1.15) as p = 1

ZMCP , where CP

denotes the vector of homogeneous coordinates of the point P expressed in (C).
The change of coordinates between (C) and (W ) is a rigid transformation, and it
can be written as

CP =

⎛
⎝R t

0T 1

⎞
⎠WP ,

where WP is the vector of homogeneous coordinates of the point P in the coordinate
frame (W ). Taking P = WP and substituting in Eq. (1.15) finally yields

p =
1

Z
MP , where M = K

(
R t

)
. (1.16)

This is the most general form of the perspective projection equation, and indeed an
instance of Eq. (1.9). Knowing M determines the position of the camera’s optical
center in the coordinate frame (W )—that is, its homogeneous coordinate vector
O = WO. Indeed, as shown in the problems at the end of this chapter, MO = 0.

As mentioned earlier, a rotation matrix such as R is defined by three indepen-
dent parameters (for example, Euler angles). Adding to these the three coordinates
of the vector t, we obtain a set of six extrinsic parameters that define the position
and orientation of the camera relative to the world coordinate frame.

It is very important to understand that the depth Z in Eq. (1.16) is not
independent of M and P , because if mT

1 , m
T
2 and mT

3 denote the three rows of
M, it follows directly from Eq. (1.16) that Z = m3 · P . In fact, it is sometimes
convenient to rewrite Eq. (1.16) in the equivalent form:⎧⎪⎪⎨

⎪⎪⎩
x =

m1 ·P
m3 ·P

,

y =
m2 · P
m3 · P

.

(1.17)

A perspective projection matrix can be written explicitly as a function of its
five intrinsic parameters, the three rows rT

1 , r
T
2 , and rT3 of the matrix R, and the

three coordinates t1, t2, and t3 of the vector t, namely:

M =

⎛
⎜⎜⎝
αrT

1 − α cot θrT2 + x0r
T
3 αt1 − α cot θt2 + x0t3

β

sin θ
rT
2 + y0r

T
3

β

sin θ
t2 + y0t3

rT
3 t3

⎞
⎟⎟⎠. (1.18)



Section 1.2 Intrinsic and Extrinsic Parameters 19

When R is written as the product of three elementary rotations, the vectors ri

(i = 1, 2, 3) can of course be written in terms of the corresponding three angles,
and Eq. (1.18) gives an explicit parameterization of M in terms of all 11 camera
parameters.

1.2.4 Perspective Projection Matrices

This section examines the conditions under which a 3×4 matrixM can be written in
the form given by Eq. (1.18). Let us write without loss of generality M =

(
A b

)
,

where A is a 3× 3 matrix and b is an element of R3, and let us denote by aT
3 the

third row of A. Clearly, if M is an instance of Eq. (1.18), then aT
3 must be a unit

vector since it is equal to rT3 , the last row of a rotation matrix. Note, however,
that replacing M by λM in Eq. (1.17) for some arbitrary λ �= 0 does not change
the corresponding image coordinates. This will lead us in the rest of this book
to consider projection matrices as homogeneous objects, only defined up to scale,
whose canonical form, as expressed by Eq. (1.18), can be obtained by choosing a
scale factor such that ||a3|| = 1. Note that the parameter Z in Eq. (1.16) can
only rightly be interpreted as the depth of the point P when M is written in this
canonical form. Note also that the number of intrinsic and extrinsic parameters of
a camera matches the 11 free parameters of the (homogeneous) matrix M.

We say that a 3 × 4 matrix that can be written (up to scale) as Eq. (1.18)
for some set of intrinsic and extrinsic parameters is a perspective projection matrix.
It is of practical interest to put some restrictions on the intrinsic parameters of a
camera because, as noted earlier, some of these parameters will be fixed and might
be known. In particular, we will say that a 3 × 4 matrix is a zero-skew perspective
projection matrix when it can be rewritten (up to scale) as Eq. (1.18) with θ = π/2,
and that it is a perspective projection matrix with zero skew and unit aspect-ratio
when it can be rewritten (up to scale) as Eq. (1.18) with θ = π/2 and α = β. A
camera with known nonzero skew and nonunit aspect-ratio can be transformed into
a camera with zero skew and unit aspect-ratio by an appropriate change of image
coordinates. Are arbitrary 3 × 4 matrices perspective projection matrices? The
following theorem answers this question.

Theorem 1. Let M =
(
A b

)
be a 3 × 4 matrix, and let aT

i (i = 1, 2, 3)
denote the rows of the matrix A formed by the three leftmost columns of M.

• A necessary and sufficient condition for M to be a perspective projection
matrix is that Det(A) �= 0.

• A necessary and sufficient condition for M to be a zero-skew perspective
projection matrix is that Det(A) �= 0 and

(a1 × a3) · (a2 × a3) = 0.

• A necessary and sufficient condition for M to be a perspective projection
matrix with zero skew and unit aspect-ratio is that Det(A) �= 0 and{

(a1 × a3) · (a2 × a3) = 0,
(a1 × a3) · (a1 × a3) = (a2 × a3) · (a2 × a3).



Section 1.2 Intrinsic and Extrinsic Parameters 20

p
q
r

r
q
p

π

π
r

r

Q

P P’

R

Q’

Q

R

P
P’

Q’

O

O

FIGURE 1.15: Affine projection models: (top) weak-perspective and (bottom) paraper-
spective projections.

The conditions of the theorem are clearly necessary: By definition, given some
perspective projection matrix A, we can always write ρA = KR for some nonzero
scalar ρ, calibration matrix K, rotation matrix R, and vector t. In particular,
ρ3Det(A) = Det(K) �= 0 since calibration matrices are nonsingular by construction,
so A is nonsingular. Further, a simple calculation shows that the rows of the matrix
1
ρKR satisfy the conditions of the theorem under the various assumptions imposed
by its statement. These conditions are proven to also be sufficient in Faugeras
(1993).

1.2.5 Weak-Perspective Projection Matrices

As noted in Section 1.1.2, when a scene’s relief is small compared to the overall
distance separating it from the camera observing it, a weak-perspective projection
model can be used to approximate the imaging process (Figure 1.15, top). Let O
denote the optical center of the camera, and let R denote a scene reference point.
The weak-perspective projection of a scene point P is constructed in two steps: the
point P is first projected orthogonally onto a point P ′ of the plane Πr parallel to
the image plane Π and passing through R; perspective projection is then used to
map the point P ′ onto the image point p. Since πr is a fronto-parallel plane, the
net effect of the second projection step is a scaling of the image coordinates.

As shown in this section, the weak-perspective projection process can be rep-
resented in terms of a 2× 4 matrix M, so that the homogeneous coordinate vector
P = (X,Y, Z, 1)T of a point P in some fixed world coordinate system and the non-
homogeneous coordinate vector p = (x, y)T of its image p in the camera’s reference



Section 1.2 Intrinsic and Extrinsic Parameters 21

frame are related by the affine projection equation

p = MP . (1.19)

It turns out that this general model accomodates various other approximations
of the perspective projection process. These include the orthographic projection
model discussed earlier, as well as the parallel projection model, which subsumes the
orthographic one, and takes into account the fact that the objects of interest may
lie off the optical axis of the camera. In this model, the viewing rays are parallel to
each other but not necessarily perpendicular to the image plane. Paraperspective
is another affine projection model that takes into account both the distortions
associated with a reference point that is off the optical axis of the camera and
possible variations in depth (Figure 1.15, bottom). Using the same notation as
before, and denoting by Δ the line joining the optical center O to the reference
point R, parallel projection in the direction of Δ is first used to map P onto a
point P ′ of the plane Πr; perspective projection is then used to map the point P ′

onto the image point p.
We will focus on weak perspective in the rest of this section. Let us derive

the corresponding projection equation. If Zr denotes the depth of the reference
point R, the two elementary projection stages P → P ′ → p can be written in the
normalized coordinate system attached to the camera as⎛

⎝X
Y
Z

⎞
⎠ −→

⎛
⎝Z

Y
Zr

⎞
⎠ −→

⎛
⎝x̂
ŷ
1

⎞
⎠ =

⎛
⎝X/Zr

Y/Zr

1

⎞
⎠,

or, in matrix form, ⎛
⎝x̂
ŷ
1

⎞
⎠ =

1

Zr

⎛
⎝1 0 0 0
0 1 0 0
0 0 0 Zr

⎞
⎠
⎛
⎜⎜⎝
X
Y
Z
1

⎞
⎟⎟⎠.

Introducing the calibration matrix K of the camera and its extrinsic parame-
ters R and t gives the general form of the projection equation, i.e.,

p =
1

Zr

K

⎛
⎝1 0 0 0
0 1 0 0
0 0 0 Zr

⎞
⎠(R t

0T 1

)
P , (1.20)

where P and p denote as before the homogeneous coordinate vector of the point P in
the world reference frame, and the homogeneous coordinate vector of its projection
p in the camera’s coordinate system. Finally, noting that Zr is a constant and
writing

K =

(
K2 p0

0T 1

)
, where K2

def
=

⎛
⎝α −α cot θ

0
β

sin θ

⎞
⎠ and p0

def
=

(
x0

y0

)
,

allows us to rewrite Eq. (1.20) as

p = MP , where M =
(
A b

)
, (1.21)



Section 1.3 Geometric Camera Calibration 22

where p is, this time, the nonhomogeneous coordinate vector of the point p, and M
is a 2× 4 projection matrix (compare to the general perspective case of Eq. [1.16]).
In this expression, the 2 × 3 matrix A and the 2-vector b are respectively defined
by

A =
1

Zr
K2R2 and b =

1

Zr
K2t2 + p0,

where R2 denotes the 2×3 matrix formed by the first two rows of R, and t2 denotes
the 2-vector formed by the first two coordinates of t.

Note that t3 does not appear in the expression of M, and that t2 and p0

are coupled in this expression: the projection matrix does not change when t2 is
replaced by t2 + a and p0 is replaced by p0 − 1

Zr
K2a. This redundancy allows us

to arbitrarily choose x0 = y0 = 0. In other words, the position of the center of the
image is immaterial for weak-perspective projection. Note that the values of Zr, α,
and β are also coupled in the expression of M, and that the value of Zr is a priori
unknown in most applications. This allows us to write

M =
1

Zr

(
k s
0 1

)(
R2 t2

)
, (1.22)

where k and s denote the aspect ratio and the skew of the camera, respectively. In
particular, a weak-perspective projection matrix is defined by two intrinsic param-
eters (k and s), five extrinsic parameters (the three angles defining R2 and the two
coordinates of t2), and one scene-dependent structure parameter Zr.

A 2 × 4 matrix M =
(
A b

)
where A is an arbitrary rank-2 2 × 3 matrix

and b is an arbitrary vector in R
2 is called an affine projection matrix. Both weak-

perspective and general affine projection matrices are defined by eight independent
parameters. Weak-perspective projection matrices are affine ones of course. Con-
versely, a simple parameter-counting argument suggests that it should be possible
to write an arbitrary affine projection matrix as a weak-perspective one. This is
confirmed by the following theorem.

Theorem 2. An affine projection matrix can be written uniquely (up to a
sign ambiguity) as a general weak-perspective projection matrix as defined by
Eq. (1.22).

This theorem is proven in Faugeras et al. (2001, Propositions 4.26 and 4.27)
and the problems.

1.3 GEOMETRIC CAMERA CALIBRATION

This section addresses the problem of estimating the intrinsic and extrinsic param-
eters of a camera from the image positions of scene features such as points of lines,
whose positions are known in some fixed world coordinate system (Figure 1.16). In
this context, camera calibration can be modeled as an optimization process, where
the discrepancy between the observed image features and their theoretical positions
is minimized with respect to the camera’s intrinsic and extrinsic parameters.

Specifically, we assume that the image positions (xi, yi) of n fiducial points
Pi (i = 1, . . . , n) with known homogeneous coordinate vectors P i have been found



Section 1.3 Geometric Camera Calibration 23

j
C

(C)

(W)

j

k

i i

OW

W

W

W

C

Ck
p

P

i

i

FIGURE 1.16: Camera calibration setup: In this example, the calibration rig is formed by
three grids drawn in orthogonal planes. Other patterns could be used as well, and they
may involve lines or other geometric figures.

in a picture of a calibration rig, either automatically or by hand. In the absence of
modeling and measurement errors, geometric camera calibration amounts to finding
the intrinsic and extrinsic parameters ξ such that⎧⎪⎪⎨

⎪⎪⎩
xi =

m1(ξ) ·P i

m3(ξ) ·P i
,

yi =
m2(ξ) ·P i

m3(ξ) ·P i
,

(1.23)

wheremT
i (ξ) denotes the i

th row of the projection matrix M, explicitly parameter-
ized in this equation by the camera parameters. In the typical case where there are
more measurements than unknowns (at least six points for 11 intrinsic and extrin-
sic parameters), Eq. (1.23) does not admit an exact solution, and an approximate
one has to be found as the solution of a least-squares minimization problem (see
Chapter 22). We present two least-squares formulations of the calibration problem
in the rest of this section. The corresponding algorithms are illustrated with the
calibration data shown in Figure 1.17.

1.3.1 A Linear Approach to Camera Calibration

We decompose the calibration process into (1) the computation of the perspective
projection matrix M associated with the camera, followed by (2) the estimation of
the intrinsic and extrinsic parameters of the camera from this matrix.

Estimation of the Projection Matrix. Let us assume that our camera has
nonzero skew. According to Theorem 1, the matrix M is not singular, but other-
wise arbitrary. Clearing the denominators in Eq. (1.23) yields two linear equations
in m1, m2, and m3 (we omit the parameters ξ from now on for the sake of con-



Section 1.3 Geometric Camera Calibration 24

0
50

100
150

200
250

0

50

100

150

200

250
0

50

100

150

200

250

0 100 200 300 400 500 600 700 800
0

100

200

300

400

500

600

FIGURE 1.17: Camera calibration data. Left: A rendering of 491 3D fiducial points
measured on a calibration rig. Right: The corresponding image points. Data courtesy of
Janne Heikkilä; data copyright c©2000 University of Oulu.

ciseness), namely{
(m1 − xim3) ·P i = P T

i m1 + 0Tm2 − xiP
T
i m3 = 0,

(m2 − yim3) · P i = 0Tm1 + P T
i m2 − yiP

T
i m3 = 0.

Collecting the constraints associated with all points yields a system of 2n
homogeneous linear equations in the 12 coefficients of the matrix M, namely,

Pm = 0, (1.24)

where

P def
=

⎛
⎜⎜⎜⎜⎝
P T

1 0T −x1P
T
1

0T P T
1 −y1P

T
1

. . . . . . . . .

P T
n 0T −xnP

T
n

0T P T
n −ynP

T
n

⎞
⎟⎟⎟⎟⎠ and m

def
=

⎛
⎝m1

m2

m3

⎞
⎠ = 0.

When n ≥ 6, homogeneous linear least-squares can be used to compute the
value of the unit vector m (hence the matrix M) that minimizes ||Pm||2 as the
eigenvector of the 12× 12 matrix PTP associated with its smallest eigenvalue (see
Chapter 22). Note that any nonzero multiple of the vector m would have done just
as well, reflecting the fact that M is defined by only 11 independent parameters.

Degenerate Point Configurations. Before showing how to recover the intrinsic
and extrinsic parameters of the camera, let us pause to examine the degenerate
configurations of the points Pi (i = 1, . . . , n) that may cause the failure of the
camera calibration process. We focus on the (ideal) case where the positions pi

(i = 1, . . . , n) of the image points can be measured with zero error, and identify the
nullspace of the matrix P (i.e., the subspace of R12 formed by the vectors l such
that Pl = 0).

Let l be such a vector. Introducing the vectors formed by successive quadru-
ples of its coordinates—that is, λ = (l1, l2, l3, l4)

T , μ = (l5, l6, l7, l8)
T , and



Section 1.3 Geometric Camera Calibration 25

ν = (l9, l10, l11, l12)
T—allows us to write

0 = Pl =

⎛
⎜⎜⎜⎜⎝
P T

1 0T −x1P
T
1

0T P T
1 −y1P

T
1

. . . . . . . . .

P T
n 0T −xnP

T
n

0T P T
n −ynP

T
n

⎞
⎟⎟⎟⎟⎠
⎛
⎝λ

μ

ν

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝
P T

1 λ − x1P
T
1 ν

P T
1 μ− y1P

T
1 ν

. . .

P T
nλ− xnP

T
nν

P T
nμ− ynP

T
nν

⎞
⎟⎟⎟⎟⎠. (1.25)

Combining Eq. (1.23) with Eq. (1.25) yields⎧⎪⎪⎨
⎪⎪⎩

P T
i λ− mT

1 P i

mT
3 P i

P T
i ν = 0,

P T
i μ− mT

2 P i

mT
3 P i

P T
i ν = 0,

for i = 1, . . . , n.

Thus, after clearing the denominators and rearranging the terms, we finally obtain:{
P T

i (λm
T
3 −m1ν

T )P i = 0,

P T
i (μm

T
3 −m2ν

T )P i = 0,
for i = 1, . . . , n. (1.26)

As expected, the vector l associated with λ = m1, μ = m2, and ν = m3 is a
solution of these equations. Are there other solutions?

Let us first consider the case where the points Pi (i = 1, . . . , n) all lie in some
plane Π, so P i · Π = 0 for some 4-vector Π. Clearly, choosing (λ,μ,ν) equal to
(Π,0,0), (0,Π,0), (0,0,Π), or any linear combination of these vectors will yield
a solution of Eq. (1.26). In other words, the nullspace of P contains the four-
dimensional vector space spanned by these vectors and m. In practice, this means
that the fiducial points Pi should not all lie in the same plane.

In general, for a given nonzero value of the vector l, the points Pi that satisfy
Eq. (1.26) must lie on the curve where the two quadric surfaces defined by the
corresponding equations intersect. A closer look at Eq. (1.26) reveals that the
straight line where the planes defined by m3 · P = 0 and ν · P = 0 intersect lies
on both quadrics. It can be shown that the intersection curve of these two surfaces
consists of this line and of a twisted cubic curve Γ passing through the origin. A
twisted cubic is determined entirely by six points lying on it, and it follows that
seven points chosen at random will not fall on Γ. In addition, since this curve
passes through the origin, choosing n ≥ 6 random points will in general guarantee
that the matrix P has rank 11 and that the projection matrix can be recovered in
a unique fashion.

Estimation of the Intrinsic and Extrinsic Parameters. Once the projection
matrix M has been estimated, its expression in terms of the camera’s intrinsic and
extrinsic parameters (Eq. [1.18]) can be used to recover these parameters as follows:
We write as before M =

(
A b

)
, with aT

1 , a
T
2 , and aT

3 denoting the rows of A,
and obtain

ρ
(
A b

)
= K

(
R t

)
⇐⇒ ρ

⎛
⎝aT

1

aT
2

aT
3

⎞
⎠ =

⎛
⎜⎜⎝
αrT

1 − α cot θrT
2 + x0r

T
3

β

sin θ
rT2 + y0r

T
3

rT3

⎞
⎟⎟⎠,



Section 1.3 Geometric Camera Calibration 26

where ρ is an unknown scale factor, introduced here to account for the fact that
the recovered matrix M has unit Frobenius form since ||M||F = ||m|| = 1.

In particular, using the fact that the rows of a rotation matrix have unit
length and are perpendicular to each other yields immediately⎧⎪⎪⎨

⎪⎪⎩
ρ = ε/||a3||,
r3 = ρa3,
x0 = ρ2(a1 · a3),
y0 = ρ2(a2 · a3),

(1.27)

where ε = ∓1.
Since θ is always in the neighborhood of π/2 with a positive sine, we have

⎧⎨
⎩

ρ2(a1 × a3) = −αr2 − α cot θr1,

ρ2(a2 × a3) =
β

sin θ
r1,

and

⎧⎪⎪⎨
⎪⎪⎩

ρ2||a1 × a3|| =
|α|
sin θ

,

ρ2||a2 × a3|| =
|β|
sin θ

,

(1.28)

thus: ⎧⎪⎪⎨
⎪⎪⎩

cos θ = − (a1 × a3) · (a2 × a3)

||a1 × a3|| ||a2 × a3||
,

α = ρ2||a1 × a3|| sin θ,
β = ρ2||a2 × a3|| sin θ,

(1.29)

since the sign of the magnification parameters α and β is normally known in advance
and can be taken to be positive.

We can now compute r1 and r2 from the second equation in Eq. (1.28) as⎧⎨
⎩ r1 =

ρ2 sin θ

β
(a2 × a3) =

1

||a2 × a3||
(a2 × a3),

r2 = r3 × r1.

(1.30)

Note that there are two possible choices for the matrix R, depending on the
value of ε. The translation parameters can now be recovered by writing Kt = ρb,
and hence t = ρK−1b. In practical situations, the sign of t3 is often known in
advance (this corresponds to knowing whether the origin of the world coordinate
system is in front of or behind the camera), which allows the choice of a unique
solution for the calibration parameters.

Figure 1.18 shows the results of an experiment with the dataset from Fig-
ure 1.17. The recovered calibration matrix is

K =

⎛
⎝970.2841 0.0986 372.0050

0 963.3466 299.2921
0 0 1

⎞
⎠

for this 768× 576 camera, with estimated values of 1.0072 for the aspect ratio, and
0.0058 degree for the skew angle |θ − π/2|.1 The recovered image center is located
about 15 pixels away from the center of the image array.

1In this book, an m×n matrix normally has m rows and n columns. Digital images and camera
retinas are the only exceptions, and we follow the tradition by assuming that an m × n picture
has m columns and n rows. For example, the camera used in this experiment has 768 columns
and 576 rows.



Section 1.3 Geometric Camera Calibration 27

−400 −300 −200 −100 0 100 200 300 400
−300

−200

−100

0

100

200

300

FIGURE 1.18: Results of camera calibration on the dataset shown in Figure 1.17. The
original data points (circles) are overlaid with the reprojected 3D points (dots). The
root-mean-squared error is 0.96 pixel for this 768× 576 image.

1.3.2 A Nonlinear Approach to Camera Calibration

The method presented in the previous section ignores some of the constraints as-
sociated with the calibration process. For example, the camera skew was assumed
to be arbitrary instead of (very close to) zero in Section 1.3.1. We present in this
section a nonlinear approach to camera calibration that takes into account all the
relevant constraints.

This approach is borrowed from photogrammetry, an engineering field whose
aim is to recover quantitative geometric information from one or several pictures,
with applications in cartography, military intelligence, city planning, etc. For many
years, photogrammetry relied on a combination of geometric, optical, and mechani-
cal methods to recover three-dimensional information from pictures, but the advent
of computers in the 1950s has made a purely computational approach to this prob-
lem feasible. This is the domain of analytical photogrammetry, where the intrinsic
parameters of a camera define its interior orientation, and the extrinsic parameters
define its exterior orientation.

In this setting, we assume once again that we observe n fiducial points Pi

(i = 1, . . . , n) whose positions in some world coordinate system are known, and
minimize the mean-squared distance between the measured positions of their im-
ages and those predicted by the perspective projection equation with respect to a
vector of camera parameters ξ in R

11+q, where q ≥ 0, which might include various
distortion coefficients in addition to the usual intrinsic and extrinsic parameters.
(This assumes that the aspect-ratio and skew are unknown. When they are known,
fewer parameters are necessary.) In particular, let us see how to account for radial
distortion, a type of aberration that depends on the distance separating the optical
axis from the point of interest. We model the projection process by

p =
1

Z

⎛
⎝1/λ 0 0

0 1/λ 0
0 0 1

⎞
⎠MP , (1.31)



Section 1.3 Geometric Camera Calibration 28

−400 −300 −200 −100 0 100 200 300 400
−300

−200

−100

0

100

200

300

FIGURE 1.19: Results of nonlinear camera calibration on the dataset shown in Figure 1.17.
The original data points (circles) are overlaid with the reprojected 3D points (dots). The
root-mean-squared error is 0.39 pixel for this 768 × 576 image. Three radial distortion
parameters were used in this case.

where λ is a polynomial function of the squared distance between the image center
and the image point p in normalized image coordinates, or:

d2 = x̂2 + ŷ2 = ||K−1p||2 − 1. (1.32)

In most applications, it is sufficient to use a low-degree polynomial (e.g., λ =
1 +

∑q
p=1 κpd

2p, with q ≤ 3) and the distortion coefficients κp (p = 1, . . . , q) are
normally assumed to be small.

Using Eq. (1.32) to write λ as an explicit function of p in Eq. (1.31) yields
highly nonlinear constraints on the 11 + q camera parameters. The least-squares
error can be written as

E(ξ) =

2n∑
i=1

f2
i (ξ), where

⎧⎪⎪⎨
⎪⎪⎩

f2j−1(ξ) = xj −
m1(ξ) · P j

m3(ξ) · P j
,

f2j(ξ) = yj −
m2(ξ) ·P j

m3(ξ) ·P j
,

for j = 1, . . . , n.

(1.33)
Contrary to the cases studied so far, the dependency of each error term fi(ξ) on
the unknown parameters ξ is not linear. Instead, it involves a combination of
polynomial and trigonometric functions, and minimizing the overall error measure
involves the use of the nonlinear least-squares algorithms discussed in Chapter 22.
These algorithms require computing the Jacobian of the vector function f(ξ) =
(f1[ξ], . . . , f2n[ξ])

T with respect to the vector ξ of unknown parameters, which is
easily done analytically (see problems).

Figure 1.19 shows the results of an experiment with the dataset from Fig-
ure 1.17 using three radial distortion coefficients. The recovered calibration matrix
is

K =

⎛
⎝1014.0 0.0001 371.8

0 1008.9 292.3
0 0 1

⎞
⎠



Section 1.4 Notes 29

Perspective
projection

⎧⎪⎪⎨
⎪⎪⎩

x = d
X

Z

y = d
Y

Z

X, Y, Z: world coordinates (Z < 0)
x, y: image coordinates
d: pinhole-to-retina distance

Weak-perspective
projection

⎧⎪⎪⎨
⎪⎪⎩

x′ = −mX
y′ = −mY

m = − d

Z0

X,Y : world coordinates
x, y: image coordinates
d: pinhole-to-retina distance
Z0: reference-point depth (< 0)
m: magnification (> 0)

Orthographic
projection

{
x = X
y = Y

X, Y : world coordinates
x, y: image coordinates

Thin lens
equation

1

z
− 1

Z
=

1

f

Z: object-point depth (< 0)
z: image-point depth (> 0)
f : focal length

TABLE 1.1: Reference card: Projection models.

for this 768× 576 camera, with estimated values of 1.0051 for the aspect ratio, and
less than 10−5 degree for the skew angle. The recovered image center is located
about 9 pixels away from the center of the image array. The three radial distortion
coefficients are −0.1183, −0.3657, and 1.9112 in this case.

1.4 NOTES

The classical textbook by Hecht (1987) is an excellent introduction to geometric
optics, paraxial refraction, thin and thick lenses, and their aberrations, as briefly
discussed in Section 1.1. Vignetting is discussed in Horn (1986). Wandell (1995)
gives an excellent treatment of image formation in the human visual system. Thor-
ough presentations of the geometric camera models discussed in Section 1.2 can
be found in Faugeras (1993), Hartley and Zisserman (2000b), and Faugeras et
al. (2001). The paraperspective projection model was introduced in computer vi-
sion by Ohta, Maenobu, and Sakai (1981), and its properties have been studied by
Aloimonos (1990).

The linear calibration technique described in Section 1.3.1 is detailed in Fau-
geras (1993). Its variant that takes radial distortion into account is adapted from
Tsai (1987). The book of Haralick and Shapiro (1992) presents a concise introduc-
tion to analytical photogrammetry. The Manual of Photogrammetry is of course the
gold standard, and newcomers to this field (like the authors of this book) will prob-
ably find the ingenious mechanisms and rigorous methods described in the various
editions of this book fascinating (Thompson et al. 1966; Slama et al. 1980). We will
come back to photogrammetry in the context of structure from motion in Chap-
ter 8. The linear and nonlinear least-squares techniques used in the approaches to
camera calibration discussed in the present chapter are presented in some detail in
Chapter 22. An excellent survey and discussion of these methods in the context of
analytical photogrammetry can be found in Triggs et al. (2000).

We have assumed in this chapter that a 3D calibration rig is available. This is



Section 1.4 Notes 30

Perspective projection
equation (homogeneous)

p =
1

Z
MP

Matrix of intrinsic
parameters

K =

(
α −α cot θ x0

0 β/sin θ y0
0 0 1

)

Perspective projection
matrix

M = K
(
R t

)
Affine projection
equation
(nonhomogeneous)

p = M

(
P

1

)
= AP + b

Weak-perspective
projection matrix

M =
(
A b

)
=

1

Zr

(
k s
0 1

)(
R2 t2

)
TABLE 1.2: Reference card: Geometric camera models.

the setting used in (Faig 1975; Tsai 1987; Faugeras 1993; Heikkilä 2000) for exam-
ple. However, it is difficult to build such a rig accurately—see Lavest, Viala, and
Dhome (1998) for a discussion of this problem and an ingenious solution—and many
authors prefer using multiple checkerboards or similar planar patterns (Devy, Gar-
ric & Orteu 1997; Zhang 2000). This includes the widely used C implementation of
J.-Y. Bouguet’s algorithm, distributed as part of OpenCV, an open-source library of
computer vision routines, available at http://opencv.willowgarage.com/wiki/.
A MATLAB version is also freely available at his web site; see: http://www.

vision.caltech.edu/bouguetj/calib_doc/.
Given the fundamental importance of the notions introduced in this chapter,

the main equations derived in its course have been collected in Tables 1.1 and 1.2
for reference.

PROBLEMS

1.1. Derive the perspective equation projections for a virtual image located at a
distance d in front of the pinhole.

1.2. Prove geometrically that the projections of two parallel lines lying in some
plane Φ appear to converge on a horizon line h formed by the intersection
of the image plane Π with the plane parallel to Φ and passing through the
pinhole.

1.3. Prove the same result algebraically using the perspective projection Eq. (1.1).
You can assume for simplicity that the plane Φ is orthogonal to the image
plane Π.

1.4. Consider a camera equipped with a thin lens, with its image plane at position
z and the plane of scene points in focus at position Z. Now suppose that the
image plane is moved to ẑ. Show that the diameter of the corresponding blur
circle is

a
|z − ẑ|

z
,

where a is the lens diameter. Use this result to show that the depth of field
(i.e., the distance between the near and far planes that will keep the diameter

http://opencv.willowgarage.com/wiki/
http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/


Section 1.4 Notes 31

of the blur circles below some threshold ε) is given by

D = 2εfZ(Z + f)
a

f2a2 − ε2Z2
,

and conclude that, for a fixed focal length, the depth of field increases as the
lens diameter decreases, and thus the f number f/a increases.
Hint: Solve for the depth Ẑ of a point whose image is focused on the image
plane at position ẑ, considering both the case where ẑ is larger than z and the
case where it is smaller.

1.5. Give a geometric construction of the image p of a point P given the two focal
points F and F ′ of a thin lens.

1.6. Show that when the camera coordinate system is skewed and the angle θ be-
tween the two image axes is not equal to 90 degrees, then Eq. (1.12) transforms
into Eq. (1.13).

1.7. Consider two Euclidean coordinate systems (A) = (OA, iA, jA,kA) and (B) =
(OB , iB , jB ,kB). Show that Eq. (1.8) follows from Eq. (1.6).
Hint: First consider the case where both coordinate systems share the same
basis vectors—that is, iA = iB , jA = jB , and kA = kB . Then consider
the case where they have the same origin—that is, OA = OB , before finally
treating the general case.

1.8. Write formulas for the matrices R in Eq. (1.8) when (B) is deduced from (A)
via a rotation of angle θ about the axes iA, jA, and kA respectively.

1.9. Let O denote the homogeneous coordinate vector of the optical center of a cam-
era in some reference frame, and let M denote the corresponding perspective
projection matrix. Show that MO = 0. Explain why this intuitively makes
sense.

1.10. Show that the conditions of Theorem 1 are necessary.
1.11. Show that any affine projection matrix M =

(
A b

)
can be written as a

general weak-perspective projection matrix as defined by Eq. (1.22), i.e.,

M =
1

Zr

(
k s
0 1

)(
R2 t2

)
.

1.12. Give an analytical expression for the Jacobian of the vector function f(ξ) =
(f1[ξ], . . . , f2n[ξ])

T featured in Eq. (1.33) with respect to the vector ξ of un-
known parameters.

PROGRAMMING EXERCISES

1.13. Implement the linear calibration algorithm presented in Section 1.3.1.
1.14. Implement the nonlinear calibration algorithm from Section 1.3.2.



C H A P T E R 2

Light and Shading

The brightness of a pixel in the image is a function of the brightness of the surface
patch in the scene that projects to the pixel. In turn, the brightness of the patch
depends on how much incident light arrives at the patch and on the fraction of the
incident light that gets reflected (Models in Section 2.1).

This means that the brightness of a pixel is profoundly ambiguous. Surpris-
ingly, people can disentangle these effects quite accurately. Often, but not always,
people can tell whether objects are in bright light or in shadow, and do not perceive
objects in shadow as having dark surfaces. People can usually tell whether changes
of brightness are caused by changes in reflection or by shading (cinemas wouldn’t
work if we got it right all the time, however). Typically, people can tell that shading
comes from the geometry of the object, but sometimes get shading and markings
mixed up. For example, a streak of dark makeup under a cheekbone will often
look like a shading effect, making the face look thinner. Quite simple models of
shading (Section 2.1) support a range of inference procedures (Section 2.2). More
complex models are needed to explain some important effects (Section 2.1.4), but
make inference very difficult indeed (Section 2.4).

2.1 MODELLING PIXEL BRIGHTNESS

Three major phenomena determine the brightness of a pixel: the response of the
camera to light, the fraction of light reflected from the surface to the camera, and
the amount of light falling on the surface. Each can be dealt with quite straight-
forwardly.

Camera response: Modern cameras respond linearly to middling intensities
of light, but have pronounced nonlinearities for darker and brighter illumination.
This allows the camera to reproduce the very wide dynamic range of natural light
without saturating. For most purposes, it is enough to assume that the camera
response is linearly related to the intensity of the surface patch. Write X for a
point in space that projects to x in the image, Ipatch(X) for the intensity of the
surface patch at X, and Icamera(x) for the camera response at x. Then our model
is:

Icamera(x) = kIpatch(x),

where k is some constant to be determined by calibration. Generally, we assume
that this model applies and that k is known if needed. Under some circumstances,
a more complex model is appropriate; we discuss how to recover such models in
Section 2.2.1.

Surface reflection: Different points on a surface may reflect more or less
of the light that is arriving. Darker surfaces reflect less light, and lighter surfaces
reflect more. There is a rich set of possible physical effects, but most can be ignored.
Section 2.1.1 describes the relatively simple model that is sufficient for almost all

32



Section 2.1 Modelling Pixel Brightness 33

N

L

N

L
S

θθ

Specularities

N

L
S

θθ

Diffuse reflection

Specular reflection

Specularity

FIGURE 2.1: The two most important reflection modes for computer vision are diffuse re-
flection (left), where incident light is spread evenly over the whole hemisphere of outgoing
directions, and specular reflection (right), where reflected light is concentrated in a single
direction. The specular direction S is coplanar with the normal and the source direction
(L), and has the same angle to the normal that the source direction does. Most sur-
faces display both diffuse and specular reflection components. In most cases, the specular
component is not precisely mirror like, but is concentrated around a range of directions
close to the specular direction (lower right). This causes specularities, where one sees a
mirror like reflection of the light source. Specularities, when they occur, tend to be small
and bright. In the photograph, they appear on the metal spoon and on the plate. Large
specularities can appear on flat metal surfaces (arrows). Most curved surfaces (such as
the plate) show smaller specularities. Most of the reflection here is diffuse; some cases are
indicated by arrows. Martin Brigdale c© Dorling Kindersley, used with permission.

purposes in computer vision.
Illumination: The amount of light a patch receives depends on the overall

intensity of the light, and on the geometry. The overall intensity could change
because some luminaires (the formal term for light sources) might be shadowed, or
might have strong directional components. Geometry affects the amount of light
arriving at a patch because surface patches facing the light collect more radiation
and so are brighter than surface patches tilted away from the light, an effect known
as shading. Section 2.1.2 describes the most important model used in computer
vision; Section 2.3 describes a much more complex model that is necessary to explain
some important practical difficulties in shading inference.

2.1.1 Reflection at Surfaces

Most surfaces reflect light by a process of diffuse reflection. Diffuse reflection scat-
ters light evenly across the directions leaving a surface, so the brightness of a diffuse
surface doesn’t depend on the viewing direction. Examples are easy to identify with



Section 2.1 Modelling Pixel Brightness 34

this test: most cloth has this property, as do most paints, rough wooden surfaces,
most vegetation, and rough stone or concrete. The only parameter required to
describe a surface of this type is its albedo, the fraction of the light arriving at the
surface that is reflected. This does not depend on the direction in which the light
arrives or the direction in which the light leaves. Surfaces with very high or very
low albedo are difficult to make. For practical surfaces, albedo lies in the range
0.05 – 0.90 (see Brelstaff and Blake (1988b), who argue the dynamic range is closer
to 10 than the 18 implied by these numbers). Mirrors are not diffuse, because what
you see depends on the direction in which you look at the mirror. The behav-
ior of a perfect mirror is known as specular reflection. For an ideal mirror, light
arriving along a particular direction can leave only along the specular direction,
obtained by reflecting the direction of incoming radiation about the surface normal
(Figure 2.1). Usually some fraction of incoming radiation is absorbed; on an ideal
specular surface, this fraction does not depend on the incident direction.

If a surface behaves like an ideal specular reflector, you could use it as a
mirror, and based on this test, relatively few surfaces actually behave like ideal
specular reflectors. Imagine a near perfect mirror made of polished metal; if this
surface suffers slight damage at a small scale, then around each point there will be
a set of small facets, pointing in a range of directions. In turn, this means that
light arriving in one direction will leave in several different directions because it
strikes several facets, and so the specular reflections will be blurred. As the surface
becomes less flat, these distortions will become more pronounced; eventually, the
only specular reflection that is bright enough to see will come from the light source.
This mechanism means that, in most shiny paint, plastic, wet, or brushed metal
surfaces, one sees a bright blob—often called a specularity—along the specular di-
rection from light sources, but few other specular effects. Specularities are easy to
identify, because they are small and very bright (Figure 2.1; Brelstaff and Blake
(1988b)). Most surfaces reflect only some of the incoming light in a specular compo-
nent, and we can represent the percentage of light that is specularly reflected with
a specular albedo. Although the diffuse albedo is an important material property
that we will try to estimate from images, the specular albedo is largely seen as a
nuisance and usually is not estimated.

2.1.2 Sources and Their Effects

The main source of illumination outdoors is the sun, whose rays all travel parallel to
one another in a known direction because it is so far away. We model this behavior
with a distant point light source. This is the most important model of lighting
(because it is like the sun and because it is easy to use), and can be quite effective
for indoor scenes as well as outdoor scenes. Because the rays are parallel to one
another, a surface that faces the source cuts more rays (and so collects more light)
than one oriented along the direction in which the rays travel. The amount of light
collected by a surface patch in this model is proportional to the cosine of the angle
θ between the illumination direction and the normal (Figure 2.2). The figure yields
Lambert’s cosine law, which states the brightness of a diffuse patch illuminated by
a distant point light source is given by

I = ρI0 cos θ,



Section 2.1 Modelling Pixel Brightness 35

A

B

θ

θ

Cast shadow
Diffuse reflection,

bright

Diffuse reflection,

dark

Light

Blocker

Source

FIGURE 2.2: The orientation of a surface patch with respect to the light affects how
much light the patch gathers. We model surface patches as illuminated by a distant point
source, whose rays are shown as light arrowheads. Patch A is tilted away from the source
(θ is close to 900) and collects less energy, because it cuts fewer light rays per unit surface
area. Patch B, facing the source (θ is close to 00), collects more energy, and so is brighter.
Shadows occur when a patch cannot see a source. The shadows are not dead black, because
the surface can see interreflected light from other surfaces. These effects are shown in the
photograph. The darker surfaces are turned away from the illumination direction. Martin
Brigdale c© Dorling Kindersley, used with permission.

where I0 is the intensity of the light source, θ is the angle between the light source
direction and the surface normal, and ρ is the diffuse albedo. This law predicts that
bright image pixels come from surface patches that face the light directly and dark
pixels come from patches that see the light only tangentially, so that the shading
on a surface provides some shape information. We explore this cue in Section 2.4.

If the surface cannot see the source, then it is in shadow. Since we assume
that light arrives at our patch only from the distant point light source, our model
suggests that shadows are deep black; in practice, they very seldom are, because
the shadowed surface usually receives light from other sources. Outdoors, the most
important such source is the sky, which is quite bright. Indoors, light reflected
from other surfaces illuminates shadowed patches. This means that, for example,
we tend to see few shadows in rooms with white walls, because any shadowed
patch receives a lot of light from the walls. These interreflections also can have a
significant effect on the brightness surfaces that are not in shadow. Interreflection
effects are sometimes modelled by adding a constant ambient illumination term
to the predicted intensity. The ambient term ensures that shadows are not too
dark, but this is not a particularly successful model of the spatial properties of
interreflections. More detailed models require some familiarity with radiometric
terminology, but they are important in some applications; we have confined this
topic to Section 2.3.



Section 2.1 Modelling Pixel Brightness 36

2.1.3 The Lambertian+Specular Model

For almost all purposes, it is enough to model all surfaces as being diffuse with
specularities. This is the lambertian+specular model. Specularities are relatively
seldom used in inference (Section 2.2.2 sketches two methods), and so there is
no need for a formal model of their structure. Because specularities are small and
bright, they are relatively easy to identify and remove with straightforward methods
(find small bright spots, and replace them by smoothing the local pixel values).
More sophisticated specularity finders use color information (Section 3.5.1). Thus,
to apply the lambertian+specular model, we find and remove specularities, and
then use Lambert’s law (Section 2.1.2) to model image intensity.

We must choose which source effects to model. In the simplest case, a local
shading model, we assume that shading is caused only by light that comes from the
luminaire (i.e., that there are no interreflections).

Now assume that the luminaire is an infinitely distant source. For this case,
write N(x) for the unit surface normal at x, S for a vector pointing from x toward
the source with length Io (the source intensity), ρ(x) for the albedo at x, and
V is(S,x) for a function that is 1 when x can see the source and zero otherwise.
Then, the intensity at x is

I(x) = ρ(x) (N · S)Vis(S, x) + ρ(x)A + M

Image = Diffuse + Ambient + Specular (mirror-like)
intensity term term term

This model can still be used for a more complex source (for example, an area
source), but in that case it is more difficult to determine an appropriate S(x).

2.1.4 Area Sources

An area source is an area that radiates light. Area sources occur quite com-
monly in natural scenes—an overcast sky is a good example—and in synthetic
environments—for example, the fluorescent light boxes found in many industrial
ceilings. Area sources are common in illumination engineering, because they tend
not to cast strong shadows and because the illumination due to the source does not
fall off significantly as a function of the distance to the source. Detailed models of
area sources are complex (Section 2.3), but a simple model is useful to understand
shadows. Shadows from area sources are very different from shadows cast by point
sources. One seldom sees dark shadows with crisp boundaries indoors. Instead,
one could see no visible shadows, or shadows that are rather fuzzy diffuse blobs, or
sometimes fuzzy blobs with a dark core (Figure 2.3). These effects occur because
rooms tend to have light walls and diffuse ceiling fixtures, which act as area sources.
As a result, the shadows one sees are area source shadows.

To compute the intensity at a surface patch illuminated by an area source, we
can break the source up into infinitesimal source elements, then sum effects from
each element. If there is an occluder, then some surface patches may see none of
the source elements. Such patches will be dark, and lie in the umbra (a Latin word
meaning “shadow”). Other surface patches may see some, but not all, of the source
elements. Such patches may be quite bright (if they see most of the elements), or



Section 2.2 Inference from Shading 37

A B

Gradient

Umbra

Penumbra

Area
Source

Occluder

1 2 3

1

2

3

FIGURE 2.3: Area sources generate complex shadows with smooth boundaries, because
from the point of view of a surface patch, the source disappears slowly behind the occluder.
Left: a photograph, showing characteristic area source shadow effects. Notice that A is
much darker than B; there must be some shadowing effect here, but there is no clear
shadow boundary. Instead, there is a fairly smooth gradient. The chair leg casts a
complex shadow, with two distinct regions. There is a core of darkness (the umbra—
where the source cannot be seen at all) surrounded by a partial shadow (penumbra—
where the source can be seen partially). A good model of the geometry, illustrated right,
is to imagine lying with your back to the surface looking at the world above. At point 1,
you can see all of the source; at point 2, you can see some of it; and at point 3, you can
see none of it. Peter Anderson c© Dorling Kindersley, used with permission.

relatively dark (if they see few elements), and lie in the penumbra (a compound of
Latin words meaning “almost shadow”). One way to build intuition is to think of
a tiny observer looking up from the surface patch. At umbral points, this observer
will not see the area source at all whereas at penumbral points, the observer will see
some, but not all, of the area source. An observer moving from outside the shadow,
through the penumbra and into the umbra will see something that looks like an
eclipse of the moon (Figure 2.3). The penumbra can be large, and can change quite
slowly from light to dark. There might even be no umbral points at all, and, if the
occluder is sufficiently far away from the surface, the penumbra could be very large
and almost indistinguishable in brightness from the unshadowed patches. This is
why many objects in rooms appear to cast no shadow at all (Figure 2.4).

2.2 INFERENCE FROM SHADING

Shading can be used to infer a variety of properties of the visual world. Successful
inference often requires that we calibrated the camera radiometrically, so that we
know how pixel values map to radiometric values (Section 2.2.1). As Figure 2.1



Section 2.2 Inference from Shading 38

1

1

FIGURE 2.4: The photograph on the left shows a room interior. Notice the lighting has
some directional component (the vertical face indicated by the arrow is dark, because
it does not face the main direction of lighting), but there are few visible shadows (for
example, the chairs do not cast a shadow on the floor). On the right, a drawing to show
why; here there is a small occluder and a large area source. The occluder is some way
away from the shaded surface. Generally, at points on the shaded surface the incoming
hemisphere looks like that at point 1. The occluder blocks out some small percentage of
the area source, but the amount of light lost is too small to notice (compare figure 2.3).
Jake Fitzjones c© Dorling Kindersley, used with permission.

suggests, specularities are a source of information about the shape of a surface, and
Section 2.2.2 shows how this information can be interpreted. Section 2.2.3 shows
how to recover the albedoes of surfaces from images. Finally, Section 2.2.4 shows
how multiple shaded images can be used to recover surface shape.

2.2.1 Radiometric Calibration and High Dynamic Range Images

Real scenes often display a much larger range of intensities than cameras can cope
with. Film and charge-coupled devices respond to energy. A property called reci-
procity means that, if a scene patch casts intensity E onto the film, and if the
shutter is open for time Δt, the response is a function of EΔt alone. In particular,
we will get the same outcome if we image one patch of intensity E for time Δt and
another patch of intensity E/k for time kΔt. The actual response that the film
produces is a function of EΔt; this function might depend on the imaging system,
but is typically somewhat linear over some range, and sharply non-linear near the
top and bottom of this range, so that the image can capture very dark and very
light patches without saturation. It is usually monotonically increasing.

There are a variety of applications where it would be useful to know the actual
radiance (equivalently, the intensity) arriving at the imaging device. For example,
we might want to compare renderings of a scene with pictures of the scene, and to
do that we need to work in real radiometric units. We might want to use pictures
of a scene to estimate the lighting in that scene so we can postrender new objects
into the scene, which would need to be lit correctly. To infer radiance, we must
determine the film response, a procedure known as radiometric calibration. As we



Section 2.2 Inference from Shading 39

shall see, doing this will require more than one image of a scene, each obtained at
different exposure settings. Imagine we are looking at a scene of a stained glass
window lit from behind in a church. At one exposure setting, we would be able
to resolve detail in the dark corners, but not on the stained glass, which would be
saturated. At another setting, we would be able to resolve detail on the glass, but
the interior would be too dark. If we have both settings, we may as well try to
recover radiance with a very large dynamic range—producing a high dynamic range
image.

Now assume we have multiple registered images, each obtained using a dif-

ferent exposure time. At the i, j’th pixel, we know the image intensity value I
(k)
ij

for the k’th exposure time, we know the value of the k’th exposure time Δtk, and
we know that the intensity of the corresponding surface patch Eij is the same for
each exposure, but we do not know the value of Eij . Write the camera response
function f , so that

I
(k)
ij = f(EijΔtk).

There are now several possible approaches to solve for f . We could assume a
parametric form—say, polynomial—then solve using least squares. Notice that we
must solve not only for the parameters of f , but also for Eij . For a color camera,
we solve for calibration of each channel separately. Mitsunaga and Nayar (1999)
have studied the polynomial case in detail. Though the solution is not unique,
ambiguous solutions are strongly different from one another, and most cases are
easily ruled out. Furthermore, one does not need to know exposure times with
exact accuracy to estimate a solution, as long as there are sufficient pixel values;
instead, one estimates f from a fixed set of exposure times, then estimates the
exposure times from f , and then re-estimates. This procedure is stable.

Alternatively, because the camera response is monotonic, we can work with
its inverse g = f−1, take logs, and write

log g(I
(k)
ij ) = logEij + logΔtk.

We can now estimate the values that g takes at each point and the Eij by placing
a smoothness penalty on g. In particular, we minimize∑

i,j,k

(log g(I
(k)
ij )− (logEij + logΔtk))

2 + smoothness penalty on g

by choice of g. Debevec and Malik (1997) penalize the second derivative of g. Once
we have a radiometrically calibrated camera, estimating a high dynamic range image
is relatively straightforward. We have a set of registered images, and at each pixel
location, we seek the estimate of radiance that predicts the registered image values
best. In particular, we assume we know f . We seek an Eij such that∑

k

w(Iij)(I
(k)
ij − f(EijΔtk))

2

is minimized. Notice the weights because our estimate of f is more reliable when
Iij is in the middle of the available range of values than when it is at larger or
smaller values.



Section 2.2 Inference from Shading 40

Image measurement

S
ce
n
e
R
ad
ia
n
ce

FIGURE 2.5: It is possible to calibrate the radiometric response of a camera from multiple
images obtained at different exposures. The top row shows four different exposures of the
same scene, ranging from darker (shorter shutter time) to lighter (longer shutter time).
Note how, in the dark frames, the lighter part of the image shows detail, and in the light
frames, the darker part of the image shows detail; this is the result of non-linearities in
the camera response. On the bottom left, we show the inferred calibration curves for
each of the R, G, and B camera channels. On the bottom right, a composite image
illustrates the results. The dynamic range of this image is far too large to print; instead,
the main image is normalized to the print range. Overlaid on this image are boxes where
the radiances in the box have also been normalized to the print range; these show how
much information is packed into the high dynamic range image. This figure was originally
published as Figure 7 of “Radiometric Self Calibration,” by T. Mitsunaga and S. Nayar,
Proc. IEEE CVPR 1999, c© IEEE, 1999.

2.2.2 The Shape of Specularities

Specularities are informative. They offer hints about the color of illumination (see
Chapter 3) and offer cues to the local geometry of a surface. Understanding these
cues is a useful exercise in differential geometry. We consider a smooth specular
surface and assume that the brightness reflected in the direction V is a function of
V ·P , where P is the specular direction. We expect the specularity to be small and
isolated, so we can assume that the source direction S and the viewing direction
V are constant over its extent. Let us further assume that the specularity can be
defined by a threshold on the specular energy, i.e., V ·P ≥ 1− ε for some constant
ε, denote by N the unit surface normal, and define the half-angle direction as
H = (S + V )/2 (Figure 2.6(left)). Using the fact that the vectors S, V and P

have unit length and a whit of plane geometry, it can easily be shown that the
boundary of the specularity is defined by (see exercises)

1− ε = V ·P = 2
(H ·N )2

(H ·H)
− 1. (2.1)

Because the specularity is small, the second-order structure of the surface



Section 2.2 Inference from Shading 41

u
u

1

2

yx

H N

V

P

S

H N

zα/2

α

FIGURE 2.6: A specular surface viewed by a distant observer. We establish a coordinate
system at the brightest point of the specularity (where the half-angle direction is equal to
the normal) and orient the system using the normal and principal directions.

will allow us to characterize the shape of its boundary as follows: there is some
point on the surface inside the specularity (in fact, the brightest point) where H

is parallel to N . We set up a coordinate system at this point, oriented so that
the z-axis lies along N and the x- and y-axes lie along the principal directions u1

and u2 (Figure 2.6(right)). As noted earlier, the surface can be represented up to
second order as z = −1/2(κ1x

2 + κ2y
2) in this frame, where κ1 and κ2 are the

principal curvatures. Now, let us define a parametric surface as a differentiable
mapping x : U ⊂ R

2 → R
3 associating with any couple (u, v) ∈ U the coordinate

vector (x, y, z)T of a point in some fixed coordinate system. It is easily shown (see
exercises) that the normal to a parametric surface is along the vector ∂

∂ux× ∂
∂vx.

Our second-order surface model is a parametric surface parameterized by x and y,
thus its unit surface normal is defined in the corresponding frame by

N (x, y) =
1√

1 + κ2
1x

2 + κ2
2y

2

⎛
⎝κ1x
κ2y
1

⎞
⎠ ,

and H = (0, 0, 1)T . Because H is a constant, we can rewrite Eq. (2.1) as κ2
1x

2 +
κ2
2y

2 = ζ, where ζ is a constant depending on ε. In particular, the shape of
the specularity on the surface contains information about the second fundamental
form. The specularity will be an ellipse, with major and minor axes oriented along
the principal directions, and an eccentricity equal to the ratio of the principal
curvatures. Unfortunately, the shape of the specularity on the surface is not, in
general, directly observable, so this property can be exploited only when a fair
amount about the viewing and illumination setup is known (Healey and Binford
1986).

Although we cannot get much out of the shape of the specularity in the
image, it is possible to tell a convex surface from a concave one by watching how a



Section 2.2 Inference from Shading 42

specularity moves as the view changes (you can convince yourself of this with the
aid of a spoon).1 Let us consider a point source at infinity and assume that the
specular lobe is very narrow, so the viewing direction and the specular direction
coincide. Initially, the specular direction is V , and the specularity is at the surface
point P ; after a small eye motion, V changes to V ′, while the specularity moves
to the close-by point P ′ (Figure 2.7).

V
N

V’

N’

observer

Motion of

observer

Motion of

V

Motion of

PP’

N

V’

N’

direction

specularity Motion of specularity

P
P’

Source

FIGURE 2.7: Specularities on convex and concave surfaces behave differently when the
view changes. With an appropriate choice of source direction and motion, this could be
used to obtain the signs of the principal curvatures.

The quantity of interest is δa = (V ′ − V ) · t, where t = 1
δs

−−→
PP ′ is tangent

to the surface, and δs is the (small) distance between P and P ′: if δa is positive,
then the specularity moves in the direction of the view (back of the spoon), and if
it is negative, the specularity moves against the direction of the view (bowl of the
spoon). By construction, we have V = 2(S ·N )N − S, and

V ′ = 2(S ·N ′)N ′ − S = 2(S · (N + δN))(N + δN)− S

= V + 2(S · δN )N + 2(S ·N )δN + 2(S · δN)δN ,

where δN
def
= N ′ − N = δs dN(t). Because t is tangent to the surface in P ,

ignoring second-order terms yields

δa = (V − V ′) · t = 2(S ·N)(δN · t) = 2(S ·N)(δs)(II(t, t)).

Thus, for a concave surface, the specularity always moves against the view, and for
a convex surface, it always moves with the view. Things are more complex with
hyperbolic surfaces; the specularity may move with the view, against the view, or
perpendicular to the view (when t is an asymptotic direction).

1Of course, there is a simpler way to distinguish (by sight) the concave bowl of a spoon from
its convex back: it is just the side where your reflection is upside down. This property of concave
mirrors was demonstrated to one of the authors by one of his friends at a dinner party, causing
much consternation since the author in question was at the time bragging about differential
geometry, and his friend, who does not pretend to know anything about mathematics, just looked
at herself in the spoon.



Section 2.2 Inference from Shading 43

log I log p

dlog
dx

dlog I
dx

dlog p
dx

dlog p
dx

Thresholded

Integrate
this to get
lightness,
which is
log + constant

logρ

ρ

ρ

FIGURE 2.8: The lightness algorithm is easiest to illustrate for a 1D image. In the top
row, the graph on the left shows log ρ(x), that in the center log I(x), and that on the
right their sum, which is logC. The log of image intensity has large derivatives at changes
in surface reflectance and small derivatives when the only change is due to illumination
gradients. Lightness is recovered by differentiating the log intensity, thresholding to dis-
pose of small derivatives, and integrating at the cost of a missing constant of integration.

2.2.3 Inferring Lightness and Illumination

If we could estimate the albedo of a surface from an image, then we would know a
property of the surface itself, rather than a property of a picture of the surface. Such
properties are often called intrinsic representations. They are worth estimating,
because they do not change when the imaging circumstances change. It might seem



Section 2.2 Inference from Shading 44

that albedo is difficult to estimate, because there is an ambiguity linking albedo
and illumination; for example, a high albedo viewed under middling illumination
will give the same brightness as a low albedo viewed under bright light. However,
humans can report whether a surface is white, gray, or black (the lightness of the
surface), despite changes in the intensity of illumination (the brightness). This skill
is known as lightness constancy. There is a lot of evidence that human lightness
constancy involves two processes: one process compares the brightness of various
image patches and uses this comparison to determine which patches are lighter and
which darker; the second establishes some form of absolute standard to which these
comparisons can be referred (e.g. Gilchrist et al. (1999)).

Current lightness algorithms were developed in the context of simple scenes.
In particular, we assume that the scene is flat and frontal; that surfaces are diffuse,
or that specularities have been removed; and that the camera responds linearly. In
this case, the camera response C at a point x is the product of an illumination
term, an albedo term, and a constant that comes from the camera gain:

C(x) = kcI(x)ρ(x).

If we take logarithms, we get

logC(x) = log kc + log I(x) + log ρ(x).

We now make a second set of assumptions:

• First, we assume that albedoes change only quickly over space. This means
that a typical set of albedoes will look like a collage of papers of different grays.
This assumption is quite easily justified: There are relatively few continuous
changes of albedo in the world (the best example occurs in ripening fruit),
and changes of albedo often occur when one object occludes another (so we
would expect the change to be fast). This means that spatial derivatives of
the term log ρ(x) are either zero (where the albedo is constant) or large (at a
change of albedo).

• Second, illumination changes only slowly over space. This assumption is
somewhat realistic. For example, the illumination due to a point source will
change relatively slowly unless the source is very close, so the sun is a par-
ticularly good source for this method, as long as there are no shadows. As
another example, illumination inside rooms tends to change very slowly be-
cause the white walls of the room act as area sources. This assumption fails
dramatically at shadow boundaries, however. We have to see these as a spe-
cial case and assume that either there are no shadow boundaries or that we
know where they are.

We can now build algorithms that use our model. The earliest algorithm is
the Retinex algorithm of Land and McCann (1971); this took several forms, most
of which have fallen into disuse. The key insight of Retinex is that small gradients
are changes in illumination, and large gradients are changes in lightness. We can
use this by differentiating the log transform, throwing away small gradients, and
integrating the results (Horn 1974); these days, this procedure is widely known as



Section 2.2 Inference from Shading 45

Retinex. There is a constant of integration missing, so lightness ratios are available,
but absolute lightness measurements are not. Figure 2.8 illustrates the process for
a one-dimensional example, where differentiation and integration are easy.

This approach can be extended to two dimensions as well. Differentiating
and thresholding is easy: at each point, we estimate the magnitude of the gradient;
if the magnitude is less than some threshold, we set the gradient vector to zero;
otherwise, we leave it alone. The difficulty is in integrating these gradients to get
the log albedo map. The thresholded gradients may not be the gradients of an
image because the mixed second partials may not be equal (integrability again;
compare with Section 2.2.4).

Form the gradient of the log of the image
At each pixel, if the gradient magnitude is below
a threshold, replace that gradient with zero

Reconstruct the log-albedo by solving the minimization
problem described in the text

Obtain a constant of integration
Add the constant to the log-albedo, and exponentiate

Algorithm 2.1: Determining the Lightness of Image Patches.

The problem can be rephrased as a minimization problem: choose the log
albedo map whose gradient is most like the thresholded gradient. This is a relatively
simple problem because computing the gradient of an image is a linear operation.
The x-component of the thresholded gradient is scanned into a vector p, and the y-
component is scanned into a vector q. We write the vector representing log-albedo
as l. Now the process of forming the x derivative is linear, and so there is some
matrix Mx, such that Mxl is the x derivative; for the y derivative, we write the
corresponding matrix My.

The problem becomes finding the vector l that minimizes

| Mxl− p |2 + | Myl− q |2 .

This is a quadratic minimization problem, and the answer can be found by a linear
process. Some special tricks are required because adding a constant vector to l

cannot change the derivatives, so the problem does not have a unique solution. We
explore the minimization problem in the exercises.

The constant of integration needs to be obtained from some other assumption.
There are two obvious possibilities:

• we can assume that the brightest patch is white;

• we can assume that the average lightness is constant.

We explore the consequences of these models in the exercises.
More sophisticated algorithms are now available, but there were no quan-

titative studies of performance until recently. Grosse et al. built a dataset for



Section 2.2 Inference from Shading 46

Image

Shading

Albedo

FIGURE 2.9: Retinex remains a strong algorithm for recovering albedo from images. Here
we show results from the version of Retinex described in the text applied to an image of
a room (left) and an image from a collection of test images due to Grosse et al. (2009).
The center-left column shows results from Retinex for this image, and the center-
right column shows results from a variant of the algorithm that uses color reasoning to
improve the classification of edges into albedo versus shading. Finally, the right column
shows the correct answer, known by clever experimental methods used when taking the
pictures. This problem is very hard; you can see that the albedo images still contain
some illumination signal. Part of this figure courtesy Kevin Karsch, U. Illinois. Part
of this figure was originally published as Figure 3 of “Ground truth dataset and baseline
evaluations for intrinsic image algorithms,” by R. Grosse, M. Johnson, E. Adelson, and
W. Freeman, Proc. IEEE ICCV 2009, c© IEEE, 2009.

evaluating lightness algorithms, and show that a version of the procedure we de-
scribe performs extremely well compared to more sophisticated algorithms (2009).
The major difficulty with all these approaches is caused by shadow boundaries,
which we discuss in Section 3.5.2.

2.2.4 Photometric Stereo: Shape from Multiple Shaded Images

It is possible to reconstruct a patch of surface from a series of pictures of that surface
taken under different illuminants. First, we need a camera model. For simplicity,
we choose a camera situated so that the point (x, y, z) in space is imaged to the
point (x, y) in the camera (the method we describe works for the other camera
models described in Chapter 1).

In this case, to measure the shape of the surface, we need to obtain the
depth to the surface. This suggests representing the surface as (x, y, f(x, y))—a



Section 2.2 Inference from Shading 47

representation known as a Monge patch after the French military engineer who first
used it (Figure 2.10). This representation is attractive because we can determine a
unique point on the surface by giving the image coordinates. Notice that to obtain
a measurement of a solid object, we would need to reconstruct more than one patch
because we need to observe the back of the object.

x

y

height

Image
plane

direction
of projection

FIGURE 2.10: A Monge patch is a representation of a piece of surface as a height function.
For the photometric stereo example, we assume that an orthographic camera—one that
maps (x, y, z) in space to (x, y) in the camera—is viewing a Monge patch. This means
that the shape of the surface can be represented as a function of position in the image.

Photometric stereo is a method for recovering a representation of the Monge
patch from image data. The method involves reasoning about the image intensity
values for several different images of a surface in a fixed view illuminated by different
sources. This method recovers the height of the surface at points corresponding to
each pixel; in computer vision circles, the resulting representation is often known
as a height map, depth map, or dense depth map.

Fix the camera and the surface in position, and illuminate the surface using
a point source that is far away compared with the size of the surface. We adopt a
local shading model and assume that there is no ambient illumination (more about
this later) so that the brightness at a point x on the surface is

B(x) = ρ(x)N(x) · S1,

where N is the unit surface normal and S1 is the source vector. We can write
B(x, y) for the radiosity of a point on the surface because there is only one point on
the surface corresponding to the point (x, y) in the camera. Now we assume that
the response of the camera is linear in the surface radiosity, and so have that the



Section 2.2 Inference from Shading 48

value of a pixel at (x, y) is

I(x, y) = kB(x)

= kB(x, y)

= kρ(x, y)N(x, y) · S1

= g(x, y) · V 1,

where g(x, y) = ρ(x, y)N(x, y) and V 1 = kS1, where k is the constant connecting
the camera response to the input radiance.

FIGURE 2.11: Five synthetic images of a sphere, all obtained in an orthographic view
from the same viewing position. These images are shaded using a local shading model
and a distant point source. This is a convex object, so the only view where there is no
visible shadow occurs when the source direction is parallel to the viewing direction. The
variations in brightness occuring under different sources code the shape of the surface.

In these equations, g(x, y) describes the surface, and V 1 is a property of the
illumination and of the camera. We have a dot product between a vector field g(x, y)
and a vector V 1, which could be measured; with enough of these dot products, we
could reconstruct g and so the surface.

Now if we have n sources, for each of which V i is known, we stack each of
these V i into a known matrix V , where

V =

⎛
⎜⎜⎝

V T
1

V T
2

. . .

V T
n

⎞
⎟⎟⎠ .

For each image point, we stack the measurements into a vector

i(x, y) = {I1(x, y), I2(x, y), . . . , In(x, y)}T .



Section 2.2 Inference from Shading 49

Notice that we have one vector per image point; each vector contains all the image
brightnesses observed at that point for different sources. Now we have

i(x, y) = Vg(x, y),

and g is obtained by solving this linear system—or rather, one linear system per
point in the image. Typically, n > 3, so that a least-squares solution is appropriate.
This has the advantage that the residual error in the solution provides a check on
our measurements.

Substantial regions of the surface might be in shadow for one or the other
light (see Figure 2.11). We assume that all shadowed regions are known, and deal
only with points that are not in shadow for any illuminant. More sophisticated
strategies can infer shadowing because shadowed points are darker than the local
geometry predicts.

We can extract the albedo from a measurement of g because N is the unit
normal. This means that |g(x, y)|= ρ(x, y). This provides a check on our measure-
ments as well. Because the albedo is in the range zero to one, any pixels where
|g| is greater than one are suspect—either the pixel is not working or V is incor-
rect. Figure 2.12 shows albedo recovered using this method for the images shown
in Figure 2.11.

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

-5

0

5

10

15

0

5

10

15

20

25

30

35

0

5

10

15

20

25

30

35

-10

0

10

20

FIGURE 2.12: The image on the left shows the magnitude of the vector field g(x, y) recov-
ered from the input data of Figure 2.11 represented as an image—this is the reflectance
of the surface. The center figure shows the normal field, and the right figure shows the
height field.

We can extract the surface normal from g because the normal is a unit vector

N(x, y) =
g(x, y)

|g(x, y)| .

Figure 2.12 shows normal values recovered for the images of Figure 2.11.
The surface is (x, y, f(x, y)), so the normal as a function of (x, y) is

N(x, y) =
1√

1 + ∂f
∂x

2
+ ∂f

∂y

2

{
∂f

∂x
,
∂f

∂y
, 1

}T

.

To recover the depth map, we need to determine f(x, y) from measured values of
the unit normal.



Section 2.2 Inference from Shading 50

Obtain many images in a fixed view under different illuminants
Determine the matrix V from source and camera information

Inferring albedo and normal:
For each point in the image array that is not shadowed
Stack image values into a vector i
Solve Vg = i to obtain g for this point
Albedo at this point is |g|
Normal at this point is

g
|g|

p at this point is N1

N3

q at this point is N2

N3

end

Check: is ( ∂p∂y − ∂q
∂x )

2 small everywhere?

Integration:
Top left corner of height map is zero
For each pixel in the left column of height map
height value = previous height value + corresponding q value

end
For each row
For each element of the row except for leftmost
height value = previous height value + corresponding p value

end
end

Algorithm 2.2: Photometric Stereo.

Assume that the measured value of the unit normal at some point (x, y) is
(a(x, y), b(x, y), c(x, y)). Then

∂f

∂x
=

a(x, y)

c(x, y)
and

∂f

∂y
=

b(x, y)

c(x, y)
.

We have another check on our data set, because

∂2f

∂x∂y
=

∂2f

∂y∂x
,

so we expect that

∂
(

a(x,y)
c(x,y)

)
∂y

−
∂
(

b(x,y)
c(x,y)

)
∂x

should be small at each point. In principle it should be zero, but we would have
to estimate these partial derivatives numerically and so should be willing to accept
small values. This test is known as a test of integrability, which in vision applications
always boils down to checking that mixed second partials are equal.



Section 2.2 Inference from Shading 51

FIGURE 2.13: Photometric stereo could become the method of choice to capture complex
deformable surfaces. On the top, three images of a garment, lit from different directions,
which produce the reconstruction shown on the top right. A natural way to obtain three
different images at the same time is to use a color camera; if one has a red light, a green
light, and a blue light, then a single color image frame can be treated as three images
under three separate lights. On the bottom, an image of the garment captured in this
way, which results in the photometric stereo reconstruction on the bottom right. This
figure was originally published as Figure 6 of “Video Normals from Colored Lights,” G. J.
Brostow, C. Hernández, G. Vogiatzis, B. Stenger, and R. Cipolla, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2011 c© IEEE, 2011.

Assuming that the partial derivatives pass this sanity test, we can reconstruct
the surface up to some constant depth error. The partial derivative gives the change
in surface height with a small step in either the x or the y direction. This means
we can get the surface by summing these changes in height along some path. In
particular, we have

f(x, y) =

∮
C

(
∂f

∂x
,
∂f

∂y

)
· dl+ c,

where C is a curve starting at some fixed point and ending at (x, y), and c is a
constant of integration, which represents the (unknown) height of the surface at
the start point. The recovered surface does not depend on the choice of curve (ex-
ercises). Another approach to recovering shape is to choose the function f(x, y)
whose partial derivatives most look like the measured partial derivatives. Fig-
ure 2.12 shows the reconstruction obtained for the data shown in Figure 2.11.

Current reconstruction work tends to emphasize geometric methods that re-
construct from multiple views. These methods are very important, but often require
feature matching, as we shall see in Chapters 7 and 8. This tends to mean that
it is hard to get very high spatial resolution, because some pixels are consumed
in resolving features. Recall that resolution (which corresponds roughly to the
spatial frequencies that can be reconstructed accurately) is not the same as ac-



Section 2.3 Modelling Interreflection 52

curacy (which involves a method providing the right answers for the properties it
estimates). Feature-based methods are capable of spectacularly accurate recon-
structions. Because photometric cues have such spatial high resolution, they are a
topic of considerable current interest. One way to use photometric cues is to try
and match pixels with the same brightness across different cameras; this is diffi-
cult, but produces impressive reconstructions. Another is to use photometric stereo
ideas. For some applications, photometric stereo is particularly atractive because
one can get reconstructions from a single view direction—this is important, because
we cannot always set up multiple cameras. In fact, with a trick, it is possible to
get reconstructions from a single frame. A natural way to obtain three different
images at the same time is to use a color camera; if one has a red light, a green light
and a blue light, then a single color image frame can be treated as three images
under three separate lights, and photometric stereo methods apply. In turn, this
means that photometric stereo methods could be used to recover high-resolution
reconstructions of deforming surfaces in a relatively straightforward way. This is
particularly useful when it is difficult to get many cameras to view the object.
Figure 2.13 shows one application to reconstructing cloth in video (from Brostow
et al. (2011)), where multiple view reconstruction is complicated by the need to
synchronize frames (alternatives are explored in, for example, White et al. (2007)
or Bradley et al. (2008b)).

2.3 MODELLING INTERREFLECTION

The difficulty with a local shading model is that it doesn’t account for all light. The
alternative is a global shading model, where we account for light arriving from other
surfaces as well as from the luminaire. As we shall see, such models are tricky to
work with. In such models, each surface patch receives power from all the radiating
surfaces it can see. These surfaces might radiate power that they generate internally
because they are luminaires, or they might simply reflect power. The general form
of the model will be:(

Power leaving
a patch

)
=

(
Power generated
by that patch

)
+

(
Power received from

other patches and reflected

)
This means we need to be able to model the power received from other patches and
reflected. We will develop a model assuming that all surfaces are diffuse. This leads
to a somewhat simpler model, and describes all effects that are currently of interest
to vision (it is complicated, but not difficult, to build more elaborate models). We
will also need some radiometric terminology.

2.3.1 The Illumination at a Patch Due to an Area Source

The appropriate unit for illumination is radiance, defined as

the power (amount of energy per unit time) traveling at some point in a
specified direction, per unit area perpendicular to the direction of travel,
per unit solid angle.

The units of radiance are watts per square meter per steradian (Wm−2sr−1). The
definition of radiance might look strange, but it is consistent with the most basic



Section 2.3 Modelling Interreflection 53

phenomenon in radiometry: the amount of energy a patch collects from a source
depends both on how large the source looks from the patch and on how large the
patch looks from the source.

r

x

dA

x

dA

N

N

θ

θ
s

s

s

s

S

FIGURE 2.14: A patch with area dA views an area source S. We compute the power
received by the patch by summing the contributions of each element on S, using the
notation indicated in this figure.

It is important to remember that the square meters in the units for radiance
are foreshortened (i.e., perpendicular to the direction of travel) to account for this
phenomenon. Assume we have two elements, one at x with area dA and the other
at xs with area dAs. Write the angular direction from x to xs as x → xs, and
define the angles θ and θs as in Figure 2.14. Then the solid angle subtended by
element 2 at element 1 is

dω2(1) =
cos θsdAs

r2
,

so the power leaving x toward xs is

d2P1→2 = (radiance)(foreshortened area)(solid angle)

= L(x,x → xs)(cos θdA)(dω2(1))

= L(x,x → xs)

(
cos θ cos θs

r2

)
dAsdA.

By a similar argument, the same expression yields the power arriving at x from
x2; this means that, in a vacuum, radiance is constant along (unoccluded) straight
lines.

We can now compute the power that an element dA collects from an area
source, by summing the contributions of elements over that source. Using the
notation of Figure 2.14, we get

dPS→dA =

(∫
S

L(xs,xs → x)

(
cos θs cos θ

r2

)
dAs

)
dA.



Section 2.3 Modelling Interreflection 54

To get a more useful area source model, we need further units.

θ

φ

dφ

dθ

dA

θn

r

FIGURE 2.15: A hemisphere on a patch of surface, to show our angular coordinates for
computing radiometric quantities. The coordinate axes are there to help you see the
drawing as a 3D surface. An infinitesimal patch of surface with area dA which is distance
r away is projected onto the unit hemisphere centered at the relevant point; the resulting
area is the solid angle of the patch, marked as dθdφ. In this case, the patch is small so that
the area and hence the solid angle is (1/r2)dA cos θn, where θn is the angle of inclination
of the patch.

2.3.2 Radiosity and Exitance

We are dealing with diffuse surfaces, and our definition of a diffuse surface is that
the intensity (formally, the radiance) leaving the surface is independent of the
direction in which it leaves. There is no point in describing the intensity of such
a surface with radiance (which explicitly depends on direction). The appropriate
unit is radiosity, defined as

the total power leaving a point on a surface per unit area on the surface.

Radiosity, which is usually written as B(x), has units watts per square meter
(Wm−2). To obtain the radiosity of a surface at a point, we can sum the radiance
leaving the surface at that point over the whole exit hemisphere. Thus, if x is a
point on a surface emitting radiance L(x, θ, φ), the radiosity at that point is

B(x) =

∫
Ω

L(x, θ, φ) cos θdω,

where Ω is the exit hemisphere, dω is unit solid angle, and the term cos θ turns
foreshortened area into area (look at the definitions of radiance and of radiosity
again). We could substitute dω = sin θdθdφ, using the units of Figure 2.15.



Section 2.3 Modelling Interreflection 55

Consider a surface element as in Figure 2.14. We have computed how much
power it receives from the source as a function of the source’s radiance. The surface
element is diffuse, and its albedo is ρ(x). The albedo is the fraction of incoming
power that the surface radiates, so the radiosity due to power received from the
area source is

B(x) =
dPS→dA

dA
= ρ(x)

(∫
S

L(xs,xs → x)

(
cos θs cos θ

r2

)
dAs

)
.

Now if a point u on a surface has radiosity B(u), what is the radiance leaving
the surface in some direction? We write L for the radiance, which is independent
of angle, and we must have

B(u) =

∫
Ω

L(x, θ, φ) cos θdω = L(u)

∫
Ω

cos θdω = L(u)π.

This means that if the area source has radiosity B(xs), then the radiosity at the
element due to the power received from the area source is

B(x) = ρ

(∫
S

L(xs,xs → x)

(
cos θs cos θ

r2

)
dAs

)

= ρ

(∫
S

B(x)

π

(
cos θs cos θ

r2

)
dAs

)

=
ρ

π

(∫
S

B(x)

(
cos θs cos θ

r2

)
dAs

)
.

Our final step is to model illumination generated internally in a surface—light
generated by a luminaire, rather than reflected from a surface. We assume there
are no directional effects in the luminaire and that power is uniformly distributed
across outgoing directions (this is the least plausible component of the model, but
is usually tolerable). We use the unit exitance, which is defined as

the total power internally generated power leaving a point on a surface
per unit area on the surface.

2.3.3 An Interreflection Model

We can now write a formal model of interreflections for diffuse surfaces by substi-
tuting terms into the original expression. Recall that radiosity is power per unit
area, write E(x) for exitance at the point x, write xs for a coordinate that runs
over all surface patches, S for the set of all surfaces, dA for the element of area at
x, V(x,xs) for a function that is one if the two points can see each other and zero
otherwise, and cos θ, cos θs, r, as in Figure 2.14. We obtain

Power leaving = Power generated + Power received from
a patch by that patch other patches and reflected

B(x)dA = E(x)dA + ρ(x)
π

∫
S

⎡
⎣ cos θ cos θs

r2

×
V(x,xs)

⎤
⎦B(xs)dAsdA



Section 2.3 Modelling Interreflection 56

and so, dividing by area, we have

B(x) = E(x) + ρ(x)
π

∫
S
[
cos θ cos θs

r2 Vis(x,xs)
]
B(xs)dAs.

It is usual to write

K(x,xs) =
cos θ cos θs

πr2

and refer to K as the interreflection kernel. Substituting gives

B(x) = E(x) + ρ(x)

∫
S
K(x,xs)Vis(x,xs)B(xs)dAxs

an equation where the solution appears inside the integral. Equations of this form
are known as Fredholm integral equations of the second kind. This particular
equation is a fairly nasty sample of the type because the interreflection kernel
generally is not continuous and may have singularities. Solutions of this equation
can yield quite good models of the appearance of diffuse surfaces, and the topic
supports a substantial industry in the computer graphics community (good places
to start for this topic are Cohen and Wallace (1993) or Sillion (1994)). The model
produces good predictions of observed effects (Figure 2.16).

2.3.4 Qualitative Properties of Interreflections

Interreflections are a problem, because they are difficult to account for in our il-
lumination model. For example, photometric stereo as we described it uses the
model that light at a surface patch comes only from a distant light source. One
could refine the method to take into account nearby light sources, but it is much
more difficult to deal with interreflections. Once one accounts for interreflections,
the brightness of each surface patch could be affected by the configuration of every
other surface patch, making a very nasty global inference problem. While there
have been attempts to build methods that can infer shape in the presence of in-
terreflections (Nayar et al. 1991a), the problem is extremely difficult. One source
of difficulties is that one may need to account for every radiating surface in the
solution, even distant surfaces one cannot see.

An alternative strategy to straightforward physical inference is to understand
the qualitative properties of interreflected shading. By doing so, we may be able
to identify cases that are easy to handle, the main types of effect, and so on. The
effects can be quite large. For example, Figure 2.17 shows views of the interior of two
rooms. One room has black walls and contains black objects. The other has white
walls and contains white objects. Each is illuminated (approximately!) by a distant
point source. Given that the intensity of the source is adjusted appropriately, the
local shading model predicts that these pictures would be indistinguishable. In fact,
the black room has much darker shadows and crisper boundaries at the creases of the
polyhedra than the white room. This is because surfaces in the black room reflect
less light onto other surfaces (they are darker), whereas in the white room other
surfaces are significant sources of radiation. The sections of the camera response to
the radiosity (these are proportional to radiosity for diffuse surfaces) shown in the
figure are hugely different qualitatively. In the black room, the radiosity is constant
in patches, as a local shading model would predict, whereas in the white room slow



Section 2.3 Modelling Interreflection 57

Illumination from

an infinitely distant

point source, in this

direction

predicted observed

FIGURE 2.16: The model described in the text produces quite accurate qualitative predic-
tions for interreflections. The top figure shows a concave right-angled groove illuminated
by a point source at infinity where the source direction is parallel to the one face. On
the left of the bottom row is a series of predictions of the radiosity for this configura-
tion. These predictions have been scaled to lie on top of one another; the case ρ → 0
corresponds to the local shading model. On the right, an observed image intensity for
an image of this form for a corner made of white paper, showing the roof-like gradient in
radiosity associated with the edge. A local shading model predicts a step. This figure was
originally published as Figures 5 and 7 of “Mutual Illumination,” by D.A. Forsyth and
A.P. Zisserman, Proc. IEEE CVPR, 1989, c© IEEE, 1989.

image gradients are quite common; these occur in concave corners, where object
faces reflect light onto one another.

First, interreflections have a characteristic smoothing effect. This is most
obviously seen when one tries to interpret a stained glass window by looking at
the pattern it casts on the floor; this pattern is almost always a set of indistinct
colored blobs. The effect is seen most easily with the crude model illustrated in
Figure 2.18. The geometry consists of a patch with a frontal view of an infinite
plane, which is a unit distance away and carries a radiosity sinωx. There is no
reason to vary the distance of the patch from the plane, because interreflection
problems have scale invariant solutions, which means that the solution for a patch
two units away can be obtained by reading our graph at 2ω. The patch is small
enough that its contribution to the plane’s radiosity can be ignored. If the patch is



Section 2.3 Modelling Interreflection 58

A B C D E F GA B C D

FIGURE 2.17: The column on the left shows data from a room with matte black walls
and containing a collection of matte black polyhedral objects; that on the right shows
data from a white room containing white objects. The images are qualitatively different,
with darker shadows and crisper boundaries in the black room and bright reflexes in the
concave corners in the white room. The graphs show sections of the image intensity along
the corresponding lines in the images. This figure was originally published as Figures 17,
18, 19, and 20 of “Mutual Illumination,” by D.A. Forsyth and A.P. Zisserman, Proc.
IEEE CVPR, 1989, c© IEEE, 1989.

slanted by σ with respect to the plane, it carries radiosity that is nearly periodic,
with spatial frequency ω cosσ. We refer to the amplitude of the component at this
frequency as the gain of the patch and plot the gain in Figure 2.18. The important
property of this graph is that high spatial frequencies have a difficult time jumping
the gap from the plane to the patch. This means that shading effects with high
spatial frequency and high amplitude generally cannot come from distant surfaces
(unless they are abnormally bright).

The extremely fast fall-off in amplitude with spatial frequency of terms due to
distant surfaces means that, if one observes a high-amplitude term at a high spatial
frequency, it is very unlikely to have resulted from the effects of distant, passive
radiators (because these effects die away quickly). There is a convention, which we
see in Section 2.2.3, that classifies effects in shading as due to reflectance if they are
fast (“edges”) and the dynamic range is relatively low and due to illumination oth-
erwise. We can expand this convention. There is a mid range of spatial frequencies
that are largely unaffected by mutual illumination from distant surfaces because
the gain is small. Spatial frequencies in this range cannot be transmitted by distant
passive radiators unless these radiators have improbably high radiosity. As a result,
spatial frequencies in this range can be thought of as regional properties, which can
result only from interreflection effects within a region.

The most notable regional properties are probably reflexes— small bright
patches that appear mainly in concave regions (illustrated in Figure 2.19). A second



Section 2.4 Shape from One Shaded Image 59

0 0.5 1 1.5 2 2.5 3
−0.2

0

0.2

0.4

0.6

0.8

1

Source spatial frequency − radians per unit length

G
ai

n

Frontal − exact solution

FIGURE 2.18: A small patch views a plane with sinusoidal radiosity of unit amplitude.
This patch has a (roughly) sinusoidal radiosity due to the effects of the plane. We refer
to the amplitude of this component as the gain of the patch. The graph shows numerical
estimates of the gain for patches at 10 equal steps in slant angle, from 0 to π/2, as a
function of spatial frequency on the plane. The gain falls extremely fast, meaning that
large terms at high spatial frequencies must be regional effects, rather than the result of
distant radiators. This is why it is hard to determine the pattern in a stained glass window
by looking at the floor at the foot of the window. This figure was originally published
as Figures 1 and 2 from “Shading Primitives: Finding Folds and Shallow Grooves,” J.
Haddon and D.A. Forsyth, Proc. IEEE ICCV, 1998 c© IEEE, 1998.

important effect is color bleeding, where a colored surface reflects light onto another
colored surface. This is a common effect that people tend not to notice unless they
are consciously looking for it. It is quite often reproduced by painters.

2.4 SHAPE FROM ONE SHADED IMAGE

There is good evidence that people get some perception of shape from the shading
pattern in a single image, though the details are uncertain and quite complicated
(see the notes for a brief summary). You can see this evidence in practice: whenever
you display a reconstruction of a surface obtained from images, it is a good idea to
shade that reconstruction using image pixels, because it always looks more accurate.
In fact, quite bad reconstructions can be made to look good with this method.
White and Forsyth (2006) use this trick to replace surface albedos in movies; for
example, they can change the pattern on a plastic bag in a movie. Their method
builds and tracks very coarse geometric reconstructions, uses a form of regression
to recover the original shading pattern of the object, and then shades the coarse
geometric reconstruction using the original shading pattern (Figure 2.20). In this
figure, the pictures look plausible, not because the reconstruction is good (it isn’t),
but because the shading pattern masks the errors in geometric reconstruction.

The cue to shape must come from the fact that a surface patch that faces
the light source is brighter than one that faces away from the source. But going
from this observation to a working algorithm remains an open question. The key
seems to be an appropriate use of the image irradiance equation. Assume we have a
surface in the form (x, y, f(x, y)) viewed orthographically along the z-axis. Assume
that the surface is diffuse, and its albedo is uniform and known. Assume also that



Section 2.4 Shape from One Shaded Image 60

predicted observed

FIGURE 2.19: Reflexes occur quite widely; they are usually caused by a favorable view of
a large reflecting surface. In the geometry shown on the top, the shadowed region of the
cylindrical bump sees the plane background at a fairly favorable angle: if the background
is large enough, nearly half the hemisphere of the patch at the base of the bump is a view
of the plane. This means there will be a reflex with a large value attached to the edge
of the bump and inside the cast shadow region (which a local model predicts as black).
There is another reflex on the other side, too, as the series of solutions (again normalized
for easy comparison) on the left show. On the right, an observation of this effect in a real
scene. This figure was originally published as Figures 24 and 26 of “Mutual Illumination,”
by D.A. Forsyth and A.P. Zisserman, Proc. IEEE CVPR, 1989, c© IEEE, 1989.

the model of Section 2.1.3 applies, so that the shading at a point with normal N
is given by some function R(N ) (the function of our model is R(N ) = N · S, but
others could be used). Now the normal of our surface is a function of the two first
partial derivatives

p =
∂f

∂x
, q =

∂f

∂y

so we can write R(p, q). Assume that the camera is radiometrically calibrated, so
we can proceed from image values to intensity values. Write the intensity at x, y
as I(x, y). Then we have

R(p, q) = I(x, y).

This is a first order partial differential equation, because p and q are partial deriva-
tives of f . In principle, we could set up some boundary conditions and solve this
equation. Doing so reliably and accurately for general images remains outside our
competence, 40 years after the problem was originally posed by Horn (1970a).



Section 2.5 Notes 61

FIGURE 2.20: On the left, an original frame from a movie sequence of a deforming plastic
bag. On the right, two frames where the original texture has been replaced by another.
The method used is a form of regression; its crucial property is that it has a very weak
geometric model, but is capable of preserving the original shading field of the image. If
you look closely at the albedo (i.e., the black pattern) of the bag, you may notice that it
is inconsistent with the wrinkles on the bag, but because the shading has been preserved,
the figures look quite good. This is indirect evidence that shading is a valuable cue to
humans. Little is known about how this cue is to be exploited, however. This figure was
originally published as Figure 10 of “Retexturing single views using texture and shading,”
by R. White and D.A. Forsyth, Proc. European Conference on Computer Vision. Springer
Lecture Notes in Computer Science, Volume 3954, 2006 c© Springer 2006.

There are a variety of difficulties here. The physical model is a poor model
of what actually happens at surfaces because any particular patch is illuminated
by other surface patches, as well as by the source. We expect to see a rich variety
of geometric constraints on the surface we reconstruct, and it is quite difficult to
formulate shape from shading in a way that accomodates these constraints and still
has a solution. Shading is a worthwhile cue to exploit, because we can observe
shading at extremely high spatial resolutions, but this means we must work with
very high dimensional models to reconstruct. Some schemes for shading recon-
struction can be unstable, but there appears to be no theory to guide us to stable
schemes. We very seldom actually see isolated surfaces of known albedo, and there
are no methods that are competent to infer both shading and albedo, though there
is some reason to hope that such methods can be built. We have no theory that is
capable of predicting the errors in shading-based reconstructions from first princi-
ples. All this makes shape inference from shading in a single image one of the most
frustrating open questions in computer vision.

2.5 NOTES

Horn started the systematic study of shading in computer vision, with important
papers on recovering shape from a local shading model using a point source (in
(Horn 1970b), (Horn 1975)), with a more recent account in Horn (1990).



Section 2.5 Notes 62

A

B

FIGURE 2.21: This picture shows two important mechanisms by which it might be possible
to infer surface shape from single images. First, patches that face away from the light
(like A, on the left) are darker than those that face the light (B). Second, shadows pick
out relief—for example, small dents in a surface (more easily seen in the detail patch on
the right), have a bright face facing the light and a dark face which is in shadow. Peter
Wilson c© Dorling Kindersley, used with permission.

Models of Shading

The first edition of this book contained more formal radiometry, which was widely
disliked (and for good reason; making the subject exciting is beyond our skills).
We’ve cut this down, and tried to avoid using the ideas, but point those who
really want to know more toward that earlier edition. We strongly recommend
François Sillion’s excellent book (Sillion 1994) for its clear account of radiometric
calculations. There are a variety of more detailed publications for reference (Nayar
et al. 1991c). Our discussion of reflection is thoroughly superficial. The specu-
lar plus diffuse model appears to be originally due to Cook, Torrance, and Spar-
row (Torrance and Sparrow 1967, Cook and Torrance 1987). A variety of modifi-
cations of this model appear in computer vision and computer graphics. Reflection
models can be derived by combining a statistical description of surface roughness
with electromagnetic considerations (e.g., Beckmann and Spizzichino (1987)) or by



Section 2.5 Notes 63

adopting scattering models (as in the work of Torrance and Sparrow (1967) and
of Cook and Torrance (1987)).

It is commonly believed that rough surfaces are Lambertian. This belief has a
substantial component of wishful thinking because rough surfaces often have local
shadowing effects that make the radiance reflected quite strongly dependent on
the illumination angle. For example, a stucco wall illuminated at a near grazing
angle shows a clear pattern of light and dark regions where facets of the surface
face toward the light or are shadowed. If the same wall is illuminated along the
normal, this pattern largely disappears. Similar effects at a finer scale are averaged
to endow rough surfaces with measurable departures from a Lambertian model (for
details, see Koenderink et al. (1999), Nayar and Oren (1993), (1995), Oren and
Nayar (1995), and Wolff et al. (1998)).

Inference from Shading

Registered images are not essential for radiometric calibration. For example, it is
sufficient to have two images where we believe the histogram of Eij values is the
same (Grossberg and Nayar 2002). This occurs, for example, when the images are
of the same scene, but are not precisely registered. Patterns of intensity around
edges also can reveal calibration (Lin et al. 2004).

There has not been much recent study of lightness constancy algorithms. The
basic idea is due to Land and McCann (1971). Their work was formalized for
the computer vision community by Horn (1974). A variation on Horn’s algorithm
was constructed by Blake (1985). This is the lightness algorithm we describe. It
appeared originally in a slightly different form, where it was called the Retinex
algorithm (Land and McCann 1971). Retinex was originally intended as a color
constancy algorithm. It is surprisingly difficult to analyze (Brainard and Wandell
1986).

Retinex estimates the log-illumination term by subtracting the log-albedo
from the log-intensity. This has the disadvantage that we do not impose any struc-
tural constraints on illumination. This point has largely been ignored, because the
main focus has been on albedo estimates. However, albedo estimates are likely to
be improved by balancing violations of albedo constraints with those of illumination
constraints.

Lightness techniques are not as widely used as they should be, particularly
given that there is some evidence that they produce useful information on real
images (Brelstaff and Blake 1987). Classifying illumination versus albedo simply
by looking at the magnitude of the gradient is crude, and ignores important cues.
Sharp shading changes occur at shadow boundaries or normal discontinuities, but
using chromaticity (Funt et al. 1992) or multiple images under different lighting
conditions (Weiss 2001) yields improved estimates. One can learn to distinguish
illumination from albedo (Freeman et al. 2000). Discriminative methods to classify
edges into albedo or shading help (Tappen et al. 2006b) and chromaticity cues
can contribute (Farenzena and Fusiello 2007). Shading and albedo are sometimes
known as intrinsic images. Tappen et al. (2006a) regress local intrinsic image
patches against the image, exploiting the constraint that patches join up. When
more than one image is available, recent methods can recover quite complex surface



Section 2.5 Notes 64

properties (Romeiro et al. 2008). When geometry is available, Yu et al. (1999)
showed significant improvements in lightness recovery are possible.

In its original form, photometric stereo is due to Woodham. There are a
number of variants of this useful idea (Horn et al. (1978), Woodham (1979), (1980),
(1989), (1994), Woodham et al. (1991)). Current methods for photometric stereo
require at least two unshadowed views; see Hernandez et al. (2008) which describes
methods to cope in this case. There are a variety of variations on photometric
stereo. Color photometric stereo seems to date to Petrov (1987), with a variant in
Petrov (1991).

Photometric stereo depends only on adopting a local shading model. This
model need not be a Lambertian surface illuminated by a distant point source. If
the brightness of the surface is a known function of the surface normal satisfying a
small number of constraints, photometric stereo is still possible. This is because the
intensity of a pixel in a single view determines the normal up to a one-parameter
family. This means that two views determine the normal. The simplest example of
this case occurs for a surface of known albedo illuminated by a distant point source.

In fact, if the radiosity of the surface is a k-parameter function of the surface
normal, photometric stereo is still possible. The intensity of the pixel in a single
view determines the normal up to a k + 1 parameter family, and k + 1 views give
the normal. For this approach to work, the brightness needs to be given by a
function for which our arithmetic works (e.g., if the brightness of the surface is a
constant function of the surface normal, it isn’t possible to infer any constraint on
the normal from the brightness). One can then recover shape and reflectance maps
simultaneously (Garcia-Bermejo et al. (1996); Mukawa (1990); Nayar et al. (1990);
Tagare and de Figueiredo (1992); (1993)).

A converse to photometric stereo might be as follows: Assume we have a
diffuse sphere, immersed in an environment where illumination depends only on
direction. What can we determine about the illumination field from the surface
brightness? The answer is very little, because diffuse surfaces engage in a form of
averaging that heavily smoothes the illumination field (Ramamoorthi and Hanrahan
2001). This is valuable because it suggests that complex representations of the
directional properties illumination aren’t required in a diffuse world. For example,
this result allowed Jacobs (1981) to produce a form of photometric stereo that
requires no illuminant information, using sufficient images.

Interreflections

The effects of global shading are often ignored in the shading literature, which
causes a reflex response of hostility in one of the authors. The reason to ignore
interreflections is that they are extremely hard to analyze, particularly from the
perspective of inferring object properties given the output of a global shading model.
If interreflection effects do not change the output of a method much, then it is prob-
ably all right to ignore them. Unfortunately, this line of reasoning is seldom pursued
because it is quite difficult to show that a method is stable under interreflections.
The discussion of spatial frequency issues follows Haddon and Forsyth (1998a), af-
ter an idea of Koenderink and van Doorn (1983). Apart from this, there is not
much knowledge about the overall properties of interreflected shading, which is an



Section 2.5 Notes 65

important gap in our knowledge. An alternative strategy is to iteratively reestimate
shape using a rendering model (Nayar et al. 1991b).

Horn is also the first author to indicate the significance of global shading
effects (Horn 1977). Koenderink and van Doorn (1983) noted that the radiosity
under a global model is obtained by taking the radiosity under a local model,
and applying a linear operator. One then studies that operator; in some cases,
its eigenfunctions (often called geometrical modes) are informative. Forsyth and
Zisserman (1989, 1990, 1991) then demonstrated a variety of the qualitative effects
due to interreflections.

Shape from One Shaded Image

Shape from shading is an important puzzle. Comprehensive surveys include (Horn
and Brooks (1989); Zhang et al. (1999); Durou et al. (2008b)). In practice, despite
the ongoing demand for high-resolution shape reconstructions, shape-from-shading
has been a disappointment. This may be because, as currently formulated, it solves
a problem that doesn’t commonly occur. Image irradiance equation methods are
formulated to produce reconstructions when there is very little geometric data, but
it is much more common to want to improve the resolution of a method that already
produces quite rich geometric data.

Methods are either too fragile or the reconstructions too poor for the method
to be useful. Some of this may be due to the effects of interreflections. Another
source of difficulty could be the compromises that need to be made to obtain a
solution in the presence of existence difficulties. Most reconstructions shown in
the literature are poor. In a comparative review, Zhang et al. (2002) summarize:
“All the SFS algorithms produce generally poor results when given synthetic data
. . . Results are even worse on real images, and . . . [r]esults on synthetic data
are not generally predictive of results on real data.” More recently, Tankus et al.
(2005) showed good looking reconstructions of various body structures from endo-
scopic images, but cannot compare with veridical information. Prados and Faugeras
show a good-looking reconstruction of a face, but cannot compare with veridical
information (Prados and Faugeras (2005a); (2005b)). Durou et al. (2008a), in a
recent comparative review, show some fair reconstructions on both synthetic and
real data. However, on quite simple shapes methods still produce reconstructions
with profound eccentricities.

These problems have driven a search for methods that do not require a recon-
struction. Some local features of a shading field—shading primitives—are revealing
because some geometric structures generate about the same shading pattern what-
ever the illumination. For example, a pit in a surface will always be dark; grooves
and folds tend to appear as a thin, light band next to a thin, dark band; and
the shading on a cylinder is usually either a dark band next to a light band, or
a light band with dark band on either side. This idea originates with Koenderink
and Doorn (1983), and is expounded in (Haddon and Forsyth 1997, Haddon and
Forsyth 1998b, Han and Zhu 2005, Han and Zhu 2007). On a larger spatial scale, the
family of shading patterns that can be produced by a particular object—the illumi-
nation cone—is smaller than one might expect (Basri and Jacobs 2003, Belhumeur
and Kriegman 1998, Georghiades et al. 2001), allowing illumination invariant de-



Section 2.5 Notes 66

tection by detecting elements of such cones or by matching with an image distance
that discounts changes in illumination (Chen et al. 2000, Jacobs et al. 1998).

PROBLEMS

2.1. We see a diffuse sphere centered at the origin, with radius one and albedo ρ, in
an orthographic camera, looking down the z-axis. This sphere is illuminated
by a distant point light source whose source direction is (0, 0, 1). There is no
other illumination. Show that the shading field in the camera is

ρ
√

1− x2 − y2

2.2. What shapes can the shadow of a sphere take if it is cast on a plane and the
source is a point source?

2.3. We have a square area source and a square occluder, both parallel to a plane.
The source is the same size as the occluder, and they are vertically above one
another with their centers aligned.
(a) What is the shape of the umbra?
(b) What is the shape of the outside boundary of the penumbra?

2.4. We have a square area source and a square occluder, both parallel to a plane.
The edge length of the source is now twice that of the occluder, and they are
vertically above one another with their centers aligned.
(a) What is the shape of the umbra?
(b) What is the shape of the outside boundary of the penumbra?

2.5. We have a square area source and a square occluder, both parallel to a plane.
The edge length of the source is now half that of the occluder, and they are
vertically above one another with their centers aligned.
(a) What is the shape of the umbra?
(b) What is the shape of the outside boundary of the penumbra?

2.6. A small sphere casts a shadow on a larger sphere. Describe the possible shadow
boundaries that occur.

2.7. Explain why it is difficult to use shadow boundaries to infer shape, particularly
if the shadow is cast onto a curved surface.

2.8. As in Figure 2.18, a small patch views an infinite plane at unit distance. The
patch is sufficiently small that it reflects a trivial quantity of light onto the
plane. The plane has radiosity B(x, y) = 1 + sin ax. The patch and the plane
are parallel to one another. We move the patch around parallel to the plane,
and consider its radiosity at various points.
(a) Show that if one translates the patch, its radiosity varies periodically with

its position in x.
(b) Fix the patch’s center at (0, 0); determine a closed form expression for the

radiosity of the patch at this point as a function of a. You’ll need a table
of integrals for this (if you don’t, you’re entitled to feel very pleased with
yourself).

2.9. If one looks across a large bay in the daytime, it is often hard to distinguish
the mountains on the opposite side; near sunset, they are clearly visible. This
phenomenon has to do with scattering of light by air—a large volume of air
is actually a source. Explain what is happening. We have modeled air as a
vacuum and asserted that no energy is lost along a straight line in a vacuum.
Use your explanation to give an estimate of the kind of scales over which that
model is acceptable.



Section 2.5 Notes 67

2.10. Read the book Colour and Light in Nature, by Lynch and Livingstone, pub-
lished by Cambridge University Press, 1995.

PROGRAMMING EXERCISES

2.11. An area source can be approximated as a grid of point sources. The weakness
of this approximation is that the penumbra contains quantization errors, which
can be quite offensive to the eye.
(a) Explain.
(b) Render this effect for a square source and a single occluder casting a

shadow onto an infinite plane. For a fixed geometry, you should find that
as the number of point sources goes up, the quantization error goes down.

(c) This approximation has the unpleasant property that it is possible to pro-
duce arbitrarily large quantization errors with any finite grid by changing
the geometry. This is because there are configurations of source and oc-
cluder that produce large penumbrae. Use a square source and a single
occluder, casting a shadow onto an infinite plane, to explain this effect.

2.12. Make a world of black objects and another of white objects (paper, glue, and
spraypaint are useful here) and observe the effects of interreflections. Can you
come up with a criterion that reliably tells, from an image, which is which?
(If you can, publish it; the problem looks easy, but isn’t.)

2.13. (This exercise requires some knowledge of numerical analysis.) Do the nu-
merical integrals required to reproduce Figure 2.18. These integrals aren’t
particularly easy: if one uses coordinates on the infinite plane, the size of the
domain is a nuisance; if one converts to coordinates on the view hemisphere
of the patch, the frequency of the radiance becomes infinite at the bound-
ary of the hemisphere. The best way to estimate these integrals is using a
Monte Carlo method on the hemisphere. You should use importance sampling
because the boundary contributes rather less to the integral than the top does.

2.14. Set up and solve the linear equations for an interreflection solution for the
interior of a cube with a small square source in the center of the ceiling.

2.15. Implement a photometric stereo system.
(a) How accurate are its measurements (i.e., how well do they compare with

known shape information)? Do interreflections affect the accuracy?
(b) How repeatable are its measurements (i.e., if you obtain another set of

images, perhaps under different illuminants, and recover shape from those,
how does the new shape compare with the old)?

(c) Compare the minimization approach to reconstruction with the integra-
tion approach; which is more accurate or more repeatable and why? Does
this difference appear in experiment?

(d) One possible way to improve the integration approach is to obtain depths
by integrating over many different paths and then average these depths
(you need to be a little careful about constants here). Does this improve
the accuracy or repeatability of the method?



C H A P T E R 3

Color

The light receptors in cameras and in the eye respond more or less strongly to
different wavelengths of light. Most cameras and most eyes have several different
types of receptor, whose sensitivity to different wavelengths varies. Comparing
the response of several types of sensor yields information about the distribution
of energy with wavelength for the incoming light; this is color information. Color
information can be used to identify specularities in images and to remove shadows.
The color of an object seen in an image depends on how the object was lit, but
there are algorithms that can correct for this effect.

3.1 HUMAN COLOR PERCEPTION

The light coming out of sources or reflected from surfaces has more or less energy
at different wavelengths, depending on the processes that produced the light. This
distribution of energy with wavelength is sometimes called a spectral energy density;
Figure 3.1 shows spectral energy densities for sunlight measured under a variety of
different conditions. The visual system responds to light in a range of wavelengths
from approximately 400nm to approximately 700nm. Light containing energy at
just one wavelength looks deeply colored (these colors are known as spectral colors).
The colors seen at different wavelengths have a set of conventional names, which
originate with Isaac Newton (the sequence from 700nm to 400nm goes Red Or-
ange Yellow Green Blue Indigo Violet, or Richard of York got blisters in Venice,
although indigo is now frowned upon as a name because people typically cannot
distinguish indigo from blue or violet). If the intensity is relatively uniform across
the wavelengths, the light will look white.

Different kinds of color receptor in the human eye respond more or less
strongly to light at different wavelengths, producing a signal that is interpreted
as color by the human vision system. The precise interpretation of a particular
light is a complex function of context; illumination, memory, object identity, and
emotion can all play a part. The simplest question is to understand which spectral
energy densities produce the same response from people under simple viewing con-
ditions (Section 3.1.1). This yields a simple, linear theory of color matching that
is accurate and extremely useful for describing colors. We sketch the mechanisms
underlying the transduction of color in Section 3.1.2.

3.1.1 Color Matching

The simplest case of color perception is obtained when only two colors are in view
on a black background. In a typical experiment, a subject sees a colored light—the
test light—in one half of a split field (Figure 3.2). The subject can then adjust
a mixture of lights in the other half to get it to match. The adjustments involve
changing the intensity of some fixed number of primaries in the mixture. In this

68



Section 3.1 Human Color Perception 69

400 450 500 550 600 650 700
0

0.5

1

1.5

2

2.5

cloudless sky

cloudless sky, just before sunset

cloudless sky, bright snow

slightly cloudy, sun behind a cloud

slightly cloudy, sun visible

cloudless sky, sunset

cloudy, gray sky

FIGURE 3.1: Daylight has different amounts of power at different wavelengths. These
plots show the spectral energy density of daylight measured at different times of day
and under different conditions. The figure plots relative power against wavelength for
wavelengths from 400 nm to 700 nm for a series of seven different daylight measurements,
made by Jussi Parkkinen and Pertti Silfsten, of daylight illuminating a sample of barium
sulphate (which gives a high reflectance white surface). At the foot of the plot, we show
the names used for spectral colors of the relevant wavelengths. Plot from data obtainable
at http://www.it.lut.fi/ip/research/color/database/database.html.

form, a large number of lights may be required to obtain a match, but many different
adjustments may yield a match.

Write T for the test light, an equals sign for a match, the weights—which are
non-negative—as wi, and the primaries Pi. A match can then be written in an
algebraic form as

T = w1P1 + w2P2 + . . . ,

meaning that test light T matches the particular mixture of primaries given by
(w1, w2, . . .). The situation is simplified if subtractive matching is allowed. In
subtractive matching, the viewer can add some amount of some primaries to the
test light instead of to the match. This can be written in algebraic form by allowing
the weights in the expression above to be negative.

Under these conditions, most observers require only three primaries to match
a test light. This phenomenon is known as the principle of trichromacy. However,

http://www.it.lut.fi/ip/research/color/database/database.html


Section 3.1 Human Color Perception 70

Test
light

T

Weighted
Mixture
of
primaries

�

P1

P2

P3

FIGURE 3.2: Human perception of color can be studied by asking observers to mix colored
lights to match a test light shown in a split field. The drawing shows the outline of such
an experiment. The observer sees a test light T and can adjust the amount of each of
three primaries in a mixture displayed next to the test light. The observer is asked to
adjust the amounts so that the mixture looks the same as the test light. The mixture of
primaries can be written as w1P1 + w2P2 + w3P3; if the mixture matches the test light,
then we write T = w1P1 + w2P2 + w3P3. It is a remarkable fact that for most people
three primaries are sufficient to achieve a match for many colors, and three primaries are
sufficient for all colors if we allow subtractive matching (i.e., some amount of some of the
primaries is mixed with the test light to achieve a match). Some people require fewer
primaries. Furthermore, most people choose the same mixture weights to match a given
test light.

there are some caveats. First, subtractive matching must be allowed; second, the
primaries must be independent, meaning that no mixture of two of the primaries
may match a third. There is now clear evidence that trichromacy occurs because
there are three distinct types of color transducer in the eye (Nathans et al. 1986a,
Nathans et al. 1986b). Given the same primaries and test light, most observers
select the same mixture of primaries to match that test light, because most people
have the same types of color receptor.

Matching is (to an accurate approximation) linear. This yields Grassman’s
laws. First, if we mix two test lights, then mixing the matches will match the
result—that is, if

Ta = wa1P1 + wa2P2 + wa3P3

and
Tb = wb1P1 + wb2P2 + wb3P3,

then
Ta + Tb = (wa1 + wb1)P1 + (wa2 + wb2)P2 + (wa3 + wb3)P3.

Second, if two test lights can be matched with the same set of weights, then
they will match each other—that is, if

Ta = w1P1 + w2P2 + w3P3

and
Tb = w1P1 + w2P2 + w3P3,



Section 3.1 Human Color Perception 71

then
Ta = Tb.

Finally, matching is linear: if

Ta = w1P1 + w2P2 + w3P3,

then
kTa = (kw1)P1 + (kw2)P2 + (kw3)P3

for non-negative k.
Given the same test light and set of primaries, most people use the same set of

weights to match the test light. This, trichromacy, and Grassman’s laws are about
as true as any law covering biological systems can be. The exceptions include the
following:

• people with too few kinds of color receptor as a result of genetic ill fortune
(who may be able to match everything with fewer primaries);

• people with neural problems (who may display all sorts of effects, including
a complete absence of the sensation of color);

• some elderly people (whose choice of weights differ from the norm because of
the development of macular pigment in the eye);

• very bright lights (whose hue and saturation look different from less bright
versions of the same light);

• and very dark conditions (where the mechanism of color transduction is some-
what different than in brighter conditions).

3.1.2 Color Receptors

Trichromacy occurs because there are (usually!) three distinct types of receptor in
the eye that mediate color perception. Each of these receptors turns incident light
into neural signals. The principle of univariance states that the activity of these
receptors is of one kind (i.e., they respond strongly or weakly, but do not signal the
wavelength of the light falling on them). Experimental evidence can be obtained
by carefully dissecting light-sensitive cells and measuring their responses to light at
different wavelengths or by reasoning backward from color matches. Univariance is
a powerful idea because it gives us a good and simple model of human reaction to
colored light: two lights will match if they produce the same receptor responses,
whatever their spectral energy densities.

Because the system of matching is linear, the receptors must be linear. Write
pk for the response of the kth type of receptor, σk(λ) for its sensitivity, E(λ) for
the light arriving at the receptor, and Λ for the range of visible wavelengths. We
can obtain the overall response of a receptor by adding up the response to each
separate wavelength in the incoming spectrum so that

pk =

∫
Λ

σk(λ)E(λ)dλ.



Section 3.1 Human Color Perception 72

350 400 450 500 550 600 650 700 750 800 850
�8

�7

�6

�5

�4

�3

�2

�1

0

1

S

M L

Wavelength in nm

FIGURE 3.3: There are three types of color receptor in the human eye, usually called cones.
These receptors respond to all photons in the same way, but in different amounts. The
figure shows the log of the relative spectral sensitivities of the three kinds of color receptor
in the human eye, plotted against wavelength. On the wavelength axis, we have shown the
color name usually associated with lights which contain energy only at that wavelength.
The first two receptors—properly named the long- and medium-wavelength receptors—
have peak sensitivities at quite similar wavelengths. The third receptor (short-wavelength
receptor) has a different peak sensitivity. The response of a receptor to incoming light can
be obtained by summing the product of the sensitivity and the spectral energy density of
the light over all wavelengths. Notice that each receptor responds to quite a broad range
of wavelengths. This means that human observers must perceive color by comparing the
response of the receptors to one another, and that there must be many spectral energy
densities that cannot be distinguished by humans. Figures plotted from data disseminated
by the Color and Vision Research Laboratories database, compiled by Andrew Stockman
and Lindsey Sharpe, and available at http://www.cvrl.org/.

Anatomical investigation of the retina shows two types of cell that are sensitive
to light, differentiated by their shape. The light-sensitive region of a cone has a
roughly conical shape, whereas that in a rod is roughly cylindrical. Cones largely
dominate color vision and completely dominate the fovea. Cones are somewhat less
sensitive to light than rods are, meaning that in low light, color vision is poor and
it is impossible to read (one doesn’t have sufficient spatial precision, because the

http://www.cvrl.org/


Section 3.2 The Physics of Color 73

fovea isn’t working).
The sensitivities of the three different kinds of receptor to different wave-

lengths can be obtained by comparing color matching data for normal observers
with color matching data for observers lacking one type of cone. Sensitivities ob-
tained in this fashion are shown in Figure 3.3. The three types of cone are properly
called S cones, M cones, and L cones (for their peak sensitivity being to short-,
medium-, and long-wavelength light, respectively). They are occasionally called
blue, green, and red cones; however, this is bad practice, because the sensation of
red is definitely not caused by the stimulation of red cones, and so on.

3.2 THE PHYSICS OF COLOR

Several different mechanisms result in colored light. First, light sources can produce
different amounts of light at different wavelengths. This is what makes incandescent
lights look orange or yellow, and fluorescent lights look bluish. Second, for most
diffuse surfaces, albedo depends on wavelength, so that some wavelengths may be
largely absorbed and others largely reflected. This means that most surfaces will
look colored when lit by a white light. The light reflected from a colored surface
is affected by both the color of the light falling on the surface, and by the surface,
and so is profoundly ambiguous. For example, a white surface lit by red light will
reflect red light, and a red surface lit by white light will also reflect red light.

3.2.1 The Color of Light Sources

The most important natural light source is the sun. The sun is usually modeled as
a distant, bright point. Light from the sun is scattered by the air. In particular,
light can leave the sun, be scattered by the air, strike a surface, and be reflected
into the camera or the eye. This means the sky is an important natural light
source. A crude geometrical model of the sky has it as a source consisting of a
hemisphere with constant exitance. The assumption that exitance is constant is
poor, however, because the sky is substantially brighter at the horizon than at the
zenith. A natural model of the sky is to assume that air emits a constant amount
of light per unit volume; this means that the sky is brighter on the horizon than at
the zenith because a viewing ray along the horizon passes through more sky.

A patch of surface outdoors during the day is illuminated both by light that
comes directly from the sun—usually called daylight—and by light from the sun that
has been scattered by the air (sometimes called skylight or airlight; the presence of
clouds or snow can add other, important, phenomena). The color of daylight varies
with time of day (Figure 3.1) and time of year.

For clear air, the intensity of radiation scattered by a unit volume depends on
the fourth power of the frequency; this means that light of a long wavelength can
travel much farther before being scattered than light of a short wavelength (this is
known as Rayleigh scattering). This means that, when the sun is high in the sky,
blue light is scattered out of the ray from the sun to the earth—meaning that the
sun looks yellow—and can scatter from the sky into the eye—meaning that the sky
looks blue. There are standard models of the spectral energy density of the sky at
different times of day and latitude, too. Surprising effects occur when there are fine
particles of dust in the sky (the larger particles cause much more complex scattering



Section 3.2 The Physics of Color 74

400
0

0.2

0.4

0.6

0.8

1

1.2

450 500 550

Wavelength in nm

R
el
at
iv
e
S
p
ec
tr
al
P
o
w
er

600 650 700

Illuminant D65 Illuminant A

FIGURE 3.4: There is a variety of illuminant models; the graph shows the relative spectral
power distribution of two standard CIE models, illuminant A—which models the light from
a 100W Tungsten filament light bulb, with color temperature 2800K—and illuminant D-
65—which models daylight. Figure plotted from data available at http://www.cvrl.org/.

effects, usually modeled rather roughly by the Mie scattering model, described in
Lynch and Livingston (2001) or in Minnaert (1993)) One author remembers vivid
sunsets in Johannesburg caused by dust in the air from mine dumps, and there are
records of blue and even green moons caused by volcanic dust in the air.

Artificial Illumination
Typical artificial light sources are commonly of a small number of types:

• An incandescent light contains a metal filament that is heated to a high tem-
perature. The spectrum roughly follows the black-body law (Section 3.2.1),
but the melting temperature of the element limits the color temperature of
the light source, so the light has a reddish tinge.

• A fluorescent light works by generating high-speed electrons that strike gas
within the bulb. The gas releases ultraviolet radiation, which causes phos-
phors coating the inside of the bulb to fluoresce. Typically the coating consists
of three or four phosphors, which fluoresce in quite narrow ranges of wave-
lengths. Most fluorescent bulbs generate light with a bluish tinge, but some
bulbs mimic natural daylight (Figure 3.5).

• In some bulbs, an arc is struck in an atmosphere consisting of gaseous met-
als and inert gases. Light is produced by electrons in metal atoms dropping

http://www.cvrl.org/


Section 3.2 The Physics of Color 75

from an excited state to a lower energy state. Typical of such lamps is strong
radiation at a small number of wavelengths, which correspond to particular
state transitions. The most common cases are sodium arc lamps and mercury
arc lamps. Sodium arc lamps produce a yellow-orange light extremely effi-
ciently and are quite commonly used for freeway lighting. Mercury arc lamps
produce a blue-white light and are often used for security lighting.

Figure 3.5 shows a sample of spectra from different light bulbs.

Metal halide
Standard flourescent
Moon white flourescent
Daylight flourescent

350 400 450 500 550 600 650 700 750

Wavelength in nm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
el
at
iv
e
en
er
g
y

FIGURE 3.5: The relative spectral power distribution of four different lamps from the Mit-
subishi Electric Corporation. Note the bright, narrow bands that come from the flourescing
phosphors in the fluorescent lamp. The figure was plotted from data made available by the
Coloring Info Pages at http://www.colorpro.com/info/data/lamps.html; the data was
measured by Hiroaki Sugiura.

Black Body Radiators
One useful abstraction is the black body, a body that reflects no light. A heated

black body emits electromagnetic radiation. It is a remarkable fact that the spectral
power distribution of this radiation depends only on the temperature of the body.
If we write T for the temperature of the body in Kelvins, h for Planck’s constant,
k for Boltzmann’s constant, c for the speed of light, and λ for the wavelength, we
have

E(λ) ∝ 1

λ5

1

(exp(hc/kλT )− 1)
.

This means that there is one parameter family of light colors corresponding to
black body radiators—the parameter being the temperature—and so we can talk
about the color temperature of a light source. This is the temperature of the black

http://www.colorpro.com/info/data/lamps.html


Section 3.2 The Physics of Color 76

body that looks most similar. At relatively low temperatures, black bodies are red,
passing through orange to a pale yellow-white to white as the temperature increases
(Figure 3.12 shows this locus). When hc � kλT , we have 1/(exp(hc/kλT )− 1) ≈
exp(−hc/kλT ), so

E(λ;T ) = C
exp(−hc/kλT )

λ5

where C is the constant of proportionality; this model is somewhat easier to use
than the exact model (Section 3.5.2).

3.2.2 The Color of Surfaces

The color of surfaces is a result of a large variety of mechanisms, including dif-
ferential absorbtion at different wavelengths, refraction, diffraction, and bulk scat-
tering (for more details, see, for example Lamb and Bourriau (1995), Lynch and
Livingston (2001), Minnaert (1993), or Williamson and Cummins (1983)). If we ig-
nore the physical effects that give rise to the color, we can model surfaces as having
a diffuse and a specular component. Each component has a wavelength-dependent
albedo. The wavelength-dependent diffuse albedo is sometimes referred to as the
spectral reflectance (sometimes abbreviated to reflectance or, less commonly, spec-
tral albedo). Figures 3.6 and 3.7 show examples of spectral reflectances for a number
of different natural objects.

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Wavelength in nm

R
e
fl

e
ct

a
n

ce

orange flower

yellow
flower

violet
flower

blue flower

white flower

white
petal

orange
berry

FIGURE 3.6: Spectral albedoes for a variety of natural surfaces measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland, plotted against
wavelength in nanometers. These figures were plotted from data available at
http://www.it.lut.fi/ip/research/color/database/database.html.

There are two color regimes for specular reflection. If the surface is dielectric

http://www.it.lut.fi/ip/research/color/database/database.html


Section 3.3 Representing Color 77

(i.e., does not conduct electricity), specularly reflected light tends to take the color
of the light source. If the surface is a conductor, the specular albedo may depend
quite strongly on wavelength, so that white light may result in colored specularities.

red leaf

brown dry leaf

brown dry leaf

black dry leaf

yellow leaf
orange leaf

400 450 500 550 600 650 700
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Wavelength in nm

R
e
fl

e
ct

a
n

ce

reddish brown leaf

FIGURE 3.7: Spectral albedoes for a variety of natural surfaces measured by Esa
Koivisto, Department of Physics, University of Kuopio, Finland, plotted against
wavelength in nanometers. These figures were plotted from data available at
http://www.it.lut.fi/ip/research/color/database/database.html.

3.3 REPRESENTING COLOR

Describing colors accurately is a matter of great commercial importance. Many
products are closely associated with specific colors—for example, the golden arches,
the color of various popular computers, and the color of photographic film boxes—
and manufacturers are willing to go to a great deal of trouble to ensure that different
batches have the same color. This requires a standard system for talking about
color. Simple names are insufficient because relatively few people know many color
names, and most people are willing to associate a large variety of colors with a
given name.

3.3.1 Linear Color Spaces

There is a natural mechanism for representing color: agree on a standard set of
primaries, and then describe any colored light by the three values of weights that
people would use to match the light using those primaries. In principle, this is easy
to use. To describe a color, we set up and perform the matching experiment and
transmit the match weights. Of course, this approach extends to give a representa-

http://www.it.lut.fi/ip/research/color/database/database.html


Section 3.3 Representing Color 78

tion for surface colors as well if we use a standard light for illuminating the surface
(and if the surfaces are equally clean, etc.).

Performing a matching experiment each time we wish to describe a color can
be practical. For example, this is the technique used by paint stores; you take in
a flake of paint, and they mix paint, adjusting the mixture until a color match is
obtained. Paint stores do this because complicated scattering effects within paints
mean that predicting the color of a mixture can be quite difficult. However, Grass-
man’s laws mean that mixtures of colored lights—at least those seen in a simple
display—mix linearly, which means that a much simpler procedure is available.

Color Matching Functions
When colors mix linearly, we can construct a simple algorithm to determine

which weights would be used to match a source of some known spectral energy
density given a fixed set of primaries. The spectral energy density of the source
can be thought of as a weighted sum of single wavelength sources. Because color
matching is linear, the combination of primaries that matches a weighted sum of
single wavelength sources is obtained by matching the primaries to each of the
single wavelength sources and then adding up these match weights.

For any set of primaries, P1, P2, and P3, we can obtain a set of color matching
functions by experiment. We tune the weight of each primary to match a unit energy
source at every wavelength, and record a table of these weights against wavelengths.
These tables are the color matching functions, which we write as f1(λ), f2(λ), and
f3(λ). Now for some wavelength λ0, we have

U(λ0) = f1(λ0)P1 + f2(λ0)P2 + f3(λ0)P3

(i.e., f1, f2, and f3 give the weights required to match a unit energy source at that
wavelength).

We wish to choose the weights to match a source S(λ). This source is a sum
of a vast number of single wavelength sources, each with a different intensity. We
now match the primaries to each of the single wavelength sources and then add up
these match weights, obtaining

S(λ) = w1P1 + w2P2 + w3P3

=

{∫
Λ

f1(λ)S(λ)dλ

}
P1 +

{∫
Λ

f2(λ)S(λ)dλ

}
P2 +

{∫
Λ

f3(λ)S(λ)dλ

}
P3.

General Issues for Linear Color Spaces
Linear color naming systems can be obtained by specifying primaries, which

imply color matching functions, or by specifying color matching functions, which
imply primaries. It is an inconvenient fact of life that, if the primaries are real lights,
at least one of the color matching functions is negative for some wavelengths. This
is not a violation of natural law; it just implies that subtractive matching is required
to match some lights, whatever set of primaries is used. It is a nuisance, though.

One way to avoid this problem is to specify color matching functions that are
everywhere positive (which guarantees that the primaries are imaginary because for
some wavelengths their spectral energy density is negative). Although this looks like



Section 3.3 Representing Color 79

x

y

z

350 400 450 500 550 600 650 700 750 800 850

2.5

2

1.5

1

0.5

0

Wavelength in nm

FIGURE 3.8: Color matching functions for the CIE X, Y, and Z primaries; the color
matching functions are everywhere positive, so no subtractive matching is required, but
the primaries are not real. Figures plotted from data disseminated by the Color and Vision
Research Laboratories database, compiled by Andrew Stockman and Lindsey Sharpe, and
available at http://www.cvrl.org/.

a problem—how would one create a real color with imaginary primaries?—it isn’t,
because color naming systems are hardly ever used that way. Usually, we would
simply compare weights to tell whether colors are similar, and for that purpose it is
enough to know the color matching functions. A variety of different systems have
been standardized by the CIE (the commission international d’éclairage, which
exists to create standards for such things).

Important Linear Color Spaces
The CIE XYZ color space is one quite popular standard. The color matching

functions were chosen to be everywhere positive (Figure 3.8), so that the coordinates
of any real light are always positive. It is not possible to obtain CIE X, Y, or Z
primaries because for some wavelengths the value of their pectral energy density
is negative. However, given color matching functions alone, one can specify the
XYZ coordinates of a color and hence describe it. Linear color spaces allow a
number of useful graphical constructions that are more difficult to draw in three
dimensions than in two, so it is common to intersect the XYZ space with the plane
X + Y + Z = 1 (as shown in Figure 3.10) and draw the resulting figure using
coordinates

(x, y) =

(
X

X + Y + Z
,

Y

X + Y + Z

)
.

http://www.cvrl.org/


Section 3.3 Representing Color 80

350 400 450 500 550 600 650 700 750 800 850

3.5

3

2.5

2

1.5

1

0.5

0

�0.5

r

g

b

wavelength in nm

FIGURE 3.9: Color matching functions for the primaries for the RGB system. The negative
values mean that subtractive matching is required to match lights at that wavelength
with the RGB primaries. Figures plotted from data disseminated by the Color and Vision
Research Laboratories database, compiled by Andrew Stockman and Lindsey Sharpe, and
available at http://www.cvrl.org/.

This space, which is often referred to as the CIE xy color space is shown in Fig-
ure 3.12. CIE xy is widely used in vision and graphics textbooks and in some
applications, but is usually regarded by professional colorimetrists as out of date.

The RGB color space is a linear color space that formally uses single wave-
length primaries (645.16 nm for R, 526.32 nm for G, and 444.44 nm for B; see
Figure 3.9). Informally, RGB uses whatever phosphors a monitor has as primaries.
Available colors are usually represented as a unit cube—usually called the RGB
cube—whose edges represent the R, G, and B weights. The cube is drawn in Fig-
ure 3.13.

The opponent color space is a linear color space derived from RGB. There is
evidence that there are three kinds of color system in primates (e.g., see Mollon
(1982); Hurvich and Jameson (1957)). The oldest responds to intensity (i.e., light-
dark comparisons). A more recent, but still old, color system compares blue with
yellow. The most recent color system compares red with green. In some applica-
tions, it is useful to use a comparable representation. This can be obtained from
RGB coordinates using I = (R + G + B)/3 for intensity, (B − (R + G)/2)/I for
the blue-yellow comparison (sometimes called B-Y), and (R − G)/I for the red-
green comparison (sometimes called R-G). Notice that B-Y (resp. R-G) is positive
for strongly blue (resp. red) colors and negative for strongly yellow (resp. green)

http://www.cvrl.org/


Section 3.3 Representing Color 81

X

Z

Y

X � Y � Z � 1

X Y

Z

y � Y/(X � Y � Z)x � X/(X � Y � Z)

FIGURE 3.10: The volume of all visible colors in the CIE XYZ coordinate space is a cone
whose vertex is at the origin. Usually it is easier to suppress the brightness of a color,
which we can do because, to a good approximation, perception of color is linear, and we
do this by intersecting the cone with the plane X + Y + Z = 1 to get the CIE xy space
shown in Figure 3.12.

colors, and is intensity independent.
There are two useful constructions that work in linear color spaces, but are

most commonly applied in CIE xy. First, because the color spaces are linear, and
color matching is linear, all colors that can be obtained by mixing two primaries
A and B lie on the line segment joining them plotted on the color space. Second,
all colors that can be obtained by mixing three primaries A, B, and C lie in the
triangle formed by the three primaries plotted on the color space. Typically, we
use this construction to determine the set of colors (or gamut) that a set of monitor
phosphors can display.

Subtractive Mixing and Inks
Intuition from one’s finger-painting days suggests that the primary colors

should be red, yellow, and blue, and that yellow and blue mix to make green. The
reason this intuition doesn’t apply to monitors is that paints involve pigments—
which mix subtractively—rather than lights. Pigments can behave in quite complex
ways, but the simplest model is that pigments remove color from incident light,
which is reflected from paper. Thus, red ink is really a dye that absorbs green
and blue light—incident red light passes through this dye and is reflected from the
paper. In this case, mixing is subtractive.

Color spaces for this kind of mixing can be quite complicated. In the simplest
case, mixing is linear (or reasonably close to linear), and the CMY space applies.
In this space, there are three primaries: cyan (a blue-green color), magenta (a
purplish color), and yellow. These primaries should be thought of as subtracting
a light primary from white light; cyan is W − R (white− red); magenta is W −G
(white − green), and yellow is W − B (white − blue). Now the appearance of
mixtures can be evaluated by reference to the RGB color space. For example, cyan



Section 3.3 Representing Color 82

x axis

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

y
a
x
is

Red

Orange

Yellow

Green

Blue

Indigo

Violet

White

Saturation increases as
one moves out radially
from white

Hue changes as one moves
around the spectral locus

FIGURE 3.11: The figure shows a constant brightness section of the standard 1931 standard
CIE xy color space, with color names marked on the diagram. Generally, colors that lie
farther away from the neutral point are more saturated—the difference between deep red
and pale pink—and hue—the difference between green and red—as one moves around the
neutral point.

and magenta mixed give

(W −R) + (W −G) = R+G+B −R−G = B,

that is, blue. Notice that W +W = W because we assume that ink cannot cause
paper to reflect more light than it does when uninked. Practical printing devices
use at least four inks (cyan, magenta, yellow, and black) because mixing color inks
leads to a poor black, it is difficult to ensure good enough registration between the
three color inks to avoid colored haloes around text, and color inks tend to be more
expensive than black inks. Getting really good results from a color printing process
is still difficult: different inks have significantly different spectral properties, differ-
ent papers also have different spectral properties, and inks can mix non-linearly.

One reason that fingerpainting is hard is that the color resulting from mixing
paints can be quite hard to predict. This is because the outcome depends very
strongly on details such as the specific pigment in the paint, the size of pigment
particles, the medium in which the pigment is suspended, the care put into stirring



Section 3.3 Representing Color 83

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

520

600

780

380

Sunlight at
sunrise 1800K

Incandescent
lighting

Sunlight at
noon 4870K

Daylight
7000K and
Illuminant C

Northwest
sky light 25000K Equal energy

spectrum

x

y

FIGURE 3.12: The figure shows a constant brightness section of the standard 1931 standard
CIE xy color space. This space has two coordinate axes. The curved boundary of the
figure is often known as the spectral locus; it represents the colors experienced when lights
of a single wavelength are viewed. The figure shows a locus of colors due to black-body
radiators at different temperatures and a locus of different sky colors. Near the center of
the diagram is the neutral point, the color whose weights are equal for all three primaries.
CIE selected the primaries so that this light appears achromatic. Generally, colors that
lie farther away from the neutral point are more saturated—the difference between deep
red and pale pink—and hue—the difference between green and red—as one moves around
the neutral point.

the mixture, and similar parameters; usually, we do not have enough detailed infor-
mation to use a full physical model of these effects. A useful study of this difficult
topic is (Berns 2000).

3.3.2 Non-linear Color Spaces

The coordinates of a color in a linear space may not necessarily encode properties
that are common in language or are important in applications. Useful color terms
include: hue, the property of a color that varies in passing from red to green;
saturation, the property of a color that varies in passing from red to pink; and
brightness (sometimes called lightness or value, the property that varies in passing
from black to white. For example, if we are interested in checking whether a color
lies in a particular range of reds, we might wish to encode the hue of the color



Section 3.3 Representing Color 84

directly.
Another difficulty with linear color spaces is that the individual coordinates do

not capture human intuitions about the topology of colors; it is a common intuition
that hues form a circle, in the sense that hue changes from red through orange to
yellow, and then green, and from there to cyan, blue, purple, and then red again.
Another way to think of this is to picture local hue relations: red is next to purple
and orange; orange is next to red and yellow; yellow is next to orange and green;
green is next to yellow and cyan; cyan is next to green and blue; blue is next to
cyan and purple; and purple is next to blue and red. Each of these local relations
works, and globally they can be modeled by laying hues out in a circle. This means
that no individual coordinate of a linear color space can model hue, because that
coordinate has a maximum value that is far away from the minimum value.

Hue, Saturation, and Value
A standard method for dealing with this problem is to construct a color space

that reflects these relations by applying a non-linear transformation to the RGB
space. There are many such spaces. One, called HSV space (for hue, saturation,
and value), is obtained by looking down the center axis of the RGB cube. Because
RGB is a linear space, brightness—called value in HSV—varies with scale out from
the origin. We can flatten the RGB cube to get a 2D space of constant value and for
neatness deform it to be a hexagon. This gets the structure shown in Figure 3.13,
where hue is given by an angle that changes as one goes round the neutral point
and saturation changes as one moves away from the neutral point.

There are a variety of other possible changes of coordinate from linear color
space to linear color space, or from linear to non-linear color spaces (Fairchild (1998)
is a good reference). There is no obvious advantage to using one set of coordinates
over another (particularly if the difference between coordinate systems is just a
one–one transformation) unless one is concerned with coding, bit rates, and the
like, or with perceptual uniformity.

Uniform Color Spaces
Usually one cannot reproduce colors exactly. This means it is important to

know whether a color difference would be noticeable to a human viewer. It is
generally useful to compare the significance of small color differences, but it is
usually dangerous to try and compare large color differences; consider trying to
answer the question, “Is the blue patch more different from the yellow patch than
the red patch is from the green patch?”.

One can determine just noticeable differences by modifying a color shown to
observers until they can only just tell it has changed in a comparison with the
original color. When these differences are plotted on a color space, they form the
boundary of a region of colors that are indistinguishable from the original colors.
Usually ellipses are fitted to the just noticeable differences. It turns out that in CIE
xy space these ellipses depend quite strongly on where in the space the difference
occurs, as the MacAdam ellipses in Figure 3.14 illustrate.

This means that the size of a difference in (x, y) coordinates, given by ((Δx)2+
(Δy)2)(1/2), is a poor indicator of the significance of a difference in color (if it were a
good indicator, the ellipses representing indistinguishable colors would be circles).



Section 3.3 Representing Color 85

R

G

B

Green

Yellow

Red

Magenta

Blue

Cyan

Hue
(angle)

Saturation

Value

Green (120 )

Blue (240 )

Red (0 )

FIGURE 3.13: On the left, we see the RGB cube; this is the space of all colors that can
be obtained by combining three primaries (R, G, and B—usually defined by the color
response of a monitor) with weights between zero and one. It is common to view this cube
along its neutral axis—the axis from the origin to the point (1, 1, 1)—to see a hexagon.
This hexagon codes hue (the property that changes as a color is changed from green to
red) as an angle, which is intuitively satisfying. On the right, we see a cone obtained
from this cross-section, where the distance along a generator of the cone gives the value
(or brightness) of the color, the angle around the cone gives the hue, and the distance out
gives the saturation of the color.

A uniform color space is one in which the distance in coordinate space is a fair
guide to the significance of the difference between two colors—in such a space,
if the distance in coordinate space were below some threshold, a human observer
would not be able to tell the colors apart.

A more uniform space can be obtained from CIE XYZ by using a projective
transformation to skew the ellipses; this yields the CIE u′v′ space CIE u’v’ space,
illustrated in Figure 3.15. The coordinates are:

(u′, v′) =

(
4X

X + 15Y + 3Z
,

9Y

X + 15Y + 3Z

)
.

Generally, the distance between coordinates in u′, v′ space is a fair indicator
of the significance of the difference between two colors. Of course, this omits differ-
ences in brightness. CIE LAB is now almost universally the most popular uniform
color space. Coordinates of a color in LAB are obtained as a non-linear mapping



Section 3.4 A Model of Image Color 86

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

FIGURE 3.14: This figure shows variations in color matches on a CIE xy space. At the
center of the ellipse is the color of a test light; the size of the ellipse represents the scatter
of lights that the human observers tested would match to the test color; the boundary
shows where the just noticeable difference is. The ellipses in the figure on the left have
been magnified 10x for clarity; on the right they are plotted to scale, with color names
on the CIE diagram as a reference. The ellipses are known as MacAdam ellipses after
their inventor. Notice that the ellipses at the top are larger than those at the bottom of
the figure, and that they rotate as they move up. This means that the magnitude of the
difference in x, y coordinates is a poor guide to the difference in color. Ellipses are plotted
using data from MacAdam (1942).

of the XYZ coordinates:

L∗ = 116

(
Y

Yn

) 1
3

− 16

a∗ = 500

[(
X

Xn

) 1
3

−
(

Y

Yn

) 1
3

]

b∗ = 200

[(
Y

Yn

) 1
3

−
(

Z

Zn

) 1
3

]

Here Xn, Yn, and Zn are the X , Y , and Z coordinates of a reference white patch.
The reason to care about the LAB space is that it is substantially uniform. In
some problems, it is important to understand how different two colors will look to
a human observer, and differences in LAB coordinates give a good guide.

3.4 A MODEL OF IMAGE COLOR

Assume that an image pixel is the image of some surface patch. Many phenomena
affect the color of this pixel. The main effects are: the camera response to illu-
mination (which might not be linear); the choice of camera receptors; the amount
of light that arrives at the surface; the color of light arriving at the surface; the
dependence of the diffuse albedo on wavelength; and specular components. A quite



Section 3.4 A Model of Image Color 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

u'

v'

500 nm
600 nm

700 nm

400 nm

FIGURE 3.15: This figure shows the CIE 1976 u′, v′ space, which is obtained by a projective
transformation of CIE x, y space. The intention is to make the MacAdam ellipses (from
Figure 3.14) uniformly circles. This would yield a uniform color space. A variety of non-
linear transforms can be used to make the space more uniform (see Fairchild (1998) for
details).

simple model can be used to separate some of these effects.
Generally, it is easier to model linear cameras. CCDs are intrinsically linear

devices. However, most users are used to film, which tends to compress the incoming
dynamic range (brightness differences at the top end of the range are reduced, as are
those at the bottom end of the range). The output of a linear device tends to look
too harsh (the darks are too dark and the lights are too light), so that manufacturers
apply various forms of compression to the output. We assume that the camera
response has been calibrated, perhaps using the methods of Section 2.2.1, so that
it is linear.

Assume that the surfaces that we are dealing with can be described by the
diffuse+specular model. Write x for a point, λ for wavelength, E(x, λ) for the
spectral energy density of the light leaving a surface, ρ(x, λ) for the albedo of a
surface as a function of wavelength and position, Sd(x, λ) for the spectral energy
density of the light source (which may vary with position; for example, the intensity
might change), and Si(x, λ) for the spectral energy density of interreflected light.
Then we have that:

E(x, λ) = [diffuse term] + (specular term)

= [(direct term) + (interreflected term)] + (specular term)

= (ρ(x, λ)(geometric term))[(Sd(x, λ) + Si(x, λ))] + (specular term).

The geometric terms represent how intensity is affected by surface normal. Notice
that the diffuse term is affected both by the color of the surface and by the color



Section 3.4 A Model of Image Color 88

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

Uniform reflectance

Metal halide
Standard fluorescent
Moon white fluorescent
Daylight fluorescent
Uniform SPD

FIGURE 3.16: Light sources can have quite widely varying colors. This figure shows the
color of the four light sources of Figure 3.5, compared with the color of a uniform spectral
power distribution, plotted in CIE x, y coordinates.

of the light (examples in Figures 3.16 and 3.17).
Because the camera is linear, the pixel value at x is a sum of terms corre-

sponding to each of the terms in E(�x, λ). Write d(x) for the color taken by a flat
patch facing the light source at x with the same albedo as the actual patch there,
g(x) for a geometric term (explained below), i(x) for the contribution of the inter-
reflected term, s(x) for the unit intensity color of the specular term, and gs(x) for
a geometric term (explained below). Then we have:

C(x) = [(direct term) + (interreflected term)] + (specular term)

= gd(x)d(x) + i(x) + gs(x)s(x).

Generally, to work with this model, we ignore i(x); we identify and remove specu-
larities, using the methods of Section 3.5.1, and so assume that C(x) = gd(x)d(x).

3.4.1 The Diffuse Term

There are two diffuse components. One, i(x), is due to interreflections. Interreflec-
tions can be a significant source of colored light. If a large colored surface reflects
light onto another surface, that surface’s color can change quite substantially. This
is an effect that people find hard to see, but which is usually fairly easy to spot in
photographs. There are no successful models for removing these color shifts, most
likely because they can be very hard to predict. This is because many different
surface reflectances can have the same color, so that two surfaces with the same
color (but different reflectances) can have quite differently colored interreflections.
The interreflection term is often small, and usually is simply ignored.

Ignoring the interreflected component, the diffuse term is

gd(x)d(x).



Section 3.4 A Model of Image Color 89

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

y

x

Orange flower

Metal halide
Standard fluorescent
Moon white fluorescent
Daylight fluorescent
Uniform SPD

Violet flower

FIGURE 3.17: The color of a light source affects the color of surfaces lit by the source. The
different colors obtained by lighting the violet flower of Figure 3.6 (left) and the orange
flower of Figure 3.6 (right) with the four light sources of Figure 3.5.

Here d(x) is the image color of an equivalent flat surface facing the light source and
viewed under the same light. The geometric term, gd(x), varies relatively slowly
over space and accounts for the change in brightness due to the orientation of the
surface.

We can model the dependence of d(x) on the light and on the surface by
assuming we are viewing flat, diffuse surfaces, illuminated from infinitely far behind
the camera. In this case, there will be no effects due to specularities or to surface
orientation. The color of light arriving at the camera will be determined by two
factors: first, the wavelength-dependent albedo of the surface that the light is
leaving; and second, the wavelength-dependent intensity of the light falling on that
surface. If a patch of perfectly diffuse surface with diffuse albedo ρ(λ) is illuminated
by a light whose spectrum is S(λ), the spectrum of the reflected light is ρ(λ)S(λ).
Assume the camera has linear photoreceptors, and the k’th type of photoreceptor
has sensitivity σk(λ). If a linear photoreceptor of the kth type sees this surface
patch, its response is:

pk =

∫
Λ

σk(λ)ρ(λ)S(λ)dλ,

where Λ is the range of all relevant wavelengths.
The main engineering parameter here is the photoreceptor sensitivities σk(λ).

For some applications such as shadow removal (Section 3.5.2), it can be quite helpful
to have photoreceptor sensitivities that are “narrow-band” (i.e., the photoreceptors
respond to only one wavelength). Usually, the only practical methods to change the
photoreceptor sensitivities are to either put colored filters in front of the camera
or to use a different camera. Using a different camera doesn’t work particularly



Section 3.5 Inference from Color 90

well, because manufacturers try to have sensitivities that are reasonably compat-
ible with human receptor sensitivities. They do this so that cameras give about
the same responses to colored lights that people do; as a result, cameras tend to
have quite similar receptor sensitivities. There are three ways to proceed: install
narrow-band filters in front of the lens (difficult to do and seldom justified); apply a
transformation to the receptor outputs that makes them behave more like narrow-
band receptors (often helpful, if the necessary data are available, Finlayson et al.
(1994b);Barnard et al. (2001a)); or assume that they are narrow-band receptors
and tolerate any errors that result (generally quite successful).

3.4.2 The Specular Term

The specular component will have a characteristic color, and its intensity will change
with position. We can model the specular component as

gs(x)s(x),

where s(x) is the unit intensity image color of the specular reflection at that pixel,
and gs(x) is a term that varies from pixel to pixel, and models the amount of energy
specularly reflected. We expect gs(x) to be zero at most points, and large at some
points.

The color s(x) of the specular component depends on the material. Generally,
metal surfaces have a specular component that is wavelength dependent and so
takes on a characteristic color that depends on the metal (gold is yellow, copper
is orange, platinum is white, and osmium is blue or purple). Surfaces that do
not conduct—dielectric surfaces— have a specular component that is independent
of wavelength (e.g., the specularities on a shiny plastic object are the color of the
light). Section 3.5.1 describes how these properties can be used to find specularities,
and to find image regions corresponding to metal or plastic objects.

3.5 INFERENCE FROM COLOR

Our color model supports a variety of inferences. It can be used to find specular-
ities (Section 3.5.1); to remove shadows (Section 3.5.2); and to infer surface color
(Section 3.5.3).

3.5.1 Finding Specularities Using Color

Specular reflections can have strong effects on an object’s appearance. Typically,
they appear as small, bright patches, called highlights or specularities. Highlights
have a substantial effect on human perception of a surface properties; the addition
of small, highlight-like patches to a figure makes the object depicted look glossy
or shiny. Specularities are often bright enough to saturate the camera, so that the
color of a specularity can be hard to measure. However, because the appearance of
a specularity is quite strongly constrained, there are a number of effective schemes
for marking them, and the results can be used as a shape cue.

The dynamic range of practically available albedoes is relatively small. Sur-
faces with very high or very low albedo are difficult to make. Uniform illumination
is common too, and most cameras are reasonably close to linear within their operat-
ing range. This means that very bright patches cannot be due to diffuse reflection;



Section 3.5 Inference from Color 91

R

G

B

R

G

B

Diffuse
region

Boundary of
specularity

FIGURE 3.18: The linear clusters produced by specularities on plastic objects can be
found by reasoning about windows of image pixels. In a world of plastic objects on a
black background, a background window produces a region of pixels that are point-like in
color space—all pixels have the same color. A window that lies along the body produces a
line-like cluster of points in color space, because the intensity varies, but the color does not.
At the boundary of a specularity, windows produce plane-like clusters because points are
a weighted combination of two different colors (the specular and the body color). Finally,
at the interior of a specular region, the windows can produce volume-like clusters, because
the camera saturates, and the extent of the window can include both the boundary-style
window and saturated points. Whether a region is line-like, plane-like, or volume-like can
be determined easily by looking at the eigenvalues of the covariance of the pixels.

they must be either sources (of one form or another—perhaps a stained glass win-
dow with the light behind it) or specularities. Furthermore, specularities tend to
be small. Thus, looking for small, bright patches can be an effective way to find
specularities (Brelstaff and Blake 1988a).

An alternative is to use image color. From our model, the color of specularities
on dielectric objects is the color of the light source. Assume we can ignore the
interreflection term, either because we have an isolated object or because the term
doesn’t change much over the object we are viewing. Our model gives the image
color as a sum of a diffuse term and a specular term. Now consider a patch of
surface around a specularity. We expect that this patch is small, because we expect
specularities to be small (this will be true on curved surfaces; the approach we are
describing might not work for flat surfaces). Because the patch is small, we expect
that d(x) does not change in the patch; we do not expect to be unlucky, and have



Section 3.5 Inference from Color 92

a specularity on an albedo boundary. We expect that s(x) does not change within
the patch, because the color of the specularity will be the color of the light source,
and this will not change within a small patch.

On a dielectric object, as we move from a patch with no specular reflection
to one with a specular component, the image color will change, because the size of
the specular component changes. We can write the image color as

gd(x)d+ gs(x)s,

where s is the color of the source and d is the color of the diffuse reflected light,
gd(x) is the geometric term that depends on the orientation of the surface, and
gs(x) is a term that gives the extent of the specular reflection.

If the object is curved, then gs(x) is small over much of the surface and
large only around specularities; gd(x) varies more slowly with the orientation of
the surface. We now map the colors produced by this surface in receptor response
space and look at the structures that appear there.

The term gd(x)d produces a line that should extend to pass through the origin
because it represents the same vector of receptor responses multiplied by a constant
that varies over space. If there is a specularity, then we expect to see a second line
due to gs(x)s. This does not, in general, pass through the origin (because of the
diffuse term). This is a line, rather than a planar region, because gs(x) is large
over only a small range of surface normals. We expect that, because the surface
is curved, this corresponds to a small region of surface. The term gd(x) should be
approximately constant in this region. We expect a line, rather than an isolated
pixel value, because we expect surfaces to have (possibly narrow) specular lobes,
meaning that the specular coefficient has a range of values. This second line might
collide with a face of the color cube and get clipped.

The resulting dog-leg pattern leads pretty much immediately to a specularity
marking algorithm: find the pattern and then find the specular line. All the pixels
on this line are specular pixels, and the specular and diffuse components can be
estimated easily. For the approach to work effectively, we need to be confident that
only one object is represented in the collection of pixels. This is helped by using
local image windows, as illustrated by Figure 3.18. The observations underlying the
method hold even if the surface is not monochrome—a coffee mug with a picture on
it, for example—but finding the resulting structures in the color space now becomes
something of a nuisance and, to our knowledge, has not been demonstrated.

3.5.2 Shadow Removal Using Color

Lightness methods make the assumption that “fast” edges in images are due to
changes in albedo (Section 2.2.3). This assumption is usable, but fails badly at
shadows, particularly shadows in sunlight outdoors (Figure 3.20), where there can
be a large and fast change of image brightness. People usually are not fooled into
believing that a shadow is a patch of dark surface, so must have some method to
identify shadow edges. Home users often like editing and improving photographs,
and programs that could remove shadows from images would be valuable. A shadow
removal program would work something like a lightness method: find all edges,
identify the shadow edges, remove those, and then integrate to get the picture



Section 3.5 Inference from Color 93

back.
There are some cues for finding shadow edges that seem natural, but don’t

work well. One might assume that shadow edges have very large dynamic range
(which albedo edges can’t have; see Section 2.1.1), but this is not always the case.
One might assume that, at a shadow edge, there was a change in brightness but not
in color. It turns out that this is not the case for outdoor shadows, because the lit
region is illuminated by yellowish sunlight, and the shadowed region is illuminated
by bluish light from the sky, or sometimes by interreflected light from buildings,
and so on. However, a really useful cue can be obtained by modelling the different
light sources.

We assume that light sources are black bodies, so that their spectral energy
density is a function of temperature. We assume that surfaces are diffuse. We
use the simplified black-body model of Section 3.2.1, where, writing T for the
temperature of the body in Kelvins, h for Planck’s constant, k for Boltzmann’s
constant, c for the speed of light, and λ for the wavelength, we have

E(λ;T ) = C
exp(−hc/kλT )

λ5

(C is some constant of proportionality). Now assume that the color receptors each
respond only at one wavelength, which we write λk for the k’th receptor, so that
σk(λ) = δ(λ − λk). If we view a surface with spectral albedo ρ(λ) illuminated by
one of these sources at temperature T , the response of the j’th receptor will be

rj =

∫
σj(λ)ρ(λ)K

exp(−hc/kλT )

λ5
dλ = Kρ(λj)

exp(−hc/kλjT )

λ5
j

.

We can form a color space that is very well behaved by taking c1 = log(r1/r3),
c2 = log(r2/r3), because (

c1
c2

)
=

(
a1
a2

)
+

1

T

(
b1
b2

)
where a1 = log ρ(λ1)− log ρ(λ3) + 5 logλ3 − 5 logλ1 and b1 = (hc/k)(1/λ3 − 1/λ1)
(and a2, b2 follow). Notice that, when one changes the color temperature of the
source, the (c1, c2) coordinates move along a straight line. The direction of the
line depends on the sensor, but not on the surface. Call this direction the color
temperature direction. The intercept of the line depends on the surface.

Now consider a world of colored surfaces, and map the image colors to this
space. There is a family of parallel lines in this space, whose direction is the color
temperature direction. Different surfaces may map to different lines. If we change
the color temperature of the illuminant, then each color in this space will move
along the color temperature direction, but colors will not move from line to line.
We now represent a surface color by its line. For example, we could construct a
line through the origin that is perpendicular to color temperature direction, then
represent a surface color by distance along this line (Figure 3.19). We can represent
each pixel in the image in this space, and in this representation the color image
becomes a gray-level image, where the gray level does not change inside shadows
(because a shadow region just has a different color temperature to the non-shadowed



Section 3.5 Inference from Color 94

Color

temperature

direction

Invariant

im
age
values

1

2

FIGURE 3.19: Changing the color temperature of the light under which a surface is viewed
moves the (c1, c2) coordinates of that surface along the color temperature direction (left;
the different gray patches represent the same surface under different lights). If we now
project the coordinates along the (c1, c2) direction onto some line, we obtain a value that
doesn’t change when the illuminant color temperature changes. This is the invariant value
for that pixel. Generally, we do not know enough about the imaging system to estimate
the color temperature direction. However, we expect to see many different surfaces in
each scene; this suggests that the right choice of color temperature direction on the right
is 1 (where there are many different types of surface) rather than 2 (where the range of
invariant values is small).

region). Finlayson (1996) calls this the invariant image. Any edge that appears in
the image but not in the invariant image is a shadow edge, so we can now apply
our original formula: find all edges, identify the shadow edges, remove those, and
then integrate to get the picture back.

Of course, under practical circumstances, usually we do not know enough
about the sensors to evaluate the as and bs that define this family of lines, so we
cannot get the invariant image directly. However, we can infer a direction in (c1, c2)
space that is a good estimate by a form of entropy reasoning. We must choose a
color temperature direction. Assume the world is rich in differently colored surfaces.
Now consider two surfaces S1 and S2. If c1 (the (c1, c2) values for S1) and c2 are
such that c1−c2 is parallel to the color temperature direction, we can choose T1 and
T2 so that S1 viewed under light with color temperature T1 will look the same as
S2 viewed under light with color temperature T2. We expect this to be uncommon,
because surfaces tend not to mimic one another in this way. This means we expect
that colors will tend to spread out when we project along a good estimate of the
color temperature direction. A reasonable measure of this spreading out is the
entropy of the histogram of projected colors. We can now estimate the invariant
image, without knowing anything about the sensor. We search directions in (c1, c2)
space, projecting all the image colors along that direction; our estimate of the color
temperature direction is the one where this projection yields the largest entropy.
From this we can compute the invariant image, and so apply our shadow removal
strategy above. In practice, the method works well, though great care is required
with the integration procedure to get the best results (Figure 3.20).



Section 3.5 Inference from Color 95

Invariant image Shadow removed imageImage

FIGURE 3.20: The invariant of the text and of Figure 3.19 does not change value when a
surface is shadowed. Finlayson et al. use this to build a shadow removal system that works
by (a) taking image edges; (b) forming an invariant image; then (c) using that invariant
image to identify shadow edges; and finally (d) integrating only non-shadow edges to form
the result. The results are quite convincing. This figure was originally published as Figures
2 and 4 of “On the Removal of Shadows From Images,” G. Finlayson, S. Hordley, C. Lu
and M. Drew, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006 c©
IEEE, 2006.

3.5.3 Color Constancy: Surface Color from Image Color

In our model, the image color depends on both light color and on surface color. If
we light a green surface with white light, we get a green image; if we light a white
surface with a green light, we also get a green image. This makes it difficult to
name surface colors from pictures. We would like to have an algorithm that can
take an image, discount the effect of the light, and report the actual color of the
surface being viewed.

This process is called color constancy. Humans have some form of color con-
stancy algorithm. People are often unaware of this, and inexperienced photogra-
phers are sometimes surprised that a scene photographed indoors under fluorescent
lights has a blue cast, whereas the same scene photographed outdoors may have a
warm orange cast. The simple linear models of Section 3.3 can predict the color
an observer will perceive when shown an isolated spot of light of a given power
spectral distribution. But if this spot is part of a larger, more complex scene, these
models can give wildly inaccurate predictions. This is because the human color
constancy algorithm uses various forms of scene information to decide what color
to report. Demonstrations by Land and McCann (1971), which are illustrated in
Figure 3.21, give convincing examples of this effect. It is surprisingly difficult to
predict what colors a human will see in a complex scene (Fairchild (1998); Helson
(1938a); (1938b); (1934); (1940)). This is one of the many difficulties that make it
hard to produce really good color reproduction systems.

Human color constancy is not perfectly accurate, and people can choose to



Section 3.5 Inference from Color 96

Photometer reading
(1, .3, .3)

Audience name
"Blue"

Coloured light

Photometer reading
(1, .3, .3)

Audience name
"Red"

White light

FIGURE 3.21: Land showed an audience a quilt of rectangles of flat colored papers—since
known as a Mondrian for a purported resemblance to the work of that artist—illuminated
using three slide projectors, casting red, green and blue light respectively. He used a
photometer to measure the energy leaving a particular spot in three different channels,
corresponding to the three classes of receptor in the eye. He recorded the measurement,
and asked the audience to name the patch. Assume the answer was “red” (on the left).
Land then adjusted the slide projectors so that some other patch reflected light that gave
the same photometer measurements, and asked the audience to name that patch. The
reply would describe the patch’s color in white light—if the patch looked blue in white
light, the answer would be “blue” (on the right). In later versions of this demonstration,
Land put wedge-shaped neutral density filters into the slide projectors so that the color
of the light illuminating the quilt of papers would vary slowly across the quilt. Again,
although the photometer readings vary significantly from one end of a patch to another,
the audience sees the patch as having a constant color.

disregard information from their color constancy system. As a result, people can
often report:

• the color a surface would have in white light (often called surface color);

• the color of the light arriving at the eye (a useful skill that allows artists to
paint surfaces illuminated by colored lighting); and

• the color of the light falling on the surface.

The model of image color in Section 3.4 is

C(x) = gd(x)d(x) + gs(x)s(x) + i(x).

We decided to ignore the interreflection term i(x). In principle, we could use
the methods of Section 3.5.1 to generate new images without specularities. This
brings us to the term gd(x)d(x). Assume that gd(x) is a constant, so we are
viewing a flat, frontal surface. The resulting term, d(x), models the world as a
collage of flat, frontal, diffuse colored surfaces. Such worlds are sometimes called
Mondrian worlds, after the painter. Notice that, under our assumptions, d(x)
consists of a set of patches of fixed color. We assume that there is a single illuminant
that has a constant color over the whole image. This term is a conglomeration of



Section 3.5 Inference from Color 97

illuminant, receptor, and reflectance information. It is impossible to disentangle
these completely in a realistic world. However, current algorithms can make quite
usable estimates of surface color from image colors given a well-populated world of
colored surfaces and a reasonable illuminant.

Recall from Section 3.4 that if a patch of perfectly diffuse surface with diffuse
spectral reflectance ρ(λ) is illuminated by a light whose spectrum is E(λ), the
spectrum of the reflected light is ρ(λ)E(λ) (multiplied by some constant to do
with surface orientation, which we have already decided to ignore). If a linear
photoreceptor of the kth type sees this surface patch, its response is:

pk =

∫
Λ

σk(λ)ρ(λ)E(λ)dλ,

where Λ is the range of all relevant wavelengths, and σk(λ) is the sensitivity of the
kth photoreceptor.

Finite-Dimensional Linear Models
This response is linear in the surface reflectance and linear in the illumination,

which suggests using linear models for the families of possible surface reflectances
and illuminants. A finite-dimensional linear model models surface spectral albedoes
and illuminant spectral energy density as a weighted sum of a finite number of basis
functions. We need not use the same bases for reflectances and for illuminants.

If a finite-dimensional linear model of surface reflectance is a reasonable de-
scription of the world, any surface reflectance can be written as

ρ(λ) =

n∑
j=1

rjφj(λ),

where the φj(λ) are the basis functions for the model of reflectance, and the rj
vary from surface to surface. Similarly, if a finite-dimensional linear model of the
illuminant is a reasonable model, any illuminant can be written as

E(λ) =

m∑
i=1

eiψi(λ),

where the ψi(λ) are the basis functions for the model of illumination.
When both models apply, the response of a receptor of the kth type is

pk =

∫
σk(λ)

⎛
⎝ n∑

j=1

rjφj(λ)

⎞
⎠(

m∑
i=1

eiψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirj

(∫
σk(λ)φj(λ)ψi(λ)

)
dλ

=

m,n∑
i=1,j=1

eirjgijk,



Section 3.5 Inference from Color 98

where we expect that the

gijk =

∫
σk(λ)φj(λ)ψi(λ)dλ

are known, as they are components of the world model (they can be learned from
observations; see the exercises).

Inferring Surface Color
The finite-dimensional linear model describes the interaction between illumi-

nation color, surface color, and image color. To infer surface color from image color,
we need some sort of assumption. There are several plausible cues that can be used.

Specular reflections at dielectric surfaces have uniform specular albedo. We
could find the specularities with the methods of that section, then recover surface
color using this information. At a specularity, we have

pk =

∫
σk(λ)

m∑
i=1

eiψi(λ)dλ,

and so if we knew the spectral sensitivities of the sensor and the basis functions ψi,
we could solve for ei by solving a linear system. Now we know all ei, and all pk for
each pixel. We can solve the linear system

pk =

m,n∑
i=1,j=1

eirjgijk

in the unknown rj to recover reflectance coefficients.
Known average reflectance is another plausible cue. In this case, we

assume that the spatial average of reflectance in all scenes is constant and known
(e.g., we might assume that all scenes have a spatial average of reflectance that is
dull gray). In the finite-dimensional basis for reflectance, we can write this average
as

n∑
j=1

rjφj(λ).

Now if the average reflectance is constant, the average of the receptor responses
must be constant too (if the imaging process is linear; see the discussion), and the
average of the response of the kth receptor can be written as:

pk =

m,n∑
i=1,j=1

eigijkrj .

We know pk and rj , and so have a linear system in the unknown light coefficients
ei. We solve this, and then recover reflectance coefficients at each pixel, as for the
case of specularities. For reasonable choices of reflectors and dimension of light and
surface basis, this linear system will have full rank.

The gamut of a color image is revealing. The gamut is the set of different
colors that appears in the image. Generally, it is difficult to obtain strongly colored



Section 3.6 Notes 99

pixels under white light with current imaging systems. Furthermore, if the picture
is taken under strongly colored light, that will tend to bias the gamut. One doesn’t
see bright green pixels in images taken under deep red light, for example. As
a result, the image gamut is a source of information about the illumination. If
an image gamut contains two pixel values—call them p1 and p2—then it must
be possible to take an image under the same illuminant that contains the value
tp1 + (1− t)p2 for 0 ≤ t ≤ 1 (because we could mix the colorants on the surfaces).
This means that the illuminant information depends on the convex hull of the
image gamut. There are now various methods to exploit these observations. There
is usually more than one illuminant consistent with a given image gamut, and
geometric methods can be used to identify the consistent illuminants. This set can
be narrowed down using probabilistic methods (for example, images contain lots of
different colors (Forsyth 1990)) or physical methods (for example, the main sources
of illumination are the sun and the sky, well modelled as black bodies (Finlayson
and Hordley 2000)).

3.6 NOTES

There are a number of important general resources on the use of color. We rec-
ommend Hardin and Maffi (1997), Lamb and Bourriau (1995), Lynch and Liv-
ingston (2001), Minnaert (1993), Trussell et al. (1997), Williamson and Cummins
(1983). Wyszecki and Stiles (1982) contains an enormous amount of helpful infor-
mation. Recent textbooks with an emphasis on color include Velho et al. (2008), Lee
(2009), Reinhard et al. (2008), Gevers et al. (2011) and Burger and Burge (2009).

Trichromacy and Color Spaces

Until quite recently, there was no conclusive explanation of why trichromacy ap-
plied, although it was generally believed to be due to the presence of three different
types of color receptor in the eye. Work on the genetics of photoreceptors can be
interpreted as confirming this hunch (see Nathans et al. (1986a) and Nathans et al.
(1986b)), although a full explanation is still far from clear because this work can
also be interpreted as suggesting many individuals have more than three types of
photoreceptor (Mollon 1995).

There is an astonishing number of color spaces and color appearance models
available. The important issue is not in what coordinate system one measures color,
but how one counts the difference, so color metrics may still bear some thought.

Color metrics are an old topic; usually, one fits a metric tensor to MacAdam el-
lipses. The difficulty with this approach is that a metric tensor carries the strong im-
plication that you can measure differences over large ranges by integration, whereas
it is very hard to see large-range color comparisons as meaningful. Another con-
cern is that the weight observers place on a difference in a Maxwellian view and the
semantic significance of a difference in image colors are two very different things.

Specularity Finding

The specularity finding method we describe is due to Shafer (1985), with improve-
ments due to Klinker et al. (1987), (1990), and to Maxwell and Shafer (2000).



Section 3.6 Notes 100

Specularities can also be detected because they are small and bright (Brelstaff and
Blake 1988a), because they differ in color and motion from the background (Lee
and Bajcsy 1992a, Lee and Bajcsy 1992b, Zheng and Murata 2000), or because
they distort patterns (Del Pozo and Savarese 2007). Specularities are a prodi-
gious nuisance in reconstruction, because specularities cause matching points in
different images to have different colors; various motion-based strategies have been
developed to remove them in these applications (Lin et al. 2002, Swaminathan et
al. 2002, Criminisi et al. 2005).

Color Constancy

Land reported a variety of color vision experiments (Land (1959a), (1959b), (1959c),
(1983)). Finite-dimensional linear models for spectral reflectances can be supported
by an appeal to surface physics as spectral absorption lines are thickened by solid
state effects. The main experimental justifications for finite-dimensional linear
models of surface reflectance are measurements, by Cohen (1964), of the surface re-
flectance of a selection of standard reference surfaces known as Munsell chips, and
measurements of a selection of natural objects by Krinov (1947). Cohen (1964)
performed a principal axis decomposition of his data to obtain a set of basis func-
tions, and Maloney (1984) fitted weighted sums of these functions to Krinov’s date
to get good fits with patterned deviations. The first three principal axes explained
in each case a high percentage of the sample variance (near 99 %), and hence a
linear combination of these functions fitted all the sampled functions rather well.
More recently, Maloney (1986) fitted Cohen’s (1964) basis vectors to a large set of
data, including Krinov’s (1947) data, and further data on the surface reflectances
of Munsell chips, and concluded that the dimension of an accurate model of surface
reflectance was on the order of five or six.

Finite-dimensional linear models are an important tool in color constancy.
There is a large collection of algorithms that follow rather naturally from the ap-
proach. Some algorithms exploit the properties of the linear spaces involved (Mal-
oney (1984); Maloney and Wandell (1986); Wandell (1987)). Illumination can be
inferred from: reference objects (Abdellatif et al. 2000); specular reflections (Judd
(Judd 1960) writing in 1960 about early German work in surface color perception
refers to this as “a more usual view”; recent work includes (D’Zmura and Lennie
1986, Flock 1984, Klinker et al. 1987, Lee 1986)); the average color (Buchsbaum
1980, Gershon 1987, Gershon et al. 1986); and the gamut (Forsyth (1990), Barnard
(2000), Finlayson and Hordley (1999), (2000)).

The structure of the family of maps associated with a change in illumination
has been studied quite extensively. The first work is due to Von Kries (who didn’t
think about it quite the way we do). He assumed that color constancy was, in
essence, the result of independent lightness calculations in each channel, meaning
that one can rectify an image by scaling each channel independently. This practice
is known as Von Kries’ law. The law boils down to assuming that the family of
maps consists of diagonal matrices. Von Kries’ law has proved to be a remarkably
good law (Finlayson et al. 1994a). Current best practice involves applying a linear
transformation to the channels and then scaling the result using diagonal maps
(Finlayson et al. (1994a), (1994b)).



Section 3.6 Notes 101

Reference datasets are available for testing methods (Barnard et al. 2002c).
Color constancy methods seem to work quite well in practice (Barnard et al.
2002a, Barnard et al. 2002b); whether this is good enough is debated (Funt et
al. 1998, Hordley and Finlayson 2006). Probabilistic methods can be applied to
color constancy (Freeman and Brainard 1997). Prior models on illumination are a
significant cue (Kawakami et al. 2007).

There is surprisingly little work on color constancy that unifies a study of the
spatial variation in illumination with solutions for surface color, which is why we
were reduced to ignoring a number of terms in our color model. Ideally, one would
work in shadows and surface orientation, too. Again, the whole thing looks like an
inference problem to us, but a subtle one. The main papers on this extremely im-
portant topic are Barnard et al. (1997), Funt and Drew (1988). There is substantial
room for research here, too.

Interreflections between colored surfaces lead to a phenomenon called color
bleeding, where each surface reflects colored light onto the other. The phenomenon
can be surprisingly large in practice. People seem to be quite good at ignoring it
entirely, to the extent that most people don’t realize that the phenomenon occurs
at all. Discounting color bleeding probably uses spatial cues. Some skill is required
to spot really compelling examples. The best known to the authors is occasionally
seen in southern California, where there are many large hedges of white oleander
by the roadside. White oleander has dark leaves and white flowers. Occasionally, in
bright sunlight, one sees a hedge with yellow oleander flowers; a moment’s thought
attributes the color to the yellow service truck parked by the road reflecting yellow
light onto the white flowers. One’s ability to discount color bleeding effects seems
to have been disrupted by the dark leaves of the plant breaking up the spatial
pattern. Color bleeding contains cues to surface color that are quite difficult to
disentangle (see Drew and Funt (1990), Funt and Drew (1993), and Funt et al.
(1991) for studies).

It is possible to formulate and attack color constancy as an inference prob-
lem (Forsyth 1999, Freeman and Brainard 1997). The advantage of this approach
is that, for given data, the algorithm could report a range of possible surface colors,
with posterior weights.

PROBLEMS

3.1. Sit down with a friend and a packet of colored papers, and compare the color
names that you use. You need a large packet of papers—one can very often
get collections of colored swatches for paint, or for the Pantone color system
very cheaply. The best names to try are basic color names—the terms red,
pink, orange, yellow, green, blue, purple, brown, white, gray and black, which
(with a small number of other terms) have remarkable canonical properties
that apply widely across different languages (the papers in Hardin and Maffi
(1997) give a good summary of current thought on this issue). You will find it
surprisingly easy to disagree on which colors should be called blue and which
green, for example.

3.2. Derive the equations for transforming from RGB to CIE XYZ and back. This
is a linear transformation. It is sufficient to write out the expressions for the
elements of the linear transformation—you don’t have to look up the actual
numerical values of the color matching functions.



Section 3.6 Notes 102

3.3. Linear color spaces are obtained by choosing primaries and then construct-
ing color matching functions for those primaries. Show that there is a linear
transformation that takes the coordinates of a color in one linear color space to
those in another; the easiest way to do this is to write out the transformation
in terms of the color matching functions.

3.4. Exercise 3 means that, in setting up a linear color space, it is possible to choose
primaries arbitrarily, but there are constraints on the choice of color matching
functions. Why? What are these constraints?

3.5. Two surfaces that have the same color under one light and different colors
under another are often referred to as metamers. An optimal color is a spectral
reflectance or radiance that has value 0 at some wavelengths and 1 at others.
Although optimal colors don’t occur in practice, they are a useful device (due
to Ostwald) for explaining various effects.
(a) Use optimal colors to explain how metamerism occurs.
(b) Given a particular spectral albedo, show that there are an infinite number

of metameric spectral albedoes.
(c) Use optimal colors to construct an example of surfaces that look different

under one light (say, red and green) and the same under another.
(d) Use optimal colors to construct an example of surfaces that swop apparent

color when the light is changed (i.e., surface one looks red and surface two
looks green under light one, and surface one looks green and surface two
looks red under light two).

3.6. You have to map the gamut for a printer to that of a monitor. There are colors
in each gamut that do not appear in the other. Given a monitor color that
can’t be reproduced exactly, you could choose the printer color that is closest.
Why is this a bad idea for reproducing images? Would it work for reproducing
“business graphics” (bar charts, pie charts, and the like, which all consist of
many differernt large blocks of a single color)?

3.7. Volume color is a phenomenon associated with translucent materials that are
colored—the most attractive example is a glass of wine. The coloring comes
from different absorption coefficients at different wavelengths. Explain (a)
why a small glass of sufficiently deeply colored red wine (a good Cahors or
Gigondas) looks black (b) why a big glass of lightly colored red wine also looks
black. Experimental work is optional.

3.8. Read the book Colour: Art and Science, by Lamb and Bourriau, Cambridge
University Press, 1995.

3.9. In section 3.5.3, we described the gamut as a possible cue to illuminant color.
Write G for the convex hull of the gamut of the given image, W for the convex
hull of the gamut of an image of many different surfaces under white light, and
Me for the map that takes an image seen under illuminant e to an image seen
under white light.
(a) Show the only illuminants we need to consider are those such thatMe(G) ∈

W .
(b) Show that, for the case of finite dimensional linear models, Me depends

linearly on e.
(c) Show that, for the case of finite dimensional linear models, the set of Me

such that Me(G) ∈ W is convex.
(d) How would you represent this set?

PROGRAMMING EXERCISES

3.10. Spectra for illuminants and for surfaces are available on the web



Section 3.6 Notes 103

(try http://www.it.lut.fi/ip/research/color/database/database.html).
Fit a finite-dimensional linear model to a set of illuminants and surface re-
flectances using principal components analysis, render the resulting models,
and compare your rendering with an exact rendering. Where do you get the
most significant errors? Why?

3.11. Print a colored image on a color inkjet printer using different papers and
compare the result. It is particularly informative to (a) ensure that the driver
knows what paper the printer will be printing on, and compare the variations
in colors (which are ideally imperceptible), and (b) deceive the driver about
what paper it is printing on (i.e., print on plain paper and tell the driver it
is printing on photographic paper). Can you explain the variations you see?
Why is photographic paper glossy?

3.12. Fitting a finite-dimensional linear model to illuminants and reflectances sepa-
rately is somewhat ill-advised because there is no guarantee that the interac-
tions will be represented well (they’re not accounted for in the fitting error).
It turns out that one can obtain gijk by a fitting process that sidesteps the
use of basis functions. Implement this procedure (which is described in de-
tail in Marimont and Wandell (1992)), and compare the results with those
obtained from the previous assignment.

3.13. Build a color constancy algorithm that uses the assumption that the spatial
average of reflectance is constant. Use finite-dimensional linear models. You
can get values of gijk from your solution to the previous exercise.

3.14. We ignore color interreflections in our surface color model. Do an experiment
to get some idea of the size of color shifts possible from color interreflections
(which are astonishingly big). Humans seldom interpret color interreflections
as surface color. Speculate as to why this might be the case, using the discus-
sion of the lightness algorithm as a guide.

3.15. Build a specularity finder along the lines described in Section 3.5.1.
3.16. Build a shadow remover along the lines described in Section 3.5.2 (this is much

easier than it sounds, and the results are usually rather good).

http://www.it.lut.fi/ip/research/color/database/database.html


This page intentionally left blank 



P A R T T W O

EARLY VISION: JUST ONE IMAGE



This page intentionally left blank 



C H A P T E R 4

Linear Filters

Pictures of zebras and of dalmatians have black and white pixels, and in about the
same number, too. The differences between the two have to do with the character-
istic appearance of small groups of pixels, rather than individual pixel values. In
this chapter, we introduce methods for obtaining descriptions of the appearance of
a small group of pixels.

Our main strategy is to use weighted sums of pixel values using different
patterns of weights to find different image patterns. Despite its simplicity, this
process is extremely useful. It allows us to smooth noise in images, and to find
edges and other image patterns.

4.1 LINEAR FILTERS AND CONVOLUTION

Many important effects can be modeled with a simple model. Construct a new
array, the same size as the image. Fill each location of this new array with a
weighted sum of the pixel values from the locations surrounding the corresponding
location in the image using the same set of weights each time. Different sets of
weights could be used to represent different processes. One example is computing
a local average taken over a fixed region. We could average all pixels within a
2k + 1× 2k + 1 block of the pixel of interest. For an input image F , this gives an
output

Rij =
1

(2k + 1)2

u=i+k∑
u=i−k

v=j+k∑
v=j−k

Fuv.

The weights in this example are simple (each pixel is weighted by the same con-
stant), but we could use a more interesting set of weights. For example, we could
use a set of weights that was large at the center and fell off sharply as the distance
from the center increased to model the kind of smoothing that occurs in a defocused
lens system.

Whatever the weights chosen, the output of this procedure is shift invari-
ant—meaning that the value of the output depends on the pattern in an image
neighborhood, rather than the position of the neighborhood—and linear—meaning
that the output for the sum of two images is the same as the sum of the outputs
obtained for the images separately. The procedure is known as linear filtering.

4.1.1 Convolution

We introduce some notation at this point. The pattern of weights used for a linear
filter is usually referred to as the kernel of the filter. The process of applying the
filter is usually referred to as convolution. There is a catch: For reasons that will
appear later (Section 4.2.1), it is convenient to write the process in a non-obvious
way. In particular, given a filter kernel H, the convolution of the kernel with image

107



Section 4.1 Linear Filters and Convolution 108

F is an image R. The i, jth component of R is given by

Rij =
∑
u,v

Hi−u,j−vFu,v.

This process defines convolution: we say that H has been convolved with F to yield
R. You should look closely at this expression; the “direction” of the dummy variable
u (resp. v) has been reversed compared with correlation. This is important because
if you forget that it is there, you compute the wrong answer. The reason for the
reversal emerges from the derivation of Section 4.2.1. We carefully avoid inserting
the range of the sum; in effect, we assume that the sum is over a large enough range
of u and v that all nonzero values are taken into account. Furthermore, we assume
that any values that haven’t been specified are zero; this means that we can model
the kernel as a small block of nonzero values in a sea of zeros. We use this common
convention regularly in what follows.

Example: Smoothing by Averaging
Images typically have the property that the value of a pixel usually is similar

to that of its neighbor. Assume that the image is affected by noise of a form where
we can reasonably expect that this property is preserved. For example, there might
be occasional dead pixels, or small random numbers with zero mean might have
been added to the pixel values. It is natural to attempt to reduce the effects of this
noise by replacing each pixel with a weighted average of its neighbors, a process
often referred to as smoothing or blurring.

FIGURE 4.1: Although a uniform local average may seem to give a good blurring model,
it generates effects not usually seen in defocusing a lens. The images above compare the
effects of a uniform local average with weighted average. The image on the left shows a
view of grass; in the center, the result of blurring this image using a uniform local model;
and on the right, the result of blurring this image using a set of Gaussian weights. The
degree of blurring in each case is about the same, but the uniform average produces a
set of narrow vertical and horizontal bars—an effect often known as ringing. The small
insets show the weights used to blur the image, themselves rendered as an image; bright
points represent large values and dark points represent small values (in this example, the
smallest values are zero).

Replacing each pixel with an unweighted average computed over some fixed
region centered at the pixel is the same as convolution with a kernel that is a block



Section 4.1 Linear Filters and Convolution 109

of ones multiplied by a constant. You can (and should) establish this point by close
attention to the range of the sum. This process is a poor model of blurring; its
output does not look like that of a defocused camera (Figure 4.1). The reason is
clear. Assume that we have an image in which every point but the center point is
zero, and the center point is one. If we blur this image by forming an unweighted
average at each point, the result looks like a small, bright box, but this is not what
defocused cameras do. We want a blurring process that takes a small bright dot
to a circularly symmetric region of blur, brighter at the center than at the edges
and fading slowly to darkness. As Figure 4.1 suggests, a set of weights of this form
produces a much more convincing defocus model.

-5

0

5

-5

0

5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FIGURE 4.2: The symmetric Gaussian kernel in 2D. This view shows a kernel scaled so
that its sum is equal to one; this scaling is quite often omitted. The kernel shown has
σ = 1. Convolution with this kernel forms a weighted average that stresses the point at
the center of the convolution window and incorporates little contribution from those at
the boundary. Notice how the Gaussian is qualitatively similar to our description of the
point spread function of image blur: it is circularly symmetric, has strongest response in
the center, and dies away near the boundaries.

Example: Smoothing with a Gaussian
A good formal model for this fuzzy blob is the symmetric Gaussian kernel

Gσ(x, y) =
1

2πσ2
exp

(
− (x2 + y2)

2σ2

)

illustrated in Figure 4.2. σ is referred to as the standard deviation of the Gaussian
(or its “sigma”!); the units are interpixel spaces, usually referred to as pixels. The



Section 4.1 Linear Filters and Convolution 110

constant term makes the integral over the whole plane equal to one and is often
ignored in smoothing applications. The name comes from the fact that this kernel
has the form of the probability density for a 2D normal (or Gaussian) random
variable with a particular covariance.

This smoothing kernel forms a weighted average that weights pixels at its
center much more strongly than at its boundaries. One can justify this approach
qualitatively: Smoothing suppresses noise by enforcing the requirement that pixels
should look like their neighbors. By downweighting distant neighbors in the average,
we can ensure that the requirement that a pixel looks like its neighbors is less
strongly imposed for distant neighbors. A qualitative analysis gives the following:

• If the standard deviation of the Gaussian is very small—say, smaller than one
pixel—the smoothing will have little effect because the weights for all pixels
off the center will be very small.

• For a larger standard deviation, the neighboring pixels will have larger weights
in the weighted average, which in turn means that the average will be strongly
biased toward a consensus of the neighbors. This will be a good estimate of a
pixel’s value, and the noise will largely disappear at the cost of some blurring.

• Finally, a kernel that has a large standard deviation will cause much of the
image detail to disappear, along with the noise.

Figure 4.3 illustrates these phenomena. You should notice that Gaussian smoothing
can be effective at suppressing noise.

In applications, a discrete smoothing kernel is obtained by constructing a
2k + 1× 2k + 1 array whose i, jth value is

Hij =
1

2πσ2
exp

(
− ((i− k − 1)2 + (j − k − 1)2)

2σ2

)
.

Notice that some care must be exercised with σ. If σ is too small, then only one
element of the array will have a nonzero value. If σ is large, then k must be large,
too; otherwise, we are ignoring contributions from pixels that should contribute
with substantial weight.

Example: Derivatives and Finite Differences
Image derivatives can be approximated using another example of a convolution

process. Because
∂f

∂x
= lim

ε→0

f(x+ ε, y)− f(x, y)

ε
,

we might estimate a partial derivative as a symmetric finite difference:

∂h

∂x
≈ hi+1,j − hi−1,j .

This is the same as a convolution, where the convolution kernel is

H =

⎧⎨
⎩

0 0 0
1 0 −1
0 0 0

⎫⎬
⎭ .



Section 4.1 Linear Filters and Convolution 111

σ=0.05 σ=0.1 σ=0.2

no
smoothing

σ=1 pixel

σ=2 pixels

FIGURE 4.3: The top row shows images of a constant mid-gray level corrupted by additive
Gaussian noise. In this noise model, each pixel has a zero-mean normal random variable
added to it. The range of pixel values is from zero to one, so that the standard deviation
of the noise in the first column is about 1/20 of full range. The center row shows the
effect of smoothing the corresponding image in the top row with a Gaussian filter of σ
one pixel. Notice the annoying overloading of notation here; there is Gaussian noise and
Gaussian filters, and both have σ’s. One uses context to keep these two straight, although
this is not always as helpful as it could be, because Gaussian filters are particularly good at
suppressing Gaussian noise. This is because the noise values at each pixel are independent,
meaning that the expected value of their average is going to be the noise mean. The
bottom row shows the effect of smoothing the corresponding image in the top row with
a Gaussian filter of σ two pixels.

Notice that this kernel could be interpreted as a template: it gives a large positive
response to an image configuration that is positive on one side and negative on the
other, and a large negative response to the mirror image.

As Figure 4.4 suggests, finite differences give a most unsatisfactory estimate
of the derivative. This is because finite differences respond strongly (i.e., have an
output with large magnitude) at fast changes, and fast changes are characteristic of
noise. Roughly, this is because image pixels tend to look like one another. For exam-
ple, if we had bought a discount camera with some pixels that were stuck at either
black or white, the output of the finite difference process would be large at those



Section 4.2 Shift Invariant Linear Systems 112

FIGURE 4.4: The top row shows estimates of derivatives obtained by finite differences.
The image at the left shows a detail from a picture of a zebra. The center image shows
the partial derivative in the y-direction—which responds strongly to horizontal stripes
and weakly to vertical stripes—and the right image shows the partial derivative in the
x-direction—which responds strongly to vertical stripes and weakly to horizontal stripes.
However, finite differences respond strongly to noise. The image at center left shows
a detail from a picture of a zebra; the next image in the row is obtained by adding a
random number with zero mean and normal distribution (σ = 0.03; the darkest value in
the image is 0, and the lightest 1) to each pixel; and the third image is obtained by adding
a random number with zero mean and normal distribution (σ = 0.09) to each pixel. The
bottom row shows the partial derivative in the x-direction of the image at the head
of the row. Notice how strongly the differentiation process emphasizes image noise; the
derivative figures look increasingly grainy. In the derivative figures, a mid-gray level is a
zero value, a dark gray level is a negative value, and a light gray level is a positive value.

pixels because they are, in general, substantially different from their neighbors. All
this suggests that some form of smoothing is appropriate before differentiation; the
details appear in Section 5.1.

4.2 SHIFT INVARIANT LINEAR SYSTEMS

Convolution represents the effect of a large class of system. In particular, most
imaging systems have, to a good approximation, three significant properties:

• Superposition: We expect that

R(f + g) = R(f) +R(g);



Section 4.2 Shift Invariant Linear Systems 113

that is, the response to the sum of stimuli is the sum of the individual re-
sponses.

• Scaling: The response to a zero input is zero. Taken with superposition, we
have that the response to a scaled stimulus is a scaled version of the response
to the original stimulus; that is,

R(kf) = kR(f).

A device that exihibits superposition and scaling is linear.

• Shift invariance: In a shift invariant system, the response to a translated
stimulus is just a translation of the response to the stimulus. This means
that, for example, if a view of a small light aimed at the center of the camera
is a small, bright blob, then if the light is moved to the periphery, we should
see the same small, bright blob, only translated.

A device that is linear and shift invariant is known as a shift invariant linear system,
or often just as a system.

The response of a shift invariant linear system to a stimulus is obtained by
convolution. We demonstrate this first for systems that take discrete inputs—say,
vectors or arrays—and produce discrete outputs. We then use this to describe the
behavior of systems that operate on continuous functions of the line or the plane,
and from this analysis we obtain some useful facts about convolution.

4.2.1 Discrete Convolution

In the 1D case, we have a shift invariant linear system that takes a vector and
responds with a vector. This case is the easiest to handle because there are fewer
indices to look after. The 2D case—a system that takes an array and responds with
an array—follows easily. In each case, we assume that the input and output are
infinite dimensional. This allows us to ignore some minor issues that arise at the
boundaries of the input. We deal with these in Section 4.2.3.

Discrete Convolution in One Dimension
We have an input vector f . For convenience, we assume that the vector has

infinite length and its elements are indexed by the integers (i.e., there is an element
with index −1, say). The ith component of this vector is fi. Now f is a weighted
sum of basis elements. A convenient basis is a set of elements that have a one in a
single component and zeros elsewhere. We write

e0 = . . . 0, 0, 0, 1, 0, 0, 0, . . .

This is a data vector that has a 1 in the zeroth place, and zeros elsewhere. Define
a shift operation, which takes a vector to a shifted version of that vector. In
particular, the vector Shift(f , i) has, as its jth component, the j− ith component
of f . For example, Shift(e0, 1) has a zero in the first component. Now, we can
write

f =
∑
i

fiShift(e0, i).



Section 4.2 Shift Invariant Linear Systems 114

We write the response of our system to a vector f as

R(f ).

Now, because the system is shift invariant, we have

R(Shift(f , k)) = Shift(R(f), k).

Furthermore, because it is linear, we have

R(kf) = kR(f).

This means that

R(f ) = R

(∑
i

fiShift(e0, i)

)

=
∑
i

R(fiShift(e0, i))

=
∑
i

fiR(Shift(e0, i))

=
∑
i

fiShift(R(e0), i)).

This means that to obtain the system’s response to any data vector, we need to
know only its response to e0. This is usually called the system’s impulse response.
Assume that the impulse response can be written as g. We have

R(f) =
∑
i

fiShift(g, i) = g ∗ f .

This defines an operation—the 1D, discrete version of convolution—which we write
with a ∗.

This is all very well, but it doesn’t give us a particularly easy expression for
the output. If we consider the jth element of R(f), which we write as Ri, we must
have

Rj =
∑
i

gj−ifi,

which conforms to (and explains the origin of) the form used in Section 4.1.1.

Discrete Convolution in Two Dimensions We now use an array of
values and write the i, jth element of the array D as Dij . The appropriate analogy
to an impulse response is the response to a stimulus that looks like

E00 =

. . . . . . . . . . . . . . .

. . . 0 0 0 . . .

. . . 0 1 0 . . .

. . . 0 0 0 . . .

. . . . . . . . . . . . . . .



Section 4.2 Shift Invariant Linear Systems 115

If G is the response of the system to this stimulus, the same considerations as
for 1D convolution yield a response to a stimulus F , that is,

Rij =
∑
u,v

Gi−u,j−vFuv ,

which we write as
R = G ∗ ∗H.

4.2.2 Continuous Convolution

There are shift invariant linear systems that produce a continuous response to a
continuous input; for example, a camera lens takes a set of radiances and produces
another set, and many lenses are approximately shift invariant. A brief study of
these systems allows us to study the information lost by approximating a contin-
uous function—the incoming radiance values across an image plane—by a discrete
function—the value at each pixel.

The natural description is in terms of the system’s response to a rather un-
natural function, the δ-function, which is not a function in formal terms. We do
the derivation first in one dimension to make the notation easier.

Convolution in One Dimension
We obtain an expression for the response of a continuous shift invariant linear

system from our expression for a discrete system. We can take a discrete input and
replace each value with a box straddling the value; this gives a continuous input
function. We then make the boxes narrower and consider what happens in the
limit.

Our system takes a function of one dimension and returns a function of one
dimension. Again, we write the response of the system to some input f(x) as R(f);
when we need to emphasize that f is a function, we write R(f(x)). The response
is also a function; occasionally, when we need to emphasize this fact, we write
R(f)(u). We can express the linearity property in this notation by writing

R(kf) = kR(f)

(for k some constant) and the shift invariance property by introducing a Shift

operator, which takes functions to functions:

Shift(f, c) = f(u− c).

With this Shift operator, we can write the shift invariance property as

R(Shift(f, c)) = Shift(R(f), c).

We define the box function as:

boxε(x) =

{
0 abs(x) > ε

2
1 abs(x) < ε

2

.



Section 4.2 Shift Invariant Linear Systems 116

The value of boxε(ε/2) does not matter for our purposes. The input function is f(x).
We construct an even grid of points xi, where xi+1 − xi = ε. We now construct
a vector f whose ith component (written fi) is f(xi). This vector can be used to
represent the function.

We obtain an approximate representation of f by
∑

i fiShift(boxε, xi). We
apply this input to a shift invariant linear system; the response is a weighted sum
of shifted responses to box functions. This means that

R

(∑
i

fiShift(boxε, xi)

)
=
∑
i

R(fiShift(boxε, xi))

=
∑
i

fiR(Shift(boxε, xi))

=
∑
i

fiShift(R(
boxε

ε
ε), xi)

=
∑
i

fiShift(R(
boxε

ε
), xi)ε.

So far, everything has followed our derivation for discrete functions. We now have
something that looks like an approximate integral if ε → 0.

We introduce a new device, called a δ-function, to deal with the term boxε/ε.
Define

dε(x) =
boxε(x)

ε
.

The δ-function is:
δ(x) = lim

ε→0
dε(x).

We don’t attempt to evaluate this limit, so we need not discuss the value of
δ(0). One interesting feature of this function is that, for practical shift invariant
linear systems, the response of the system to a δ-function exists and has compact
support (i.e., is zero except on a finite number of intervals of finite length). For
example, a good model of a δ-function in 2D is an extremely small, extremely
bright light. If we make the light smaller and brighter while ensuring the total
energy is constant, we expect to see a small but finite spot due to the defocus of
the lens. The δ-function is the natural analogue for e0 in the continuous case.

This means that the expression for the response of the system,

∑
i

fiShift(R(
boxε

ε
), xi)ε,

turns into an integral as ε limits to zero. We obtain

R(f) =

∫
{R(δ)(u − x′)} f(x′)dx′

=

∫
g(u− x′)f(x′)dx′,



Section 4.2 Shift Invariant Linear Systems 117

where we have written R(δ)—which is usually called the impulse response of
the system—as g and have omitted the limits of the integral. These integrals could
be from −∞ to ∞, but more stringent limits could apply if g and h have compact
support. This operation is called convolution (again), and we write the foregoing
expression as

R(f) = (g ∗ f).
Convolution is commutative, meaning

(g ∗ h)(x) = (h ∗ g)(x).

Convolution is associative, meaning that

(f ∗ (g ∗ h)) = ((f ∗ g) ∗ h).

This latter property means that we can find a single shift invariant linear system
that behaves like the composition of two different systems. This will be useful when
we discuss sampling.

Convolution in Two Dimensions
The derivation of convolution in two dimensions requires more notation. A

box function is now given by boxε2(x, y) = boxε(x)boxε(y); we now have

dε(x, y) =
boxε2(x, y)

ε2
.

The δ-function is the limit of dε(x, y) function as ε → 0. Finally, there are more
terms in the sum. All this activity results in the expression

R(h)(x, y) =

∫ ∫
g(x− x′, y − y′)h(x′, y′)dxdy

= (g ∗ ∗h)(x, y),

where we have used two ∗s to indicate a two-dimensional convolution. Convolution
in 2D is commutative, meaning that

(g ∗ ∗h) = (h ∗ ∗g),

and associative, meaning that

((f ∗ ∗g) ∗ ∗h) = (f ∗ ∗(g ∗ ∗h)).

A natural model for the impulse response of a two-dimensional system is to think
of the pattern seen in a camera viewing a very small, distant light source (which
subtends a very small viewing angle). In practical lenses, this view results in some
form of fuzzy blob, justifying the name point spread function, which is often used
for the impulse response of a 2D system. The point spread function of a linear
system is often known as its kernel.



Section 4.3 Spatial Frequency and Fourier Transforms 118

4.2.3 Edge Effects in Discrete Convolutions

In practical systems, we cannot have infinite arrays of data. This means that when
we compute the convolution, we need to contend with the edges of the image; at
the edges, there are pixel locations where computing the value of the convolved
image requires image values that don’t exist. There are a variety of strategies we
can adopt:

• Ignore these locations, which means that we report only values for which
every required image location exists. This has the advantage of probity, but
the disadvantage that the output is smaller than the input. Repeated convo-
lutions can cause the image to shrink quite drastically.

• Pad the image with constant values, which means that, as we look at
output values closer to the edge of the image, the extent to which the output
of the convolution depends on the image goes down. This is a convenient
trick because we can ensure that the image doesn’t shrink, but it has the
disadvantage that it can create the appearance of substantial gradients near
the boundary.

• Pad the image in some other way. For example, we might think of
the image as a doubly periodic function so that if we have an n ×m image,
then column m+ 1—required for the purposes of convolution—would be the
same as column m− 1. This can create the appearance of substantial second
derivative values near the boundary.

4.3 SPATIAL FREQUENCY AND FOURIER TRANSFORMS

We have used the trick of thinking of a signal g(x, y) as a weighted sum of a large (or
infinite) number of small (or infinitely small) box functions. This model emphasizes
that a signal is an element of a vector space. The box functions form a convenient
basis, and the weights are coefficients on this basis. We need a new technique to
deal with two related problems so far left open:

• Although it is clear that a discrete image version cannot represent the full
information in a signal, we have not yet indicated what is lost.

• It is clear that we cannot shrink an image simply by taking every kth pixel—
this could turn a checkerboard image all white or all black—and we would
like to know how to shrink an image safely.

All of these problems are related to the presence of fast changes in an image. For
example, shrinking an image is most likely to miss fast effects because they could
slip between samples; similarly, the derivative is large at fast changes.

These effects can be studied by a change of basis. We change the basis to be
a set of sinusoids and represent the signal as an infinite weighted sum of an infinite
number of sinusoids. This means that fast changes in the signal are obvious, because
they correspond to large amounts of high-frequency sinusoids in the new basis.



Section 4.3 Spatial Frequency and Fourier Transforms 119

FIGURE 4.5: The real component of Fourier basis elements shown as intensity images.
The brightest point has value one, and the darkest point has value zero. The domain is
[−1, 1]× [−1, 1], with the origin at the center of the image. On the left, (u, v) = (0, 0.4);
in the center, (u, v) = (1, 2); and on the right (u, v) = (10,−5). These are sinusoids of
various frequencies and orientations described in the text.

4.3.1 Fourier Transforms

The change of basis is effected by a Fourier transform. We define the Fourier
transform of a signal g(x, y) to be

F(g(x, y))(u, v) =

∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy.

Assume that appropriate technical conditions are true to make this integral
exist. It is sufficient for all moments of g to be finite; a variety of other possible
conditions are available (Bracewell 1995). The process takes a complex valued
function of x, y and returns a complex valued function of u, v (images are complex
valued functions with zero imaginary component).

For the moment, fix u and v, and let us consider the meaning of the value of
the transform at that point. The exponential can be rewritten

e−i2π(ux+vy) = cos(2π(ux+ vy)) + i sin(2π(ux+ vy)).

These terms are sinusoids on the x, y plane, whose orientation and frequency are
given by u, v. For example, consider the real term, which is constant when ux+ vy
is constant (i.e., along a straight line in the x, y plane whose orientation is given by
tan θ = v/u). The gradient of this term is perpendicular to lines where ux+ vy is
constant, and the frequency of the sinusoid is

√
u2 + v2. These sinusoids are often

referred to as spatial frequency components; a variety are illustrated in Figure 4.5.
The integral should be seen as a dot product. If we fix u and v, the value

of the integral is the dot product between a sinusoid in x and y and the original
function. This is a useful analogy because dot products measure the amount of one
vector in the direction of another.

In the same way, the value of the transform at a particular u and v can be
seen as measuring the amount of the sinusoid with given frequency and orientation



Section 4.3 Spatial Frequency and Fourier Transforms 120

in the signal. The transform takes a function of x and y to the function of u and v
whose value at any particular (u, v) is the amount of that particular sinusoid in the
original function. This view justifies the model of a Fourier transform as a change
of basis.

Linearity
The Fourier transform is linear:

F(g(x, y) + h(x, y)) = F(g(x, y)) + F(h(x, y))

and

F(kg(x, y)) = kF(g(x, y)).

The Inverse Fourier Transform It is useful to recover a signal from its
Fourier transform. This is another change of basis with the form

g(x, y) =

∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv.

Fourier Transform Pairs Fourier transforms are known in closed form
for a variety of useful cases; a large set of examples appears in Bracewell (1995).
We list a few in Table 4.1 for reference. The last line of Table 4.1 contains the
convolution theorem; convolution in the signal domain is the same as multiplication
in the Fourier domain.

Phase and Magnitude The Fourier transform consists of a real and a
complex component:

F(g(x, y))(u, v) =

∫ ∫ ∞

−∞
g(x, y) cos(2π(ux+ vy))dxdy +

i

∫ ∫ ∞

−∞
g(x, y) sin(2π(ux+ vy))dxdy

= �(F(g)) + i ∗ �(F(g))

= FR(g) + i ∗ FI(g).

It is usually inconvenient to draw complex functions of the plane. One solution
is to plot FR(g) and FI(g) separately; another is to consider the magnitude and
phase of the complex functions, and to plot these instead. These are then called
the magnitude spectrum and phase spectrum, respectively.

The value of the Fourier transform of a function at a particular u, v point
depends on the whole function. This is obvious from the definition because the
domain of the integral is the whole domain of the function. It leads to some subtle
properties, however. First, a local change in the function (e.g., zeroing out a block
of points) is going to lead to a change at every point in the Fourier transform. This
means that the Fourier transform is quite difficult to use as a representation (e.g.,



Section 4.4 Sampling and Aliasing 121

TABLE 4.1: A variety of functions of two dimensions and their Fourier transforms. This
table can be used in two directions (with appropriate substitutions for u, v and x, y)
because the Fourier transform of the Fourier transform of a function is the function.
Observant readers might suspect that the results on infinite sums of δ functions contradict
the linearity of Fourier transforms. By careful inspection of limits, it is possible to show
that they do not (see, for example, Bracewell (1995)). Observant readers also might have
noted that an expression for F( ∂f

∂y
) can be obtained by combining two lines of this table.

Function Fourier transform

g(x, y)
∫ ∞∫
−∞

g(x, y)e−i2π(ux+vy)dxdy

∫ ∞∫
−∞

F(g(x, y))(u, v)ei2π(ux+vy)dudv F(g(x, y))(u, v)

δ(x, y) 1

∂f
∂x

(x, y) uF(f)(u, v)

0.5δ(x+ a, y) + 0.5δ(x− a, y) cos 2πau

e−π(x2+y2) e−π(u2+v2)

box1(x, y)
sinu
u

sin v
v

f(ax, by) F(f)(u/a,v/b)
ab∑∞

i=−∞

∑∞

j=−∞
δ(x− i, y − j)

∑∞

i=−∞

∑∞

j=−∞
δ(u− i, v − j)

(f ∗ ∗g)(x, y) F(f)F(g)(u, v)

f(x− a, y − b) e−i2π(au+bv)F(f)

f(x cos θ − y sin θ, x sin θ + y cos θ) F(f)(u cos θ − v sin θ, u sin θ + v cos θ)

it might be very difficult to tell whether a pattern was present in an image just by
looking at the Fourier transform). Second, the magnitude spectra of images tends
to be similar. This appears to be a fact of nature, rather than something that
can be proven axiomatically. As a result, the magnitude spectrum of an image is
surprisingly uninformative (see Figure 4.6 for an example).

4.4 SAMPLING AND ALIASING

The crucial reason to discuss Fourier transforms is to get some insight into the
difference between discrete and continuous images. In particular, it is clear that
some information has been lost when we work on a discrete pixel grid, but what?
A good, simple example comes from an image of a checkerboard, and is given in



Section 4.4 Sampling and Aliasing 122

FIGURE 4.6: The second image in each row shows the log of the magnitude spectrum for
the first image in the row; the third image shows the phase spectrum scaled so that −π
is dark and π is light. The final images are obtained by swapping the magnitude spectra.
Although this swap leads to substantial image noise, it doesn’t substantially affect the
interpretation of the image, suggesting that the phase spectrum is more important for
perception than the magnitude spectrum.

Figure 4.7. The problem has to do with the number of samples relative to the
function; we can formalize this rather precisely given a sufficiently powerful model.

4.4.1 Sampling

Passing from a continuous function—like the irradiance at the back of a camera
system—to a collection of values on a discrete grid —like the pixel values reported
by a camera—is referred to as sampling. We construct a model that allows us to
obtain a precise notion of what is lost in sampling.

Sampling in One Dimension
Sampling in one dimension takes a function and returns a discrete set of

values. The most important case involves sampling on a uniform discrete grid, and
we assume that the samples are defined at integer points. This means we have a
process that takes some function and returns a vector of values:

sample1D(f(x)) = f .

We model this sampling process by assuming that the elements of this vector
are the values of the function f(x) at the sample points and allowing negative
indices to the vector (Figure 4.8). This means that the ith component of f is
f(xi).

Sampling in Two Dimensions



Section 4.4 Sampling and Aliasing 123

FIGURE 4.7: The two checkerboards on the top illustrate a sampling procedure that
appears to be successful (whether it is or not depends on some details that we will deal
with later). The gray circles represent the samples; if there are sufficient samples, then
the samples represent the detail in the underlying function. The sampling procedures
shown on the bottom are unequivocally unsuccessful; the samples suggest that there are
fewer checks than there are. This illustrates two important phenomena: first, successful
sampling schemes sample data often enough; and second, unsuccessful sampling schemes
cause high-frequency information to appear as lower-frequency information.

Sampling in 2D is very similar to sampling in 1D. Although sampling can
occur on nonregular grids (the best example being the human retina), we proceed
on the assumption that samples are drawn at points with integer coordinates. This
yields a uniform rectangular grid, which is a good model of most cameras. Our
sampled images are then rectangular arrays of finite size (all values outside the grid
being zero).

In the formal model, we sample a function of two dimensions, instead of one,
yielding an array (Figure 4.9). We allow this array to have negative indices in both
dimensions, and can then write

sample2D(F (x, y)) = F ,

where the i, jth element of the array F is F (xi, yj) = F (i, j).
Samples are not always evenly spaced in practical systems. This is quite often



Section 4.4 Sampling and Aliasing 124

Sample
1D

FIGURE 4.8: Sampling in 1D takes a function and returns a vector whose elements are
values of that function at the sample points. For our purposes, it is enough that the sample
points be integer values of the argument. We allow the vector to be infinite dimensional
and have negative as well as positive indices.

Sample2D

FIGURE 4.9: Sampling in 2D takes a function and returns an array; again, we allow the
array to be infinite dimensional and to have negative as well as positive indices.

due to the pervasive effect of television; television screens have an aspect ratio of
4:3 (width:height). Cameras quite often accommodate this effect by spacing sample
points slightly farther apart horizontally than vertically (in jargon, they have non-
square pixels).



Section 4.4 Sampling and Aliasing 125

A Continuous Model of a Sampled Signal
We need a continuous model of a sampled signal. Generally, this model is used

to evaluate integrals; in particular, taking a Fourier transform involves integrating
the product of our model with a complex exponential. It is clear how this integral
should behave: the value of the integral should be obtained by adding up values
at each integer point. This means we cannot model a sampled signal as a function
that is zero everywhere except at integer points (where it takes the value of the
signal), because this model has a zero integral.

An appropriate continuous model of a sampled signal relies on an important
property of the δ function:∫ ∞

−∞
aδ(x)f(x)dx = a lim

ε→0

∫ ∞

−∞
d(x; ε)f(x)dx

= a lim
ε→0

∫ ∞

−∞

bar(x; ε)

ε
(f(x))dx

= a lim
ε→0

∞∑
i=−∞

bar(x; ε)

ε
(f(iε)bar(x− iε; ε))ε

= af(0).

Here we have used the idea of an integral as the limit of a sum of small strips.
An appropriate continuous model of a sampled signal consists of a δ-function

at each sample point weighted by the value of the sample at that point. We can
obtain this model by multiplying the sampled signal by a set of δ-functions, one
at each sample point. In one dimension, a function of this form is called a comb
function (because that’s what the graph looks like). In two dimensions, a function
of this form is called a bed-of-nails function (for the same reason).

Working in 2D and assuming that the samples are at integer points, this
procedure gets

sample2D(f) =

∞∑
i=−∞

∞∑
j=−∞

f(i, j)δ(x− i, y − j)

= f(x, y)

⎧⎨
⎩

∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)

⎫⎬
⎭ .

This function is zero except at integer points (because the δ-function is zero except
at integer points), and its integral is the sum of the function values at the integer
points.

4.4.2 Aliasing

Sampling involves a loss of information. As this section shows, a signal sampled
too slowly is misrepresented by the samples; high spatial frequency components
of the original signal appear as low spatial frequency components in the sampled
signal—an effect known as aliasing.



Section 4.4 Sampling and Aliasing 126

The Fourier Transform of a Sampled Signal
A sampled signal is given by a product of the original signal with a bed-of-

nails function. By the convolution theorem, the Fourier transform of this product
is the convolution of the Fourier transforms of the two functions. This means that
the Fourier transform of a sampled signal is obtained by convolving the Fourier
transform of the signal with another bed-of-nails function.

Now convolving a function with a shifted δ-function merely shifts the function
(see exercises). This means that the Fourier transform of the sampled signal is the
sum of a collection of shifted versions of the Fourier transforms of the signal, that
is,

F(sample2D(f(x, y))) = F

⎛
⎝f(x, y)

⎧⎨
⎩

∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)

⎫⎬
⎭
⎞
⎠

= F(f(x, y)) ∗ ∗F

⎛
⎝
⎧⎨
⎩

∞∑
i=−∞

∞∑
j=−∞

δ(x− i, y − j)

⎫⎬
⎭
⎞
⎠

=

∞∑
i=−∞

F (u− i, v − j),

where we have written the Fourier transform of f(x, y) as F (u, v).
If the support of these shifted versions of the Fourier transform of the signal

does not intersect, we can easily reconstruct the signal from the sampled version.
We take the sampled signal, Fourier transform it, and cut out one copy of the
Fourier transform of the signal and Fourier transform this back (Figure 4.10).

However, if the support regions do overlap, we are not able to reconstruct the
signal because we can’t determine the Fourier transform of the signal in the regions
of overlap, where different copies of the Fourier transform will add. This results in
a characteristic effect, usually called aliasing, where high spatial frequencies appear
to be low spatial frequencies (see Figure 4.12 and exercises). Our argument also
yields Nyquist’s theorem: the sampling frequency must be at least twice the highest
frequency present for a signal to be reconstructed from a sampled version. By the
same argument, if we happen to have a signal that has frequencies present only in
the range [2k− 1Ω, 2k+1Ω], then we can represent that signal exactly if we sample
at a frequency of at least 2Ω.

4.4.3 Smoothing and Resampling

Nyquist’s theorem means it is dangerous to shrink an image by simply taking every
kth pixel (as Figure 4.12 confirms). Instead, we need to filter the image so that
spatial frequencies above the new sampling frequency are removed. We could do
this exactly by multiplying the image Fourier transform by a scaled 2D bar function,
which would act as a low-pass filter. Equivalently, we would convolve the image
with a kernel of the form (sinx sin y)/(xy). This is a difficult and expensive (a polite
way of saying impossible) convolution because this function has infinite support.

The most interesting case occurs when we want to halve the width and height
of the image. We assume that the sampled image has no aliasing (because if it



Section 4.4 Sampling and Aliasing 127

Signal Magnitude
Spectrum

Sampled
Signal Magnitude

Spectrum

Sample

Fourier
Transform

Fourier
Transform

Copy and
Shift

Magnitude
Spectrum

Cut out by
multiplication
with box filterInverse

Fourier
Transform

Accurately
Reconstructed
Signal

FIGURE 4.10: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by the
sampling frequency. Two possibilities occur. If the shifted copies do not intersect with
each other (as in this case), the original signal can be reconstructed from the sampled
signal (we just cut out one copy of the Fourier transform and inverse transform it). If
they do intersect (as in Figure 4.11), the intersection region is added, and so we cannot
obtain a separate copy of the Fourier transform, and the signal has aliased.

did, there would be nothing we could do about it anyway; once an image has been
sampled, any aliasing that is going to occur has happened, and there’s not much we
can do about it without an image model). This means that the Fourier transform
of the sampled image is going to consist of a set of copies of some Fourier transform,
with centers shifted to integer points in u, v space.

If we resample this signal, the copies now have centers on the half-integer
points in u, v space. This means that, to avoid aliasing, we need to apply a filter
that strongly reduces the content of the original Fourier transform outside the range
|u| < 1/2, |v| < 1/2. Of course, if we reduce the content of the signal inside this
range, we might lose information, too. Now the Fourier transform of a Gaussian is
a Gaussian, and Gaussians die away fairly quickly. Thus, if we were to convolve the
image with a Gaussian—or multiply its Fourier transform by a Gaussian, which is



Section 4.4 Sampling and Aliasing 128

Signal Magnitude
Spectrum

Sampled
Signal Magnitude

Spectrum

Sample

Fourier
Transform

Fourier
Transform

Copy and
Shift

Magnitude
Spectrum

Cut out by
multiplication
with box filter

Inverse
Fourier
Transform

Inaccurately
Reconstructed
Signal

FIGURE 4.11: The Fourier transform of the sampled signal consists of a sum of copies
of the Fourier transform of the original signal, shifted with respect to each other by the
sampling frequency. Two possibilities occur. If the shifted copies do not intersect with
each other (as in Figure 4.10), the original signal can be reconstructed from the sampled
signal (we just cut out one copy of the Fourier transform and inverse transform it). If they
do intersect (as in this figure), the intersection region is added, and so we cannot obtain a
separate copy of the Fourier transform, and the signal has aliased. This also explains the
tendency of high spatial frequencies to alias to lower spatial frequencies.

the same thing—we could achieve what we want.
The choice of Gaussian depends on the application. If σ is large, there is

less aliasing (because the value of the kernel outside our range is very small), but
information is lost because the kernel is not flat within our range; similarly, if σ is
small, less information is lost within the range, but aliasing can be more substantial.
Figures 4.13 and 4.14 illustrate the effects of different choices of σ.

We have been using a Gaussian as a low-pass filter because its response at
high spatial frequencies is low and its response at low spatial frequencies is high.
In fact, the Gaussian is not a particularly good low-pass filter. What one wants
is a filter whose response is pretty close to constant for some range of low spatial
frequencies—the pass band—and whose response is also pretty close to zero—for



Section 4.4 Sampling and Aliasing 129

256x256 128x128 64x64 32x32 16x16

FIGURE 4.12: The top row shows sampled versions of an image of a grid obtained by
multiplying two sinusoids with linearly increasing frequency—one in x and one in y. The
other images in the series are obtained by resampling by factors of two without smoothing
(i.e., the next is a 128x128, then a 64x64, etc., all scaled to the same size). Note the
substantial aliasing; high spatial frequencies alias down to low spatial frequencies, and
the smallest image is an extremely poor representation of the large image. The bottom
row shows the magnitude of the Fourier transform of each image displayed as a log to
compress the intensity scale. The constant component is at the center. Notice that the
Fourier transform of a resampled image is obtained by scaling the Fourier transform of the
original image and then tiling the plane. Interference between copies of the original Fourier
transform means that we cannot recover its value at some points; this is the mechanism
underlying aliasing.

higher spatial frequencies—the stop band. It is possible to design low-pass filters
that are significantly better than Gaussians. The design process involves a detailed
compromise between criteria of ripple—how flat is the response in the pass band
and the stop band?—and roll-off—how quickly does the response fall to zero and
stay there? The basic steps for resampling an image are given in Algorithm 4.1.

Apply a low-pass filter to the original image
(a Gaussian with a σ of between one
and two pixels is usually an acceptable choice).

Create a new image whose dimensions on edge are half
those of the old image

Set the value of the i, jth pixel of the new image to the value
of the 2i, 2jth pixel of the filtered image

Algorithm 4.1: Subsampling an Image by a Factor of Two.



Section 4.4 Sampling and Aliasing 130

256x256 128x128 64x64 32x32 16x16

FIGURE 4.13: Top: Resampled versions of the image of Figure 4.12, again by factors of
two, but this time each image is smoothed with a Gaussian of σ one pixel before resam-
pling. This filter is a low-pass filter, and so suppresses high spatial frequency components,
reducing aliasing. Bottom: The effect of the low-pass filter is easily seen in these log-
magnitude images; the low-pass filter suppresses the high spatial frequency components
so that components interfere less, to reduce aliasing.

256x256 128x128 64x64 32x32 16x16

FIGURE 4.14: Top: Resampled versions of the image of Figure 4.12, again by factors
of two, but this time each image is smoothed with a Gaussian of σ two pixels before
resampling. This filter suppresses high spatial frequency components more aggressively
than that of Figure 4.13. Bottom: The effect of the low-pass filter is easily seen in these
log-magnitude images; the low-pass filter suppresses the high spatial frequency components
so that components interfere less, to reduce aliasing.



Section 4.5 Filters as Templates 131

4.5 FILTERS AS TEMPLATES

It turns out that filters offer a natural mechanism for finding simple patterns be-
cause filters respond most strongly to pattern elements that look like the filter. For
example, smoothed derivative filters are intended to give a strong response at a
point where the derivative is large. At these points, the kernel of the filter looks
like the effect it is intended to detect. The x-derivative filters look like a verti-
cal light blob next to a vertical dark blob (an arrangement where there is a large
x-derivative), and so on.

FIGURE 4.15: Filter kernels look like the effects they are intended to detect. On the left, a
smoothed derivative of Gaussian filter that looks for large changes in the x-direction (such
as a dark blob next to a light blob); on the right, a smoothed derivative of Gaussian filter
that looks for large changes in the y-direction.

It is generally the case that filters intended to give a strong response to a
pattern look like that pattern (Figure 4.15). This is a simple geometric result.

4.5.1 Convolution as a Dot Product

Recall from Section 4.1.1 that, for G, the kernel of some linear filter, the response
of this filter to an image H is given by

Rij =
∑
u,v

Gi−u,j−vHuv.

Now consider the response of a filter at the point where i and j are zero. This is

R =
∑
u,v

G−u,−vHu,v.

This response is obtained by associating image elements with filter kernel
elements, multiplying the associated elements, and summing. We could scan the
image into a vector and the filter kernel into another vector in such a way that



Section 4.6 Technique: Normalized Correlation and Finding Patterns 132

associated elements are in the same component. By inserting zeros as needed, we
can ensure that these two vectors have the same dimension. Once this is done, the
process of multiplying associated elements and summing is precisely the same as
taking a dot product.

This is a powerful analogy because this dot product, like any other, achieves
its largest value when the vector representing the image is parallel to the vector
representing the filter kernel. This means that a filter responds most strongly when
it encounters an image pattern that looks like the filter. The response of a filter
gets stronger as a region gets brighter, too.

Now consider the response of the image to a filter at some other point. Nothing
significant about our model has changed. Again, we can scan the image into one
vector and the filter kernel into another vector, such that associated elements lie
in the same components. Again, the result of applying this filter is a dot product.
There are two useful ways to think about this dot product.

4.5.2 Changing Basis

We can think of convolution as a dot product between the image and a different
vector (because we have moved the filter kernel to lie over some other point in
the image). The new vector is obtained by rearranging the old one so that the
elements lie in the right components to make the sum work out. This means that,
by convolving an image with a filter, we are representing the image on a new basis
of the vector space of images—the basis given by the different shifted versions of
the filter. The original basis elements were vectors with a zero in all slots except
one. The new basis elements are shifted versions of a single pattern.

For many of the kernels discussed, we expect that this process will lose
information—for the same reason that smoothing suppresses noise—so that the
coefficients on this basis are redundant. This basis transformation is valuable in
texture analysis. Typically, we choose a basis that consists of small, useful pattern
components. Large values of the basis coefficients suggest that a pattern compo-
nent is present, and texture can be represented by representing the relationships
between these pattern components, usually with some form of probability model.

4.6 TECHNIQUE: NORMALIZED CORRELATION AND FINDING PATTERNS

We can think of convolution as comparing a filter with a patch of image centered at
the point whose response we are looking at. In this view, the image neighborhood
corresponding to the filter kernel is scanned into a vector that is compared with the
filter kernel. By itself, this dot product is a poor way to find features because the
value might be large simply because the image region is bright. By analogy with
vectors, we are interested in the cosine of the angle between the filter vector and
the image neighborhood vector; this suggests computing the root sum of squares of
the relevant image region (the image elements that would lie under the filter kernel)
and dividing the response by that value.

This yields a value that is large and positive when the image region looks like
the filter kernel, and small and negative when the image region looks like a contrast-
reversed version of the filter kernel. This value could be squared if contrast reversal
doesn’t matter. This is a cheap and effective method for finding patterns, often



Section 4.6 Technique: Normalized Correlation and Finding Patterns 133

called normalized correlation.

4.6.1 Controlling the Television by Finding Hands by Normalized Correlation

It would be nice to have systems that could respond to human gestures. For ex-
ample, you might wave at the light to turn the room lights on, point at the air
conditioning to change the room temperature, or make an appropriate gesture at
an annoying politician on television to change the channel. In typical consumer
applications, there are quite strict limits to the amount of computation available,
meaning that it is essential that the gesture recognition system be simple. However,
such systems are usually quite limited in what they need to do, too.

Controlling the Television
Typically, a user interface is in some state—perhaps a menu is displayed—and

then an event occurs—perhaps a button is pressed on a remote control. This event
causes the interface to change state—a new menu item is highlighted, say—and the
whole process continues. In some states, some events cause the system to perform
some action, such as changing the channel. All this means that a state machine is
a natural model for a user interface.

One way for vision to fit into this model is to provide events. This is good
because there are generally few different kinds of event, and we know what kinds of
event the system should care about in any particular state. As a result, the vision
system needs to determine only whether either nothing or one of a small number of
known kinds of event has occurred. It is quite often possible to build systems that
meet these constraints.

A relatively small set of events is required to simulate a remote control; one
needs events that look like button presses (e.g., to turn the television on or off),
and events that look like pointer motion (e.g., to increase the volume; it is possible
to do this with buttons, too). With these events, the television can be turned on,
and an on-screen menu system can be navigated.

Finding Hands
Freeman et al. (1998) produced an interface where an open hand turns the

television on. This can be robust because all the system needs to do is determine
whether there is a hand in view. Furthermore, the user will cooperate by holding
the hand up and open. Because the user is expected to be a fairly constant distance
from the camera—so the size of the hand is roughly known, and there is no need
to search over scales—and in front of the television, the image region that needs to
be searched to determine whether there is a hand is quite small.

The hand is held up in a fairly standard configuration and orientation to turn
the television set on, and it usually appears at about the same distance from the
television (so we know what it looks like). This means that a normalized correlation
score is sufficient to find the hand. Any points in the correlation image where the
score is high enough correspond to hands. This approach can also be used to control
volume and so on. To do so, we need some notion of where the hand is going—to
one side turns the volume up, to the other turns it down—and this can be obtained
by comparing the position in the previous frame with that in the current frame.



Section 4.7 Technique: Scale and Image Pyramids 134

a

b c

d e

FIGURE 4.16: Examples of Freeman et al.’s system controlling a television set. Each state
is illustrated with what the television sees on the left and what the user sees on the right.
In (a), the television is asleep, but a process is watching the user. An open hand causes
the television to come on and show its user interface panel (b). Focus on the panel tracks
the movement of the user’s open hand in (c), and the user can change channels by using
this tracking to move an icon on the screen in (d). Finally, the user displays a closed hand
in (e) to turn off the set. This figure was originally published as Figure 12 of “Computer
Vision for Interactive Computer Graphics,” W. Freeman et al., IEEE Computer Graphics
and Applications, 1998 c© IEEE, 1998.

The system displays an iconic representation of its interpretation of hand position
so the user has some feedback as to what the system is doing (Figure 4.16). Notice
that an attractive feature of this approach is that it could be self-calibrating. In
this approach, when you install your television set, you sit in front of it and show
it your hand a few times to allow it to get an estimate of the scale at which the
hand appears.

4.7 TECHNIQUE: SCALE AND IMAGE PYRAMIDS

Images look quite different at different scales. For example, the zebra’s muzzle in
Figure 4.17 can be described in terms of individual hairs—which might be coded in
terms of the response of oriented filters that operate at a scale of a small number of
pixels—or in terms of the stripes on the zebra. In the case of the zebra, we would
not want to apply large filters to find the stripes. This is because these filters are
inclined to spurious precision—we don’t wish to represent the disposition of each
hair on the stripe—inconvenient to build, and slow to apply. A more practical
approach than applying large filters is to apply smaller filters to smoothed and
resampled versions of the image.



Section 4.7 Technique: Scale and Image Pyramids 135

512 256 128 64 32 16 8

FIGURE 4.17: A Gaussian pyramid of images running from 512x512 to 8x8. On the top
row, we have shown each image at the same size (so that some have bigger pixels than
others), and the lower part of the figure shows the images to scale. Notice that if we
convolve each image with a fixed-size filter, it responds to quite different phenomena. An
8x8 pixel block at the finest scale might contain a few hairs; at a coarser scale, it might
contain an entire stripe; and at the coarsest scale, it contains the animal’s muzzle.

4.7.1 The Gaussian Pyramid

An image pyramid is a collection of representations of an image. The name comes
from a visual analogy. Typically, each layer of the pyramid is half the width and
half the height of the previous layer; if we were to stack the layers on top of each
other, a pyramid would result. In a Gaussian pyramid, each layer is smoothed by
a symmetric Gaussian kernel and resampled to get the next layer (Figure 4.17).
These pyramids are most convenient if the image dimensions are a power of two or
a multiple of a power of two. The smallest image is the most heavily smoothed; the
layers are often referred to as coarse scale versions of the image.

With a little notation, we can write simple expressions for the layers of a
Gaussian pyramid. The operator S↓ downsamples an image; in particular, the j,
kth element of S↓(I) is the 2j, 2kth element of I. The nth level of a pyramid P (I)



Section 4.7 Technique: Scale and Image Pyramids 136

is denoted P (I)n. With this notation, we have

PGaussian(I)n+1 = S↓(Gσ ∗ ∗PGaussian(I)n)
= (S↓Gσ)PGaussian(I)n)

(where we have written Gσ for the linear operator that takes an image to the
convolution of that image with a Gaussian). The finest scale layer is the original
image:

PGaussian(I)1 = I.

Set the finest scale layer to the image
For each layer, going from next to finest to coarsest
Obtain this layer by smoothing the next finest
layer with a Gaussian, and then subsampling it

end

Algorithm 4.2: Forming a Gaussian Pyramid.

4.7.2 Applications of Scaled Representations

Gaussian pyramids are useful because they make it possible to extract representa-
tions of different types of structure in an image. We give three applications here;
in section 5.3.2, we describe another method that can be sped up using a Gaussian
pyramid.

Search over Scale
Numerous objects can be represented as small image patterns. A standard

example is a frontal view of a face. Typically, at low resolution, frontal views of
faces have a quite distinctive pattern: the eyes form dark pools, under a dark bar
(the eyebrows), separated by a lighter bar (specular reflections from the nose), and
above a dark bar (the mouth). There are various methods for finding faces that
exploit these properties (see Chapter 17.1.1). These methods all assume that the
face lies in a small range of scales. All other faces are found by searching a pyramid.
To find bigger faces, we look at coarser scale layers, and to find smaller faces we
look at finer scale layers. This useful trick applies to many different kinds of feature,
as we see in the chapters that follow.

Spatial Search
One application is spatial search, a common theme in computer vision. Typi-

cally, we have a point in one image and are trying to find a point in a second image
that corresponds to it. This problem occurs in stereopsis—where the point has
moved because the two images are obtained from different viewing positions—and
in motion analysis—where the image point has moved, either because the camera
moved or because it is on a moving object.

Searching for a match in the original pairs of images is inefficient because we
might have to wade through a great deal of detail. A better approach, which is now



Section 4.8 Notes 137

pretty much universal, is to look for a match in a heavily smoothed and resampled
image and then refine that match by looking at increasingly detailed versions of the
image. For example, we might reduce 1024× 1024 images down to 4 × 4 versions,
match those, and then look at 8 × 8 versions (because we know a rough match, it
is easy to refine it); we then look at 16 × 16 versions, and so on, all the way up
to 1024× 1024. This gives an extremely efficient search because a step of a single
pixel in the 4 × 4 version is equivalent to a step of 256 pixels in the 1024 × 1024
version. This strategy is known as coarse-to-fine matching.

Feature Tracking
Most features found at coarse levels of smoothing are associated with large,

high-contrast image events because for a feature to be marked at a coarse scale, a
large pool of pixels need to agree that it is there. Typically, finding coarse-scale
phenomena misestimates both the size and location of a feature. For example,
a single pixel error in a coarse-scale image represents a multiple pixel error in a
fine-scale image.

At fine scales, there are many features, some of which are associated with
smaller, low-contrast events. One strategy for improving a set of features obtained
at a fine scale is to track features across scales to a coarser scale and accept only the
fine-scale features that have identifiable parents at a coarser scale. This strategy,
known as feature tracking in principle, can suppress features resulting from textured
regions (often referred to as noise) and features resulting from real noise.

4.8 NOTES

We don’t claim to be exhaustive in our treatment of linear systems, but it wouldn’t
be possible to read the literature on filters in vision without a grasp of the ideas in
this chapter. We have given a fairly straightforward account here; more details on
these topics can be found in the excellent books by Bracewell (1995), (2000).

Real Imaging Systems versus Shift Invariant Linear Systems

Imaging systems are only approximately linear. Film is not linear—it does not
respond to weak stimuli, and it saturates for bright stimuli—but one can usually
get away with a linear model within a reasonable range. CCD cameras are linear
within a working range. They give a small, but nonzero response to a zero input
as a result of thermal noise (which is why astronomers cool their cameras) and
they saturate for very bright stimuli. CCD cameras often contain electronics that
transforms their output to make them behave more like film because consumers
are used to film. Shift invariance is approximate as well because lenses tend to
distort responses near the image boundary. Some lenses—fish-eye lenses are a good
example—are not shift invariant.

Scale

There is a large body of work on scale space and scaled representations. The origins
appear to lie with Witkin (1983) and the idea was developed by Koenderink and
van Doorn (1986). Since then, a huge literature has sprung up (one might start



Section 4.8 Notes 138

with ter Haar Romeny et al. (1997) or Nielsen et al. (1999)). We have given only the
briefest picture here because the analysis tends to be quite tricky. The usefulness
of the techniques is currently hotly debated, too.

Image pyramids are useful. The next step from a Gaussian pyramid, which
is a highly redundant, is the Laplacian pyramid, originally described by Burt and
Adelson (1983). This is an efficient representation. Instead of storing each image
level of a Gaussian pyramid, one stores the difference between the observed level
of the Gaussian pyramid and that predicted by the upsampling the coarser scale
level. Because coarse scale images are moderately good representations of finer
scale images, this difference is small. As a result, there are numerous zeros in the
pyramid, and it is a convenient image code.

Anisotropic Scaling

One important difficulty with scale space models is that the symmetric Gaussian
smoothing process tends to blur out edges rather too aggressively for comfort. For
example, if we have two trees near one another on a skyline, the large-scale blobs
corresponding to each tree might start merging before all the small-scale blobs
have finished. This suggests that we should smooth differently at edge points than
at other points. For example, we might make an estimate of the magnitude and
orientation of the gradient. For large gradients, we would then use an oriented
smoothing operator that smoothed aggressively perpendicular to the gradient and
little along the gradient; for small gradients, we might use a symmetric smoothing
operator. This idea used to be known as edge-preserving smoothing.

In the modern, more formal version, due to Perona and Malik (1990b), we
notice the scale space representation family is a solution to the diffusion equation

∂Φ

∂σ
=

∂2Φ

∂x2
+

∂2Φ

∂y2

= ∇2Φ,

with the initial condition

Φ(x, y, 0) = I(x, y)

If this equation is modified to have the form

∂Φ

∂σ
= ∇ · (c(x, y, σ)∇Φ)

= c(x, y, σ)∇2Φ+ (∇c(x, y, σ)) · (∇Φ)

with the same initial condition, then if c(x, y, σ) = 1, we have the diffusion equation
we started with, and if c(x, y, σ) = 0, there is no smoothing. We assume that c
does not depend on σ. If we knew where the edges were in the image, we could
construct a mask that consisted of regions where c(x, y) = 1, isolated by patches
along the edges where c(x, y) = 0; in this case, a solution would smooth inside each
separate region, but not over the edge. Although we do not know where the edges
are—the exercise would be empty if we did—we can obtain reasonable choices of



Section 4.8 Notes 139

c(x, y) from the magnitude of the image gradient. If the gradient is large, then c
should be small and vice versa. There is a substantial literature dealing with this
approach; a good place to start is ter Haar Romeny (1994).

PROBLEMS

4.1. Show that forming unweighted local averages, which yields an operation of the
form

Rij =
1

(2k + 1)2

u=i+k∑
u=i−k

v=j+k∑
v=j−k

Fuv,

is a convolution. What is the kernel of this convolution?
4.2. Write E0 for an image that consists of all zeros with a single one at the center.

Show that convolving this image with the kernel

Hij =
1

2πσ2
exp

(
−
((i− k − 1)2 + (j − k − 1)2)

2σ2

)
(which is a discretised Gaussian) yields a circularly symmetric fuzzy blob.

4.3. Show that convolving an image with a discrete, separable 2D filter kernel is
equivalent to convolving with two 1D filter kernels. Estimate the number of
operations saved for an NxN image and a 2k + 1× 2k + 1 kernel.

4.4. Show that convolving a function with a δ function simply reproduces the orig-
inal function. Now show that convolving a function with a shifted δ function
shifts the function.

4.5. We said that convolving the image with a kernel of the form (sin x sin y)/(xy)
is impossible because this function has infinite support. Why would it be
impossible to Fourier transform the image, multiply the Fourier transform by
a box function, and then inverse-Fourier transform the result? (Hint: Think
support.)

4.6. Aliasing takes high spatial frequencies to low spatial frequencies. Explain why
the following effects occur:
(a) In old cowboy films that show wagons moving, the wheel often seems to be

stationary or moving in the wrong direction (i.e., the wagon moves from
left to right, and the wheel seems to be turning counterclockwise).

(b) White shirts with thin, dark pinstripes often generate a shimmering array
of colors on television.

(c) In ray-traced pictures, soft shadows generated by area sources look blocky.

PROGRAMMING EXERCISES

4.7. One way to obtain a Gaussian kernel is to convolve a constant kernel with
itself many times. Compare this strategy with evaluating a Gaussian kernel.
(a) How many repeated convolutions do you need to get a reasonable ap-

proximation? (You need to establish what a reasonable approximation is;
you might plot the quality of the approximation against the number of
repeated convolutions).

(b) Are there any benefits that can be obtained like this? (Hint: Not every
computer comes with an FPU.)

4.8. Write a program that produces a Gaussian pyramid from an image.
4.9. A sampled Gaussian kernel must alias because the kernel contains components

at arbitrarily high spatial frequencies. Assume that the kernel is sampled on



Section 4.8 Notes 140

an infinite grid. As the standard deviation gets smaller, the aliased energy
must increase. Plot the energy that aliases against the standard deviation of
the Gaussian kernel in pixels. Now assume that the Gaussian kernel is given
on a 7× 7 grid. If the aliased energy must be of the same order of magnitude
as the error due to truncating the Gaussian, what is the smallest standard
deviation that can be expressed on this grid?



C H A P T E R 5

Local Image Features

An object is separated from its background in an image by an occluding contour.
Draw a path in the image that crosses such a contour. On one side, pixels lie
on the object, and on the other, the background. Finding occluding contours is
an important challenge, because the outline of an object—which is one cue to its
shape—is formed by occluding contours. We can expect that, at occluding contours,
there are often substantial changes in image brightness. There are other important
causes of sharp changes in image brightness, including sharp changes in albedo, in
surface orientation, or in illumination. Each can provide interesting information
about the objects in the world. Occluding contours carry shape information; sharp
changes in albedo carry texture information; sharp changes in surface orientation
tell us about shape; and illumination changes might tell us where the sun is. All
this means it is useful to find and reason about sharp changes in image intensity.

Sharp changes in brightness cause large image gradients. Section 5.1 describes
methods to extract image gradients. One important use of gradients is to find edges
or edge points, where the brightness changes particularly sharply (Section 5.2.1).
The edge points produced tend to be sensitive to changes in contrast (i.e., the size
of the difference in brightness across the edge), which can result from changes in
lighting. Often, it is helpful to use the orientation of the gradient vector (Sec-
tion 5.2.2), which does not depend on contrast. For example, at corners, the image
gradient vector swings sharply in orientation.

Corners are important, because they are easy to match from image to image.
At a corner, we expect to see strong image gradients that turn fast locally, and this
cue yields a corner detector (Section 5.3). If we can describe a neighborhood around
a corner, we can match descriptions across images. Such matching is an important
basic subroutine in computer vision. Applications include: estimating a homog-
raphy that will cause images to overlap (and so form a mosaic), Section 12.1.3;
estimating the fundamental matrix, Section 7.1; reconstructing points in 3D from
multiple views, Section 8.2.3; registering a 3D model with one or more images,
Chapter 19. We must first find a natural size for a neighborhood around a corner,
which we do by looking for the blob that best describes the local gray levels (Sec-
tion 5.3.2). Once we have that neighborhood, there are two natural constructions
that build representations of the orientation field in the neighborhood; the resulting
features yield very well-behaved matchers (Section 5.4).

5.1 COMPUTING THE IMAGE GRADIENT

For an image I, the gradient is

∇I = (
∂I
∂x

,
∂I
∂y

)T ,

141



Section 5.1 Computing the Image Gradient 142

which we could estimate by observing that

∂I
∂x

= lim
δx→0

I(x+ δx, y)− I(x, y)
δx

≈ Ii+1,j − Ii,j .

By the same argument, ∂I/∂y ≈ Ii,j+1 − Ii,j . These kinds of derivative estimates
are known as finite differences. Image noise tends to result in pixels not looking
like their neighbors, so that simple finite differences tend to give strong responses
to noise. As a result, just taking one finite difference for x and one for y gives noisy
gradient estimates. The way to deal with this problem is to smooth the image and
then differentiate it (we could also smooth the derivative).

The most usual noise model is the additive stationary Gaussian noise model,
where each pixel has added to it a value chosen independently from the same
Gaussian probability distribution. This distribution almost always has zero mean.
The standard deviation is a parameter of the model. The model is intended to
describe thermal noise in cameras and is illustrated in Figure 5.1.

Smoothing works because, in general, any image gradient of significance to
us has effects over a pool of pixels. For example, the contour of an object can
result in a long chain of points where the image derivative is large. As another
example, a corner typically involves many tens of pixels. If the noise at each pixel
is independent and additive, then large image derivatives caused by noise are a local
event. Smoothing the image before we differentiate will tend to suppress noise at
the scale of individual pixels, because it will tend to make pixels look like their
neighbors. However, gradients that are supported by evidence over multiple pixels
will tend not to be smoothed out. This suggests differentiating a smoothed image
(Figure 5.2).

5.1.1 Derivative of Gaussian Filters

Smoothing an image and then differentiating it is the same as convolving it with the
derivative of a smoothing kernel. This fact is most easily seen by thinking about
continuous convolution.

First, differentiation is linear and shift invariant. This means that there is
some kernel—we dodge the question of what it looks like—that differentiates. That
is, given a function I(x, y),

∂I

∂x
= K(∂/∂x) ∗ ∗I.

Now we want the derivative of a smoothed function. We write the convolution
kernel for the smoothing as S. Recalling that convolution is associative, we have

(K(∂/∂x) ∗ ∗(S ∗ ∗I)) = (K(∂/∂x) ∗ ∗S) ∗ ∗I = (
∂S

∂x
) ∗ ∗I.

This fact appears in its most commonly used form when the smoothing function is
a Gaussian; we can then write

∂ (Gσ ∗ ∗I)
∂x

= (
∂Gσ

∂x
) ∗ ∗I,

that is, we need only convolve with the derivative of the Gaussian, rather than
convolve and then differentiate. As discussed in Section 4.5, smoothed derivative



Section 5.1 Computing the Image Gradient 143

FIGURE 5.1: The top row shows three realizations of a stationary additive Gaussian
noise process. We have added half the range of brightnesses to these images to show both
negative and positive values of noise. From left to right, the noise has standard deviation
1/256, 4/256, and 16/256 of the full range of brightness, respectively. This corresponds
roughly to bits zero, two, and five of a camera that has an output range of eight bits per
pixel. The lower row shows this noise added to an image. In each case, values below zero
or above the full range have been adjusted to zero or the maximum value accordingly.

filters look like the effects they are intended to detect. The x-derivative filters look
like a vertical light blob next to a vertical dark blob (an arrangement where there
is a large x-derivative), and so on (Figure 4.15). Smoothing results in much smaller
noise responses from the derivative estimates (Figure 5.2).

The choice of σ used in estimating the derivative is often called the scale of
the smoothing. Scale has a substantial effect on the response of a derivative filter.
Assume we have a narrow bar on a constant background, rather like the zebra’s
whisker. Smoothing on a scale smaller than the width of the bar means that the
filter responds on each side of the bar, and we are able to resolve the rising and
falling edges of the bar. If the filter width is much greater, the bar is smoothed into
the background and the bar generates little or no response (Figure 5.3).



Section 5.2 Representing the Image Gradient 144

d/dx

FIGURE 5.2: Derivative of Gaussian filters are less extroverted in their response to noise
than finite difference filters. The image at top left shows a detail from a picture of a
zebra; top center shows the same image corrupted by zero mean stationary additive
Gaussian noise, with σ = 0.03 (pixel values range from 0 to 1). Top right shows the
same image corrupted by zero mean stationary additive Gaussian noise, with σ = 0.09.
The second row shows the finite difference in the x-direction of each image. These images
are scaled so that zero is mid-gray, the most negative pixel is dark, and the most positive
pixel is light; we used a different scaling for each image. Notice how the noise results in
occasional strong derivatives, shown by a graininess in the derivative maps for the noisy
images. The final row shows the partial derivative in the x-direction of each image, in each
case estimated by a derivative of Gaussian filter with σ one pixel. Again, these images are
scaled so that zero is mid-gray, the most negative pixel is dark, and the most positive pixel
is light; we used a different scaling for each image. The images are smaller than the input
image, because we used a 13×13 pixel discrete kernel. This means that the six rows (resp.
columns) on the top and bottom of the image (resp. left and right) cannot be evaluated
exactly, because for these rows the kernel covers some points outside the image; we have
omitted these values. Notice how the smoothing helps reduce the impact of the noise; this
is emphasized by the detail images (between the second and final row), which are doubled
in size. The details show patches that correspond from the finite difference image and the
smoothed derivative estimate. We show a derivative of Gaussian filter kernel, which (as
we expect) looks like the structure it is supposed to find. This is not to scale (it’d be
extremely small if it were).

5.2 REPRESENTING THE IMAGE GRADIENT

There are two important representations of the image gradient. The first is to
compute edges, where there are very fast changes in brightness. These are usually
seen as points where the magnitude of the gradient is extremal (Section 5.2.1). The
second is to use gradient orientations, which are largely independent of illumination
intensity (Section 5.7).



Section 5.2 Representing the Image Gradient 145

FIGURE 5.3: The scale (i.e., σ) of the Gaussian used in a derivative of Gaussian filter has
significant effects on the results. The three images show estimates of the derivative in the
x direction of an image of the head of a zebra obtained using a derivative of Gaussian
filter with σ one pixel, three pixels, and seven pixels (left to right). Note how images at
a finer scale show some hair, the animal’s whiskers disappear at a medium scale, and the
fine stripes at the top of the muzzle disappear at the coarser scale.

FIGURE 5.4: The gradient magnitude can be estimated by smoothing an image and then
differentiating it. This is equivalent to convolving with the derivative of a smoothing
kernel. The extent of the smoothing affects the gradient magnitude; in this figure, we
show the gradient magnitude for the figure of a zebra at different scales. At the center,
gradient magnitude estimated using the derivatives of a Gaussian with σ = 1 pixel; and on
the right, gradient magnitude estimated using the derivatives of a Gaussian with σ = 2
pixel. Notice that large values of the gradient magnitude form thick trails.

5.2.1 Gradient-Based Edge Detectors

We think of sharp changes in image intensity as lying on curves in the image, which
are known as edges; the curves are made up of edge points. Many effects can cause
edges; worse, each effect that can cause an edge is not guaranteed to cause an edge.
For example, an object may happen to be the same intensity as the background, and
so the occluding contour will not result in an edge. This means that interpreting
edge points can be very difficult. Nonetheless, they are worth finding.

In the most common method for finding edges, we start by computing an



Section 5.2 Representing the Image Gradient 146

Form an estimate of the image gradient
Compute the gradient magnitude
While there are points with high gradient
magnitude that have not been visited
Find a start point that is a local maximum in the
direction perpendicular to the gradient
erasing points that have been checked

While possible, expand a chain through
the current point by:
1) predicting a set of next points, using

the direction perpendicular to the gradient
2) finding which (if any) is a local maximum

in the gradient direction
3) testing if the gradient magnitude at the

maximum is sufficiently large
4) leaving a record that the point and

neighbors have been visited
record the next point, which becomes the current point

end
end

Algorithm 5.1: Gradient-Based Edge Detection.

estimate of the gradient magnitude. The gradient magnitude is large along a thick
trail in the image (Figure 5.4), but occluding contours are curves, so we must obtain
a curve of the most distinctive points on this trail.

There is clearly no objective definition, and we can proceed by reasonable
intuition. The gradient magnitude can be thought of as a chain of low hills. Marking
local maxima would mark isolated points—the hilltops in the analogy. A better
criterion is to slice the gradient magnitude along the gradient direction, which
should be perpendicular to the edge, and mark the points along the slice where the
magnitude is maximal. This would get a chain of points along the crown of the hills
in our chain. Each point in the chain can be used to predict the location of the next
point, which will be in a direction roughly at right angles to the gradient at the
edge point (Figure 5.5). Forming these chains is called nonmaximum suppression.
It is relatively straightforward to identify the location of these chains at a resolution
finer than that of the pixel grid (Figure 5.5).

There are too many of these chains to come close to being a reasonable repre-
sentation of object boundaries. In part, this is because we have marked maxima of
the gradient magnitude without regard to how large these maxima are. It is more
usual to apply a threshold test to ensure that the maxima are greater than some
lower bound. This in turn leads to broken edge curves. The usual trick for dealing
with this is to use hysteresis; we have two thresholds and refer to the larger when
starting an edge chain and the smaller while following it. The trick often results in
an improvement in edge outputs. These considerations yield Algorithm 5.1. Most



Section 5.3 Finding Corners and Building Neighborhoods 147

Gradient

p

q

r

r

s
Gradient

FIGURE 5.5: Nonmaximum suppression obtains points where the gradient magnitude is
at a maximum along the direction of the gradient. The figure on the left shows how
we reconstruct the gradient magnitude. The dots are the pixel grid. We are at pixel q,
attempting to determine whether the gradient is at a maximum; the gradient direction
through q does not pass through any convenient pixels in the forward or backward direc-
tion, so we must interpolate to obtain the values of the gradient magnitude at p and r.
If the value at q is larger than both, q is an edge point. Typically, the magnitude values
are reconstructed with a linear interpolate, which in this case would use the pixels to the
left and right of p and r, respectively, to interpolate values at those points. On the right,
we sketch how to find candidates for the next edge point given that q is an edge point;
an appropriate search direction is perpendicular to the gradient, so that points s and t

should be considered for the next edge point. Notice that, in principle, we don’t need to
restrict ourselves to pixel points on the image grid, because we know where the predicted
position lies between s and t. Hence, we could again interpolate to obtain gradient values
for points off the grid.

current edgefinders follow these lines.

5.2.2 Orientations

As the light gets brighter or darker (or as the camera aperture opens or closes), the
image will get brighter or darker, which we can represent as a scaling of the image
value. The image I will be replaced with sI for some value s. The magnitude of
the gradient scales with the image, i.e., ||∇I || will be replaced with s||∇I ||. This
creates problems for edge detectors, because edge points may appear and disappear
as the image gradient values go above and below thresholds with the scaling. One
solution is to represent the orientation of image gradient, which is unaffected by
scaling (Figure 5.7). The gradient orientation field depends on the smoothing scale
at which the gradient was computed. Orientation fields can be quite characteristic
of particular textures (Figure 5.9), and we will use this important property to come
up with more complex features below.



Section 5.3 Finding Corners and Building Neighborhoods 148

FIGURE 5.6: Edge points marked on the pixel grid for the image shown on the top. The
edge points on the left are obtained using a Gaussian smoothing filter at σ one pixel,
and gradient magnitude has been tested against a high threshold to determine whether
a point is an edge point. The edge points at the center are obtained using a Gaussian
smoothing filter at σ four pixels, and gradient magnitude has been tested against a high
threshold to determine whether a point is an edge point. The edge points on the right
are obtained using a Gaussian smoothing filter at σ four pixels, and gradient magnitude
has been tested against a low threshold to determine whether a point is an edge point.
At a fine scale, fine detail at high contrast generates edge points, which disappear at the
coarser scale. When the threshold is high, curves of edge points are often broken because
the gradient magnitude dips below the threshold; for the low threshold, a variety of new
edge points of dubious significance are introduced.

5.3 FINDING CORNERS AND BUILDING NEIGHBORHOODS

Points worth matching are corners, because a corner can be localized, which means
we can tell where a corner is. This motivates the more general term interest point
often used to describe a corner. In this view, corners are interesting because we can
tell where they are. Place a small window over a patch of constant image value. If
you translate the window in any direction, the image in the window will not change
significantly. This means you cannot give a reliable estimate of the location of the
window from its gray levels. Similarly, if you translate a window up and down an
edge, the image in the window doesn’t change, so you cannot estimate location
along the edge (this observation used to be known as the aperture problem). But



Section 5.3 Finding Corners and Building Neighborhoods 149

FIGURE 5.7: The magnitude of the image gradient changes when one increases or decreases
the intensity. The orientation of the image gradient does not change; we have plotted every
10th orientation arrow, to make the figure easier to read. Note how the directions of the
gradient arrows are fixed, whereas the size changes. Philip Gatward c© Dorling Kindersley,
used with permission.

with a corner, any movement of the window changes the image in the window (i.e.,
the patch of image around the corner is not self-similar), so you can estimate the
location of the corner. Corners are not the only type of local image structure with
this property (Section 5.3.2)

There are many ways of representing a neighborhood around an interesting
corner. Methods vary depending on what might happen to the neighborhood. In
what follows, we will assume that neighborhoods are only translated, rotated, and
scaled (rather than, say, subjected to an affine or projective transformation), and
so without loss of generality we can assume that the patches are circular. We
must estimate the radius of this circle. There is technical machinery available for
the neighborhoods that result from more complex transformations, but it is more
intricate; see Section 5.6.

5.3.1 Finding Corners

One way to find corners is to find edges, and then walk the edges looking for
a corner. This approach can work poorly, because edge detectors often fail at
corners. At sharp corners or unfortunately oriented corners, gradient estimates are
poor because the smoothing region covers the corner.

At a corner, we expect two important effects. First, there should be large
gradients. Second, in a small neighborhood, the gradient orientation should swing
sharply. We can identify corners by looking at variations in orientation within a



Section 5.3 Finding Corners and Building Neighborhoods 150

5000

10000

15000

20000

25000

30

210

60

240

90

270

120

300

150

330

180 0

5000

10000

15000

30

210

60

240

90

270

120

300

150

330

180 0

FIGURE 5.8: The scale at which one takes the gradient affects the orientation field. We
show the overall trend of the orientation field by plotting a rose plot, where the size of a
wedge represents the relative frequency of that range of orientations. Left shows an image
of artists pastels at a fairly fine scale; here the edges are sharp, and so only a small set of
orientations occurs. In the heavily smoothed version on the right, all edges are blurred
and corners become smooth and blobby; as a result, more orientations appear in the rose
plot. Philip Gatward c© Dorling Kindersley, used with permission.

window. In particular, the matrix

H =
∑

window

{
(∇I)(∇I)T

}

≈
∑

window

{
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂x ∗ ∗I) (∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I)
(∂Gσ

∂x ∗ ∗I)(∂Gσ

∂y ∗ ∗I) (∂Gσ

∂y ∗ ∗I)(∂Gσ

∂y ∗ ∗I)

}

gives a good idea of the behavior of the orientation in a window. In a window of
constant gray level, both eigenvalues of this matrix are small because all the terms
are small. In an edge window, we expect to see one large eigenvalue associated with
gradients at the edge and one small eigenvalue because few gradients run in other
directions. But in a corner window, both eigenvalues should be large.

The Harris corner detector looks for local maxima of

det(H)− k(
trace(H)

2
)2

where k is some constant (Harris and Stephens 1988); we used 0.5 for Figure 5.10.
These local maxima are then tested against a threshold. This tests whether the
product of the eigenvalues (which is det(H)) is larger than the square of the average
(which is (trace(H)/2)2). Large, locally maximal values of this test function imply
the eigenvalues are both big, which is what we want. Figure 5.10 illustrates corners
found with the Harris detector. This detector is unaffected by translation and
rotation (Figure 5.11).



Section 5.3 Finding Corners and Building Neighborhoods 151

1000

2000

3000

4000

5000

30

210

60

240

90

270

120

300

150

330

180 0

5000

10000

15000

30

210

60

240

90

270

120

300

150

330

180 0

5000

10000

15000

20000

25000

30

210

60

240

90

270

120

300

150

330

180 0

2000

4000

6000

8000

10000

30

210

60

240

90

270

120

300

150

330

180 0

FIGURE 5.9: Different patterns have quite different orientation histograms. The left shows
rose plots and images for a picture of artists pastels at two different scales; the right shows
rose plots and images for a set of pastels arranged into a circular pattern. Notice how the
pattern of orientations at a particular scale, and also the changes across scales, are quite
different for these two very different patterns. Philip Gatward c© Dorling Kindersley, used
with permission.

5.3.2 Using Scale and Orientation to Build a Neighborhood

To turn a corner into an image neighborhood, we must estimate the radius of
the circular patch (equivalently, its scale). The radius estimate should get larger
proportionally when the image gets bigger. For example, in a 2x scaled version
of the original image, our method should double its estimate of the patch radius.
This property helps choose a method. We could center a blob of fixed appearance
(say, dark on a light background) on the corner, and then choose the scale to be
the radius of the best fitting blob. An efficient way to do this is to use a Laplacian
of Gaussian filter.

The Laplacian of a function in 2D is defined as

(∇2f)(x, y) =
∂2f

∂x2
+

∂2f

∂y2
.

It is natural to smooth the image before applying a Laplacian. Notice that the
Laplacian is a linear operator (if you’re not sure about this, you should check),
meaning that we could represent taking the Laplacian as convolving the image
with some kernel (which we write as K∇2). Because convolution is associative, we
have that

(K∇2 ∗ ∗(Gσ ∗ ∗I)) = (K∇2 ∗ ∗Gσ) ∗ ∗I = (∇2Gσ) ∗ ∗I.

The reason this is important is that, just as for first derivatives, smoothing an
image and then applying the Laplacian is the same as convolving the image with
the Laplacian of the kernel used for smoothing. Figure 5.12 shows the resulting
kernel for Gaussian smoothing; notice that this looks like a dark blob on a light
background.



Section 5.3 Finding Corners and Building Neighborhoods 152

FIGURE 5.10: The response of the Harris corner detector visualized for two detail regions
of an image of a box of colored pencils (center). Top left, a detail from the pencil points;
top center, the response of the Harris corner detector, where more positive values are
lighter. The top right shows these overlaid on the original image. To overlay this map,
we added the images, so that areas where the overlap is notably dark come from places
where the Harris statistic is negative (which means that one eigenvalue of H is large, the
other small). Note that the detector is affected by contrast, so that, for example, the point
of the mid-gray pencil at the top of this figure generates a very strong corner response, but
the points of the darker pencils do not, because they have little contrast with the tray. For
the darker pencils, the strong, contrasty corners occur where the lead of the pencil meets
the wood. The bottom sequence shows corners for a detail of pencil ends. Notice that
responses are quite local, and there are a relatively small number of very strong corners.
Steve Gorton c© Dorling Kindersley, used with permission.

Imagine applying a smoothed Laplacian operator to the image at the center
of the patch. Write I for the image, ∇2

σ for the smoothed Laplacian operator with
smoothing constant σ, ↑k I for the the image with size scaled by k, (xc, yc) for
the coordinates of the patch center, and (xkc, ykc) for the coordinates of the patch
center in the scaled image. Assume that upscaling is perfect, and there are no
effects resulting from the image grid. This is fair because effects will be small for
the scales of interest for us. Then, we have

(∇2
kσ ↑k I)(xc, yc) = (∇2

σI)(xkc, ykc)

(this is most easily demonstrated by reasoning about the image as a continuous
function, the operator as a convolution, and then using the change of variables
formula for integrals). Now choose a radius r for the circular patch centered at



Section 5.3 Finding Corners and Building Neighborhoods 153

FIGURE 5.11: The response of the Harris corner detector is unaffected by rotation and
translation. The top row shows the response of the detector on a detail of the image on
the far left. The bottom row shows the response of the detector on a corresponding
detail from a rotated version of the image. For each row, we show the detail window
(left); the response of the Harris corner detector, where more positive values are lighter
(center); and the responses overlaid on the image (right). Notice that responses are quite
local, and there are a relatively small number of very strong corners. To overlay this map,
we added the images, so that areas where the overlap is notably dark come from places
where the Harris statistic is negative (which means that one eigenvalue of H is large, the
other small). The arm and hammer in the top row match those in the bottom row; notice
how well the maps of Harris corner detector responses match, too. c© Dorling Kindersley,
used with permission.

0 1 2 3 4 5 6 7 8 9 10
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIGURE 5.12: The scale of a neighborhood around a corner can be estimated by finding a
local extremum, in scale of the response at that point to a smoothed Laplacian of Gaussian
kernel. On the left, a detail of a piece of fencing. In the center, a corner identified by
an arrow (which points to the corner, given by a white spot surrounded by a black ring).
Overlaid on this image is a Laplacian of Gaussian kernel, in the top right corner; dark
values are negative, mid gray is zero, and light values are positive. Notice that, using the
reasoning of Section 4.5, this filter will give a strong positive response for a dark blob on a
light background, and a strong negative response for a light blob on a dark background, so
by searching for the strongest response at this point as a function of scale, we are looking
for the size of the best-fitting blob. On the right, the response of a Laplacian of Gaussian
at the location of the corner, as a function of the smoothing parameter (which is plotted
in pixels). There is one extremal scale, at approximately 2 pixels. This means that there
is one scale at which the image neighborhood looks most like a blob (some corners have
more than one scale). c© Dorling Kindersley, used with permission.



Section 5.3 Finding Corners and Building Neighborhoods 154

Assume a fixed scale parameter k
Apply a corner detector to the image I
Initialize a list of patches
For each corner detected
Write (xc, yc) for the location of the corner
Compute the radius r for the patch at (xc, yc) as

r(xc, yc) =
argmax

σ
∇2

σI(xc, yc)

by computing ∇2
σI(xc, yc) for a variety of values of σ,

interpolating these values, and maximizing
Compute an orientation histogram H(θ) for gradient orientations within
a radius kr of (xc, yc).

Compute the orientation of the patch θp as

θp =
argmax

θ
H(θ). If there is more than

one theta that maximizes this histogram, make one copy of the
patch for each.

Attach (xc, yc, r, θp) to the list of patches for each copy

Algorithm 5.2: Obtaining Location, Radius and Orientation of Pattern Elements Using

a Corner Detector.

(xc, yc), such that

r(xc, yc) =
argmax

σ
∇2

σI(xc, yc)

(Figure 5.12). If the image is scaled by k, then this value of r will be scaled by
k too, which is the property we wanted. This procedure looks for the scale of the
best approximating blob. Notice that a Gaussian pyramid could be helpful here; we
could apply the same smoothed Laplacian operator to different levels of a pyramid
to get estimates of the scale.

We can generalize this method, too, to detect interest points. Write (x, σ) for
a triple consisting of a point and a scale around that point. We would like to detect
such triples in a way that (a) when the image is translated, the triples translate,
too and (b) when the image is scaled, the triples scale. This can be given a formal
meaning. If I ′(x) = I(λx+c) is a scaled and translated image, then for each point
(x, σ) in the list of neighborhoods for I, we want to have (λx + c, λσ) in the list
of neighborhoods for I ′. This property is referred to as covariance (although the
term invariance is widely but incorrectly used).

We have already established that, at a particular point (given by our corner
detector), we get a covariant scale estimate by choosing the local maximum in
scale of the response of the Laplacian of Gaussian. We can build an interest point
detector directly out of a Laplacian of Gaussian, by identifying local extrema in
position and scale of the operator (if this looks slow to you, keep in mind that a
Gaussian pyramid could speed up the process). Each such extremum is a triple
(x, σ) with the properties we want. These points are different from the points



Section 5.4 Describing Neighborhoods with SIFT and HOG Features 155

Assume a fixed scale parameter k
Find all locations and scales which are local extrema of
∇2

σI(x, y) in location (x, y) and scale σ forming a list of triples (xc, yc, r)
For each such triple
Compute an orientation histogram H(θ) for gradient orientations within
a radius kr of (xc, yc).

Compute the orientation of the patch θp as

θp =
argmax

θ
H(θ). If there is more than one θ that

maximizes this histogram, make one copy of the patch for each.
Attach (xc, yc, r, θp) to the list of patches for each copy

Algorithm 5.3: Obtaining Location, Radius, and Orientation of Pattern Elements

Using the Laplacian of Gaussian.

obtained by using a corner detector and then estimating scale. Corner detectors
respond to a corner structure at the point of interest; the Laplacian of Gaussian
looks for structures that look like a circular blob of a particular scale centered at
the point of interest. Corner detectors tend to produce neighborhoods where the
estimate of the center is very accurate, but the scale estimate is poor. These are
most useful in matching problems where we don’t expect the scale to change much.
Laplacian of Gaussian methods produce neighborhoods where the estimate of the
center is less accurate, but the scale estimate is better. These are most useful in
matching problems where large changes of scale might appear.

As we have seen, orientation histograms are a natural representation of im-
age patches. However, we cannot represent orientations in image coordinates (for
example, using the angle to the horizontal image axis), because the patch we are
matching to might have been rotated. We need a reference orientation so all angles
can be measured with respect to that reference. A natural reference orientation is
the most common orientation in the patch. We compute a histogram of the gradi-
ent orientations in this patch, and find the largest peak. This peak is the reference
orientation for the patch. If there are two or more peaks of the same magnitude, we
make multiple copies of the patch, one at each peak orientation. The whole process
is summarized in Algorithms 5.2 and 5.3. These estimates of patch neighborhoods
are remarkably well behaved (Figure 5.13).

5.4 DESCRIBING NEIGHBORHOODS WITH SIFT AND HOG FEATURES

We know the center, radius, and orientation of a set of an image patch, and must
now represent it. Orientations should provide a good representation. They are
unaffected by changes in image brightness, and different textures tend to have
different orientation fields. The pattern of orientations in different parts of the
patch is likely to be quite distinctive. Our representation should be robust to small
errors in the center, radius, or orientation of the patch, because we are unlikely to
estimate these exactly right.



Section 5.4 Describing Neighborhoods with SIFT and HOG Features 156

FIGURE 5.13: This figure shows local patches recovered using a method similar to that
described in the text (the details of the corner detector were different). These patches
are plotted as squares, rather than as circles. The location of the patch is the center of
the square. The reference orientation of the patch is given by the line segment in the
square, and the scale is the size of the square. The image on the right has been scaled,
rotated, and translated to produce the image on the left. Notice that (a) most of the
patches on the right have corresponding patches on the left and (b) the corresponding
patches are translated, rotated, and scaled versions of the original patches. You can check
this by looking at the grayscale version of the image. We have shown some of the many
corresponding pairs of patches (below; the large white arrows). This figure was originally
published as Figure 1 of “Object recognition from local scale-invariant features” D.G. Lowe,
Proc. IEEE ICCV, 1999 c© IEEE 1999.

You should think of these neighborhoods as being made up of pattern ele-
ments. In this case, the pattern elements will be orientations, but we will use this
trick again for other kinds of pattern element. These elements move around some-
what inside the neighborhood (because we might not get the center right), but if
most elements are there and are in about the right place, then the neighborhood
has the right properties. We must build features that can make it obvious whether
the pattern elements are present, and whether they are in about the right place,
but are not affected by some rearrangement.

The most obvious approach is to represent the neighborhood with a histogram
of the elements that appear there. This will tell us what is present, but it confuses
too many patterns with one another. For example, all neighborhoods with vertical
stripes will get mixed up, however wide the stripe. The natural approach is to take
histograms locally, within subpatches of the neighborhood. This leads to a very



Section 5.4 Describing Neighborhoods with SIFT and HOG Features 157
N
o
rm
alize,

th
resh

o
ld
,

th
en
ren
o
rm
alize

Neighborhood Grid

Subgrid

Subgrid

element

Gradient

estimate

Grid element

histograms

FIGURE 5.14: To construct a SIFT descriptor for a neighborhood, we place a grid over
the rectified neighborhood. Each grid is divided into a subgrid, and a gradient estimate
is computed at the center of each subgrid element. This gradient estimate is a weighted
average of nearby gradients, with weights chosen so that gradients outside the subgrid
cell contribute. The gradient estimates in each subgrid element are accumulated into
an orientation histogram. Each gradient votes for its orientation, with a vote weighted
by its magnitude and by its distance to the center of the neighborhood. The resulting
orientation histograms are stacked to give a single feature vector. This is normalized to
have unit norm; then terms in the normalized feature vector are thresholded, and the
vector is normalized again.

important feature construction.

5.4.1 SIFT Features

We can now compute a representation that is not affected by translation, rotation,
or scale. For each patch, we rectify the patch by translating the center to the
origin, rotating so the orientation direction lies along (say) the x-axis, and scaling
so the radius is one. Any representation we compute for this rectified patch will be
invariant to translations, rotations, and scale. Although we do not need to rectify
in practice—instead, we can work the rectification into each step of computing the
description—it helps to think about computing descriptions for a rectified patch.

A SIFT descriptor (for Scale Invariant Feature Transform) is constructed
out of image gradients, and uses both magnitude and orientation. The descriptor is
normalized to suppress the effects of change in illumination intensity. The descriptor
is a set of histograms of image gradients that are then normalized. These histograms
expose general spatial trends in the image gradients in the patch but suppress detail.
For example, if we estimate the center, scale, or orientation of the patch slightly
wrong, then the rectified patch will shift slightly. As a result, simply recording the
gradient at each point yields a representation that changes between instances of
the patch. A histogram of gradients will be robust to these changes. Rather than
histogramming the gradient at a set of sample points, we histogram local averages
of image gradients; this helps avoid noise.

The standard SIFT descriptor is obtained by first dividing the rectified patch



Section 5.4 Describing Neighborhoods with SIFT and HOG Features 158

into an n × n grid. We then subdivide each grid element into an m ×m subgrid
of subcells. At the center of each subcell, we compute a gradient estimate. The
gradient estimate is obtained as a weighted average of gradients around the center
of the cell, weighting each by (1− dx/sx)(1− dy/sy)/N , where dx (resp. dy) is the
x (resp. y) distance from the gradient to the center of the subcell, and sx (resp. sy)
is the x (resp. y) spacing between the subcell centers. This means that gradients
make contributions to more than one subcell, so that a small error in the location
of the center of the patch leads to a small change in the descriptor.

We now use these gradient estimates to produce histograms. Each grid ele-
ment has a q-cell orientation histogram. The magnitude of each gradient estimate
is accumulated into the histogram cell corresponding to its orientation; the magni-
tude is weighted by a Gaussian in distance from the center of the patch, using a
standard deviation of half the patch.

We concatenate each histogram into a vector of n×n× q entries. If the image
intensity were doubled, this vector’s length would double (because the histogram
entries are sums of gradient magnitudes). To avoid this effect, we normalize this
vector to have unit length. Very large gradient magnitude estimates tend to be
unstable (for example, they might result from a lucky arrangement of surfaces in
3D so that one faces the light directly and another points away from the light).
This means that large entries in the normalized vector are untrustworthy. To avoid
difficulties with large gradient magnitudes, each value in the normalized vector is
thresholded with threshold t, and the resulting vector is renormalized. The whole
process is summarized in Algorithm 5.4 and Figure 5.14. Standard parameter values
are n = 4, m = 4, q = 8, and t = 0.2.

Given an image I, and a patch with center (xc, yc),
radius r, orientation θ, and parameters n, m, q, k and t.

For each element of the n× n grid centered at (xc, yc) with spacing kr
Compute a weighted q element histogram of the averaged
gradient samples at each point of the m×m subgrid,
as in Algorithm 5.5.

Form an n× n× q vector v by concatenating the histograms.
Compute u = v/

√
v · v.

Form w whose i’th element wi is min(ui, t).
The descriptor is d = w/

√
w ·w.

Algorithm 5.4: Computing a SIFT Descriptor in a Patch Using Location, Orientation

and Scale.

There is now extensive experimental evidence that image patches that match
one another will have similar SIFT feature representations, and patches that do
not will tend not to. SIFT features can be used to represent the local color pattern
around a sample point, too. The natural procedure is to apply SIFT feature code
to a color representation. For example, one could compute SIFT features for each
of the hue, saturation, and value channels (HSV-SIFT; see Bosch et al. (2008)); for
the opponent color channels (OpponentSIFT, which uses R-G and B-Y; see van de



Section 5.4 Describing Neighborhoods with SIFT and HOG Features 159

Given a grid cell G for patch with center c = (xc, yc) and radius r

Create an orientation histogram
For each point p in an m×m subgrid spanning G
Compute a gradient estimate ∇I |p estimate at p
as a weighted average of ∇I, using bilinear weights centered at p.

Add a vote with weight ||∇I || 1
r
√
2π

exp
(
− ||p−c||2

r2

)
to the orientation histogram cell for the orientation of ∇I.

Algorithm 5.5: Computing a Weighted q Element Histogram for a SIFT Feature.

FIGURE 5.15: The HOG features for each the two images shown here have been visualized
by a version of the rose diagram of Figures 5.7–5.9. Here each of the cells in which the
histogram is taken is plotted with a little rose in it; the direction plotted is at right angles
to the gradient, so you should visualize the overlaid line segments as edge directions.
Notice that in the textured regions the edge directions are fairly uniformly distributed,
but strong contours (the gardener, the fence on the left; the vertical edges of the french
windows on the right) are very clear. This figure was plotted using the toolbox of Dollár
and Rabaud. Left: c© Dorling Kindersley, used with permission. Right: Geoff Brightling
c© Dorling Kindersley, used with permission.

Sande et al. (2010)); for normalised opponent color channels (C-SIFT, which uses
(R − G)/(R + G + B) and (B − Y )/(R + G + B); see Abdel Hakim and Farag
(2006); Geusebroek et al. (2001); or Burghouts and Geusebroek (2009)); and for
normalized color channels (rgSIFT, which uses R/(R+G+B) and G/(R+G+B);
see van de Sande et al. (2010)). Each of these features will behave slightly differently
when the light falling on an object changes, and each can be used in place of, or in
addition to, SIFT features.

5.4.2 HOG Features

The HOG feature (for Histogram Of Gradient orientations) is an important variant
of the SIFT feature. Again, we histogram gradient orientations in cells, but now
adjust the process to try and identify high-contrast edges. We can recover con-
trast information by counting gradient orientations with weights that reflect how
significant a gradient is compared to other gradients in the same cell. This means
that, rather than normalize gradient contributions over the whole neighborhood,
we normalize with respect to nearby gradients only. Normalization could occur on
a grid of cells that is different from the orientation subgrid, too. A single gradient



Section 5.5 Computing Local Features in Practice 160

location might contribute to several different histograms, normalized in somewhat
different ways; this means we will be relatively unlikely to miss boundaries that
have low contrast.

Write ||∇Ix || for the gradient magnitude at point x in the image. Write C for
the cell whose histogram we wish to compute and wx,C for the weight that we will
use for the orientation at x for this cell. A natural choice of weight is

wx,C =
||∇Ix ||∑

u∈C ||∇Iu ||
.

This compares the gradient magnitude to others in the cell, so that gradients that
are large compared to their neighbors get a large weight. This normalization process
means that HOG features are quite good at picking outline curves out of confusing
backgrounds (Figure 5.15).

5.5 COMPUTING LOCAL FEATURES IN PRACTICE

We have sketched the most important feature constructions, but there is a huge
range of variants. Performance is affected by quite detailed questions, such as the
extent of smoothing when evaluating orientations. Space doesn’t allow a detailed
survey of these questions (though there’s some material in Section 5.6), and the
answers seem to change fairly frequently, too. This means we simply can’t supply
accurate recipes for building each of these features.

Fortunately, at time of writing, there are several software packages that pro-
vide good implementations of each of these feature types, and of other variations.
Piotr Dollár and Vincent Rabaud publish a toolbox at http://vision.ucsd.

edu/~pdollar/toolbox/doc/index.html; we used this to generate several figures.
VLFeat is a comprehensive open-source package that provides SIFT features, vec-
tor quantization by a variety of methods, and a variety of other representations.
At time of writing, it could be obtained from http://www.vlfeat.org/. SIFT
features are patented (Lowe 2004), but David Lowe (the inventor) provides a refer-
ence object code implementation at http://www.cs.ubc.ca/~lowe/keypoints/.
Navneet Dalal, one of the authors of the original HOG feature paper, provides
an implementation at http://www.navneetdalal.com/software/. One variant
of SIFT is PCA-SIFT, where one uses principal components to reduce the di-
mension of the SIFT representation (Ke and Sukthankar 2004). Yan Ke, one
of the authors of the original PCA-SIFT paper, provides an implementation at
http://www.cs.cmu.edu/~yke/pcasift/. Color descriptor code, which computes
visual words based on various color SIFT features, is published by van de Sande et
al. at http://koen.me/research/colordescriptors/.

5.6 NOTES

Edges

There is a huge edge detection literature. The earliest paper of which we are aware
is Julez (1959) (yes, 1959!). Those wishing to be acquainted with the early literature
in detail should start with a 1975 survey by Davis (1975); Herskovits and Binford
(1970); Horn (1971); and Hueckel (1971), who models edges and then detects the
model. There are many optimality criteria for edge detectors, and rather more

http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://vision.ucsd.edu/~pdollar/toolbox/doc/index.html
http://www.vlfeat.org/
http://www.cs.ubc.ca/~lowe/keypoints/
http://www.navneetdalal.com/software/
http://www.cs.cmu.edu/~yke/pcasift/
http://koen.me/research/colordescriptors/


Section 5.6 Notes 161

“optimal” edge detectors. The key paper in this literature is by Canny (1986);
significant variants are due to Deriche (1987) and to Spacek (1986). Faugeras’
textbook contains a detailed and accessible exposition of the main issues Faugeras
(1993). At the end of the day, most variants boil down to smoothing the image
with something that looks a lot like a Gaussian before measuring the gradient. All
edge detectors behave badly at corners; only the details vary.

Object boundaries are not the same as sharp changes in image values. There
is a vast literature seeking to build boundary detectors; we can provide only some
pointers. The reader could start with Bergholm (1987), Deriche (1990), Elder and
Zucker (1998), Fleck (1992), Kube and Perona (1996), Olson (1998), Perona and
Malik (1990b), or Torre and Poggio (1986). The best current boundary detector
takes quite a lot of local information into account, and is described in Section 17.1.3.

The edges that our edge detectors respond to are sometimes called step edges
because they consist of a sharp, “discontinuous” change in value that is sometimes
modeled as a step. A variety of other forms of edge have been studied. The
most commonly cited example is the roof edge, which consists of a rising segment
meeting a falling segment, rather like some of the reflexes that can result from the
effects of interreflections. Another example that also results from interreflections
is a composite of a step and a roof. It is possible to find these phenomena by
using essentially the same steps as outlined before (find an “optimal” filter, and do
nonmaximum suppression on its outputs) (Canny 1986, Perona and Malik 1990a).
In practice, this is seldom done. There appear to be two reasons. First, there is no
comfortable basis in theory (or practice) for the models that are adopted. What
particular composite edges are worth looking for? The easy answer—those for which
optimal filters are reasonably easy to derive—is most unsatisfactory. Second, the
semantics of roof edges and more complex composite edges is even vaguer than that
of step edges. There is little notion of what one would do with roof edge once it
had been found.

Corners, Neighborhoods, and Interest Points

The first corner detector we know of is due to Moravec (1980). Corner detectors
are now very well studied (there is an excellent Wikipedia page that describes the
various detectors and their relations at http://en.wikipedia.org/wiki/Corner_
detection). The Harris and Stephens detector we described remains competitive.
Important variants look at different eigenvalue criteria (Tomasi and Shi 1994);
differential geometric criteria (Wang and Brady 1994); multiple scales (Lindeberg
1993); local self-similarity measures (Smith and Brady 1997, Trajkovic and Hedley
1998); and machine learning (Rosten et al. 2010).

For simplicity of exposition, we have elided corners and interest points (the
other name under which corners are often studied). Interest points are usually
thought of as a corner (or something like it) together with a neighborhood, covariant
under some form of transformation. We like to see detecting the points and estimat-
ing their neighborhoods as distinct processes, though for strict covariance both the
detector and the neighborhood estimator must be covariant. Various detectors are
scale covariant (Mikolajczyk and Schmid 2002); affine covariant (Mikolajczyk and
Schmid 2002); and illumination robust (Gevrekci and Gunturk 2009). The idea can

http://en.wikipedia.org/wiki/Corner_detection
http://en.wikipedia.org/wiki/Corner_detection


Section 5.6 Notes 162

be extended to spatio-temporal representations (Willems et al. 2008, Laptev 2005).
There are now detailed experimental studies of the performance of interest point
detectors (Schmid et al. 2000, Privitera and Stark 1998, Mikolajczyk et al. 2005).

Descriptors

The tricks to describing neighborhoods seem to be: describe a local texture pattern
within a covariant neighborhood; work with orientations, because they’re illumi-
nation invariant; and use histograms to suppress spatial detail, working with more
detail at the center than at the boundary. These tricks appear in numerous papers
in a variety of forms (e.g., Schmid and Mohr (1997); Belongie et al. (2001); Berg et
al. (2005)), but SIFT and Hog features now dominate. Comparisons between local
descriptors seem to support this dominance (Mikolajczyk and Schmid 2005).

PROBLEMS

5.1. Each pixel value in 500 × 500 pixel image I is an independent, normally dis-
tributed random variable with zero mean and standard deviation one. Esti-
mate the number of pixels that, where the absolute value of the x derivative,
estimated by forward differences (i.e., |Ii+1,j − Ii,j|, is greater than 3.

5.2. Each pixel value in 500 × 500 pixel image I is an independent, normally dis-
tributed random variable with zero mean and standard deviation one. I is
convolved with the 2k + 1× 2k + 1 kernel G. What is the covariance of pixel
values in the result? There are two ways to do this; on a case-by-case basis
(e.g., at points that are greater than 2k+1 apart in either the x or y direction,
the values are clearly independent) or in one fell swoop. Don’t worry about
the pixel values at the boundary.

5.3. We have a camera that can produce output values that are integers in the range
from 0 to 255. Its spatial resolution is 1024 by 768 pixels, and it produces 30
frames a second. We point it at a scene that, in the absence of noise, would
produce the constant value 128. The output of the camera is subject to noise
that we model as zero mean stationary additive Gaussian noise with a standard
deviation of 1. How long must we wait before the noise model predicts that
we should see a pixel with a negative value? (Hint: You may find it helpful
to use logarithms to compute the answer as a straightforward evaluation of
exp(−1282/2) will yield 0; the trick is to get the large positive and large
negative logarithms to cancel.)

5.4. Show that for a 2× 2 matrix H, with eigenvalues λ1, λ2
(a) detH = λ1λ2
(b) traceH = λ1 + λ2

PROGRAMMING EXERCISES

5.5. The Laplacian of a Gaussian looks similar to the difference between two Gaus-
sians at different scales. Compare these two kernels for various values of the
two scales. Which choices give a good approximation? How significant is the
approximation error in edge finding using a zero-crossing approach?

5.6. Obtain an implementation of Canny’s edge detector (you could try the vision
home page; MATLAB also has an implementation in the image processing
toolbox), and make a series of images indicating the effects of scale and contrast
thresholds on the edges that are detected. How easy is it to set up the edge
detector to mark only object boundaries? Can you think of applications where



Section 5.6 Notes 163

this would be easy?
5.7. It is quite easy to defeat hysteresis in edge detectors that implement it; essen-

tially, one sets the lower and higher thresholds to have the same value. Use this
trick to compare the behavior of an edge detector with and without hysteresis.
There are a variety of issues to look at:
(a) What are you trying to do with the edge detector output? It is some-

times helpful to have linked chains of edge points. Does hysteresis help
significantly here?

(b) Noise suppression: We often wish to force edge detectors to ignore some
edge points and mark others. One diagnostic that an edge is useful is high
contrast (it is by no means reliable). How reliably can you use hysteresis
to suppress low-contrast edges without breaking high-contrast edges?

5.8. Build a Harris corner detector; for each corner, estimate scale and orientation
as we have described. Now test how well your list of neighborhoods behaves
under rotation, translation, and scale of the image. You can do this by a simple
exercise in matching. For each test image, prepare a rotated, translated, and
scaled version of that image. Now you know where each neighborhood should
appear in the new version of the image — check how often something of the
right size and orientation appears in the right place. You should find that
rotation and translation cause no significant problems, but large scale changes
can be an issue.



C H A P T E R 6

Texture

Texture is a phenomenon that is widespread, easy to recognise, and hard to define.
Typically, whether an effect is referred to as texture or not depends on the scale
at which it is viewed. A leaf that occupies most of an image is an object, but the
foliage of a tree is a texture. Views of large numbers of small objects are often best
thought of as textures. Examples include grass, foliage, brush, pebbles, and hair.
Many surfaces are marked with orderly patterns that look like large numbers of
small objects. Examples include the spots of animals such as leopards or cheetahs;
the stripes of animals such as tigers or zebras; the patterns on bark, wood, and
skin. Textures tend to show repetition: (roughly!) the same local patch appears
again and again, though it may be distorted by a viewing transformation.

Texture is important, because texture appears to be a very strong cue to
object identity. Most modern object recognition programs are built around texture
representation machinery of one form or another. This may be because texture
is also a strong cue to material properties: what the material that makes up an
object is like. For example, texture cues can be used to tell tree bark (which is
moderately hard and rough) from bare metal (which is hard, smooth, and shiny).
People seem to be able to predict some mechanical properties of materials from their
appearance. For example, often you can distinguish somewhat viscous materials,
like hand cream, from highly viscous materials, like cream cheese, by eye (Adelson
2001). Material properties are correlated to the identity of objects, but they are
not the same thing. For example, although hammers are commonly made of metal,
a plastic hammer, a metal hammer, and a wooden hammer are all still hammers.

There are three main kinds of texture representation. Local texture represen-
tations encode the texture very close to a point in an image. These representations
can’t be comprehensive, because they look at a small piece of the image. However,
they are very useful in image segmentation, where we must break an image into
large, useful components, usually called regions (the details of what makes a re-
gion useful are deferred to Chapter 9). One reasonable requirement is that points
inside a region look similar to one another, and different from points outside the
region, and segmentation algorithms need a description of the appearance close to
the point to impose this requirement. Local texture representations are described
in Section 6.1.

Other problems require a description of the texture within an image domain.
We refer to such representations as pooled texture representations. For example,
texture recognition is the problem of determining what texture is represented
by a patch in an image. Here we have a domain (the patch) and we want a repre-
sentation of the overall texture in the domain. Similarly, in material recognition,
one must decide what material is represented by a patch in the image. Section 6.2
describes methods for building pooled texture representations.

Data-driven texture representations model a texture by a procedure that can

164



165

FIGURE 6.1: Although texture is difficult to define, it has some important and valuable
properties. In this image, there are many repeated elements (some leaves form repeated
“spots”; others, and branches, form “bars” at various scales; and so on). Our perception
of the material is quite intimately related to the texture (what would the surface feel like
if you ran your fingers over it? what is soggy? what is prickly? what is smooth?). Notice
how much information you are getting about the type of plants, their shape, the shape
of free space, and so on, from the textures. Geoff Brightling c© Dorling Kindersley, used
with permission.

generate a textured region from an example. These representations are not appro-
priate for segmentation or recognition applications, but are tremendously valuable
for texture synthesis. In this problem, we must create regions of texture, for exam-
ple, to fill holes in images (Section 6.3).

The texture on a surface can be a strong cue to its shape. If the texture is
“the same” over the surface, then deformation of the texture from point to point
can be a cue to the shape of the surface. For example, if we have a perspective view
of an inclined plane with spots on it, the spots will be smaller closer to the horizon
in the image. This can be used to recover the inclination of the plane. Similarly,
on a curved surface, the foreshortening of texture elements gives some information
about the local inclination of the surface. Recovering surface orientation or surface
shape from an image texture is known as shape from texture; solutions to this



Section 6.1 Local Texture Representations Using Filters 166

Fabric

Stone

FIGURE 6.2: Typically, different materials display different image textures. These are
example images from a collection of 1,000 material images, described in by Sharan et al.
(2009); there are 100 images in each of the ten categories, including the two categories
shown here (fabric and stone). Notice how (a) the textures vary widely, even within a
material category; and (b) different materials seem to display quite different textures.
This figure shows elements of a database collected by C. Liu, L. Sharan, E. Adelson, and
R. Rosenholtz, and published at http: // people. csail. mit. edu/ lavanya/ research_

sharan. html . Figure by kind permission of the collectors.

problem tend to use straightforward representations of texture together with strong
constraints on the overall structure of the texture (Section 6.5).

6.1 LOCAL TEXTURE REPRESENTATIONS USING FILTERS

Image textures generally consist of repeated elements; an element is sometimes
called a texton. For example, some of the fabric textures in Figure 6.2 consist of
triangles of wool formed by the knit pattern. Similarly, some stone textures in that
figure consist of numerous, near-circular, gray blobs. It is natural to represent a
texture with some description of (a) what the textons are and (b) how they repeat.
Notice that it is difficult to be precise about what a texton is, because if a large
pattern repeats frequently, then so do its parts. This presents no major problems,
because we do not need to extract textons accurately. Instead, what we need are
representations that differ in ways that are easy to observe when two textures are
significantly different. We can do this by assuming that all textons are made of

http://people.csail.mit.edu/lavanya/research_sharan.html
http://people.csail.mit.edu/lavanya/research_sharan.html


Section 6.1 Local Texture Representations Using Filters 167

Image
Filter responses

at various orientations

and scales

Rectified images Summaries

SummarizeRectify

FIGURE 6.3: Local texture representations can be obtained by filtering an image with a
set of filters at various scales, and then preparing a summary. Summaries ensure that, at
a pixel, we have a representation of what texture appears near that pixel. The filters are
typically spots and bars (see Figure 6.4). Filter outputs can be enhanced by rectifying
them (so that positive and negative responses do not cancel), then computing a local
summary of the rectified filter outputs. Rectifying by taking the absolute value means
that we do not distinguish between light spots on a dark background and dark spots
on a light background; the alternative, half-wave rectification (described in the text),
preserves this distinction at the cost of a fuller representation. One can summarize either
by smoothing (which will tend to suppress noise, as in the schematic example above) or
by taking the maximum over a neighborhood. Compare this figure to Figure 6.7, which
shows a representation for a real image.

generic subelements, such as spots and bars. We find subelements with filters, then
represent each point in the image with a summary of the pattern of subelements
nearby. This will work because the parts of a texton repeat in the same way that
the texton does.

This suggests representing image textures in terms of the response of a collec-
tion of filters. Each filter is a detector for a subelement. The collection of different
filters would represent subelements—spots and bars are usual—at a collection of
scales (to identify bigger or smaller subelements). We can now represent each point
in an image by the vector of filter outputs at that point. This vector gives a sense
of how much the neighborhood around that point looks like each subelement at
each scale (Figure 6.3).

6.1.1 Spots and Bars

But what filters should we use? There is no canonical answer. A variety of answers
have been tried. By analogy with the human visual cortex, one could use some
spot filters, some oriented edge filters, and some oriented bar filters at different
orientations and scales (Figure 6.4). This seems like a natural choice, because these
are in some sense “minimal” subelements. It would be hard to have subelements
of patterns with less structure than a spot, and it would be hard to have oriented
subelements with less structure than an edge.



Section 6.1 Local Texture Representations Using Filters 168

FIGURE 6.4: Left shows a set of 48 oriented filters used for expanding images into a series
of responses for texture representation. Each filter is shown on its own scale, with zero
represented by a mid-gray level, lighter values being positive, and darker values being
negative. The left three columns represent edges at three scales and six orientations; the
center three columns represent stripes; and the right two represent two classes of spots
(with and without contrast at the boundary) at different scales. This is the set of filters
used by Leung and Malik (2001). Right shows a set of orientation-independent filters,
used by Schmid (2001), using the same representation (there are only 13 filters in this set,
so there are five empty slots in the image). The orientation-independence property means
that these filters look like complicated spots.

In some applications, we would like texture recognition performance to be
unaffected if the texture sample is rotated. This is difficult to achieve with oriented
filters, because one might need to sample the orientations very finely. An alternative
to using oriented filters is to use filters that are orientation-independent, all of which
must look like complicated spots (Figure 6.4).

6.1.2 From Filter Outputs to Texture Representation

Assume we have an image I. A set of filter output maps (which would have the
form Fi ∗∗I for different filters Fi) is not, in itself, a representation of texture. The
representation tells us what the window around a pixel looks like; but in a texture,
what counts is not only what’s at a pixel, but also what’s nearby. For example, a
field of yellow flowers may consist of many small yellow spots with some vertical
green bars. What’s important is not just the fact that a particular pixel looks a
lot like a spot, but also that near the pixel there are no other spots, but some
bars. This means the texture representation at a point should involve some kind of
summary of nearby filter outputs, rather than just the filter outputs themselves.

The first step in building a reasonable summary is to notice that the summary
must represent a neighborhood around a pixel that is rather bigger than the scale
of the filter. To know whether the neighborhood around a pixel is “spotty,” it is
not enough to know that there is one strong spot in it; there should be many spots,
each quite small compared to the size of the patch. However, it is important not to
look at too large a neighborhood, or else the representation will not change much
as we move across the image (because the neighborhoods overlap). The particular



Section 6.1 Local Texture Representations Using Filters 169

FIGURE 6.5: Filter responses for the oriented filters of Figure 6.4, applied to an image of
a wall. At the center, we show the filters for reference (but not to scale, because they
would be too small to resolve). The responses are laid out in the same way that the filters
are (i.e., the response map on the top left corresponds to the filter on the top left, and
so on). For reference, we show the image at the left. The image of the wall is small, so
that the filters respond to structures that are relatively large; compare with Figure 6.6,
which shows responses to a larger image of the wall, where the filters respond to smaller
structures. These are filters of a fixed size, applied to a small version of the image, and
so are equivalent to large-scale filters applied to the original version. Notice the strong
response to the vertical and horizontal lines of mortar between the bricks, which are at
about the scale of the bar filters. All response values are shown on the same intensity
scale: lighter is positive, darker is negative, and mid-gray is zero.

arrangement of these spots within a neighborhood doesn’t matter all that much,
because the patch is small. This suggests that some form of average could give a
fair description of what is going on; an alternative is to take the strongest response.
We must process the responses before we summarize them. For example, a light
spot filter will give a positive response to a light spot on a dark background, and a
negative response to a dark spot on a light background. As a result, if we simply
average filter responses over a patch, then a patch containing dark and light spots
might record the same near-zero average as a patch containing no spots. This would
be misleading.

We could compute the absolute value for each output map, to get |Fi ∗ ∗I |.
This does not distinguish between light spots on a dark background and dark spots
on a light background. An alternative, which does preserve this distinction, is to
report both max(0,Fi∗∗I(x, y)) and max(0,−Fi∗∗I(x, y)) (this is half-wave rectifi-



Section 6.1 Local Texture Representations Using Filters 170

FIGURE 6.6: Filter responses for the oriented filters of Figure 6.4, applied to an image
of a wall. At the center, we show the filters for reference (not to scale). The responses
are laid out in the same way that the filters are (i.e., the response map on the top left
corresponds to the filter on the top left, and so on). For reference, we show the image at
the left. Although there is some response to the vertical and horizontal lines of mortar
between the bricks, it is not as strong as the coarse scale (Figure 6.5); there are also quite
strong responses to texture on individual bricks. All response values are shown on the
same intensity scale: lighter is positive, darker is negative, and mid-gray is zero.

cation), which yields two maps per filter. We can now summarize the neighborhood
around a pixel by computing a Gaussian weighted average (equivalently, convolving
with a Gaussian). The scale of this Gaussian depends on the scale of the filter for
the map; typically, it is around twice the scale of the filter.

6.1.3 Local Texture Representations in Practice

Several different sets of filters have been used for texture representation. The Visual
Geometry Group at Oxford publishes code for different sets of filters, written by
Manik Varma and by Jan-Mark Guesebroek, at http://www.robots.ox.ac.uk/

~vgg/research/texclass/filters.html; this is part of an excellent web page on
texture classification (http://www.robots.ox.ac.uk/~vgg/research/texclass/
index.html). One important part of filtering an image with a large number
of filters is doing so quickly; recent code for this purpose, by Jan-Mark Guese-
broek, can be found at http://www.science.uva.nl/research/publications/

2003/GeusebroekTIP2003/. Some sets of oriented filters allow fast, efficient rep-
resentations and have good translation and rotation properties. One such set is

http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/filters.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/index.html
http://www.robots.ox.ac.uk/~vgg/research/texclass/index.html
http://www.science.uva.nl/research/publications/2003/GeusebroekTIP2003/
http://www.science.uva.nl/research/publications/2003/GeusebroekTIP2003/


Section 6.2 Pooled Texture Representations by Discovering Textons 171

Rectified Summarized

Light stripes

Dark background

Dark stripes

Light background

Positive response

Negative response

Vertical stripes

Image

Horizontal stripes

Light stripes

Dark background

Dark stripes

Light background

Positive response

Negative response

FIGURE 6.7: Filter-based texture representations look for pattern subelements such as
oriented bars. The brick image on the left is filtered with an oriented bar filter (shown as
a tiny inset on the top left of the image at full scale) to detect bars, yielding stripe responses
(center left; negative is dark, positive is light, mid-gray is zero). These are rectified (here
we use half-wave rectification) to yield response maps (center right; dark is zero, light
is positive). In turn, these are summarized (here we smoothed over a neighborhood twice
the filter width) to yield the texture representation on the right. In this, pixels that have
strong vertical bars nearby are light, and others are dark; there is not much difference
between the dark and light vertical structure for this image, but there is a real difference
between dark and light horizontal structure.

the steerable pyramid of Simoncelli and Freeman (1995a). Code for these filters is
available at http://www.cns.nyu.edu/~eero/steerpyr/.

6.2 POOLED TEXTURE REPRESENTATIONS BY DISCOVERING TEXTONS

A texture is a set of textons that repeat in some way. We could find these textons
by looking for image patches that are common. An alternative is to find sets of
texton subelements—that is, vectors of filter outputs—that are common (if textons
are repeated, then so are their subelements). There are two important difficulties
in finding image patches or vectors of filter outputs that commonly occur together.
First, these representations of the image are continuous. We cannot simply count
how many times a particular pattern occurs, because each vector is slightly different.
Second, the representation is high dimensional in either case. A patch around a

http://www.cns.nyu.edu/~eero/steerpyr/


Section 6.2 Pooled Texture Representations by Discovering Textons 172

Obtain a set of n filters representing subelements, at multiple scales
Apply each filter Fi to the image
For each filter response map Fi ∗ ∗I, compute

max(0,Fi ∗ ∗I(x, y)) and max(0,−Fi ∗ ∗I(x, y))
For each of the 2n rectified maps, compute local summaries

either by convolving with a Gaussian of scale approximately twice the
scale of the base filter, or by taking the maximum value over that radius.

Algorithm 6.1: Local Texture Representation Using Filters.

pixel might need hundreds of pixels to represent it well; similarly, hundreds of
different filters might be needed to represent the image at a pixel. This means we
cannot build a histogram directly, either, because it will have an unmanageable
number of cells.

6.2.1 Vector Quantization and Textons

Vector quantization is a strategy to deal with these difficulties. Vector quantization
is a way of representing vectors in a continuous space with numbers from a set
of fixed size. We first build a set of clusters out of a training set of vectors; this
set of clusters is often thought of as a dictionary. We now replace any new vector
with the cluster center closest to that vector. This strategy applies to vectors quite
generally, though we will use it for texture representation. Many different clusterers
can be used for vector quantization, but it is most common to use k-means or one
of its variants. For concreteness, we describe this algorithm in Section 6.2.2, but
the other clusterers of Chapter 9 would apply.

We can now represent a collection of vectors as a histogram of cluster centers.
This general recipe can be applied to texture representation by describing each
pixel in the domain with some vector, then vector quantizing and describing the
domain with the histogram of cluster centers. Natural vectors to use are: the local
summary representation described in Section 6.1; a vector of unprocessed filter
outputs, using filters appropriate for a local texture representation (Figure 6.9); or
even just a vector obtained by reshaping the pixels from a fixed-size patch around
the image pixel (Figure 6.10). In each case, we are building a representation in
terms of commonly repeated pattern elements.

6.2.2 K-means Clustering for Vector Quantization

We could use any clustering method to vector quantize (Chapter 9 describes a
number of different clustering methods in the context of segmentation). However,
by far the most common method used is k-means clustering. Assume we have a set
of data items that we wish to cluster. We now assume that we know how many
clusters there are in the data, which we write k. This is equivalent to fixing the
number of values we wish to quantize to. Each cluster is assumed to have a center;
we write the center of the ith cluster as ci. The jth data item to be clustered
is described by a feature vector xj . In our case, these items are vectors of filter



Section 6.2 Pooled Texture Representations by Discovering Textons 173

Dictionary

Cluster

1

2

3

2

31

3

Replace

with

closest

cluster

center Histogram

L
ea
rn
in
g
a
d
ic
ti
o
n
ar
y

R
ep
re
se
n
ti
n
g
a
re
g
io
n

FIGURE 6.8: There are two steps to building a pooled texture representation for a texture
in an image domain. First, one builds a dictionary representing the range of possible pat-
tern elements, using a large number of texture patches. This is usually done in advance, us-
ing a training data set of some form. Second, one takes the patches inside the domain, vec-
tor quantizes them by identifying the number of the closest cluster center, then computes
a histogram of the different cluster center numbers that occur within a region. This his-
togram might appear to contain no spatial information, but this is a misperception. Some
frequent elements in the histogram are likely to be textons, but others describe common
ways in which textons lie close to one another; this is a rough spatial cue. This figure shows
elements of a database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and
published at http: // people. csail. mit. edu/ lavanya/ research_ sharan. html . Fig-
ure by kind permission of the collectors.

Build a dictionary:
Collect many training example textures
Construct the vectors x for relevant pixels; these could be
a reshaping of a patch around the pixel, a vector of filter outputs
computed at the pixel, or the representation of Section 6.1.

Obtain k cluster centers c for these examples

Represent an image domain:
For each relevant pixel i in the image

Compute the vector representation xi of that pixel
Obtain j, the index of the cluster center cj closest to that pixel
Insert j into a histogram for that domain

Algorithm 6.2: Texture Representation Using Vector Quantization.

http://people.csail.mit.edu/lavanya/research_sharan.html


Section 6.2 Pooled Texture Representations by Discovering Textons 174

FIGURE 6.9: Pattern elements can be identified by vector quantizing vectors of filter
outputs, using k-means. Here we show the top 50 pattern elements (or textons), obtained
from all 1,000 images of the collection of material images described in Figure 6.2. These
were filtered with the complete set of oriented filters from Figure 6.4. Each subimage
here illustrates a cluster center. For each cluster center, we show the linear combination
of filter kernels that would result in the set of filter responses represented by the cluster
center. For some cluster centers, we show the 25 image patches in the training set whose
filter representation is closest to the cluster center. This figure shows elements of a
database collected by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz, and published
at http: // people. csail. mit. edu/ lavanya/ research_ sharan. html . Figure by kind
permission of the collectors.

responses observed at image locations.
Because pattern elements repeat, and so are common, we can assume that

most data items are close to the center of their cluster. This suggests that we
cluster the data by minimizing the the objective function

Φ(clusters, data) =
∑

i∈clusters

⎧⎨
⎩ ∑

j∈ith cluster

(xj − ci)
T (xj − ci)

⎫⎬
⎭ .

Notice that if we know the center for each cluster, it is easy to determine which
cluster is the best choice for each point. Similarly, if the allocation of points to
clusters is known, it is easy to compute the best center for each cluster. However,
there are far too many possible allocations of points to clusters to search this space
for a minimum. Instead, we define an algorithm that iterates through two activities:

http://people.csail.mit.edu/lavanya/research_sharan.html


Section 6.2 Pooled Texture Representations by Discovering Textons 175

FIGURE 6.10: Pattern elements can also be identified by vector quantizing vectors obtained
by reshaping an image window centered on each pixel. Here we show the top 50 pattern
elements (or textons), obtained using this strategy from all 1,000 images of the collection
of material images described in Figure 6.2. Each subimage here illustrates a cluster center.
For some cluster centers, we show the closest 25 image patches. To measure distance, we
first subtracted the average image intensity, and we weighted by a Gaussian to ensure that
pixels close to the center of the patch were weighted higher than those far from the center.
This figure shows elements of a database collected by C. Liu, L. Sharan, E. Adelson, and
R. Rosenholtz, and published at http: // people. csail. mit. edu/ lavanya/ research_

sharan. html . Figure by kind permission of the collectors.

• Assume the cluster centers are known and, allocate each point to the closest
cluster center.

• Assume the allocation is known, and choose a new set of cluster centers. Each
center is the mean of the points allocated to that cluster.

We then choose a start point by randomly choosing cluster centers, and then iterate
these stages alternately. This process eventually converges to a local minimum of
the objective function (the value either goes down or is fixed at each step, and
it is bounded below). It is not guaranteed to converge to the global minimum of
the objective function, however. It is also not guaranteed to produce k clusters,
unless we modify the allocation phase to ensure that each cluster has some nonzero
number of points. This algorithm is usually referred to as k-means (summarized in

http://people.csail.mit.edu/lavanya/research_sharan.html
http://people.csail.mit.edu/lavanya/research_sharan.html


Section 6.3 Synthesizing Textures and Filling Holes in Images 176

Algorithm 6.3). It is possible to search for an appropriate number of clusters by
applying k-means for different values of k and comparing the results; we defer a
discussion of this issue until Section 10.7.

Choose k data points to act as cluster centers
Until the cluster centers change very little

Allocate each data point to cluster whose center is nearest.
Now ensure that every cluster has at least
one data point; one way to do this is by
supplying empty clusters with a point chosen at random from
points far from their cluster center.

Replace the cluster centers with the mean of the elements
in their clusters.

end

Algorithm 6.3: Clustering by K-Means.

6.3 SYNTHESIZING TEXTURES AND FILLING HOLES IN IMAGES

Many different kinds of user want to remove things from images or from video. Art
directors might like to remove unattractive telephone wires; restorers might want to
remove scratches or marks; there’s a long history of government officials removing
people with embarrassing politics from publicity pictures (see the fascinating pic-
tures in King (1997)); and home users might wish to remove a relative they dislike
from a family picture. All these users must then find something to put in place of
the pixels that were removed. Ideally, a program would create regions of texture
that fit in and look convincing, using either other parts of the original image, or
other images.

There are other important applications for such a program. One is to produce
large quantities of texture for digital artists to apply to object models. We know
that good textures make models look more realistic (it’s worth thinking about why
this should be true). Tiling small texture images tends to work poorly, because it
can be hard to obtain images that tile well. The borders have to line up properly,
and even when they do, the resulting periodic structure can be annoying.

6.3.1 Synthesis by Sampling Local Models

As Efros and Leung (1999) point out, an example texture can serve as a probability
model for texture synthesis (Figure 6.11). Assume for the moment that we know
every pixel in the synthesized image, except one. To obtain a probability model for
the value of that pixel, we could match a neighborhood of the pixel to the example
image. Every matching neighborhood in the example image has a possible value for
the pixel of interest. This collection of values is a conditional histogram for the pixel
of interest. By drawing a sample uniformly and at random from this collection, we
obtain the value that is consistent with the example image.

We must now take some form of neighborhood around the pixel of interest,



Section 6.3 Synthesizing Textures and Filling Holes in Images 177

compare it to neighborhoods in the example image, and select some of these to form
a set of example values. The size and shape of this neighborhood is significant,
because it codes the range over which pixels can affect one another’s values directly
(see Figure 6.12). Efros et al. use a square neighborhood, centered at the pixel of
interest.

Choose a small square of pixels at random from the example image
Insert this square of values into the image to be synthesized
Until each location in the image to be synthesized has a value
For each unsynthesized location on
the boundary of the block of synthesized values
Match the neighborhood of this location to the
example image, ignoring unsynthesized
locations in computing the matching score

Choose a value for this location uniformly and at random
from the set of values of the corresponding locations in the
matching neighborhoods

end
end

Algorithm 6.4: Non-parametric Texture Synthesis.

The neighborhoods we select will be similar to the image example in some
sense. A good measure of similarity between two image neighborhoods can be
measured by forming the sum of squared differences (or ssd) of corresponding pixel
values. We assume that the missing pixel is at the center of the patch to be
synthesized, which we write S. We assume the patch is square, and adjust the
indexes of the patch to run from −n to n in each direction. The sum of squared
differences between this patch and an image patch P of the same size is given by∑

(i,j)∈patch,(i,j) �=(0,0)

(Aij − Bij)
2.

The notation implies that because we don’t know the value of the pixel to be
synthesized (which is at (0, 0)), we don’t count it in the sum of squared differences.
This similarity value is small when the neighborhoods are similar, and large when
they are different (it is essentially the length of the difference vector). However,
this measure places the same weight on pixels close to the unknown value as it does
on distant pixels. Better results are usually obtained by weighting up nearby pixels
and weighting down distant pixels. We can do so using Gaussian weights, yielding∑

(i,j)∈patch,(i,j) �=(0,0)

(Aij − Bij)
2 exp

(−(i2 + j2)

2σ2

)
.

Now we know how to obtain the value of a single missing pixel: choose uniformly
and at random amongst the values of pixels in the example image whose neigh-
borhoods match the neighborhood of our pixel. We cannot choose those matching



Section 6.3 Synthesizing Textures and Filling Holes in Images 178

FIGURE 6.11: Efros and Leung (1999) synthesize textures by matching neighborhoods of
the image being synthesized to the example image, and then choosing at random amongst
the possible values reported by matching neighborhoods (Algorithm 6.4). This means
that the algorithm can reproduce complex spatial structures, as these examples indicate.
The small block on the left is the example texture; the algorithm synthesizes the block
on the right. Note that the synthesized text looks like text: it appears to be constructed
of words of varying lengths that are spaced like text, and each word looks as though it
is composed of letters (though this illusion fails as one looks closely). This figure was
originally published as Figure 3 of “Texture Synthesis by Non-parametric Sampling,” A.
Efros and T.K. Leung, Proc. IEEE ICCV, 1999 c© IEEE, 1999.

neighborhoods by just setting a threshold on the similarity function, because we
might not have any matches. A better strategy to find matching neighborhoods
is to select all whose similarity value is less than (1 + ε)smin, where smin is the
similarity function of the closest neighborhood and ε is a parameter.

Generally, we need to synthesize more than just one pixel. Usually, the values
of some pixels in the neighborhood of the pixel to be synthesized are not known;
these pixels need to be synthesized too. One way to obtain a collection of examples
for the pixel of interest is to count only the known values in computing the sum
of squared differences, and scale the similarity to take into account the number of
known pixels. Write K for the set of pixels around a point whose values are known,
and �K for the size of this set. We now have, for the similarity function,

1

�K
∑

(i,j)∈K
(Aij − Bij)

2 exp

(−(i2 + j2)

2σ2

)
.

The synthesis process can be started by choosing a block of pixels at random from
the example image, yielding Algorithm 6.4.

Filling in Patches



Section 6.3 Synthesizing Textures and Filling Holes in Images 179

FIGURE 6.12: The size of the image neighborhood to be matched makes a significant
difference in Algorithm 6.4. In the figure, the textures at the right are synthesized from
the small blocks on the left, using neighborhoods that are increasingly large as one moves
to the right. If very small neighborhoods are matched, then the algorithm cannot capture
large-scale effects easily. For example, in the case of the spotty texture, if the neighborhood
is too small to capture the spot structure (and so sees only pieces of curve), the algorithm
synthesizes a texture consisting of curve segments. As the neighborhood gets larger, the
algorithm can capture the spot structure, but not the even spacing. With very large
neighborhoods, the spacing is captured as well. This figure was originally published as
Figure 2 of “Texture Synthesis by Non-parametric Sampling,” A. Efros and T.K. Leung,
Proc. IEEE ICCV, 1999 c© IEEE, 1999.

Synthesizing a large texture in terms of individual pixels will be unnecessarily
slow. Because textures repeat, we expect that whole blocks of pixels also should
repeat. This suggests synthesizing a texture in terms of image patches, rather than
just pixels. Most of the mechanics of the procedure follow those for pixels: to
synthesize a texture patch at a location, we find patches likely to fit (because they
have pixels that match the boundary at that location), then choose uniformly and
at random from among them. However, when we place down the new patch, we
must deal with the fact that some (ideally, many) of its pixels overlap with pixels
that have already been synthesized. This problem is typically solved by image
segmentation methods, and we defer that discussion to Chapter 9.

6.3.2 Filling in Holes in Images

There are four approaches we can use to fill a hole in an image. Matching meth-
ods find another image patch that looks a lot like the boundary of the hole, place
that patch over the hole, and blend the patch and the image together. The patch
might well be found in the image (for example, Figure 6.13). If we have a very large
set of images, we could find a patch by looking for another image that matches the
image with a hole in it. Hays and Efros (2007) show this strategy can be extremely



Section 6.3 Synthesizing Textures and Filling Holes in Images 180

FIGURE 6.13: If an image contains repeated structure, we have a good chance of finding
examples to fill a hole by searching for patches that are compatible with its boundaries.
Top left: An image with a hole in it (black pixels in a rough pedestrian shape). The
pixels on the region outside the hole, but inside the boundary marked on the image,
match pixels near the other curve, which represents a potentially good source of hole-
filling pixels. Top right: The hole filled by placing the patch over the hole, then using
a segmentation method (Chapter 9) to choose the right boundary between patch and
image. This procedure can work for apparently unpromising images, such as the one on
the bottom left, an image of the facade of a house, seen at a significant slant. This
slant means that distant parts of the facade are severely foreshortened. However, if we
rectify the facade using methods from Section 1.3, then there are matching patches. On
the bottom right, the hole has been filled in using a patch from the rectified image,
that is then slanted again. This figure was originally published as Figures 3 and 6 of
“Hole Filling through Photomontage,” by M. Wilczkowiak, G. Brostow, B. Tordoff, and
R. Cipolla, Proc. BMVC, 2005 and is reproduced by kind permission of the authors.

successful. Blending is typically achieved using methods also used for image seg-
mentation (Section 9.4.3 describes one method that can be used for blending).

As you would expect, matching methods work very well when a good match
is available, and poorly otherwise. If the hole is in a region of relatively regular
texture, then a good match should be easy to find. If the texture is less strongly
structured, it might be hard to find a good match. In cases like this, it makes
sense to try and synthesize the texture over the region of the hole, using the rest
of the image as an example. Making such texture synthesis methods work well
requires considerable care, because the order in which pixels are synthesized has
a strong effect on the results. Texture synthesis tends to work better for patches
when most of their neighbors are known, because the match is more constrained.
As a result, one wants to synthesize patches at the boundary of the hole. It is
also important to extend edges at the boundary of the hole into the interior (for



Section 6.3 Synthesizing Textures and Filling Holes in Images 181

Image Hole

Onionskin order

Boundary edges

FIGURE 6.14: Texture synthesis methods can fill in holes accurately, but the order in
which pixels are synthesized is important. In this figure, we wish to remove the sign,
while preserving the signpost. Generally, we want to fill in pixels where most of the
neighbors are known first. This yields better matching patches. One way to do so is to fill
in from the boundary. However, if we simply work our way inwards (onionskin filling), long
scale image structures tend to disappear. It is better to fill in patches close to edges first.
This figure was originally published as Figure 11 of “Region Filling and Object Removal
by Exemplar-Based Image Inpainting,” by A. Criminisi, P. Perez, and K. Toyama, IEEE
Transactions on Image Processing, 2004 c© IEEE, 2004.

example, see Figure 6.14); in practice, this means that it is important to synthesize
patches at edges on the boundary before one fills in other patches. It is possible
to capture both requirements in a priority function ((Criminisi et al. 2004)), which
specifies where to synthesize next.

If we choose an image patch at (i, j) as an example to fill in location (u, v)
in the hole, then image patches near (i, j) are likely to be good for filling in points
near (u, v). This observation is the core of coherence methods, which apply this
constraint to texture synthesis. Finally, some holes in images are not really texture
holes; for example, we might have a hole in a smoothly shaded region. Texture
synthesis and matching methods tend to work poorly on such holes, because the
intensity structure on the boundary is not that distinctive. As a result, we may
find many matching patches, some of which have jarring interiors. Variational
methods apply in these cases. Typically, we try to extend the level curves of the
image into the hole in a smooth way. Modern hole-filling methods use a combi-
nation of these approaches, and can perform very well on quite demanding tasks
(Figure 6.15).



Section 6.4 Image Denoising 182

Initial Image

Initial Image Object masked out

Object masked out

Object composited back

Initial Image Hole Extended by hole filling

FIGURE 6.15: Modern hole-filling methods get very good results using a combination of
texture synthesis, coherence, and smoothing. Notice the complex, long-scale structure
in the background texture for the example on the top row. The center row shows an
example where a subject was removed from the image and replaced in a different place.
Finally, the bottom row shows the use of hole-filling to resize an image. The white block
in the center mask image is the “hole” (i.e., unknown pixels whose values are required to
resize the image). This block is filled with a plausible texture. This figure was originally
published as Figures 9 and 15 of “A Comprehensive Framework for Image Inpainting,”
by A. Bugeau, M. Bertalmı́o, V. Caselles, and G. Sapiro, Proc. IEEE Transactions on
Image Processing, 2010 c© IEEE, 2010.

6.4 IMAGE DENOISING

This section addresses the problem of reconstructing an image given the noisy ob-
servations gathered by a digital camera sensor. Today, with advances in sensor
design, the signal is relatively clean for digital SLRs at low sensitivities, but it
remains noisy for consumer-grade and mobile-phone cameras at high sensitivities
(low-light and/or high-speed conditions). Adding to the demands of consumer and
professional photography those of astronomy, biology, and medical imaging, it is
thus clear that image restoration is still of acute and in fact growing importance.
Working with noisy images recorded by digital cameras is difficult because different
devices produce different kinds of noise, and introduce different types of artifacts
and spatial correlations in the noise as a result of internal post-processing (demo-
saicking, white balance, etc.).



Section 6.4 Image Denoising 183

We have already seen that linear filters such as Gaussian kernels are effective
at suppressing noise, but that the price to pay is a loss in image detail. We briefly
discuss in this section three related approaches to image denoising that are much
more effective. They rely on two properties of natural images: the prominence of
self-similarities—that is, many small regions in the same picture often look the
same—and the effectiveness of sparse linear models—that is, small image patches
are typically well reconstructed as a linear combination of very few elements from
a potentially large basis set, or dictionary.

6.4.1 Non-local Means

Efros and Leung (1999) have shown that the self-similarities inherent to natural
images can be used effectively in texture synthesis tasks. Following this insight,
Buades, Coll, and Morel (2005) have introduced the non-local means approach to
image denoising, where the prominence of self-similarities is used as a prior on
natural images. Concretely, let us consider a noisy image written as a column
vector y in R

n, and denote by y[i] the i-th pixel value and by yi the patch of size
m centered on this pixel and considered as an element of Rm. Similar patches yi and
yj should have similar values y[i] and y[j]. This suggests estimating the denoised
pixel x[i] as a weighted average (the so-called Nadaraya-Watson estimator) of all
the other pixels in the image:

x[i] =

n∑
j=1

Gh(yi − yj)∑n
l=1 Gh(yi − yl)

y[j], (6.1)

where Gh is a multi-dimensional Gaussian kernel of standard deviation h. The
weights depend on appearance similarity instead of spatial proximity in the case
of Gaussian smoothing, hence the name of non-local means. This simple approach
gives excellent results in practice, and, although naive implementations are slow (all
image pixels are used to denoise a single one), they can be sped up by using various
heuristics (by considering only patches yj in some fixed spatial neighborhood of
yi, for example). The parameters h can be taken proportional to the standard
deviation σ of the noise in practice; for example, h = 12σ is used in the experiments
of Buades, Coll and Morel (2005).

6.4.2 Block Matching 3D (BM3D)

Classical shrinkage is a very different method for denoising. It can be summarized
as follows: Consider a signal y in R

m and some nonsingular m × m matrix T .
We associate with y its code α = T y and the thresholded value αε, obtained by
zeroing all coefficients αi smaller than some ε > 0 in the hard thresholding case, or
by setting

αi
ε = sign(αi)(|αi| − ε)+,

in the soft thresholding one (here, x+ is equal to x when x > 0, and to zero oth-
erwise). The denoised signal is xε = T −1αε, the idea being that noise shows up
mostly in small coefficients in the transformed domain, which is of course true only
for appropriate transformations. A classical example is wavelet shrinkage (Donoho
and Johnstone 1995), where T is the orthogonal matrix representing the discrete



Section 6.4 Image Denoising 184

wavelet transform (Mallat 1999), and the denoised signal is xε = T Tαε. In this
case, a method for selecting ε for a given noise level is available, along with theo-
retical guarantees about the reconstructed signal.

By construction, the vector xε usually admits a sparse decomposition on
the basis of Rm formed by the columns of T T = T −1—that is, only a few of the
coefficients αi

ε are nonzero. As further discussed in Chapter 22, sparse linear models
are well suited to natural images, and Dabov et al. (2007) combine sparsity-inducing
shrinkage with the use of self-similarities. They stack similar image patches into
three-dimensional arrays (groups), then use shrinkage on the groups, coupled with
transformations such as the (three-dimensional) discrete cosine transform, or DCT.
Because the patches are similar, the decomposition of each group is expected to be
quite sparse, and denoised patches xε are retrieved from the shrunken groups. The
final value of a pixel is taken to be the average of the values xε at this point for all
patches passing through it. In conjunction with a few simple heuristics, this simple
idea has proven to be very effective, and it typically gives better results than regular
non-local means.

6.4.3 Learned Sparse Coding

An alternative is to assume that the clean signal can be approximated by a sparse
linear combination of elements from a (potentially large) set of vectors forming the
k columns of a so-called dictionary, which may be overcomplete (k > m). Under
this assumption, denoising a patch y in R

m with a dictionary D in R
m×k composed

of k elements amounts to solving the sparse decomposition problem

min
α∈Rk

||α||1 s.t. ||y −Dα||22 ≤ ε, (6.2)

where Dα is an estimate of the clean signal, and ||α||1 is the sparsity-inducing
�1 norm formed by the sum of the absolute values of the coefficients of α. As
shown in Chapter 22, the �1 regularization in Equation (6.2) leads to the convex
Lasso (Tibshirani 1996) and basis pursuit (Chen et al. 1999) problems, for which
efficient algorithms are available. As shown in Elad and Aharon (2006), ε can be
chosen according to the standard deviation of the noise.

Various types of wavelets have been used as dictionaries for natural images.
Elad and Aharon (2006) have proposed instead to learn a dictionary D adapted
to the image at hand, and demonstrated that learned dictionaries lead to better
empirical performance than off-the-shelf ones. For an image of size n, a dictionary
in R

m×k adapted to the n overlapping patches of size m (typically m = 8× 8 � n)
associated with the image pixels, is learned by addressing the following optimization
problem:

min
D∈C,A

n∑
i=1

||αi||1 s.t. ||yi −Dαi||22 ≤ ε, (6.3)

where C is the set of matrices in R
m×k with unit �2-norm columns, A = [α1, . . . ,αn]

is a matrix in R
k×n, yi is the i-th patch of the noisy image y, αi is the correspond-

ing code, and Dαi is the estimate of the denoised patch. Note that this procedure
implicitly assumes that the patches are independent from each other, which is ques-
tionable because they overlap. However, this approximation makes the correspond-



Section 6.4 Image Denoising 185

FIGURE 6.16: Sparsity vs. joint sparsity: Gray squares represents nonzero values in vectors
(left) or matrix (right). Reprinted from “Non-local Sparse Models for Image Restoration,”
by J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Proc. International
Conference on Computer Vision, (2009). c© 2009, IEEE.

ing optimization tractable. Indeed, although dictionary learning is traditionally
considered very costly, online algorithms such as the procedure described in Chap-
ter 22 and Mairal, Bach, Ponce, and Sapiro (2010) make it possible to efficiently
process millions of patches, allowing the use of large photographs and/or large im-
age databases. In typical applications, the dictionary D is first learned on such a
database, then refined on the image of interest itself using the same process.

Once the dictionary D and codes αi have been learned, every pixel admits m
estimates (one per patch containing it), and its value can be computed by averaging
these values.

Let us close this section by showing that self-similarities also can be exploited
in this framework. Concretely, a joint sparsity pattern—that is, a common set
of nonzero coefficients—can be imposed to a set of vectors α1, . . . ,αl through a
grouped-sparsity regularizer on the matrix A = [α1, . . . ,αl] in R

k×l (Figure 6.16).
This amounts to limiting the number of nonzero rows of A, or replacing the �1
vector norm in Equation (6.3) by the �1,2 matrix norm

||A||1,2 =

k∑
i=1

||αi||2, (6.4)

where αi denotes the i-th row of A.
Similar to the BM3D groups, we can define for each yi the set Si of patches

similar to it, using for example a threshold on the inter-patch Euclidean distance.
The dictionary learning problem can now be written as

min
(Ai)ni=1

,D∈C

n∑
i=1

||Ai||1,2
|Si|

s.t. ∀i
∑
j∈Si

||yj −Dαij ||22 ≤ εi, (6.5)

where Ai = [αij ]j∈§i ∈ R
k×|Si|, and an appropriate value of εi can be chosen

as before. The normalization by |Si| gives equal weights for all groups. For a
fixed dictionary, simultaneous sparse coding is convex and can be solved efficiently
(Friedman 2001; Bach, Jenatton, Mairal, & Obozinski 2011). In turn, the dictionary
can be learned using a simple and efficient modification of the algorithm presented
in Chapter 22 and Mairal et al. (2010), and the final image is estimated by averaging
the estimates of each pixel. In practice, this method gives better results than plain
dictionary learning.



Section 6.4 Image Denoising 186

FIGURE 6.17: Denoising images artificially corrupted with additive Gaussian noise. Left:
noisy images. Right: restored ones using LSSC. Note that the algorithm reproduces the
original brick texture in the house image (σ = 15) and the hair texture for the man image
(σ = 50), both hardly visible in the noisy images. Reprinted from “Non-local Sparse Models
for Image Restoration,” by J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman,
Proc. International Conference on Computer Vision, (2009). c© 2009, IEEE.

6.4.4 Results

The three methods discussed in this section all give very good results, with a slight
edge to BM3D and learned simultaneous sparse coding (or LSSC), according to the
experiments of Dabov, Foi, Katkovnik, and Egiazarian (2007) and Mairal, Bach,
Ponce, Sapiro, and Zisserman (2009), which use standard images with added Gaus-
sian noise (Figure 6.17) for quantitative evaluation. Qualitative results on a photo-
graph corrupted by real noise are shown in Figure 6.18. The image was taken by a
Canon Powershot G9 digital camera at 1,600 ISO with a short time exposure. At
this setting, pictures are typically quite noisy. This time, we compare the original
JPEG output of the camera, and results from Adobe Camera Raw 5.0, the DxO
Optics Pro 5.3 package for professional photographers, and LSSC.



Section 6.5 Shape from Texture 187

FIGURE 6.18: From left to right and top to bottom: Camera JPEG output, Adobe
Camera Raw, DxO Optics Pro, and LSSC. Reprinted from “Non-local Sparse Models for
Image Restoration,” by J. Mairal, F. Bach, J. Ponce, G. Sapiro, and A. Zisserman, Proc.
International Conference on Computer Vision, (2009). c© 2009, IEEE.

6.5 SHAPE FROM TEXTURE

A patch of texture viewed frontally looks very different from the same patch viewed
at a glancing angle because foreshortening causes the texture elements (and the gaps
between them!) to shrink more in some directions than in others. This suggests
that we can recover some shape information from texture, at the cost of supplying
a texture model. This is a task at which humans excel (Figure 6.19). Remarkably,
quite general texture models appear to supply enough information to infer shape.

6.5.1 Shape from Texture for Planes

If we know we are viewing a plane, shape from texture boils down to determining
the configuration of the plane relative to the camera. Assume that we hypothesize
a configuration; we can then project the image texture back onto that plane. If
we have some model of the “uniformity” of the texture, then we can test that
property for the backprojected texture. We now obtain the plane with the “best”



Section 6.5 Shape from Texture 188

0

10

20

30

40

50

0

10

20

30

40

50

0

0.2

0.4

0.6

0.8

1

FIGURE 6.19: Humans obtain information about the shape of surfaces in space from the
appearance of the texture on the surface. The figure on the left shows one common use
for this effect; away from the contour regions, our only source of information about the
surface depicted is the distortion of the texture on the surface. On the right, the texture
gives a clear sense of the orientation of the ground plane, how the plants stand out from
the path, and how far away the building at the back is. Geoff Brightling c© Dorling
Kindersley, used with permission.

backprojected texture on it.
Assume that we are viewing a single textured plane in an orthographic camera.

Because the camera is orthographic, there is no way to measure the depth to the
plane. However, we can think about the orientation of the plane. Let us work in
terms of the camera coordinate system. First, we need to know the angle between
the normal of the textured plane and the viewing direction—sometimes called the
slant—and second, the angle the projected normal makes in the camera coordinate
system—sometimes called the tilt (Figure 6.20).

In an image of a plane, there is a tilt direction—the direction in the plane
parallel to the projected normal.

An isotropic texture is one where the probability of encountering a texture
element does not depend on the orientation of that element. This means that a
probability model for an isotropic texture need not depend on the orientation of
the coordinate system on the textured plane.

If we assume that the texture is isotropic, both slant and tilt can be read from
the image. We could synthesize an orthographic view of a textured plane by first
rotating the coordinate system by the tilt and then contracting along one coordinate
direction by the cosine of the slant—call this process a viewing transformation.
The easiest way to see this is to assume that the texture consists of a set of circles,
scattered about the plane. In an orthographic view, these circles will project to
ellipses, whose minor axes will give the tilt and whose aspect ratios will give the
slant (see the exercises and Figure 6.20).

An orthographic view of an isotropic texture is not isotropic (unless the plane
is parallel to the image plane). This is because the contraction in the slant direction
interferes with the isotropy of the texture. Elements that point along the contracted



Section 6.5 Shape from Texture 189

Textured
plane

Image
plane

Tilt

Viewing
direction

Projected
normal

Plane
normal

FIGURE 6.20: The orientation of a plane with respect to the camera plane can be given
by the slant, which is the angle between the normal of the textured plane and the viewing
direction, and the tilt, which is the angle the projected normal makes with the camera
coordinate system. The figure illustrates the tilt, and shows a circle projecting to an
ellipse. The direction of the minor axis of this image ellipse is the tilt, and the slant is
revealed by the aspect ratio of the ellipse. However, the slant is ambiguous because the
foreshortening is given by cosσ, where σ is the slant angle. There will be two possible
values of σ for each foreshortening, so two different slants yield the same ellipse (one is
slanted forwards, the other backwards).

direction get shorter. Furthermore, elements that have a component along the
contracted direction have that component shrunk. Now corresponding to a viewing
transformation is an inverse viewing transformation (which turns an image
plane texture into the object plane texture, given a slant and tilt). This yields
a strategy for determining the orientation of the plane: find an inverse viewing
transformation that turns the image texture into an isotropic texture, and recover
the slant and tilt from that inverse viewing transformation.

There are various ways to find this viewing transformation. One natural
strategy is to use the energy output of a set of oriented filters. This is the squared
response, summed over the image. For an isotropic texture, we would expect the
energy output to be the same for each orientation at any given scale, because the
probability of encountering a pattern does not depend on its orientation. Thus, a
measure of isotropy is the standard deviation of the energy output as a function of
orientation. We could sum this measure over scales, perhaps weighting the measure
by the total energy in the scale. The smaller the measure, the more isotropic the
texture. We now find the inverse viewing transformation that makes the image
looks most isotropic by this measure, using standard methods from optimization.
The main difficulty with using an assumption of isotropy to recover the orientation
of a plane is that there are very few isotropic textures in the world.



Section 6.5 Shape from Texture 190

FIGURE 6.21: On the left, a textured surface, whose texture is a set of repeated elements,
in this case, spots. Center left, a reconstruction of the surface, made using texture
information alone. This reconstruction has been textured, which hides some of its imper-
fections. Center right, the same reconstruction, now rendered as a slightly glossy gray
surface. Because texture elements are repeated, we can assume that if different elements
have a significantly different brightness, this is because they experience different illumi-
nation. Right shows an estimate of the illumination on the surface obtained from this
observation. Notice how folds in the dress (arrows) tend to be darker; this is because, for a
surface element at the base of a fold, nearby cloth blocks a high percentage of the incident
light. This figure was originally published as Figure 4 of “Recovering Shape and Irradiance
Maps from Rich Dense Texton Fields,” by A. Lobay and D. Forsyth Proc. IEEE CVPR
2004 c© IEEE, 2004.

6.5.2 Shape from Texture for Curved Surfaces

Shape from texture is more complicated for curved surfaces, because there are
more parameters to estimate. There are a variety of strategies, and there remains
no consensus on what is best. If we assume that a texture consists of repeated
small elements, then individual elements display no observable perspective effects
(because they are small). Furthermore, curved surfaces often span fairly small
ranges of depth, because if they curve fast enough, they must eventually turn away
from the eye (if they don’t, we might be able to model them as planes). All this
suggests that we assume the surface is viewed in an orthographic camera.

Now consider a set of elements on a curved surface. Each element is an
instance of a model element; you should think of the surface elements as copies of
the model, which have been placed on the surface at different locations. Each is
small, so we can model them as lying on the surface’s tangent plane. Each element
has different slant and tilt directions. This means that each image instance of the
element is an instance of the model element, that has been rotated and translated
to place it in the image, then scaled along the image slant direction. It turns out
that, given sufficient image instances, we can infer both the model element and the
surface normal at the element (up to a two-fold ambiguity; Figure 6.20) from this



Section 6.6 Notes 191

information (the proof will take us far out of our way; it is in Lobay and Forsyth
(2006)). We must now fit a surface to this information. Doing so is complicated,
because we need to resolve the ambiguity at each surface normal. This can be done
by assuming that the surface is smooth (so that elements that lie near one another
tend to share normal values), and by assuming we have some geometric constraints
on the surface.

Interestingly, modeling a texture as a set of repeated elements reveals illumi-
nation information. If we can find multiple instances of an element on a surface,
then the reason for their different image brightnesses is that they experience dif-
ferent illumination (typically, because they are at different angles to the incoming
light). We can estimate surface irradiance directly from this information, even if
the illumination field is complex (Figure 6.21).

6.6 NOTES

The idea that textures involve repetition of elements is fundamental, and appears
in a wide variety of forms. Under some circumstances, one can try to infer the
elements directly, as in Liu et al. (2004). Image compression can take advantage of
the repetitions created by texture. If we have large, plane figures in view (say, the
faces of buildings), then it can be advantageous to model viewing transformations
to compress the image (because then the same element repeats more often). This
means that, on occasion, image compression papers contain a shape from texture
component (for example, Wang et al. (2008)).

Filters, Pyramids and Efficiency

If we are to represent texture with the output of a large range of filters at many
scales and orientations, then we need to be efficient at filtering. This is a topic that
has attracted much attention; the usual approach is to try and construct a tensor
product basis that represents the available families of filters well. With an appropri-
ate construction, we need to convolve the image with a small number of separable
kernels, and can estimate the responses of many different filters by combining the
results in different ways (hence the requirement that the basis be a tensor product).
Significant papers include Freeman and Adelson (1991), Greenspan et al. (1994),
Hel-Or and Teo (1996), Perona (1992), (1995), Simoncelli and Farid (1995), and
Simoncelli and Freeman (1995b).

Pooled Texture Representations

The literature does not seem to draw the distinction between local and pooled
texture representations explicitly. We think it is important, because quite differ-
ent texture properties are being represented. There has been a fair amount of
discussion of just what should be vector quantized to form these representations.
Typically, one evaluates the goodness of a particular representation by its dis-
criminative performance in a texture classification task; we discuss this topic in
Chapter 16. Significant papers include Varma and Zisserman (2003), Varma and
Zisserman (2005), Varma and Zisserman (2009), Leung and Malik (2001), Leung
and Malik (1999), Leung and Malik (1996), Schmid (2001),



Section 6.6 Notes 192

Texture Synthesis

Texture synthesis exhausted us long before we could exhaust it. Patch based texture
synthesis is due to Efros and Freeman (2001); this paper hints at a form of con-
ditional texture synthesis. Hertzmann et al. (2001) demonstrate that conditional
texture synthesis can do the most amazing tricks. Vivek Kwatra and Li-Yi Wei
organized an excellent course on texture synthesis at SIGGRAPH 2007; the notes
are at http://www.cs.unc.edu/~kwatra/SIG07_TextureSynthesis/index.htm.

Denoising

Early work on image denoising relied on various smoothness assumptions—such as
Gaussian smoothing, anisotropic filtering (Perona and Malik 1990c), total varia-
tion (Rudin et al. 2004), or image decompositions on fixed bases such as wavelets
(Donoho & Johnstone 1995; Mallat 1999), for example. More recent approaches
include non-local means filtering (Buades et al. 2005), which exploits image self-
similarities, learned sparse models (Elad & Aharon 2006; Mairal et al. 2009), Gaus-
sian scale mixtures (Portilla et al. 2003), fields of experts (Agarwal and Roth May
2002), and block matching with 3D filtering (BM3D) (Dabov et al. 2007). The idea
of using self-similarities as a prior for natural images exploited by the non-local
means approach of Buades et al. (2005) has in fact appeared in the literature in
various guises and under different equivalent interpretations, e.g., kernel density es-
timation (Efros and Leung 1999), Nadaraya-Watson estimators (Buades et al. 2005),
mean-shift iterations (Awate and Whitaker 2006), diffusion processes on graphs
(Szlam et al. 2007), and long-range random fields (Li and Huttenlocher 2008).
We have restricted our discussion of sparsity-inducing regularizers to the �1 norm
here, but the �0 pseudo-norm, which counts the number of nonzero coefficients
in the code associated with a noisy signal can be used as well. Chapter 22 dis-
cusses �0-regularized sparse coding and dictionary learning in some detail. Let
us just note here that simultaneous sparse coding is also relevant in that case,
the �1,2 norm being replaced by the �0,∞ pseudo-norm, which directly counts the
number of nonzero rows. See (Mairal et al. 2009) for details. An implemen-
tation of non-local means is available at: http://www.ipol.im/pub/algo/bcm_

non_local_means_denoising/, and BM3D is available at http://www.cs.tut.

fi/~foi/GCF-BM3D/. An implementation of LSSC is available at http://www.di.
ens.fr/~mairal/denoise_ICCV09.tar.gz.

Shape from Texture

We have assumed that textures are albedo marks on smooth surfaces. This really
isn’t true, as van Ginneken et al. (1999) point out; an immense number of textures
are caused by indentations on surfaces (the bark on a tree, for example, where the
main texture effect seems to be dark shadows in the grooves of the bark), or by
elements suspended in space (the leaves of a tree, say). Such textures still give
us a sense of shape—for example, in Figure 6.1, one has a sense of the free space
in the picture where one could move. The resulting changes in appearance as the
illumination and view directions change are complicated (Dana et al. 1999, Lu et
al. 1999, Lu et al. 1998, Pont and Koenderink 2002). We don’t discuss this case

http://www.cs.unc.edu/~kwatra/SIG07_TextureSynthesis/index.htm
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
http://www.ipol.im/pub/algo/bcm_non_local_means_denoising/
http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.cs.tut.fi/~foi/GCF-BM3D/
http://www.di.ens.fr/~mairal/denoise_ICCV09.tar.gz
http://www.di.ens.fr/~mairal/denoise_ICCV09.tar.gz


Section 6.6 Notes 193

because not much is known about how to proceed.
There is a long tradition of using marked point processes as texture models

(explicitly in, for example (Ahuja and Schachter 1983a, Ahuja and Schachter 1983b,
Blake and Marinos 1990, Schachter 1980, Schachter and Ahuja 1979) and implicitly
in pretty much all existing literature). A Poisson model has the property that
the expected number of elements in a domain is proportional to the area of the
domain. The constant of proportionality is known as the model’s intensity. A
texture is isotropic if the choice of element rotation is uniform and random, and is
homogeneous if the density from which texture elements are drawn is independent
of position on the surface.

There are surprisingly few shape from texture methods. Global methods
attempt to recover an entire surface model, using assumptions about the distri-
bution of texture elements. Appropriate assumptions are isotropy (Witkin 1981)
(the disadvantage of this method is that there are relatively few natural isotropic
textures) or homogeneity (Aloimonos 1986, Blake and Marinos 1990).

Texture deformation can be exploited in global methods, with some assump-
tions about the element—see the methods in (Lee and Kuo 1998, Sakai and Finkel
1994, Stone and Isard 1995)). Alternatively, one observes that the per-element
imaging transformations are going to affect the spatial frequency components on
the surface; this means that if the texture has constrained spatial frequency prop-
erties, one may observe the orientation from the texture gradient (Bajcsy and
Lieberman 1976, Krumm and Shafer 1990, Krumm and Shafer 1992, Sakai and
Finkel 1994, Super and Bovik 1995).

Local methods recover some differential geometric parameters at a point on
a surface (typically, normal and curvatures). This class of methods, which is due
to Garding (1992), has been successfully demonstrated for a variety of surfaces by
Malik and Rosenholtz (1997) and Rosenholtz and Malik (1997); a reformulation in
terms of wavelets is due to Clerc and Mallat (1999). The methods have a crucial
flaw; it is necessary either to know that texture element coordinate frames form
a frame field that is locally parallel around the point in question, or to know the
differential rotation of the frame field (see Garding (1995) for this point, which is
emphasized by the choice of textures displayed in Rosenholtz and Malik (1997); the
assumption is known as texture stationarity). For example, if one were to use
these methods to recover the curvature of a doughnut dipped in chocolate sprinkles,
it would be necessary to ensure that the sprinkles were all parallel on the surface
(or that the field of angles from sprinkle to sprinkle was known).

One might construct a generative model, where object texture is modelled
with a parametric random model, then choose a geometry and parameters that
minimizes the difference between either a predicted image and the observed im-
age (Choe and Kashyap 1991) or a predicted image density and the observed image
density (Lee and Kuo 1998).

More recent local methods emphasize repetition. Forsyth (2001) infers shape
from slant estimates only, establishing an analogy with shape from shading. Forsyth
(2002) shows that element repetition is sufficient to get normal estimates up to an
ambiguity, with a cleaner version in (Lobay and Forsyth 2006); Loh and Hartley
(2005) give a method to reconstruct a surface in this case; and Lobay and Forsyth
(2004) demonstrate that repetition of textons gives cues to illumination.



Section 6.6 Notes 194

Applications for shape from texture have been largely absent, explaining its
status as a minority interest. However, we believe that image-based rendering of
clothing is an application with substantial promise. Cloth is difficult to model
for a variety of reasons. It is much more resistant to stretch than to bend: this
means that dynamical models result in stiff differential equations (for example,
see (Terzopolous et al. 1987)) and that it buckles in fine scale, complex folds (for
example, see (Bridson et al. 2002)). However, rendering cloth is an important
technical problem, because people are interesting to look at and most people wear
clothing. A natural strategy for rendering objects that are intrinsically difficult to
model satisfactorily is to rearrange existing pictures of the objects to yield a render-
ing. In particular, one would wish to be able to retexture and reshade such images.
Earlier work on motion capturing cloth used stereopsis, but faced difficulties with
motion blur and calibration (Pritchard 2003, Pritchard and Heidrich 2003). More
recent work prints a fine pattern on the cloth (White et al. 2007), or uses volume
intersections (Bradley et al. 2008b). We believe that, in future, shape from texture
methods might make it possible to avoid some of these problems.

PROBLEMS

6.1. Show that a circle appears as an ellipse in an orthographic view, that the minor
axis of this ellipse is the tilt direction, and that the aspect ratio is the cosine
of the slant angle.

6.2. We will study measuring the orientation of a plane in a perspective view, given
that the texture consists of points laid down by a homogeneous Poisson point
process. Recall that one way to generate points according to such a process is
to sample the x and y coordinate of the point uniformly and at random. We
assume that the points from our process lie within a unit square.
(a) Show that the probability that a point will land in a particular set is

proportional to the area of that set.
(b) Assume we partition the area into disjoint sets. Show that the number of

points in each set has a multinomial probability distribution.
We will now use these observations to recover the orientation of the plane. We
partition the image texture into a collection of disjoint sets.
(c) Show that the area of each set, backprojected onto the textured plane, is a

function of the orientation of the plane.
(d) Use this function to suggest a method for obtaining the plane’s orientation.

PROGRAMMING EXERCISES

6.3. Texture synthesis: Implement the non-parametric texture synthesis algo-
rithm of Algorithm 6.4. Use your implementation to study:
(a) the effect of window size on the synthesized texture;
(b) the effect of window shape on the synthesized texture; and
(c) the effect of the matching criterion on the synthesized texture (i.e., using

a weighted sum of squares instead of a sum of squares, etc.).



P A R T T H R E E

EARLY VISION: MULTIPLE

IMAGES



This page intentionally left blank 



C H A P T E R 7

Stereopsis

Fusing the pictures recorded by our two eyes and exploiting the difference (or dis-
parity) between them allows us to gain a strong sense of depth. This chapter is
concerned with the design and implementation of algorithms that mimic our ability
to perform this task, known as stereopsis. Reliable computer programs for stereo-
scopic perception are of course invaluable in visual robot navigation (Figure 7.1),
cartography, aerial reconnaissance, and close-range photogrammetry. They are also
of great interest in tasks such as image segmentation for object recognition or the
construction of three-dimensional scene models for computer graphics applications.

FIGURE 7.1: Left: The Stanford cart sports a single camera moving in discrete increments
along a straight line and providing multiple snapshots of outdoor scenes. Center: The
INRIA mobile robot uses three cameras to map its environment. Right: The NYU
mobile robot uses two stereo cameras, each capable of delivering an image pair. As shown
by these examples, although two eyes are sufficient for stereo fusion, mobile robots are
sometimes equipped with three (or more) cameras. The bulk of this chapter is concerned
with binocular perception but stereo algorithms using multiple cameras are discussed in
Section 7.6. Photos courtesy of Hans Moravec, Olivier Faugeras, and Yann LeCun.

Stereo vision involves two processes: The fusion of features observed by two
(or more) eyes and the reconstruction of their three-dimensional preimage. The
latter is relatively simple: The preimage of matching points can (in principle) be
found at the intersection of the rays passing through these points and the associ-
ated pupil centers (or pinholes; see Figure 7.2, left). Thus, when a single image
feature is observed at any given time, stereo vision is easy. However, each picture
typically consists of millions of pixels, with tens of thousands of image features
such as edge elements, and some method must be devised to establish the correct
correspondences and avoid erroneous depth measurements (Figure 7.2, right).

We start this chapter by examining in Section 7.1 the geometric epipolar con-
straint associated with a pair of cameras, which is a key to controlling the cost
of the binocular fusion process. Next, we stay on the geometric side of things in
Section 7.2 as we present a number of methods for binocular reconstruction. After

197



Section 7.1 Binocular Camera Geometry and the Epipolar Constraint 198

d c
b

a

a’

d’

c’

D
CB

A

p’p

O’OO’O

P

b’

FIGURE 7.2: The binocular fusion problem: In the simple case of the diagram shown on
the left, there is no ambiguity, and stereo reconstruction is a simple matter. In the more
usual case shown on the right, any of the four points in the left picture may, a priori,
match any of the four points in the right one. Only four of these correspondences are
correct; the other ones yield the incorrect reconstructions shown as small gray discs.

a brief incursion into human stereopsis (Section 7.3), we switch with Section 7.4 to
the presentation of several algorithms for binocular fusion that rely on the compar-
ison of local brightness or edge patterns to establish correspondences. Section 7.5
shows that ordering and smoothness constraints among nearby pixels can be in-
corporated in the matching process. In this setting, stereo fusion is naturally cast
as a combinatorial optimization problem, which can be solved by several efficient
algorithms (Chapter 22). We conclude in Section 7.6 with a discussion of multi-
camera stereo fusion (see also Chapter 19 for applications of multi-view stereopsis
to image-based modeling and rendering).
Note: We assume throughout that all cameras have been carefully calibrated so
their intrinsic and extrinsic parameters are precisely known relative to some fixed
world coordinate system. The case of uncalibrated cameras is examined in the
context of structure from motion in Chapter 8.

7.1 BINOCULAR CAMERA GEOMETRY AND THE EPIPOLAR CONSTRAINT

As noted in the introduction, it appears a priori that, given a stereo image pair,
any pixel in the first (or left) image may match any pixel in the second (or right)
one. As shown in this section, matching pairs of pixels are in fact restricted to
lie on corresponding epipolar lines in the two pictures. This constraint plays a
fundamental role in the stereo fusion process because it reduces the quest for image
correspondences to a set of one-dimensional searches.

7.1.1 Epipolar Geometry

Consider the images p and p′ of a point P observed by two cameras with optical
centers O and O′. These five points all belong to the epipolar plane defined by
the two intersecting rays OP and O′P (Figure 7.3). In particular, the point p′ lies
on the line l′ where this plane and the retina Π′ of the second camera intersect.



Section 7.1 Binocular Camera Geometry and the Epipolar Constraint 199

The line l′ is the epipolar line associated with the point p, and it passes through
the point e′ where the baseline joining the optical centers O and O′ intersects Π′.
Likewise, the point p lies on the epipolar line l associated with the point p′, and
this line passes through the intersection e of the baseline with the plane Π.

’

P

e’e

p’p

O’O

l’l

FIGURE 7.3: Epipolar geometry: The point P , the optical centers O and O′ of the two
cameras, and the two images p and p′ of P all lie in the same plane. Here, as in the other
figures of this chapter, cameras are represented by their pinholes and a virtual image
plane located in front of the pinhole. This is to simplify the drawings; the geometric and
algebraic arguments presented in the rest of this chapter hold just as well for physical
image planes located behind the corresponding pinholes.

The points e and e′ are called the epipoles of the two cameras. The epipole e′

is the projection of the optical center O of the first camera in the image observed
by the second camera, and vice versa. As noted before, if p and p′ are images of the
same point, then p′ must lie on the epipolar line associated with p. This epipolar
constraint plays a fundamental role in stereo vision and motion analysis.

In the setting studied in the rest of this chapter, where the cameras are inter-
nally and externally calibrated, the most difficult part of constructing an artifical
stereo vision system is to find effective methods for establishing correspondences be-
tween the two images—that is, deciding which points in the second picture match
the points in the first one. The epipolar constraint greatly limits the search for
these correspondences. Indeed, since we assume that the rig is calibrated, the coor-
dinates of the point p completely determine the ray joining O and p, and thus the
associated epipolar plane OO′p and epipolar line l′. The search for matches can be
restricted to this line instead of the whole image (Figure 7.4). In the motion analy-
sis setting studied in Chapter 8, each camera may be internally calibrated, but the
rigid transformation separating the two camera coordinate systems is unknown. In
this case, the epipolar geometry constrains the set of possible motions.

As shown next, it proves convenient to characterize the epipolar constraint
in terms of the bilinear forms associated with two 3× 3 essential and fundamental
matrices.



Section 7.1 Binocular Camera Geometry and the Epipolar Constraint 200

2

1

2

1

p’

P

P

p’

l’l

O

’

P

e’e

p’

p

O’

FIGURE 7.4: Epipolar constraint: Given a calibrated stereo rig, the set of possible matches
for the point p is constrained to lie on the associated epipolar line l′.

7.1.2 The Essential Matrix

We assume in this section that the intrinsic parameters of each camera are known,
and work in normalized image coordinates—that is, take p = p̂. According to

the epipolar constraint, the three vectors
−→
Op,

−−→
O′p′, and

−−→
OO′ must be coplanar.

Equivalently, one of them must lie in the plane spanned by the other two, or

−→
Op · [

−−→
OO′ ×

−−→
O′p′] = 0.

We can rewrite this coordinate-independent equation in the coordinate frame asso-
ciated to the first camera as

p · [t× (Rp′)] = 0, (7.1)

where p and p′ denote the homogeneous normalized image coordinate vectors of

p and p′, t is the coordinate vector of the translation
−−→
OO′ separating the two

coordinate systems, and R is the rotation matrix such that a free vector with
coordinates w′ in the second coordinate system has coordinates Rw′ in the first
one. In this case, the two projection matrices are given in the coordinate system
attached to the first camera by [Id 0] and [RT −RT t].

Equation (7.1) can finally be rewritten as

pTEp′ = 0, (7.2)

where E = [t×]R, and [a×] denotes the skew-symmetric matrix such that [a×]x =
a × x is the cross-product of the vectors a and x. The matrix E is called the
essential matrix, and it was first introduced by Longuet–Higgins (1981). Its nine
coefficients are only defined up to scale, and they can be parameterized by the
three degrees of freedom of the rotation matrix R and the two degrees of freedom
defining the direction of the translation vector t.

Note that l = Ep′ can be interpreted as the coordinate vector of the epipolar
line l associated with the point p′ in the first image. Indeed, Equation (7.2) can be
written as p · l = 0, expressing the fact that the point p lies on l. By symmetry, it



Section 7.2 Binocular Reconstruction 201

is also clear that l′ = ETp is the coordinate vector representing the epipolar line l′

associated with p in the second image. Essential matrices are singular because t is
parallel to the coordinate vector e of the first epipole, so that ET e = −RT [t×]e = 0.
Likewise, it is easy to show that e′ is in the nullspace of E . As shown by Huang
and Faugeras (1989), essential matrices are in fact characterized by the fact that
they are singular with two equal nonzero singular values (see the problems).

7.1.3 The Fundamental Matrix

The Longuet–Higgins relation holds in normalized image coordinates. In native
image coordinates, we can write p = Kp̂ and p′ = K′p̂′, where K and K′ are the
3× 3 calibration matrices associated with the two cameras. The Longuet–Higgins
relation holds for these vectors, and we obtain

pTFp′ = 0, (7.3)

where the matrix F = K−TEK′−1
, called the fundamental matrix, is not, in general,

an essential matrix. It has again rank two, and the eigenvector of F (resp. FT ) cor-
responding to its zero eigenvalue is as before the position e′ (resp. e) of the epipole.
Likewise, l′ = Fp′ (resp. l = FTp) represents the epipolar line corresponding to
the point p′ (resp. p) in the first (resp. second) image.

The matrices E and F can readily be computed from the intrinsic and extrinsic
parameters. Let us close this section by noting that Equations (7.2) and (7.3) also
provide constraints on the entries of these matrices, irrespective of the 3D position
of the observed points. In particular, this suggests that E and F can be computed
from a sufficient number of image correspondences without the use of a calibration
chart. We will come back to this issue in Chapter 8. For the time being, we will
assume that the cameras are calibrated and that the epipolar geometry is known.

7.2 BINOCULAR RECONSTRUCTION

Given a calibrated stereo rig and two matching image points p and p′, it is in prin-
ciple straightforward to reconstruct the corresponding scene point by intersecting
the two rays R = Op and R′ = O′p′ (Figure 7.2). However, the rays R and R′ never
actually intersect in practice, due to calibration and feature localization errors. In
this context, various reasonable approaches to the reconstruction problem can be
adopted. For example, consider the line segment perpendicular to R and R′ that
intersects both rays (Figure 7.5): its mid-point P is the closest point to the two
rays and can be taken as the preimage of p and p′.

Alternatively, one can reconstruct a scene point using a purely algebraic ap-
proach: given the projection matrices M and M′ and the matching points p and
p′, we can rewrite the constraints Zp = MP and Z ′p′ = MP as{

p×MP = 0
p′ ×M′P = 0

⇐⇒
(
[p×]M
[p′

×]M′

)
P = 0.

This is an overconstrained system of four independent linear equations in the ho-
mogeneous coordinates of P that is easily solved using the linear least-squares tech-
niques introduced in Chapter 22. Unlike the previous approach, this reconstruction



Section 7.2 Binocular Reconstruction 202

’
O’

q
q’

R
R’

p

P

p’

O

Q

FIGURE 7.5: Triangulation in the presence of measurement errors. See text for details.

method does not have an obvious geometric interpretation, but generalizes readily
to the case of three or more cameras, with each new picture simply adding two
additional constraints.

Finally, one can reconstruct the scene point associated with p and p′ as the
point Q with images q and q′ that minimizes d2(p, q) + d2(p′, q′) (Figure 7.5). Un-
like the two other methods presented in this section, this approach does not allow
the closed-form computation of the reconstructed point, which must be estimated
via nonlinear least-squares techniques such as those introduced in Chapter 22. The
reconstruction obtained by either of the other two methods can be used as a rea-
sonable guess to initialize the optimization process. This nonlinear approach also
readily generalizes to the case of multiple images.

7.2.1 Image Rectification

The calculations associated with stereo algorithms are often considerably simplified
when the images of interest have been rectified—that is, replaced by two equivalent
pictures with a common image plane parallel to the baseline joining the two optical
centers (Figure 7.6). The rectification process can be implemented by projecting
the original pictures onto the new image plane. With an appropriate choice of
coordinate system, the rectified epipolar lines are scanlines of the new images, and
they are also parallel to the baseline. There are two degrees of freedom involved
in the choice of the rectified image plane: (a) the distance between this plane and
the baseline, which is essentially irrelevant because modifying it only changes the
scale of the rectified pictures—an effect easily balanced by an inverse scaling of the
image coordinate axes; and (b) the direction of the rectified plane normal in the
plane perpendicular to the baseline. Natural choices include picking a plane parallel
to the line where the two original retinas intersect and minimizing the distortion
associated with the reprojection process.

In the case of rectified images, the informal notion of disparity introduced at



Section 7.3 Human Stereopsis 203

l
p’p

’

l’

’

p p’

l’l

O O’

e e’

P

FIGURE 7.6: A rectified stereo pair: The two image planes Π and Π′ are reprojected onto a
common plane Π̄ = Π̄′ parallel to the baseline. The epipolar lines l and l′ associated with
the points p and p′ in the two pictures map onto a common scanline l̄ = l̄′ also parallel to
the baseline and passing through the reprojected points p̄ and p̄′. With modern computer
graphics hardware and software, the rectified images are easily constructed by considering
each input image as a polyhedral mesh and using texture mapping to render the projection
of this mesh onto the plane Π̄ = Π̄′.

the beginning of this chapter takes a concrete meaning: given two points p and p′

located on the same scanline of the left and right images, with coordinates (x, y) and
(x′, y), the disparity is defined as the difference d = x′ − x. We assume in the rest
of this section that image coordinates are normalized—that is, as before, p = p̂. As
shown in the problems, if B denotes the distance between the optical centers, also
called the baseline in this context, the depth of P in the (normalized) coordinate
system attached to the first camera is Z = −B/d. In particular, the coordinate
vector of the point P in the frame attached to the first camera is P = −(B/d)p,
where p = (x, y, 1)T is the vector of normalized image coordinates of p. This
provides yet another reconstruction method for rectified stereo pairs.

7.3 HUMAN STEREOPSIS

Before moving on to algorithms for establishing binocular correspondences, let us
pause for a moment to discuss the mechanisms underlying human stereopsis. First,
it should be noted that, unlike the cameras rigidly attached to a passive stereo rig,
the two eyes of a person can rotate in their sockets. At each instant, they fixate on
a particular point in space (i.e., they rotate so that the corresponding images form
in the centers of their foveas). Figure 7.7 illustrates a simplified, two-dimensional
situation: if l and r denote the (counterclockwise) angles between the vertical planes
of symmetry of two eyes and two rays passing through the same scene point, we
define the corresponding disparity as d = r − l. It is an elementary exercise in
trigonometry to show that d = D − F , where D denotes the angle between these



Section 7.3 Human Stereopsis 204

"

F

D

Disparate dot

Fixated dot

l

r

Vieth-Muller Circle

FIGURE 7.7: In this diagram, the close-by dot is fixated by the eyes, and it projects onto
the center of their foveas with no disparity. The two images of the far dot deviate from
this central position by different amounts, indicating a different depth.

rays, and F is the angle between the two rays passing through the fixated point.
Points with zero disparity lie on the Vieth–Müller circle that passes through the
fixated point and the optical centers of the eyes. Points lying inside this circle
have a positive disparity, points lying outside it have, as in Figure 7.7, a negative
disparity, and the locus of all points having a given disparity d forms, as d varies,
the family of all circles passing through the two eyes’ optical centers. This property
is clearly sufficient to rank order dots that are near the fixation point according to
their depth. However, it is also clear that the vergence angles between the vertical
median plane of symmetry of the head and the two fixation rays must be known to
reconstruct the absolute position of scene points.

The three-dimensional case is naturally more complicated, with the locus of
zero-disparity points becoming a surface, the horopter, but the general conclu-
sion is the same, and absolute positioning requires the vergence angles. There is
some evidence that these angles cannot be measured accurately by our nervous sys-
tem (Helmholtz 1909). However, relative depth, or rank ordering of points along the
line of sight, can be judged quite accurately. For example, it is possible to decide
which one of two targets near the horopter is closer to an observer for disparities of a
few seconds of arc (stereoacuity threshold), which matches the minimum separation
that can be measured with one eye (monocular hyperacuity threshold).

Concerning the construction of correspondences between the left and right
images, Julesz (1960) asked the following question: Is the basic mechanism for
binocular fusion a monocular process (where local brightness patterns [micropat-
terns] or higher organizations of points into objects [macropatterns] are identified
before being fused), a binocular one (where the two images are combined into a
single field where all further processing takes place), or a combination of both? To
settle this matter, he introduced a new device, the random dot stereogram: a pair of
synthetic images obtained by randomly spraying black dots on white objects, typi-
cally one (or several) small square plate(s) floating over a larger one (Figure 7.8).
The results were striking. To quote Julesz: “When viewed monocularly, the im-
ages appear completely random. But when viewed stereoscopically, the image pair



Section 7.4 Local Methods for Binocular Fusion 205

FIGURE 7.8: From left to right: the two pictures forming a random dot stereogram that
depicts four planes at varying depth (a “wedding cake”), and the disparity map obtained
by the Marr-Poggio (1976) algorithm. The layered structure of the scene is correctly
recovered. Reprinted from Vision: A Computational Investigation into the Human Repre-
sentation and Processing of Visual Information, by David Marr, c© 1982 by David Marr.
Reprinted by permission of Henry Holt and Company, LLC.

gives the impression of a square markedly in front of (or behind) the surround.”
The conclusion is clear: Human binocular fusion cannot be explained by peripheral
processes directly associated with the physical retinas. Instead, it must involve the
central nervous system and an imaginary cyclopean retina that combines the left
and right image stimuli as a single unit.

Several cooperative models of human stereopsis—where near-by matches in-
fluence each other to avoid ambiguities and promote a global scene analysis—have
been proposed, including Julesz’s own dipole model (1960) and that of Marr and
Poggio (1976). Although the latter has been implemented, allowing the reliable
fusion of random dot stereograms (Figure 7.8), it fails on most natural images. In
contrast, the algorithms proposed in the following sections do not attempt to model
the human visual system, but they usually give good results on natural imagery.

7.4 LOCAL METHODS FOR BINOCULAR FUSION

We start here by introducing simple methods for stereo fusion that exploit purely
local information, such as the similarity of brightness patterns near candidate
matches, to establish correspondences.

7.4.1 Correlation

Correlation methods find pixel-wise image correspondences by comparing intensity
profiles in the neighborhood of potential matches, and they are among the first
techniques ever proposed to solve the binocular fusion problem (Kelly, McConnell
& Mildenberger 1977; Gennery 1980). Concretely, let us consider a rectified stereo
pair and a point (x, y) in the first image (Figure 7.9). We associate with the window
of size p = (2m+ 1)× (2n+ 1) centered in (x, y) the vector w(x, y) ∈ R

p obtained
by scanning the window values one row at a time (the order is in fact irrelevant as
long as it is fixed). Now, given a potential match (x+d, y) in the second image, we
can construct a second vector w′(x+d, y) and define the corresponding normalized



Section 7.4 Local Methods for Binocular Fusion 206

u

v

pw

1w w2

w’-w’

w-w

v

u+d

w’w

FIGURE 7.9: Correlation of two 3 × 5 windows along corresponding epipolar lines. The
second window position is separated from the first one by an offset d. The two windows
are encoded by vectors w and w′ in R

15, and the correlation function measures the cosine
of the angle θ between the vectors w − w̄ and w′ − w̄′ obtained by subtracting from the
components of w and w′ the average intensity in the corresponding windows.

correlation function as

C(d) =
1

||w − w̄||
1

||w′ − w̄′|| [(w − w̄) · (w′ − w̄′)],

where the x, y, and d indexes have been omitted for the sake of conciseness and ā

denotes the vector whose coordinates are all equal to the mean of the coordinates
of a.

The normalized correlation function C clearly ranges from −1 to +1. It
reaches its maximum value when the image brightnesses of the two windows are
related by an affine transformation I ′ = λI + μ for some constants λ and μ with
λ > 0 (see the problems). In other words, maxima of this function correspond
to image patches separated by a constant offset and a positive scale factor, and
stereo matches can be found by seeking the maximum of the C function over some
predetermined range of disparities.1

At this point, let us make a few remarks about matching methods based
on correlation. First, it is easily shown (see the problems) that maximizing the

1The invariance of C to affine transformations of the brightness function affords correlation-
based matching techniques some degree of robustness in situations where the observed surface is
not quite Lambertian or the two cameras have different gains or lenses with different f-numbers.



Section 7.4 Local Methods for Binocular Fusion 207

O’O

l’l

L

FIGURE 7.10: The foreshortening of an oblique plane is not the same for the left and right
cameras: l/L �= l′/L.

correlation function is equivalent to minimizing

| 1

||w − w̄|| (w − w̄)− 1

||w′ − w̄′|| (w
′ − w̄′)|2,

or equivalently the sum of the squared differences between the pixel values of the
two windows after they have been submitted to the corresponding normalization
process. Second, although the calculation of the normalized correlation function at
every pixel of an image for some range of disparities is computationally expensive,
it can be implemented efficiently using recursive techniques (see problems). Third,
other functions, such as the sum of absolute difference

∑p
i=1 |wi −w′

i|, can be used
to measure the discrepancy between two brightness patterns, and they may give
better results in certain situations (Scharstein and Szeliski 2002). Finally, a major
problem with correlation-based techniques for establishing stereo correspondences
is that they implicitly assume that the observed surface is (locally) parallel to the
two image planes, since the foreshortening of (oblique) surfaces depends on the
position of the cameras observing them (Figure 7.10).

This suggests a two-pass algorithm where initial estimates of the disparity
are used to warp the correlation windows to compensate for unequal amounts of
foreshortening in the two pictures. For example, Devernay and Faugeras (1994)
propose to define a warped window in the right image for each rectangle in the
left one, using the disparity in the center of the rectangle and its derivatives. An
optimization process is used to find the values of the disparity and its derivatives
that maximize the correlation between the left rectangle and the right window,
using interpolation to retrieve appropriate values in the right image. Figure 7.11
illustrates this approach with an example.

7.4.2 Multi-Scale Edge Matching

Slanted surfaces pose problems to correlation-based matchers. Other arguments
against correlation can be found in Julesz (1960) and Marr (1982), suggesting that
correspondences should be found at a variety of scales, with matches between (hope-
fully) physically significant image features such as edges preferred to matches be-



Section 7.4 Local Methods for Binocular Fusion 208

(a) (b) (c)

FIGURE 7.11: Correlation-based stereo matching: (a) a pair of stereo pictures; (b) a
texture-mapped view of the reconstructed surface; (c) comparison of the regular (left)
and refined (right) correlation methods in the nose region. The latter clearly gives better
results. Reprinted from “Computing Differential Properties of 3D Shapes from Stereopsis
Without 3D Models,” by F. Devernay and O.D. Faugeras, Proc. IEEE Conference on
Computer Vision and Pattern Recognition, (1994). c© 1994 IEEE.

tween raw pixel intensities. These principles are implemented in Algorithm 7.1,
which is due to Marr and Poggio (1979).

1. Convolve the two (rectified) images with ∇2Gσ filters of increasing standard
deviations σ1 < σ2 < σ3 < σ4.

2. Find zero crossings of the Laplacian along horizontal scanlines of the filtered
images.

3. For each filter scale σ, match zero crossings with the same parity and roughly
equal orientations in a [−wσ,+wσ] disparity range, with wσ = 2

√
2σ.

4. Use the disparities found at larger scales to offset the images in the neighbor-
hood of matches and cause unmatched regions at smaller scales to come into
correspondence.

Algorithm 7.1: The Marr–Poggio (1979) Multi-Scale Binocular Fusion Algorithm.



Section 7.4 Local Methods for Binocular Fusion 209

Matching zero crossings at multiple scales

Matching zero crossings at a single scale

Match

Match

Rematch

<’

Offset

Width
Scale

Width
Scale

FIGURE 7.12: Top: Single-Scale matching. Middle: Multi-Scale matching. Bottom:
Results. Bottom left: The input data (including one of the input pictures, the out-
put of four ∇2Gσ filters, and the corresponding zero crossings). Bottom right: Two
views of the disparity map constructed by the matching process and two views of the
surface obtained by interpolating the reconstructed points. Reprinted from Vision: A
Computational Investigation into the Human Representation and Processing of Visual In-
formation, by David Marr, c© 1982 by David Marr. Reprinted by permission of Henry
Holt and Company, LLC.



Section 7.5 Global Methods for Binocular Fusion 210

Matches are sought at each scale in the [−wσ, wσ] disparity range, where wσ =
2
√
2σ is the width of the central negative portion of the ∇2Gσ filter. This choice is

motivated by psychophysical and statistical considerations. In particular, assuming
that the convolved images are white Gaussian processes, Grimson (1981a) showed
that the probability of a false match occurring in the [−wσ,+wσ] disparity range
of a given zero crossing is only 0.2 when the orientations of the matched features
are within 30◦ of each other. A simple mechanism can be used to disambiguate
the multiple potential matches that might still occur within the matching range.
See Grimson (1981a) for details. Of course, limiting the search for matches to
the [−wσ,+wσ] range prevents the algorithm from matching correct pairs of zero
crossings whose disparity falls outside this interval. Since wσ is proportional to
the scale σ at which matches are sought, eye movements (or equivalently image
offsets) controlled by the disparities found at large scales must be used to bring
large-disparity pairs of zero crossings within matchable range at a fine scale. This
process occurs in Step 4 of Algorithm 7.1 and is illustrated by Figure 7.12 (top).
Once matches have been found, the corresponding disparities can be stored in
a buffer called the 2 1

2 -dimensional sketch by Marr and Nishihara (1978). This
algorithm has been implemented by Grimson (1981a), and extensively tested on
random dot stereograms and natural images. An example appears in Figure 7.12
(bottom).

7.5 GLOBAL METHODS FOR BINOCULAR FUSION

The stereo fusion techniques presented in the previous section are purely local, in
the sense that they match brightness or edge patterns around individual pixels,
but ignore the constraints that may link nearby points. In contrast, we present in
this section two global approaches to stereo fusion, that formulate this problem as
the minimization of a single energy function incorporating ordering or smoothness
constraints among adjacent pixels.

7.5.1 Ordering Constraints and Dynamic Programming

It is reasonable to assume that the order of matching image features along a pair
of epipolar lines is the inverse of the order of the corresponding surface attributes
along the curve where the epipolar plane intersects the observed object’s boundary
(Figure 7.13, left). This is the so-called ordering constraint introduced in the early
1980s (Baker & Binford 1981; Ohta & Kanade 1985). Interestingly enough, it might
not be satisfied by real scenes, in particular when small solids occlude parts of larger
ones (Figure 7.13, right) or more rarely, at least in robot vision, when transparent
objects are involved. Despite these reservations, the ordering constraint remains a
reasonable one, and it can be used to devise efficient algorithms relying on dynamic
programming (Forney 1973; Aho, Hopcroft, & Ullman 1974) to establish stereo
correspondences (see Figure 7.14 and Algorithm 7.2).

Specifically, let us assume that a number of feature points (say, edgels) have
been found on corresponding epipolar lines. Our objective here is to match the
intervals separating those points along the two intensity profiles (Figure 7.14, left).
According to the ordering constraint, the order of the feature points must be the
same, although the occasional interval in either image may be reduced to a single



Section 7.5 Global Methods for Binocular Fusion 211

d

a

d’
c’

O’O’O

A

B

C

a
b

c a’

c’

A

B

C

D

O

b’
b b’

FIGURE 7.13: Ordering constraints. In the (usual) case shown in the left part of the
diagram, the order of feature points along the two (oriented) epipolar lines is the same.
In the case shown in the right part of the figure, a small object lies in front of a larger
one. Some of the surface points are not visible in one of the images (e.g., A is not visible
in the right image), and the order of the image points is not the same in the two pictures:
b is on the right of d in the left image, but b′ is on the left of d′ in the right image.

point corresponding to missing correspondences associated with occlusion and/or
noise.

This setting allows us to recast the matching problem as the optimization
of a path’s cost over a graph whose nodes correspond to pairs of left and right
image features; and arcs represent matches between left and right intensity pro-
file intervals bounded by the features of the corresponding nodes (Figure 7.14,
right). The cost of an arc measures the discrepancy between the corresponding in-
tervals (e.g., the squared difference of the mean intensity values). This optimization
problem can be solved, exactly and efficiently, using dynamic programming (Algo-
rithm 7.2). As given, this algorithm has a computational complexity of O(mn),
where m and n denote the number of edge points on the matched left and right
scanlines, respectively.2 Variants of this approach have been implemented by Baker
and Binford (1981), who combine a coarse-to-fine intra-scanline search procedure
with a cooperative process for enforcing inter-scanline consistency, and Ohta and
Kanade (1985), who use dynamic programming for both intra- and inter-scanline
optimization, the latter procedure being conducted in a three-dimensional search
space. Figure 7.15 shows a sample result taken from Ohta and Kanade (1985).

7.5.2 Smoothness Constraints and Combinatorial Optimization over Graphs

Dynamic programming is a combinatorial optimization algorithm aimed at mini-
mizing an error function (a path cost) over some discrete variables (correspondences
between pairs of features). It was used in the previous section to incorporate or-
dering constraints in the matching process. We now present a different approach to
stereo fusion that relies instead on smoothness constraints, and a different combina-
torial optimization technique aimed at minimizing certain energy functions defined
over graphs.

2Our version of the algorithm assumes that all edges are matched. To account for noise and
edge-detection errors, it is reasonable to allow the matching algorithm to skip a bounded number
of edges, but this does not change its asymptotic complexity (Ohta and Kanade 1985).



Section 7.5 Global Methods for Binocular Fusion 212

u

I

6

5

4

3

2

1
654321

5

4
3

21

6
5

43
2

1

6

FIGURE 7.14: Dynamic programming and stereopsis: The left part of the figure shows
two intensity profiles along matching epipolar lines. The polygons joining the two profiles
indicate matches between successive intervals (some of the matched intervals may have
zero length). The right part of the diagram represents the same information in graphical
form: an arc (thick line segment) joins two nodes (i, i′) and (j, j′) when the intervals (i, j)
and (i′, j′) of the intensity profiles match each other.

We assume the scanlines have m and n edge points, respectively (the endpoints
of the scanlines are included for convenience). Two auxiliary functions are used:
Inferior-Neighbors(k, l) returns the list of neighbors (i, j) of the node (k, l) such
that i ≤ k and j ≤ l, and Arc-Cost(i, j, k, l) evaluates and returns the cost of
matching the intervals (i, k) and (j, l). For correctness, C(1, 1) should be initialized
with a value of zero.

% Loop over all nodes (k, l) in ascending order.
for k = 1 to m do

for l = 1 to n do
% Initialize optimal cost C(k, l) and backward pointer B(k, l).
C(k, l) ← +∞;B(k, l) ← nil;
% Loop over all inferior neighbors (i, j) of (k, l).
for (i, j) ∈ Inferior-Neighbors(k, l) do
% Compute new path cost and update backward pointer if necessary.
d ← C(i, j) + Arc-Cost(i, j, k, l);
if d < C(k, l) then C(k, l) ← d;B(k, l) ← (i, j) endif;
endfor;

endfor;
endfor;

% Construct optimal path by following backward pointers from (m,n).
P ← {(m,n)}; (i, j) ← (m,n);
while B(i, j) �= nil do (i, j) ← B(i, j);P ← {(i, j)} ∪ P endwhile.

Algorithm 7.2: A Dynamic-Programming Algorithm for Establishing Stereo Corre-
spondences Between Two Corresponding Scanlines.



Section 7.5 Global Methods for Binocular Fusion 213

FIGURE 7.15: Two images of the Pentagon and an isometric plot of the disparity map
computed by the dynamic-programming algorithm of Ohta and Kanade (1985). Reprinted
from “Stereo by Intra- and Inter-Scanline Search,” by Y. Ohta and T. Kanade, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 7(2):139–154, (1985). c©
1985 IEEE.

Let us assume as usual that the two input images have been rectified, and
define a graph G = (V , E) whose n nodes are the pixels of the first image and whose
edges link pairs of adjacent pixels on the image grid (not necessarily on the same
scanline). Given some allowed disparity range D = {−K, . . . ,K} ⊂ Z, we can
define an energy function E : Dn → R by

E(d) =
∑
p∈V

Up(dp) +
∑

(p,q)∈E
Bpq(dp, dq), (7.4)

where d is a vector of n integer disparities dp associated with pixels p, Up(dp) (unary
term) measures the discrepancy between pixel p in the left image and pixel p+ dp
in the second one, and Bpq(dp, dq) (binary term) measures the discrepancy between
the pair of assignments p → p+dp and q → q+dq.

3 The first of these terms records
the similarity between p and p + dp. It may be, for example, the sum of squared
differences Up(dp) =

∑
q∈N (p)[I(q)−I ′(q+dp)]2, where N (p) is some neighborhood

of p. The second one is used to regularize the optimization process, making sure
that the disparity function is smooth enough. For example, a sensible choice may
be Bpq(dp, dq) = γpq|dp − dq| for some γpq > 0.

Under this model, binocular fusion can be formulated as the minimization of
E(d) with respect to d in Dn. As discussed in Chapter 22 (Section 22.4), this is
a particular instance of a general combinatorial optimization problem, related to
maximum a posteriori (MAP) inference in first-order Markov random fields (Geman
and Geman 1984), which is in general NP-hard but admits effective approximate
and even exact algorithmic solutions under certain so-called submodularity assump-
tions. In particular, it can be shown (Ishikawa 2003; Schlesinger & Flach 2006; Dar-
bon 2009) that when Bpq(dp, dq) = γpq|dp − dq| for some γpq > 0 (total-variation
prior) or, more generally, when Bpq = g(dp − dq) for some convex real function
g : Z → R, minimizing E(d) reduces to a submodular quadratic pseudo-Boolean
problem that involves only binary variables and can be solved exactly in polynomial

3Here we abuse the notation and, if the images coordinates of pixel p are (up, vp), denote by
p+ dp the pixel with coordinates (up + dp, vp).



Section 7.6 Using More Cameras 214

FIGURE 7.16: An application of alpha expansion to stereo fusion. The data used in
this experiment is part of the benchmark described in Scharstein and Szeliski (2002), for
which ground truth disparities are available. From left to right: Input image, ground
truth disparities, and disparities recovered using alpha expansion. Reprinted from “A
Taxonomy and Evaluation of Dense Two-Frame Stereo Correspondence Algorithms,” by
D. Scharstein and R. Szeliski, International Journal of Computer Vision, 47(1/2/3):7–42,
(2002). c© 2002 Springer.

time by an efficient min-cut/max-flow algorithm (Ford & Fulkerson 1956; Goldberg
& Tarjan 1988; Boykov & Kolmogorov 2004).

In practice, however, it may prove important to use binary terms that do
not lead to submodular problems and thus cannot be solved in an exact manner.
The Potts model, where Bpq(dp, dq) = γpqχ(dp �= dq), the characteristic function
χ is one if its argument is true and zero otherwise, and γpq > 0, is a typical
example. Using it instead of, say, a total-variation prior to encourage the disparity
function to be smooth, does not overpenalize the disparity discontinuities naturally
associated with occlusion boundaries. In this setting, an approximate solution to
the minimization of E(d) overDn can be found using alpha expansion (Boykov et al.
2001), an iterative procedure that also solves a min-cut/max-flow problem at each
step, but makes weaker assumptions on the energy function it minimizes. Figure
7.16 shows the result of an experiment using this approach, taken from Scharstein
and Szeliski (2002).

7.6 USING MORE CAMERAS

Adding a third camera eliminates (in large part) the ambiguity inherent in two-
view point matching. In essence, the third image can be used to check hypothetical
matches between the first two pictures (Figure 7.17): The three-dimensional point
associated with such a match is first reconstructed and then reprojected into the
third image. If no compatible point lies nearby, then the match must be wrong.

In most trinocular stereo algorithms, potential correspondences are hypothe-



Section 7.7 Application: Robot Navigation 215

2

6

54
2

2
2

2

2

3333

a
c

d
abcd

1

1

11d 3

O

O

1

31

c
b

a

D
CB

A

O

b

FIGURE 7.17: The small gray discs indicate the incorrect reconstructions associated with
the left and right images of four points. The addition of a central camera removes the
matching ambiguity: none of the corresponding rays intersects any of the six discs. Alter-
natively, matches between points in the first two images can be checked by reprojecting
the corresponding three-dimensional point in the third image. For example, the match
between b1 and a2 is obviously wrong because there is no feature point in the third image
near the reprojection of the hypothetical reconstruction numbered 1 in the diagram.

sized using two of the images, then confirmed or rejected using the third one. In
contrast, Okutami and Kanade (1993) have proposed to find matches simultane-
ously in three or more pictures. The basic idea is simple, but elegant: assuming
that all the images have been rectified, the search for the correct disparities is
replaced by a search for the correct depth, or rather its inverse. Of course, the in-
verse depth is proportional to the disparity for each camera, but the disparity varies
from camera to camera, and the inverse depth can be used as a common search
index. Picking the first image as a reference, Okutami and Kanade add the sums
of squared differences associated with all other cameras into a global evaluation
function E (as shown earlier, this is of course equivalent to adding the correlation
functions associated with the images).

Figure 7.18 plots the value of E as a function of inverse depth for various
subsets of 10 cameras observing a scene that contains a repetitive pattern (Fig-
ure 7.19). In that case, using only two or three cameras does not yield a single,
well-defined minimum. However, adding more cameras provides a clear minimum
corresponding to the correct match. Figure 7.19 shows a sequence of 10 rectified
images and a plot of the surface reconstructed by the algorithm.

7.7 APPLICATION: ROBOT NAVIGATION

Applications of wide-baseline multi-view stereopsis to the construction of three-
dimensional object and scene models are discussed in Chapter 19. Let us briefly
discuss here an application of binocular stereo vision to navigation for the robot
shown in Figure 7.1 (right). The system described in Hadsell et al. (2009) and Ser-
manet et al. (2009) uses two Point Grey Bumblebee stereo cameras, each capable
of delivering a pair of 1024× 768 color images at 15 frames per second, and runs a



Section 7.8 Notes 216

0

5000

10000

15000

20000

25000

30000

35000

40000

ev
al

u
at

io
n

fu
n

ct
io

n

0 5 10 15 20
inverse distance

B=8b

B=4b,8b

B=2b,4b,6b,8b

B=b,2b,...,8b

FIGURE 7.18: Combining multiple views: The sum of squared differences is plotted here
as a function of the inverse depth for various numbers of input pictures. The data are
taken from a scanline near the top of the images shown in Figure 7.19, whose intensity
is nearly periodic. The diagram clearly shows that the minimum of the function becomes
less and less ambiguous as more images are added. Reprinted from “A Multiple-Baseline
Stereo System,” by M. Okutami and T. Kanade, IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(4):353–363, (1993). c© 1993 IEEE.

separate binocular stereo process for each pair (Figure 7.20). The fusion algorithm
itself is local, and uses the sum of absolute differences as a matching criterion, with
additional heuristics to filter out outliers. The ground plane is then found by a
voting procedure before obstacles are detected, based on the recovered point cloud
distribution. The overall process runs at 5–10 160× 120 frames per second, but its
useful range is limited to 5 meters. A slower program (one 512× 384 frame per sec-
ond), combining stereo vision with convolutional nets used for classification, yields
useful depth measurements for distances up to 12 meters, and detects obstacles up
to 50 meters away. The overall system has been successfully used to drive the robot
in field experiments with many outdoor settings, including parks and backyards,
open fields, urban and suburban environments, military bases, sandy areas near
beaches, forests with and without paths, etc. See (Hadsell et al. 2009; Sermanet et
al. 2009) for details.

7.8 NOTES

The essential matrix as an algebraic form of the epipolar constraint was introduced
in the computer vision community by Longuet-Higgins (1981), and its properties
have been elucidated by Huang and Faugeras (1989). The fundamental matrix was
introduced by Luong and Faugeras (1992, 1996). Just as a bilinear constraint holds
for the image coordinates of two point matches, trilinear constraints hold among
matching triples of points (Hartley 1997) and lines (Spetsakis & Aloimonos 1990;
Weng, Huang & Ahuja 1992; Shashua 1995), and quadrilinear constraints also hold
among matching quadruples of points (Faugeras and Mourrain 1995; Triggs 1995;
Faugeras & Papadopoulo 1997). See the problems for some examples. Similar con-
straints have also been studied for decades in the photogrammetry domain (Slama
et al. 1980).

The fact that disparity gives rise to stereopsis in human beings was first



Section 7.8 Notes 217

FIGURE 7.19: A series of 10 images and the corresponding reconstruction. The gridboard
near the top of the images is the source for the nearly periodic brightness signal giving
rise to ambiguities in Figure 7.18. Reprinted from “A Multiple-Baseline Stereo System,”
by M. Okutami and T. Kanade, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 15(4):353–363, (1993). c© 1993 IEEE.

demonstrated by Wheatstone’s (1838) invention of the stereoscope. That disparity
is sufficient for stereopsis without eye movements was demonstrated shortly after-
ward by Dove (1841) with illumination provided by an electric spark too brief for eye
vergence to take place. Human stereopsis is further discussed in the classical book of
Helmholtz (1909), an amazing read for anyone interested in the history of the field,
as well as the books by Julesz (1960, 1971), Frisby (1980), and Marr (1982). The-
ories of human binocular perception not presented in this chapter for lack of space
include Koenderink and Van Doorn (1976a), Pollard, Mayhew, and Frisby (1970),
McKee, Levi, and Brown (1990), and Anderson and Nayakama (1994).

Excellent treatments of machine stereopsis can be found in the books of Grim-
son (1981b), Marr (1982), Horn (1986), and Faugeras (1993). Marr focuses on the
computational aspects of human stereo vision, whereas Horn’s account emphasizes
the role of photogrammetry in artificial stereo systems. Grimson and Faugeras
emphasize the geometric and algorithmic aspects of stereopsis. The constraints
associated with stereo matching are discussed by Binford (1984). Early techniques
for line matching in binocular stereo include Medioni and Nevatia (1984) and Ay-
ache and Faugeras (1987). Algorithms for trinocular fusion include Milenkovic
and Kanade (1985), Yachida, Kitamura, and Kimachi (1986), Ayache and Lust-
man (1987), and Robert and Faugeras (1991). Global approaches to dense stereo
fusion based on combinatorial optimization and the underlying min-cut/max-flow
algorithms include Ishikawa and Geiger (1998), Roy and Cox (1998), Boykov, Vek-
sler, and Zabih (2001), and Kolgomorov and Zabih (2001). Variational approaches
have also been used in this context, see Faugeras and Keriven (1998) for example.

All of the algorithms presented in this chapter (implicitly) assume that the
images being fused are quite similar. This is equivalent to considering a narrow base-
line. The wide-baseline case is treated in Chapter 19 in the context of image-based
modeling and rendering. We have also limited our attention here to stereo rigs with



Section 7.8 Notes 218

FIGURE 7.20: Robot navigation using the approach proposed in Hadsell et al. (2009)
and Sermanet et al. (2009). The detected ground plane (lighter shade) and obstacles
(darker one) are overlaid on one of the input images as well as a top view of the stereo
reconstruction. Image courtesy of Yann LeCun.

fixed intrinsic and extrinsic parameters. Active vision is concerned with the con-
struction of vision systems capable of dynamically modifying these parameters, e.g.,
changing camera zoom and vergence angles, and taking advantage of these capa-
bilities in perceptual and robotic tasks (Aloimonos, Weiss & Bandyopadhyay 1987;
Bajcsy 1988; Ahuja & Abbott 1993; Brunnström, Ekhlund, & Uhlin 1996).

Finally, let us mention the very useful resource assembled by D. Scharstein
and R. Szeliski at http://vision.middlebury.edu/stereo/. One can find there
benchmark data, an evaluation of various algorithms on this data, and code for
many classical approaches to stereo fusion. See the web-site and Scharstein and
Szeliski (2002) for details.

PROBLEMS

7.1. Show that one of the singular values of an essential matrix is 0 and the other
two are equal. (Huang and Faugeras [1989] have shown that the converse is
also true; that is, any 3× 3 matrix with one singular value equal to 0 and the
other two equal to each other is an essential matrix.)
Hint: The singular values of E are the eigenvalues of EET (Chapter 22).

7.2. Infinitesimal epipolar geometry. Here we consider the case of infinitesimal cam-
era displacements, and derive the instantaneous form of the Longuet–Higgins
relation, Equation (7.2), which captures the epipolar geometry in the discrete
case.
(a) We consider a moving camera with translational velocity v and rotational

velocity ω. The matrix associated with the rotation whose axis is the unit
vector a and whose angle is θ can be shown to be equal to

R = eθ[a×] def
=

+∞∑
i=0

1

i!
(θ[a×])i.

Consider two frames separated by a small time interval δt, and denote by
ṗ = (u̇, v̇, 0)T the velocity of the point p, or motion field. Use this expo-

http://vision.middlebury.edu/stereo/


Section 7.8 Notes 219

nential representation of rotation matrices to show that (to first order):{
t = δt v,
R = Id + δt [ω×],
p′ = p+ δt ṗ.

(7.5)

(b) Use this result to show that Equation (7.2) reduces to

p
T ([v×][ω×])p− (p× ṗ) · v = 0. (7.6)

for infinitesimal motions.
7.3. The focus of expansion. Consider an infinitesimal translational motion (ω =

0). We define the focus of expansion (or infinitesimal epipole) as the point
where the line passing through the optical center and parallel to the velocity
vector v pierces the image plane. Use Equation (7.6) to show that the motion
field points toward the focus expansion in this pure translational case.

7.4. Show that, in the case of a rectified pair of images, the depth of a point P in
the normalized coordinate system attached to the first camera is Z = −B/d,
where B is the baseline and d is the disparity.

7.5. Use the definition of disparity to characterize the accuracy of stereo recon-
struction as a function of baseline and depth.

7.6. Give reconstruction formulas for verging eyes in the plane.
7.7. Give an algorithm for generating an ambiguous random dot stereogram that

can depict two different planes hovering over a third one.
7.8. Show that the correlation function reaches its maximum value of 1 when the

image brightnesses of the two windows are related by the affine transform
I ′ = λI + μ for some constants λ and μ with λ > 0.

7.9. Prove the equivalence of correlation and sum of squared differences for images
with zero mean and unit Frobenius norm.

7.10. Recursive computation of the correlation function.
(a) Show that (w − w̄) · (w′ − w̄′) = w ·w′ − (2m+ 1)(2n+ 1)Ī Ī ′.
(b) Show that the average intensity Ī can be computed recursively, and esti-

mate the cost of the incremental computation.
(c) Generalize the prior calculations to all elements involved in the construc-

tion of the correlation function, and estimate the overall cost of correlation
over a pair of images.

7.11. Show how a first-order expansion of the disparity function for rectified images
can be used to warp the window of the right image corresponding to a rectan-
gular region of the left one. Show how to compute correlation in this case using
interpolation to estimate right-image values at the locations corresponding to
the centers of the left window’s pixels.

7.12. Trifocal and quadrifocal matching constraints. We show in this exercise the
existence of trilinear and quadrilinear constraints that must be satisfied by
matching points in three or four images, and generalize the epipolar constraint
to that case.
(a) Suppose that we have four views of a point, with known intrinsic param-

eters and projection matrices Mi (i = 1, 2, 3, 4). Write an 8× 4 homoge-
neous system of linear equations in the coordinate vector P in R

4 of this
point that must be satisfied by its projections into the four images.

Hint: Rewrite each projection equation as two linear equations in P ,
parameterized by the corresponding projection matrix and image coordi-
nates.



Section 7.8 Notes 220

(b) Use the fact that this homogeneous system of linear equations has P as a
nontrivial solution to characterize matching constraints using two, three
or four images.

Hint: Use determinants.
(c) Show that the conditions involving two images (say, the first and second

one) reduces to the epipolar constraints of Equation (7.2) when we take
M1 = (Id 0) and M2 = (RT −RT t).

(d) Show that the conditions involving three images are trilinear in the image
coordinates and derive an explicit form for these conditions when M1 =
(Id 0), M2 = (RT

2 −RT
2 t2), and M3 = (RT

3 −RT
3 t3).

(e) Show that the conditions involving four images are quadrilinear in the
image coordinates.

(f) Can you imagine a method for deriving matching constraints involving
more than four images?

7.13. Generalize the constructions of the previous problem to the uncalibrated case.

PROGRAMMING EXERCISES

7.14. Implement the rectification process.
7.15. Implement a correlation-based approach to stereopsis.
7.16. Implement a multi-scale approach to stereopsis.
7.17. Implement a dynamic-programming approach to stereopsis.
7.18. Implement a trinocular approach to stereopsis.



C H A P T E R 8

Structure from Motion

This chapter revisits the problem of estimating the three-dimensional shape of a
scene from multiple pictures. In the context of stereopsis, the cameras used to
acquire the input images are normally calibrated so their intrinsic parameters are
known, and their extrinsic ones have been determined relative to some fixed world
coordinate system. This greatly simplifies the reconstruction process and explains
the emphasis put on binocular (or, more generally, multi-view) fusion in Chap-
ter 7. We consider here a different setting where the cameras’ positions and pos-
sibly their intrinsic parameters are a priori unknown and might change over time.
This is typical of the image-based modeling and rendering applications discussed in
Chapter 19, where images recorded by a handheld camcorder or multiple cameras
scattered through a scene are used to capture its shape and render it under new
viewing conditions. This is also relevant for active vision systems whose calibration
parameters vary dynamically, and planetary robot probes for which these parame-
ters may change due to the large accelerations at takeoff and landing. Recovering
the cameras’ positions is of course just as important as estimating the scene shape
in the context of mobile robot navigation.

We assume in the rest of this chapter that the projections of n points have been
matched across m pictures,1 and focus instead on the purely geometric structure-
from-motion (or SFM for short) problem of using this information to estimate both
the three-dimensional positions of the points in some fixed coordinate system (the
scene structure) and the projection matrices associated with the cameras observing
them (or, equivalently, the apparant motion of the cameras relative to the points).
Figure 8.1 shows a small dataset, consisting of 38 points matched in a six-image
sequence of a toy house, courtesy of Françoise Veillon and Roger Mohr. Ground-
truth data available for the 3D position of these points is used in the quantitative
evaluation of most of the algorithms presented in the rest of this chapter.

We address in turn three instances of the structure-from-motion problem. We
start in Section 8.1 with the case where the cameras are internally calibrated—that
is, their intrinsic parameters are known, so it is possible to work in normalized image
coordinates. We turn our attention to completely uncalibrated weak-perspective
and perspective cameras in Sections 8.2 and 8.3.

8.1 INTERNALLY CALIBRATED PERSPECTIVE CAMERAS

Let us first considerm pinhole perspective cameras with known intrinsic parameters
but unknown spatial configurations, observing a scene that consists of n fixed points
Pj (j = 1, . . . , n). We work in normalized image coordinates, and assume that cor-
respondences have been established between the m images, so the mn homogeneous
coordinate vectors pij = p̂ij = (xij , yij , 1)

T (i = 1, . . . ,m) of the projections of the

1Methods for establishing such correspondences across both continuous image sequences and
scattered views of a scene are discussed in Chapters 11 and 12.

221



Section 8.1 Internally Calibrated Perspective Cameras 222

FIGURE 8.1: The house dataset. Top left: One frame in the sequence, with the matched
points overlaid as small circles. Top right: A “wireframe” display of the correspond-
ing ground-truth 3D points, observed from some arbitrary viewpoint, with line segments
drawn between some of the points. Bottom: Wireframe views of the 38 data points
matched in six images. The line segments shown in these pictures do not correspond to
physical edges, and are never used in any computation. However, wireframe views are
useful to visually compare various reconstructions of the scene’s structure and epipolar
geometry. Data and image courtesy of Françoise Veillon and Roger Mohr.

points Pj are known. Because the cameras are internally calibrated, we can write
the corresponding perspective projection equations as

pij =
1

Zij

(
Ri ti

)(P j

1

)
, (8.1)

where Ri and ti are respectively the rotation matrix and the translation vector
representing the position and orientation of camera number i in some fixed coordi-
nate system, P j is the nonhomogeneous coordinate vector of the point Pj in that
coordinate system, and Zij is the depth of that point relative to camera number i.

We define Euclidean structure from motion as the problem of estimating the
n vectors P j , together with the m rotation matrices Ri and translation vectors ti,



Section 8.1 Internally Calibrated Perspective Cameras 223

from the mn image correspondences pij .
2

8.1.1 Natural Ambiguity of the Problem

Before trying to solve this problem, let us first observe that its solution is, at
best, defined up to a rigid transformation ambiguity. Indeed, given some arbitrary
rotation matrix R and translation vector t, we can rewrite Equation (8.1) as

pij =
1

Zij

((
Ri ti

)(R t

0T 1

)) ((
RT −RT t

0T 1

)(
P j

1

))
=

1

Zij

(
R′

i t′i
)(P ′

j

1

)
,

where R′
i = RiR, t′i = Rit+ ti, and P ′

j = RT (P j − t). (Note that because Ri and

R are rotations, so are R′
i and RT : as mentioned in Chapter 1, rotation matrices

form a multiplicative group.)
This ambiguity simply stems from the fact that the structure and motion pa-

rameters consistent with image data can be expressed in different Euclidean frames,
separated from each other by rigid transformations. Perhaps more surprisingly, it
is in fact also impossible to recover the absolute scale of the observed scene, since
we can rewrite Equation (8.1) as

pij =
1

λZij

(
Ri λti

)(λP j

1

)
=

1

Z ′
ij

(
Ri t′i

)(P ′
j

1

)
,

where λ is an arbitrary positive nonzero scalar (because the sign of the depth of a
point lying in front of a camera must always be negative), t′i = λti, P

′
j = λP j , and

Z ′
ij = λZij . Intuitively, this corresponds to a well-known property of perspective

projection, already noted in Chapter 1: the apparent size of objects depends on
their distance from the cameras observing them, and an object twice as large as
another one will not appear any larger if it is twice as far.

The solution of the Euclidean SFM problem is thus defined only up to an ar-
bitrary similarity—that is, a rigid transformation followed by an isotropic positive
scaling. Like rotations, rigid transformations form a group under composition (and
so do their 4 × 4 matrix representations under multiplication, of course). They
map points onto points and lines onto lines, and preserve incidence relations—that
is, the point where two lines (or, say, a line and a plane) intersect maps onto the
intersection of their images, as well as angles, distances, and parallelism. Similari-
ties form a group and include rigid transformations as a subgroup, sharing most of
their properties, but not preserving distances. Instead, they preserve the ratio of
distances measured along arbitrary directions. Because similarities form a group, it
makes sense to talk about the Euclidean shape of a set of points as the equivalence
class formed by all copies of these points related by these transformations (some
authors use the term metric shape). See the problems at the end of this chapter.

In particular, Euclidean structure from motion can be thought of as the re-
covery of the Euclidean shape of the observed scene, along with the corresponding
perspective projection matrices. Since Equation (8.1) provides 2mn constraints on

2As already noted in Chapter 1, the depths of the observed points relative to the cameras are
not independent unknowns, because Zij = ri3 ·P j + ti3, where rT

i3 is the third row vector of the
matrix Ri, and ti3 is the third coordinate of the vector ti.



Section 8.1 Internally Calibrated Perspective Cameras 224

the 6m extrinsic parameters of the matrices Mi and the 3n parameters of the vec-
tors P j , taking into account the ambiguity of this problem suggests that it admits
a finite number of solutions as soon as 2mn ≥ 6m+ 3n− 7. For m = 2, five point
correspondences should thus be sufficient to determine (up to a similarity) a finite
number of projection matrix pairs and the positions of all scene points.

In practice, 2mn is in general (much) greater than 6m + 3n − 7, and Equa-
tion (8.1) does not admit an exact solution. Instead, an approximate solution can
be found by minimizing the mean-squared error

E =
1

mn

∑
i,j

∣∣∣∣pij −
1

Zij

(
Ri ti

)(P j

1

)∣∣∣∣2 (8.2)

with respect to the 6m+3n−7 structure and motion parameters using the nonlinear
least squares optimization techniques described in Chapter 22. The main problem
with this approach is that these techniques require a reasonable initial guess to
converge to something close to the global minimum of the error function they
attempt to minimize. Reliable methods for finding such guesses are thus required.

8.1.2 Euclidean Structure and Motion from Two Images

We present in this section simple methods for computing the projection matri-
ces associated with two cameras, which in turn allows the reconstruction of the
associated scene points using triangulation. These techniques take as input the
corresponding essential or fundamental matrices, so we first address the problem of
estimating the epipolar geometry from point correspondences, a problem known as
weak calibration.

Weak Calibration. An essential matrix can be written as E = [t×]R, and can
thus be parameterized by two translation parameters (t is defined only up to scale)
and three rotation angles. Each correspondence between points p and p′ observed
in two images provide one constraint pTEp′ = 0 on these parameters, and thus one
can expect that E can be estimated (perhaps up to some discrete ambiguity) from a
minimum of five correspondences. Such five-point solutions to the weak calibration
problem do exist (Nistér 2004), but they are too involved to be described here. We
focus here on the simpler case where a redundant set of n ≥ 8 point correspondences
are available. When the internal camera parameters are a priori unknown, the
output of weak calibration is an estimate of the fundamental matrix. On the other
hand, when they are known and normalized image coordinates are used in the
estimation process, additional constraints come into play, and an estimate of the
essential matrix is obtained.

Let us start with the uncalibrated case. The epipolar constraint can be written
as

pTFp′ = [u, v, 1]

⎛
⎝F11 F12 F13

F21 F22 F23

F31 F32 F33

⎞
⎠
⎛
⎝u′

v′

1

⎞
⎠ = 0. (8.3)

Given n ≥ 8 point correspondences pj ↔ p′j (j = 1, . . . , n), we can rewrite the
corresponding instances of Equation (8.3) as an n×9 system of homogeneous linear



Section 8.1 Internally Calibrated Perspective Cameras 225

equations Uf = 0 in the unknown entries of the fundamental matrix, where

U =

⎛
⎜⎜⎝
x1x

′
1 x1y

′
1 x1 y1x

′
1 y1y

′
1 y1 x′

1 y′1 1
x2x

′
2 x2y

′
2 x2 y2x

′
2 y2y

′
2 y2 x′

2 y′2 1
. . . . . . . . . . . . . . . . . . . . . . . . . . .

xnx
′
n xny

′
n xn ynx

′
n yny

′
n yn x′

8 y′n 1

⎞
⎟⎟⎠ and f =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

F11

F12

F13

F21

F22

F23

F31

F32

F33

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Solving this equation in the least-squares sense amounts to minimizing

E =
1

n
||Uf ||2 =

1

n

n∑
i=1

(pT
i Fp′

i)
2 (8.4)

with respect to the unknown entries of f (or equivalently of F) under the constraint
||f ||2 = 1. As shown in Chapter 22, the solution is the eigenvector f associated
with the smallest eigenvalue of UTU .3

With exactly eight points, this method fails when the n × 9 matrix U has a
rank strictly smaller than eight. As shown in Faugeras (1993) and the problems,
this happens only when the eight points and two optical centers lie on a quadric
surface. Fortunately, this is quite unlikely because a quadric surface is completely
determined by nine points, which means that there is generally no quadric that
passes through these 10 points.

The least-squares error E defined by Equation (8.4) does not have an obvi-
ous geometric interpretation. Thus it may be preferable to minimize instead the
mean-squared geometric distance between the image points and the corresponding
epipolar lines—that is,

1

n

n∑
i=1

[d2(pi,Fp′
i) + d2(p′

i,FTpi)],

where d(p, l) denotes the (signed) Euclidean distance between the point p and the
line l, and Fp′ and FTp are the epipolar lines associated with p′ and p. This is a
nonlinear problem, but the minimization can be initialized with the result of the lin-
ear algorithm. This method, first proposed in Luong, Deriche, and Faugeras (Luong
et al. 1993), gives much better results than the linear one.

Hartley (1995) has proposed instead to normalize the linear algorithm, ob-
serving that its poor performance is due, for the most part, to poor numerical
conditioning.4 He suggests translating and scaling the data so they are centered at

3We have ignored here the fact that F should be singular. When taking the nonlinear constraint
Det(F) = 0 into account, it is in fact possible to compute F from seven correspondences (see
problems).

4The columns of U have widely different scales for typical pictures where mean image coordi-
nates might be, say, about 500 pixels. See the problems for an alternative to Hartley’s method
that also handles this issue.



Section 8.1 Internally Calibrated Perspective Cameras 226

FIGURE 8.2: Weak-calibration experiment using two images of the house sequence and a
linear least-squares implementation of weak calibration, together with Hartley’s normal-
ization. The mean distances between the points and the corresponding epipolar lines are
0.96 and 0.90 pixels for these two images. Without the normalization, they become 10.00
and 9.12 pixels.

the origin and the average distance to the origin is
√
2. In practice, this normaliza-

tion dramatically improves the conditioning of the linear least-squares estimation
process. Concretely, the algorithm is divided into four steps: First, transform the
image coordinates using appropriate translation and scaling operators T : pi → p̃i

and T ′ : p′
i → p̃′

i. Second, use linear least squares to compute the matrix F̃
minimizing

1

n

n∑
i=1

(p̃T
i F̃ p̃′

i)
2.

Third, enforce the rank-2 constraint, as originally proposed by Tsai and Huang
(1984) in the calibrated case: let F̃ = UWVT be the singular value decomposition
(or SVD) of F̃ , with W = diag(r, s, t). As shown in Chapter 22, the rank-2 matrix
F̄ minimizing the Frobenius norm of F̃ − F̄ is simply F̄ = Udiag(r, s, 0)VT . The
last step of the algorithm sets F = T T F̄T ′ as the final estimate of the fundamental
matrix. Figure 8.2 shows the results of a weak-calibration experiment using this
method with 38 point correspondences between two images of the toy house. The
data points are shown in the figure as small discs, and the recovered epipolar lines
are shown as short line segments.

As shown in Chapter 7, given the (internal) calibration matrices K and K′ of
two cameras and the corresponding essential matrix E , the fundamental matrix can
be written as F = K−TEK′−1

. Conversely, given F , K, and K′, we can compute
an estimate of the essential matrix as E = KTFK′. By construction, the matrix
E has rank 2, but, due to numerical errors, its two nonzero singular values are, in
general, not equal. The SVD once again proves useful in this setting: because it is
impossible to recover the absolute scale of the vector t from image correspondences



Section 8.1 Internally Calibrated Perspective Cameras 227

alone, we can take, without loss of generality, E = U diag(1, 1, 0)VT , where UWVT

is this time the SVD of KTFK′.

From Essential Matrix to Camera Motion. Let us assume from now on that
the essential matrix E is known. As shown in Chapter 7, given two internally
calibrated cameras with projection matrices

(
Id 0

)
and

(
RT −RT t

)
, the corre-

sponding essential matrix is E = [t×]R. Specifying R and t—that is, the camera
motion between the two views—obviously determines E . We address in this section
the inverse problem of recovering R and t from E .

Because ET = V diag(1, 1, 0)UT , the nullspace of this matrix—that is, the set
of all vectors v such that ETv = 0—is Ru3, where u3 is the third column of U
and a unit vector. In turn, because ET t = 0, there are two possible solutions for t,
defined up to positive scale factors, namely t′ = u3 and t′′ = −u3.

Let us now show that there are also two solutions for the rotational part of
the essential matrix, namely

R′ = UWVT and R′′ = UWTVT , where W =

⎛
⎝0 −1 0
1 0 0
0 0 1

⎞
⎠.

First, let us observe that we can always assume that the orthogonal matrices
U and V are rotation matrices: indeed, since the third singular value of E is zero,
we can always replace the third column of either matrix by its opposite to make
the corresponding determinant positive. The resulting decomposition of E is still a
valid SVD. Since the matrices U , V , and W (and their transposes) are rotations,
so are R′ and R′′.

Now let u1 and u2 denote the first two columns of U . Because t′ = u3 and
U is a rotation matrix, we have t′ × u1 = u2 and t′ × u2 = −u1. In particular,

[t′×]R′ =
(
u2 −u1 0

)
WVT = −

(
u1 u2 0

)
VT = −Udiag(1, 1, 0)VT = −E .

Likewise, it is easy to show that [t′×]R′′ = E . Since E is defined only up to a
(possibly negative) scale factor, both solutions are valid essential matrices. The
same reasoning holds when t′′ is used instead of t′. We therefore have four possible
solutions for the camera motion. It is easy to show that only one of them places
the reconstructed points in front of the two cameras (see problems). It is found
by reconstructing one point and picking the solution that gives it negative depths
relative to both cameras.

The Eight-Point Algorithm. Putting weak calibration and motion estimation
together, we obtain the “eight-point” algorithm for binocular motion estimation
first proposed by Longuet-Higgins (1981) in the case where exactly eight point
correspondences are available. The version shown in Algorithm 8.1 uses n ≥ 8
correspondences and incorporates Hartley’s normalization idea.

Figure 8.3 shows the result of an experiment involving two pictures in the
house sequence from Figure 8.1. The left part of the diagram shows the reconstruc-
tion obtained by the algorithm and viewed from an arbitrary viewpoint. Its right
part shows this reconstruction (solid lines) after it has been registered with the



Section 8.1 Internally Calibrated Perspective Cameras 228

1. Estimate F .

(a) Compute Hartley’s normalization transformation T and T ′, and the
corresponding points p̃i and p̃′

i.

(b) Use homogeneous linear least squares to estimate the matrix F̃ mini-
mizing 1

n

∑n
i=1(p̃

T
i F̃ p̃′

i)
2 under the constraint ||F̃ ||2F = 1.

(c) Compute the singular value decomposition Udiag(r, s, t)VT of F̃ , and
set F̄ = Udiag(r, s, 0)VT .

(d) Output the fundamental matrix F = T T F̄T ′.

2. Estimate E.

(a) Compute the matrix Ẽ = KTFK′.

(b) Set E = U diag(1, 1, 0)VT , where UWVT is the singular value decompo-
sition of the matrix Ẽ .

3. Compute R and t.

(a) Compute the rotation matrices R′ = UWVT and R′′ = UWTVT , and
the translation vectors t′ = u3 and t′′ = −u3, where u3 is the third
column of the matrix U .

(b) Output the combination of the rotation matrices R′, R′′, and the trans-
lation vectors t′, t′′ such that the reconstructed points lie in front of
both cameras.

Algorithm 8.1: The Longuet-Higgins Eight-Point Algorithm for Euclidean Structure
and Motion from Two Views.

ground-truth data (dashed lines) through a similarity transformation. Once reg-
istered, the mean Euclidean distance between the reconstructed and ground-truth
3D points is 0.87cm (the house is about 20cm high), or a mean relative error of
3.1% compared to the radius of a sphere bounding the points. The results of all
algorithms presented in this section will be illustrated in the same format.

8.1.3 Euclidean Structure and Motion from Multiple Images

The binocular approach to Euclidean structure from motion described in the pre-
vious section does not readily generalize to multiple pictures. It is, however, a
rather simple matter to stitch together the structure and motion estimates asso-
ciated with different pairs of images: Consider the graph whose nodes correspond
to image pairs and whose edges link two images that share at least three points.
Let k and l denote the indices of two adjacent pictures in this graph, and let Jkl
denote the set of indices of the points Pj observed in both images, with homoge-
neous coordinate vectors kPj and lPj in the corresponding camera frames. The
3 × 4 similarity transformation Skl separating the coordinate systems associated



Section 8.1 Internally Calibrated Perspective Cameras 229

FIGURE 8.3: Euclidean reconstruction of the house from two views. The mean absolute
and relative errors are respectively 0.87cm and 3.1%. See the text for details.

with these cameras can be estimated by minimizing

1

nkl

∑
j∈Jkl

||kPj − Skl
lPj ||2

with respect to the unknown rotation and translation parameters. Although this
appears to be a nonlinear optimization problem, we will show in Chapter 14 that
using quaternions to represent rotations reduces it to a simple eigenvalue problem
when |Jkl| ≥ 3.

Picking some arbitrary base node in the graph and applying this registration
procedure to its neighbors, the neighbors’ neighbors, etc., provides a simple method
for estimating the projection matrices associated with all the nodes from the same
connected component of the graph in the coordinate system of the base node. Once
this is done, the position of every point observed by at least two cameras is easily
triangulated. The camera projection matrices and the point positions can then
be used as initial guesses for the nonlinear minimization of the error defined by
Equation (8.2) (see Chapter 22 for how to solve this type of optimization problem).
Note that this technique does not require all points to be visible in all images; a
full reconstruction is possible as soon as the image graph is connected, and each
point in the scene is visible in at least two images.

The reconstruction task becomes even easier when all points are visible in all
images: Let us consider them−1 image pairs (1, k) with k = 2, . . . ,m. Applying the
eight-point algorithm to any of these pairs yields a different reconstruction of the
scene in the coordinate system associated with the first camera, with point positions
P jk (j = 1, . . . , n), and projection matrices

(
Id 0

)
and

(
RT

k −RT
k tk

)
. In the

absence of measurement and numerical errors, the m− 1 reconstructions are scaled
versions of each other (remember that the absolute scale cannot be recovered). In
practice, it is a simple matter to (roughly) estimate the corresponding scale factors:
defining λk = ||P 12||/||P 1k||, we can use P j2 (j = 1, . . . , n) and

(
RT

k −λkRT
k tk

)
(k = 2, . . . ,m) as reasonable initial guesses for the scene structure and camera



Section 8.2 Uncalibrated Weak-Perspective Cameras 230

motion in the minimization of Equation (8.2). Note that this method is easily
adapted to the case where at least eight points correspondences can be established
between one (base) image and all other ones (these eight correspondences do not
have to be the same from one picture to the next), and any two images have at
least one point in common.

Figure 8.4 shows the results of an experiment using this method to recover
the Euclidean structure of the toy house. The top-left part of the figure shows the
reconstructions associated with the five corresponding image pairs, rescaled using
the first triangulated point, as well as the track formed by the optical centers of
the recovered cameras. The top-right part of the figure shows the recovered scene
structure and camera positions after the nonlinear minimization of Equation (8.2).
The bottom part of the figure shows the final reconstruction before and after align-
ment with the ground-truth 3D structure via a similarity transformation. Adding
images clearly helps the quality of the reconstruction, with the reconstruction error
dropping to 1.4% compared to 3.1% in the binocular case of Figure 8.3.

8.2 UNCALIBRATED WEAK-PERSPECTIVE CAMERAS

Let us now assume that the intrinsic parameters of the cameras are unknown. The
cost to pay for this is an increased ambiguity in the reconstruction (from the class
of similarity transformations to the larger classes of so-called affine and projective
transformations; these will be defined shortly). However, using uncalibrated cam-
eras has two distinct advantages: (1) This does not require a preliminary calibration
stage for these parameters. Instead, the structure and motion estimation process
is decomposed in two stages, where the “essential” (affine or projective) structure
and motion parameters are first recovered using simple and robust algorithms, be-
fore additional constraints associated with known camera parameters are used to
“upgrade” the reconstruction to a Euclidean one uniquely defined up to a similar-
ity. (2) By “linearizing” the algebraic constraints associated with structure from
motion, this approach affords simple and effective methods for handling multiple
images in a uniform way.

We start in this section with the case of scenes whose relief is small compared
with their overall depth relative to the cameras observing them, so perspective pro-
jection can be approximated by the simpler weak-perspective model of the imaging
process. Concretely, according to Theorem 2 in Chapter 1, given n fixed points
Pj (j = 1, . . . , n) observed by m affine cameras with unknown intrinsic and ex-
trinsic parameters, and the corresponding mn nonhomogeneous coordinate vectors
pij of their images, we can rewrite the corresponding weak-perspective projection
equations as

pij = Mi

(
P j

1

)
= AiP j + bi for i = 1, . . . ,m and j = 1, . . . , n, (8.5)

where Mi =
(
Ai bi

)
is a general rank-2 2 × 4 matrix, and the vector P j in R

3

is the position of the point Pj in some fixed coordinate system. We define affine
structure from motion as the problem of estimating the m matrices Mi and the n
vectors P j from the mn image correspondences pij .



Section 8.2 Uncalibrated Weak-Perspective Cameras 231

FIGURE 8.4: Euclidean structure and motion from multiple images. Top: Scene recon-
struction and camera trajectory before (left) and after (right) nonlinear optimization.
Bottom: The reconstructed house before (left) and after (right) alignment with the
ground truth. The mean absolute and relative errors are respectively 0.38cm and 1.4%.
See the text for details.

8.2.1 Natural Ambiguity of the Problem

In the Euclidean case, we have shown earlier that the 4 × 4 matrix associated
with a rigid transformation (or a similarity) and its inverse can be inserted in the
projection equations. Likewise, if Mi and P j are solutions of Equation (8.5), so
are M′

i and P ′
j , where

M′
i = MiQ,

(
P ′

j

1

)
= Q−1

(
P j

1

)
, (8.6)

and Q is an arbitrary affine transformation matrix; that is, it can be written as

Q =

(
C d

0T 1

)
with Q−1 =

(
C−1 −C−1d

0T 1

)
, (8.7)



Section 8.2 Uncalibrated Weak-Perspective Cameras 232

where C is a nonsingular 3 × 3 matrix and d is a vector in R
3. It is easy to show

that affine transformations are the most general class of 4× 4 nonsingular matrices
that preserve the relationship between coordinates expressed in Equation (8.6) for
any point Pj (see the problems).

In particular, it follows that solutions to Equation (8.5) can be defined only
up to an affine transformation ambiguity. Affine transformations form a group and
include similarities as a subgroup. Like similarities, they map lines onto lines and
planes onto planes, and preserve parallelism and incidence relationships. Unlike
them, they do not preserve angles. They do, however, preserve the ratio of signed
lengths along parallel lines, and they can be constructed by composing a rigid
transformation, an anisotropic scaling with different scale factors along the three
coordinate axes, and a shear. Clearly, affine transformations do not preserve shape
in the Euclidean sense. Since they form a group, it is possible to talk about the
affine shape of a set of points as the equivalence class formed by all the copies
of these points separated from each other by some affine transformation. Affine
SFM can thus be thought of as the problem of recovering the scene’s affine shape,
together with the corresponding affine projection matrices. Taking into account
the 12 parameters defining a general affine transformation, we thus expect a finite
number of solutions as soon as 2mn ≥ 8m + 3n − 12. For m = 2, this suggests
that four point correspondences should be sufficient to determine (up to an affine
transformation and possibly some discrete ambiguity) the two projection matrices
and the three-dimensional positions of the scene points. This is confirmed formally
in Sections 8.2.2 and 8.2.3.

When the intrinsic parameters of the cameras are known so the correspond-
ing calibration matrices can be taken equal to the identity, the parameters of the
projection matrices Mi =

(
Ai bi

)
must obey additional constraints. For exam-

ple, according to Equation (1.22) in Chapter 1, the matrix Ai associated with a
(calibrated) weak-perspective camera is formed by the first two rows of a rotation
matrix, scaled by the inverse of the depth of the corresponding reference point.
As shown in Section 8.2.4, constraints such as these can be used to eliminate the
affine ambiguity (or more precisely, to reduce it to a similarity ambiguity) when a
sufficient number of images is available. This suggests decomposing the solution of
the affine structure-from-motion problem into two steps: (a) first, use at least two
views of the scene to reconstruct its three-dimensional affine shape and the corre-
sponding projection matrices; then, (b) use additional views and the constraints
associated with known camera calibration parameters to uniquely determine the
rigid Euclidean structure of the scene. The first stage of this approach yields the
essential part of the solution: the affine shape is a full-fledged three-dimensional
representation of the scene, which can be used in its own right to synthesize new
views of the scene, for example. The second step amounts to finding a Euclidean
upgrade of the reconstruction—that is, to computing a single affine transformation
that accounts for its rigidity and maps its affine shape onto a Euclidean one.

Using three or more images overconstrains the structure-from-motion problem
and leads to more robust least-squares solutions. Accordingly, a significant portion
of this section is devoted to the problem of recovering the affine shape of a scene
from several (possibly many) pictures.



Section 8.2 Uncalibrated Weak-Perspective Cameras 233

8.2.2 Affine Structure and Motion from Two Images

Let us start with the case where two affine images of the same scene are available.
Introducing the affine equivalent of the epipolar constraint and exploiting the nat-
ural ambiguity of affine structure from motion will provide us with a very simple
method for solving this problem.

Affine Epipolar Geometry. We consider two affine images and rewrite the
corresponding projection equations{

p = AP + b

p′ = A′P + b′
as

(
A p− b

A′ p′ − b′

)(
P

−1

)
= 0.

A necessary and sufficient condition for these equations to admit a nontrivial solu-
tion is that

Det

(
A p− b

A′ p′ − b′

)
= 0,

or, equivalently,
αx+ βy + α′x′ + β′y′ + δ = 0, (8.8)

where α, β, α′, β′, and δ are constants depending on A, b, A′, and b′. This is the
affine epipolar constraint. Indeed, given a point p in the first image, the position of
the matching point p′ is constrained by Equation (8.8) to lie on the line l′ defined
by α′x′+β′y′+γ′ = 0, where γ′ = αx+βy+ δ (Figure 8.5). Note that the epipolar
lines associated with each image are parallel to each other. For example, moving p
changes γ′ or, equivalently, the distance from the origin to the epipolar line l′, but
does not modify the direction of l′.

The affine epipolar constraint can be rewritten in the familiar form

(x, y, 1)F

⎛
⎝x′

y′

1

⎞
⎠ = 0, where F =

⎛
⎝ 0 0 α

0 0 β
α′ β′ δ

⎞
⎠ (8.9)

is the affine fundamental matrix. This suggests that the affine epipolar geometry
can be seen as the limit of the perspective one. Indeed, it can be shown that an
affine picture is the limit of a sequence of images taken by a perspective camera
that zooms in on the scene as it backs away from it. In turn, this leads to another
derivation of Equation (8.9). See the problems for details.

Affine Weak Calibration. Given n ≥ 4 point correspondences pj ↔ p′j (j =
1, . . . , n) between two images, we can rewrite the corresponding instances of Equa-
tion (8.8) as an n× 5 system of homogeneous linear equations Uf = 0 in the five
unknown entries of the affine fundamental matrix where, this time:

U =

⎛
⎜⎜⎝
x1 y1 x′

1 y′1 1
x2 y2 x′

2 y′2 1
. . . . . . . . . . . . . . .
xn yn x′

n y′n 1

⎞
⎟⎟⎠ and f =

⎛
⎜⎜⎜⎜⎝

α
β
α′

β′

δ

⎞
⎟⎟⎟⎟⎠.



Section 8.2 Uncalibrated Weak-Perspective Cameras 234

ll’

1

2

1

2

p’

P

y

x

y’

x’

p’ p

P

FIGURE 8.5: Affine epipolar geometry: Given two parallel-projection images, a point p in
the right image and the two projection directions define an epipolar plane that intersects
the left image along the epipolar line l′. As in the perspective case, any match p′ for p is
constrained to belong to this line. The same property holds for all other affine projection
models.

As before, solving this equation in the least-squares sense amounts to computing
the eigenvector f associated with the smallest eigenvalue of UTU .

Figure 8.6 shows the results of a weak calibration experiment on two images
in the house sequence. Weak perspective is a rather coarse approximation of the
image formation process, and, as expected, errors are worse than in the perspective
case (compare to Figure 8.2). Note that, as in that case, Hartley’s normalization is
essential for obtaining reasonable results.

From the Affine Fundamental Matrix to Camera Motion. Let us now
show that the projection matrices can be estimated from the epipolar constraint.
The natural ambiguity of affine structure from motion allows us to simplify the
calculations: according to Equations (8.6) and (8.7), if M = (A b) and M′ =
(A′ b′) are solutions of our problem, so are M̃ = MQ and M̃′ = M′Q, where

Q =

(
C d

0T 1

)

is an arbitrary affine transformation. The new projection matrices can be written as
M̃ = (AC Ad+ b) and M̃′ = (A′C A′d+ b′). Note that, according to Equation
(8.7), applying this transformation to the projection matrices amounts to applying
the inverse transformation to every scene point P , whose position P is replaced by
P̃ = C−1(P − d).

As shown in the problems at the end of this chapter, it is possible to choose



Section 8.2 Uncalibrated Weak-Perspective Cameras 235

FIGURE 8.6: Affine weak-calibration experiment using two images of the house sequence
and linear least squares, together with Hartley’s normalization. The mean distances be-
tween the points and the corresponding epipolar lines are 3.24 and 3.15 pixels for these
two images.

C and d so that the two projection matrices take the canonical forms:

M̃ =

(
1 0 0 0
0 1 0 0

)
and M̃′ =

(
0 0 1 0
a b c d

)
, (8.10)

which allows us to rewrite the epipolar constraint as

Det

⎛
⎜⎜⎝
1 0 0 x
0 1 0 y
0 0 1 x′

a b c y′ − d

⎞
⎟⎟⎠ = −ax− by − cx′ + y′ − d = 0,

where the coefficients a, b, c, and d are related to the parameters α, β, α′, β′, and
δ by a : α = b : β = c : α′ = −1 : β′ = d : δ.

Once the coefficients a, b, c, and d have been estimated via linear least squares,
the two projection matrices are known, and the position of any point can be esti-
mated from its image coordinates by using once again linear least squares to solve
the corresponding system of four equations,⎛

⎜⎜⎝
1 0 0 x
0 1 0 y
0 0 1 x′

a b c y′ − d

⎞
⎟⎟⎠
(
P̃

−1

)
= 0, (8.11)

for the three unknown coordinates of P̃ .
Note that, paradoxically perhaps, the first three equations in Equation (8.11)

are in fact sufficient to solve for P̃ as (x, y, x′)T without estimating the coefficients



Section 8.2 Uncalibrated Weak-Perspective Cameras 236

FIGURE 8.7: The affine reconstruction of the house from two views. Left: Affine recon-
struction obtained by reducing the second row of A′ to (0, 0, 1). In this particular case,
the computation is numerically much better behaved than when reducing the first row to
the same form. Right: The reconstruction after affine registration with the ground-truth
data. The mean Euclidean distance between the reconstructed and ground-truth points
is 0.92cm, or a mean relative error of 3.2%.

a, b, c, and d, and without requiring a minimum number of matches. This is not as
surprising as one might think. In the case of two calibrated orthographic cameras
with perpendicular projection directions and parallel y axes, taking X = x, Y = y,
and Z = x′ does yield the correct Euclidean reconstruction (have another look at
Figure 8.5, assuming orthographic projection and imagining that the epipolar lines
are parallel to the x and x′ axes). In practice, of course, using all four equations
might yield more accurate results. The proposed method reduces the first row of
A′ to (0, 0, 1) via the affine transformation Q. When the first row of the matrix A′

(almost) lies in the plane spanned by the rows of A, the matrix inversion involved in
this process is numerically ill behaved, and it is preferable to apply instead the same
reduction to the second row of A′. When both matrices constructed in this fashion
are singular, the two image planes are parallel and the scene structure cannot be
recovered.

Figure 8.7 shows the 3D affine shape of the house recovered from two images.
In this case, taking X = x, Y = y, and Z = x′ does not give very good results,
due to numerical conditioning problems. However, it is striking that taking X = x,
Y = y, and Z = y′ yields quite a reasonable reconstruction of the house, even if
the mean relative error (3.2%) is slightly worse than that obtained by the eight-
point algorithm (3.1%). (To be fair, note that the recovered shape is registered
to the ground-truth one using an affine transformation in this case. With more
degrees of freedom (12) than a similarity (7), it fits the data better, which biases
the comparison a bit.)



Section 8.2 Uncalibrated Weak-Perspective Cameras 237

8.2.3 Affine Structure and Motion from Multiple Images

The method presented in the previous section is aimed at recovering the affine scene
structure and the corresponding projection matrices from a minimum number of
images. We now address the problem of estimating the same information from a
potentially large number of pictures.

As usual, it is convenient to simplify as much as possible all equations involved
in our problem. Under affine projection, the image of the center of mass of a set of
points is the center of mass of their images (see problems). When we let P0 denote
the center of mass of the n points P1, . . . , Pn, and let pi0 denote its projection into
image number i, we have

pi0 = AiP 0 + bi, and thus pij − pi0 = Ai(P j − P 0).

Now, of course, we are free to pick P0 as the origin of the world coordinate system,
so P 0 = 0. Because pi0 is “observable” as the center of mass of the points pij , we
are also free to choose it as the origin of the coordinate system attached with image
number i, so pi0 = 0. This allows us to rewrite Equation (8.5) as

pij = AiP j for i = 1, . . . ,m and j = 1, . . . , n, (8.12)

and reduce the affine ambiguity to a linear one.
The mn instances of Equation (8.12) can now be rewritten in matrix form as

D = AP , whereD =

⎛
⎝p11 . . . p1n

. . . . . . . . .
pm1 . . . pmn

⎞
⎠, A =

⎛
⎜⎝A1

...
Am

⎞
⎟⎠, andP =

(
P 1 . . . P n

)
.

As the product of a 2m× 3 matrix and a 3 × n matrix, the 2m× 3n matrix
D has, in general, rank 3. As shown by Tomasi and Kanade (1992), singular value
decomposition provides a practical method for recovering both A and P from the
(observed) data matrix D. Indeed, if UWVT is the SVD of the rank-3 matrix D,
only three of the singular values are nonzero, thus D = U3W3VT

3 , where U3 and V3

denote the 2m× 3 and 3× n matrices formed by the three leftmost columns of the
matrices U and V , and W3 is the 3×3 diagonal matrix formed by the corresponding
nonzero singular values.

In the noiseless case where D is truly a rank-3 matrix, it is easy to exploit
the inherent ambiguity of affine structure from motion to show that A0 = U3

√
W3

and P0 =
√
W3VT

3 are representatives of the true (affine) camera motion and scene
shape (see problems). In practice, due to image noise, errors in localization of
feature points, and the mere fact that actual cameras are not affine, the equation
D = AP does not hold exactly, and the matrix D has (in general) full rank. In this
case, the best we can hope for is to minimize

E =
∑
i,j

||pij −AiP j ||2 =
∑
j

||qj −AP j ||2 = ||D − AP||2F ,

with respect to the matrices Ai (i = 1, . . . ,m) and vectors P j (j = 1, . . . ,m) or,
equivalently, with respect to the matrices A and P . (Here ||A||F denotes, as in



Section 8.2 Uncalibrated Weak-Perspective Cameras 238

Chapter 22, the Frobenius norm of the matrix A—that is, the square root of the
sum of the squared entries of that matrix.)

According to Theorem 6 in Chapter 22, the matrix A0P0 is the closest rank-3
approximation to D. Because the rank of AP is 3 for any rank-3 2m× 3 matrix A
and rank-3 3 × n matrix P , the minimum value of E is thus reached for A = A0

and P = P0, which confirms that A0 and P0 are the optimal estimates of the
true camera motion and scene structure. This does not contradict the inherent
ambiguity of affine structure from motion: all affinely equivalent solutions yield the
same value for E, and we just as well could have taken A = A0S and P = S−1P0

for any nonsingular 3 × 3 matrix S. In particular, singular value decomposition
provides a solution to the affine SFM problem, as illustrated by Algorithm 8.2.

1. Compute the singular value decomposition D = UWVT .

2. Construct the matrices U3, V3, and W3 formed by the three leftmost columns
of the matrices U and V , and the corresponding 3× 3 submatrix of W .

3. Define
A0 = U3

√
W3 and P0 =

√
W3VT

3 ;

the 2m × 3 matrix A0 is an estimate of the camera motion, and the 3 × n
matrix P0 is an estimate of the scene structure.

Algorithm 8.2: The Tomasi–Kanade Factorization Algorithm for Affine Shape from
Motion.

Figure 8.8 shows the 3D (affine) shape of the house recovered from six images
of 38 points of the house. The mean relative error of 2.8% is, as expected, smaller
than the 3.2% obtained from two views only.

8.2.4 From Affine to Euclidean Shape

Let us now assume a weak-perspective model of the imaging process and (internally)
calibrated cameras. Recall from Chapter 1 that a weak-perspective projection ma-
trix can be written as

M =
1

Zr

(
k s
0 1

)(
R2 t2

)
,

where Zr is the depth of the reference point, k and s are aspect-ratio and skew
parameters, R2 is the 2×3 matrix formed by the first two rows of a rotation matrix,
and t2 is a vector in R

2. When the camera is calibrated, we can use normalized
image coordinates and take k = s = 1. The projection matrix becomes

M̂ =
(
Â b̂

)
=

1

Zr

(
R2 t2

)
. (8.13)

It follows from Equation (8.13) that the matrix Â is part of a (scaled) rotation
matrix, with row vectors â

T
1 and â

T
2 that are orthogonal to each other and have

the same norm. In other words, a (calibrated) weak-perspective camera is an affine



Section 8.2 Uncalibrated Weak-Perspective Cameras 239

FIGURE 8.8: The affine reconstruction of the house from multiple views. Left: The orig-
inal reconstruction. Right: An overlay of the reconstruction after it has been registered
(via an affine transformation) with the ground truth data. The mean Euclidean distance
between the reconstructed and ground-truth points is 0.77cm, or a mean relative error of
2.8%.

camera with the additional constraints

â1 · â2 = 0 and ||â1||2 = ||â2||2. (8.14)

Let us suppose that we have recovered the affine shape of a scene and the pro-
jection matrix M associated with each view. We already know that all solutions
of the structure-from-motion problem are the same up to an affine ambiguity. In
particular, the Euclidean coordinate vectors P̂ of scene points and the correspond-
ing projection matrices M̂ must be related to their affine counterparts P and M
by some affine transformation

Q =

(
C d

0T 1

)

such that M̂ = MQ and P̂ = C−1(P̃ − d). Such a transformation is called a
Euclidean upgrade because it maps the affine shape of a scene onto its Euclidean
one.

Let us now show how to compute such an upgrade when m ≥ 3 weak-
perspective images are available. Let Mi = (Ai bi) denote the corresponding
projection matrices, estimated using the factorization method of Section 8.2.3, for
example. If M̂i = MiQ, we can rewrite the weak-perspective constraints of Equa-
tion (8.14) as{

âi1 · âi2 = 0,
||âi1||2 = ||âi2||2, ⇐⇒

{
aT
i1CCTai2 = 0,

aT
i1CCTai1 = aT

i2CCTai2,
for i = 1, . . . ,m,

(8.15)
where aT

i1 and aT
i2 denote the rows of the matrix Ai. This overconstrained system

of 3m quadratic equations in the coefficients of C can be solved via nonlinear least



Section 8.3 Uncalibrated Perspective Cameras 240

FIGURE 8.9: The Euclidean reconstruction of the house using a weak-perspective model.
Left: The original reconstruction. Right: An overlay of the reconstruction after it has
been registered (via a similarity transformation) with the ground-truth data. The mean
Euclidean distance between the reconstructed and ground-truth points is 0.83cm, or a
mean relative error of 3.0%. Note that the registration error is a bit larger than for the
plain affine reconstruction shown in Figure 8.8. As before, this is not surprising, since an
affine transformation has more “degrees of freedom” (12) than a similarity (7).

squares, but this requires some reasonable initial guess for these coefficients. An
alternative is to consider Equation (8.15) as a set of linear constraints on the matrix
D = CCT . The coefficients of D can be found in this case via linear least squares,
and C can then be computed as

√
D using Cholesky decomposition. It should be

noted that this requires that the recovered matrix D (or its opposite) be positive
definite, which is not guaranteed in the presence of noise. Note also that the solution
of Equation (8.15) is defined only up to an arbitrary rotation. To determine Q
uniquely and simplify the calculations, it is possible to map M1 (and possibly M2)
to canonical forms as before.

Figure 8.9 shows the weak-perspective upgrade associated with the Tomasi-
Kanade affine reconstruction of the house shown in Figure 8.8. The mean relative
error is 3.0% in this case.

8.3 UNCALIBRATED PERSPECTIVE CAMERAS

Let us come back to perspective projection, and assume again that the intrinsic
parameters of the cameras are unknown. Given n fixed points Pj (j = 1, . . . , n)
observed by m cameras and the corresponding mn homogeneous coordinate vec-
tors pij = (xij , yij , 1)

T of their images, we write the corresponding perspective
projection equations as⎧⎪⎪⎨

⎪⎪⎩
xij =

mi1 ·P j

mi3 ·P j

yij =
mi2 · P j

mi3 · P j

for i = 1, . . . ,m and j = 1, . . . , n, (8.16)



Section 8.3 Uncalibrated Perspective Cameras 241

where mT
i1, mT

i2, and mT
i3 denote the rows of the 3 × 4 projection matrix Mi

associated with camera number i in some fixed coordinate system, and P j denotes
the homogeneous coordinate vector of the point Pj in that coordinate system.

According to Theorem 1 (Chapter 1), any 3× 4 matrix M =
(
A b

)
, where

A is a nonsingular 3×3 matrix and b is an arbitrary vector in R
3 can be interpreted

as a perspective projection matrix; that is, it can be written as M = ρK
(
R t

)
for

some nonzero real ρ, calibration matrix K, 3×3 rotation matrix R, and translation
vector t in R

3. We relax this condition a bit in this chapter, and define a projective
projection matrix as an arbitrary rank-3 3 × 4 matrix. Clearly, perspective pro-
jection matrices are projective ones, but not all projective projection matrices are
perspective ones. We will come back to the implications of this relaxation shortly.
In the mean time, let us define projective structure from motion as the problem of
estimating the m rank-3 matrices Mi and the n vectors P j from the mn image
correspondences pij .

8.3.1 Natural Ambiguity of the Problem

When Mi and P j are solutions of Equation (8.16), so are λiMi and μjP j for
any nonzero values of λi and μj . In particular, as already noted in Chapter 1,
the matrices Mi satisfying Equation (8.16) are defined only up to scale, with 11
independent parameters, and so are the homogeneous coordinate vectors P j in R

4

(with only three independent parameters; when necessary, these can be reduced to
the canonical form (Xj , Yj , Zj, 1)

T as long as their fourth coordinate is not zero,
which is the case in general). Like its affine cousin, projective SFM is subject to
a deeper ambiguity that justifies its name: Let Q denote an arbitrary projective
transformation matrix (or homography; the two terms are strictly equivalent)—
that is, an arbitrary nonsingular 4× 4 matrix. Postmultiplying Mi by Q does not
change its rank, and it follows that, if Mi and P j are solutions of the projective
structure-from-motion problem, so are M′

i = MiQ and P ′
j = Q−1P j .

Projective transformations form a group and include affine transformations
as a subgroup. Like affine transformations, they map lines onto lines and planes
onto planes, and preserve incidence relationships. Unlike these, however, they do
not preserve parallelism, or the ratio of lengths along parallel lines, and thus do not
preserve affine shape. They preserve instead the cross-ratio of four points along the
same line (see problems). Because homographies form a group, it is again possible
to talk about the projective shape of a set of points, and projective structure from
motion can be thought of as the recovery of the observed scene’s projective shape,
along with the corresponding projection matrix parameters.

The matrix Q is defined only up to scale, with 15 free parameters, because
multiplying it by a nonzero scalar simply amounts to applying inverse scalings toMi

and P j . Because Equation (8.16) provides 2mn constraints on the 11m parameters
of the matrices Mi and the 3n parameters of the vectors P j , taking into account
the natural ambiguity of structure from motion suggests that this problem admits
a finite number of solutions as soon as 2mn ≥ 11m + 3n − 15. For m = 2, seven
point correspondences should thus be sufficient to determine (up to a projective
transformation and possibly a finite ambiguity) the two projection matrices and
the position of any other point. This is confirmed in Sections 8.3.2 and 8.3.3.



Section 8.3 Uncalibrated Perspective Cameras 242

Before proceeding, let us come back to the difference between (uncalibrated)
perspective and projective structure from motion. A formal argument is beyond the
scope of this book, but let us just note that a perspective projection matrix M =(
A b

)
with det(A) �= 0 is just the analytical representation in some Euclidean

coordinate system of the geometric perspective projection operator which, given
some pinhole O and retinal plane Π, associates with any point P �= O in E

3 the
point where the line joining P and O intersects Π. A projective projection matrix is
just another representation for the same operator, expressed this time in a projective
coordinate system, whose formal definition is once again beyond the scope of this
book, but can be thought of intuitively as a warped frame in which the projective
shape has its Euclidean coordinates.

Similar to the affine case, we will decompose in the rest of this section the so-
lution to structure from motion into two steps: first, (a) use at least two views of the
scene to reconstruct its three-dimensional projective shape and the corresponding
projective projection matrices; then, (b) use additional views and the constraints
associated with known camera calibration parameters to uniquely determine the
Euclidean structure of the scene. The second step amounts to finding a Euclidean
upgrade of the scene—that is, to computing a single projective transformation that
maps its projective shape onto a Euclidean one.

8.3.2 Projective Structure and Motion from Two Images

Let us now assume that the fundamental matrix F associated with two pictures
has been estimated from binocular correspondences. As in the affine case, the
projection matrices can in fact be estimated from a parameterization of F that
exploits the inherent ambiguity of projective SFM. In the projective setting, the
scene structure and camera motion are defined only up to an arbitrary homography,
and we can reduce the two matrices to canonical forms M̃ = MQ and M̃′ = M′Q
by postmultiplying them by an appropriate 4 × 4 matrix Q. (We must of course
simultaneously premultiply the coordinate vector P of any point P by its inverse,
yielding P̃ = Q−1P .) This time, we take M̃′ to be proportional to (Id 0) and
leave M̃ in the general form (A b) (this determines 11 of Q’s entries). Let us now
derive a new expression for the fundamental matrix using the canonical form of M̃′.
If Z and Z ′ denote the depths of the point P relative to the two cameras, we can
write the projection equations associated with the two cameras as Zp =

(
A b

)
P̃

and Z ′p′ =
(
Id 0

)
P̃ or, equivalently,

Zp = A(Id 0)P̃ + b = Z ′Ap′ + b.

It follows that Zb×p = Z ′b×Ap′, and forming the dot product of this expression
with p finally yields

pTFp′ = 0 where F = [b×]A. (8.17)

Note the similarity with the expression for the essential matrix derived in Chapter
7. In particular, we have FT b = 0, so (as could have been expected) b is the homo-
geneous coordinate vector of the first epipole in the corresponding image coordinate
system. This new parameterization of the matrix F provides a simple method for
computing the projection matrix M̃. First, note that because the overall scale of M̃



Section 8.3 Uncalibrated Perspective Cameras 243

FIGURE 8.10: The projective reconstruction of the house from two views. Left: The
original reconstruction. Right: An overlay of the reconstruction after it has been regis-
tered (via a projective transformation) with the ground-truth data. The mean Euclidean
distance between the reconstructed and ground-truth points is 0.34cm, or a mean relative
error of 1.2%.

is irrelevant, we can always take ||b|| = 1. This allows us to first compute b as the
linear least-squares solution of FT b = 0 with unit norm, and we pick A0 = −[b×]F
as the value of A. It is easy to show that, for any vector a, [a×]2 = aaT − ||a||2Id,
thus:

[b×]A0 = −[b×]
2F = −bbTF + ||b||2F = F ,

since FTb = 0 and ||b||2 = 1. This shows that M̃ =
(
A0 b

)
is a solution of

Equation (8.17).5 As shown in the problems, there is in fact a four-parameter
family of solutions whose general form is

M̃ =
(
A b

)
with A = λA0 + ( μb νb τb ). (8.18)

The four parameters correspond, as could have been expected, to the remaining
degrees of freedom of the projective transformation Q. Once the matrix M̃ is
known, we can compute the position of any point P by solving in the least-squares
sense the nonhomogeneous linear system of equations in Z and Z ′ defined by Zp =
Z ′Ap′ + b.

Figure 8.10 shows the 3D (projective) shape of the house recovered from
two images. The mean 3D reconstruction error is 0.34cm, for a relative error of
1.2%. (Homographies have more parameters [15] than affine transformations [12]
or similarities [7]. They are thus expected to fit the data better, biasing a bit the
evaluation in favor of the projective reconstruction.)

5The observant reader might have noticed that A0 is singular, so M̃ does not satisfy the
hypotheses of Theorem 1 in Chapter 1. This is not a problem in our setting, because M̃ is easily
shown to have rank 3.



Section 8.3 Uncalibrated Perspective Cameras 244

8.3.3 Projective Structure and Motion from Multiple Images

We now present three approaches to projective structure from motion that use
nonlinear optimization schemes to handle all input images in a uniform manner.
They all require reasonable initial guesses for the matrices Mi and vectors P j

in Equation (8.16). Similar to the perspective case, these can be obtained from
binocular reconstructions associated with pairs of images, for example.

Projective factorization. Given m images of n points, we can rewrite Equation
(8.16) as

D = MP , (8.19)

where

D =

⎛
⎜⎝

Z11p11 Z12p12 . . . Z1np1n

Z21p21 Z22p22 . . . Z2np2n

. . . . . . . . . . . .
Zm1pm1 Zm2pm2 . . . Zmnpmn

⎞
⎟⎠, M =

⎛
⎜⎝

M1

M2

. . .
Mm

⎞
⎟⎠ and P =

(
P 1 P 2 . . . P n

)
,

and thus formulate projective structure from motion as the minimization of

E =
∑
i,j

||Zijpj −MiP j ||2 = ||D −MP||2F (8.20)

with respect to the depths Zij and the entries of the matrices M and P . When the
depths Zij are known, we can compute M and P by using singular value decom-
position to compute a rank-4 (as opposed to rank-3 in the affine case) factorization
of D. On the other hand, when M and P are known, we can read out the values of
the depths Zij from Equation (8.19). This suggests an iterative scheme, alternating
steps where one group of variables is estimated while the other one is kept constant.
Note, however, that a trivial minimum of E corresponds to taking all variables Zij ,
Mi, and P j equal to zero. To avoid this, Sturm and Triggs (1996) propose renor-
malizing after each iteration the rows of the matrix D, then its columns, so they
have unit norm. Unfortunately, with this normalization, there is no guarantee that
the error will decrease at each step or that the method will converge to some local
minimum.

Bilinear projective SFM. An alternative to this approach can be obtained by
noting again that the variables Zij are not independent of Mi and P j , and try-
ing to eliminate them to construct a nonredundant parameterization of projective
SFM (Mahamud et al. 2001). Writing that the derivative of E with respect to Zij

should be zero at an extremum of this function, a simple calculation shows that at
such a point the value of E is given by:

E =
∑
ij

||pij × (MiP j)||2, (8.21)

where, without loss of generality, the vectors pij are supposed to have unit norm.
Note that the depths Zij have been eliminated in the process.

It is thus possible to minimize E by alternating steps where the vectors P j

are kept constant (resp. estimated) while the matrices Mi are estimated (resp.



Section 8.3 Uncalibrated Perspective Cameras 245

kept constant). Because the error term pij × (MiP j) is bilinear in Mi and P j ,
the global optimum in Mi or P j at each step of this algorithm can be obtained
using linear least squares under the constraints ||Mi||2F = 1 and ||P j ||2 = 1 for
i = 1, . . . ,m and j = 1, . . . , n. Note that this choice of constraints avoids the
degenerate (global) minimum corresponding to Mi = 0 and P j = 0. However,
it does not necessarily avoid other degeneracies, corresponding, for example, to
picking Mi = M0 (i = 1, . . . ,m) and P j = P 0 (j = 1, . . . , n), where M0 is an
arbitrary rank-3 3 × 4 matrix with unit Frobenius form and P 0 is a unit vector
in its nullspace (there are other trivial zeros corresponding to lower-rank values of
M0 and families of vectors in their nullspaces).

It is possible to show that the error decreases at each iteration, and that the
parameters converge to those of one of its critical points (Mahamud et al. 2001). As
demonstrated experimentally by Hartley, however, the minimization process might
be unstable, and after finding an acceptable solution in relatively few steps (say, 50
to 100), it might eventually switch to a degenerate zero minimum (typically after
tens of thousands of iterations). It should therefore be stopped before that—for
example, by monitoring the rate at which the error decreases, and stopping when
it becomes small enough.

Bundle adjustment. As discussed in Mahamud et al. (2001), degeneracy prob-
lems may be unavoidable for any method attempting to minimize the error func-
tion defined by Equation (8.20). For example, the normalization mechanism used
in Sturm and Triggs (1996) does not guarantee that all depth parameters Zij are
nonzero. An alternative is to revert to the original formulation of projective SFM,
and use nonlinear least squares to minimize directly

E =
1

mn

∑
i,j

⎡
⎣(xij −

mi1 ·P j

mi3 ·P j

)2

+

(
yij −

mi2 ·P j

mi3 ·P j

)2
⎤
⎦

with respect to the matrices Mi (i = 1, . . . ,m) and vectors P j (j = 1, . . . , n).
This is the method of bundle adjustment, whose name originates in the field

of photogrammetry. It is not susceptible to degeneracies, and it combines all mea-
surements to minimize a physically significant error measure—namely, the mean-
squared error between the actual image point positions and those predicted using
the estimated scene structure and camera motion. It also can take advantage of
the variants of Newton’s algorithm available for nonlinear least-squares problems
(Chapter 1), which typically converge in fewer (although possibly more expensive)
iterations than the alternation methods discussed so far. Figure 8.11 shows the
projective reconstruction of the toy house obtained using this method after 15 iter-
ations of the Levenberg-Marquardt implementation of nonlinear least squares, using
the coordinates of the points reconstructed by affine factorization as initial guesses
for the vectors P j and the projections computed from these points as initial values
for the matrices Mi. The mean relative error is 0.2%.



Section 8.3 Uncalibrated Perspective Cameras 246

FIGURE 8.11: The projective reconstruction of the house from multiple views obtained
using bundle adjustment. Left: The original reconstruction. Right: An overlay of
the reconstruction after it has been registered (via a projective transformation) with the
ground-truth data. The mean Euclidean distance between the reconstructed and ground-
truth points is 0.07cm, or a mean relative error of 0.2%.

8.3.4 From Projective to Euclidean Shape

Although projective structure is useful by itself, in most cases it is the Euclidean
structure of the scene that is the true object of interest. We saw in Section 8.1 that
the best we can hope for is to estimate the Euclidean shape of the scene, defined
up to an arbitrary similarity transformation.

Let us assume from now on that one of the techniques presented in Sec-
tion 8.3.3 has been used to estimate the projection matrices Mi (i = 1, . . . ,m) and
the point positions P j (j = 1, . . . , n) from m images of these points. We know
that any other reconstruction, and in particular a Euclidean one, is separated from
this one by a projective transformation. In other words, if M̂i and P̂ j denote the
Euclidean shape and the corresponding motion parameters, there must exist a 4×4
Euclidean upgrade matrix Q such that M̂i = MiQ and P̂ j = Q−1P j . The rest of
this section presents a method for computing Q and thus recovering the Euclidean
shape and motion from the projective ones when (some of) the intrinsic parameters
of the camera are known.

Let us first note that, since the individual matrices Mi are defined only up to
scale, so are the matrices M̂i that can be written (in the most general case, where
some of the intrinsic parameters are unknown) as

M̂i = ρiKi(Ri ti),

where ρi accounts for the unknown scale of Mi, and Ki is a calibration matrix as
defined by Equation (1.14). In particular, if we write the Euclidean upgrade matrix
as Q = (Q3 q4), where Q3 is a 4 × 3 matrix and q4 is a vector in R

4, we obtain
immediately

MiQ3 = ρiKiRi. (8.22)



Section 8.3 Uncalibrated Perspective Cameras 247

When the intrinsic parameters of all cameras are known, so the matrices Ki

can be taken equal to the identity, the 3 × 3 matrices MiQ3 are scaled rotation
matrices. Writing that their rows mT

ij (j = 1, 2, 3) are perpendicular to each other
and have the same norm yields⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

mT
i1Ami2 = 0,

mT
i2Ami3 = 0,

mT
i3Ami1 = 0,

mT
i1Ami1 −mT

i2Ami2 = 0,
mT

i2Ami2 −mT
i3Ami3 = 0,

(8.23)

where A = Q3QT
3 . The upgrade matrix Q is of course defined only up to an arbi-

trary similarity. To determine it uniquely, we can assume that the world coordinate
system and the first camera’s frame coincide. Given m images, we obtain 12 linear
equations and 5(m − 1) quadratic ones in the coefficients of Q. These equations
can be solved using nonlinear least squares, which requires as usual a reasonable
initial guess.

Alternatively, the constraints in Equation (8.23) are linear in the 10 coeffi-
cients of the symmetric matrix A, allowing its estimation from at least two images
via linear least squares. Note that A has rank 3—a constraint not enforced by our
construction. To recover Q3, let us also note that, since A is symmetric, it can
be diagonalized in an orthonormal basis as A = UDUT , where D is the diagonal
matrix formed by the eigenvalues of A, and U is the orthogonal matrix formed
by its eigenvectors. In the absence of noise, A is positive semidefinite with three
positive and one zero eigenvalues, and Q3 can be computed as U3

√
D3, where U3

is the matrix formed by the columns of U associated with the positive eigenvalues
of A, and D3 is the corresponding submatrix of D. Because of noise, however, A
usually has maximal rank, and its smallest eigenvalue might even be negative. As
shown in Ponce (2000), if we take this time U3 and D3 to be the submatrices of U
and D associated with the three largest (positive) eigenvalues of A, then U3D3UT

3

provides the best positive semidefinite rank-3 approximation of A in the sense of
the Frobenius norm,6 and we can take as before Q3 = U3

√
D3. At this point, the

last column vector q4 of Q can be determined by (arbitrarily) picking the origin of
the frame attached to the first camera as the origin of the world coordinate system.

Figure 8.12 shows the perspective upgrade associated with the projective re-
construction of the house obtained by bundle adjustment and shown in Figure 8.11,
with a mean absolute error of 0.33cm and a relative error of 1.2%.

This method can be adapted easily to the case where only some of the intrinsic
camera parameters are known. Using the fact thatRi is an orthogonal matrix allows
us to write

MiAMT
i = ρ2iKiKT

i . (8.24)

Thus, every image provides a set of constraints between the entries of Ki and A.
Assuming, for example, that the center of the image is known for each camera, we

6Note the similarity between this result and Theorem 6.



Section 8.4 Notes 248

FIGURE 8.12: The Euclidean reconstruction of the house obtained by a Euclidean upgrade
of the projective reconstruction obtained with bundle adjustment. Left: The original
reconstruction. Right: An overlay of the reconstruction after it has been registered
(via a similarity) with the ground-truth data. The mean Euclidean distance between
the reconstructed and ground-truth points is 0.33cm, or a mean relative error of 1.2%.
As before, the error has increased compared to the projective reconstruction because the
similarity used for registration has fewer parameters than a homography.

can take x0 = y0 = 0 and write the square of the matrix Ki as

KiKT
i =

⎛
⎜⎜⎜⎜⎝

α2
i

1

sin2 θi
−αiβi

cos θi
sin2 θi

0

−αiβi
cos θi
sin2 θi

β2
i

1

sin2 θi
0

0 0 1

⎞
⎟⎟⎟⎟⎠.

In particular, the part of Equation (8.24) corresponding to the zero entries of
KiKT

i provides two independent linear equations in the 10 coefficients of the 4× 4
symmetric matrix A: {

mT
i1Ami3 = 0,

mT
i2Ami3 = 0.

As might have been expected, these equations form a subsert of those in Equa-
tion (8.23). With m ≥ 5 images, the parameters can be estimated via linear least
squares. Once A is known, Q can be estimated as before. Continuing to assume
that u0 = v0 = 0, it is easy to add zero-skew and unit aspect-ratio constraints.
For example, assuming zero skew (θ = π/2) provides the additional constraint
mT

i1Ami2 = 0.

8.4 NOTES

The interested reader is invited to consult the two excellent textbooks dedicated
to structure from motion (Hartley & Zisserman 2000b; Faugeras, Luong, & Pa-
padopoulo 2001) for details beyond the scope of this book. See also Ma, Soatto,



Section 8.4 Notes 249

and Sastry (2003a) and the first edition of this book. A deeper understanding
of affine and projective SFM requires working knowledge of elementary affine and
projective geometries. This is also beyond the scope of this book, but excellent text-
books are once again available for the interested reader—for example, (Snapper and
Troyer 1989) for affine geometry, and Todd (1946), Coxeter (1974), Berger (1987),
and Samuel (1988) for projective geometry.

The SFM problem was first studied in the calibrated orthographic setting by
Ullman (1979). Longuet-Higgins (1981) then gave the first solution to the calibrated
perspective case with the eight-point algorithm discussed in this chapter. A solution
to the minimal five-point formulation of this problem can be found in Nistér (2004).
The idea of stratifying SFM into a two-step problem where the affine or projective
shape of a scene is recovered before additional constraints are brought into play
to construct a Euclidean model is due to Koenderink and Van Doorn (1990) for
the affine case, and to Faugeras (1995) for the projective one. In the affine case,
the first solutions to this problem are due to Koenderink and Van Doorn (1990)
and Tomasi and Kanade (1992). The initial, affine stage is valuable by itself: for
example, it is the basis for the motion-based segmentation methods introduced by
Gear (1998) and Costeira and Kanade (1998). The nonlinear least-squares method
for computing the Euclidean upgrade matrixQ is due to Tomasi and Kanade (1992).
The Cholesky approach to the same problem is due to Poelman and Kanade (1997);
see Weinshall and Tomasi (1995) for another variant. Various extensions have
been proposed recently, including the incremental recovery of structure and motion
(Weinshall & Tomasi 1995; Morita & Kanade 1997).

The first solutions to projective SFM are due to Faugeras (1992) and Hart-
ley et al. (1992). Other notable work in this area includes, for example, Mohr et
al. (1992) and Shashua (1993). The two-view algorithm presented in this chapter
is due to Hartley (1994b). The extension of factorization approaches to structure
and motion recovery was first proposed by Sturm and Triggs (1996). The bilinear
approach to projective SFM presented in Section 8.3.3 is an instance of a class
of techniques called resection-intersection methods in photogrammetry (Triggs et
al. 2000), which interleave steps where the camera parameters are estimated while
the oberved point positions are kept fixed (resection) with steps where the point
positions are estimated while the camera parameters are kept constant (intersec-
tion). This bilinear algorithm is due to Mahamud et al. (2001), and it is provably
convergent to a critical point of its objective function. It should not, however, be
run for too many iterations, because it usually falls in the basin of attraction of
a degenerate solution after tens of thousands of steps. Algorithms for stitching
together pairs, triples or quadruples of successive views can be found in Beardsley
et al. (1997) and Pollefeys et al. (1999), for example.

Weak calibration is in fact an old problem: as mentioned by Faugeras (1993),
the problem of calculating the epipoles and the epipolar transformations compatible
with seven point correspondences was first posed by Chasles (1855) and solved by
Hesse (1863). The problem of estimating the epipolar geometry from five point
correspondences for internally calibrated cameras was solved by Kruppa (1913).
An excellent modern account of Hesse’s and Kruppa’s techniques can be found in
Faugeras and Maybank (1990), where the absolute conic, an imaginary conic section
invariant through similarities, is used to derive two tangency constraints that make



Section 8.4 Notes 250

up for the missing point correspondences. These methods are of course mostly of
theoretical interest because their reliance on a minimal number of correspondences
limits their ability to deal with noise. The weak-calibration methods of Luong et
al. (1993, 1996) and Hartley (1995) described in this chapter provide reliable and
accurate alternatives.

The problem of computing Euclidean upgrades of projective reconstructions
when some of the intrinsic parameters are known has been addressed by a number
of authors (Heyden and Åström 1996; Triggs 1997; Pollefeys 1999). The matrix
A = Q3QT

3 introduced in Section 8.3.4 can be interpreted geometrically as the pro-
jective representation of the dual of the absolute conic, the absolute dual quadric
(Triggs 1997). Like the absolute conic, this quadric surface is invariant through sim-
ilarities, and the (dual) conic section associated with KiKT

i is simply the projection
of this quadric surface into the corresponding image. Self-calibration is the process
of computing the intrinsic parameters of a camera from point correspondences with
unknown Euclidean positions. Work in this area was pioneered by Faugeras and
Maybank (1992) for cameras with fixed intrinsic parameters. A number of reliable
self-calibration methods are now available (Hartley 1994a; Fitzgibbon and Zisser-
man 1998; Pollefeys et al. 1999), and they also can be used to upgrade projective
reconstructions to Euclidean ones. The problem of computing Euclidean upgrades
of projective reconstructions under minimal camera constraints such as zero skew
is addressed in Heyden and Åström (1998, 1999), Pollefeys et al. (1999), Ponce et
al. (2000, 2005), and Valdés et al. (2006).

PROBLEMS

8.1. We derive in this exercise a method for computing a minimal parameteriza-
tion of the fundamental matrix and estimating the corresponding projection
matrices.
(a) Show that two projection matrices M and M′ can always be reduced to

the following canonical forms by an appropriate projective transformation:

M̃ =

(
1 0 0 0
0 1 0 0
0 0 1 0

)
and M̃′ =

⎛
⎝aT

1 b1
aT
2 b2

0T 1

⎞
⎠.

Note: For simplicity, you can assume that all the matrices involved in
your solution are nonsingular.

(b) Note that applying this transformation to the projection matrices amounts
to applying the inverse transformation to every scene point P . Let us
denote by P̃ = (x, y, z)T the position of the transformed point P̃ in the
world coordinate system and by p = (u, v, 1)T and p′ = (u′, v′, 1)T the
homogeneous coordinate vectors of its images. Show that

(u′ − b1)(a2 · p) = (v′ − b2)(a1 · p).

(c) Derive from this equation an eight-parameter parameterization of the fun-
damental matrix, and use the fact that F is defined only up to a scale
factor to construct a minimal seven-parameter parameterization.

(d) Use this parameterization to derive an algorithm for estimating F from at
least seven point correspondences and for estimating the projective shape
of the scene.



Section 8.4 Notes 251

8.2. Show that all copies of a set of points in E
3 that are related to each other by

geometric transformations forming a group form an equivalence class.
8.3. Show that the parameter F33 can be easily estimated from the other entries of

F during the minimization of E in Equation (8.4), resulting in an eigenvalue
problem involving only eight parameters.
Hint: Write that ∂E/∂F33 = 0 at a minimum of E.

8.4. Generalize this normalization to the estimation of the affine fundamental ma-
trix.

8.5. Show that the eight-point algorithm fails to compute the fundamental matrix
when the eight points and two optical centers lie on a quadric surface.

8.6. Show that only one of the four possible solutions for camera motion found by
the binocular Euclidean SFM approach of Section 8.1 places the reconstructed
points in front of the two cameras.

8.7. Show that affine transformations are the most general class of 4 × 4 nonsin-
gular matrices that preserve the relationship between coordinates expressed in
Equation (8.6) for any point Pj .

8.8. Show that the projection matrices associated with two affine cameras can al-
ways be reduced to the canonical forms of Equation (8.10) by an appropriate
affine transformation.

8.9. Show that affine cameras (and the corresponding epipolar geometry) can be
viewed as the limit of perspective images with increasing focal length reced-
ing away from the scene. Use this result to given an alternate derivation of
Equation (8.9).

8.10. Show that, under affine projection, the image of the center of mass of a set of
points is the center of mass of their images.

8.11. Define the ratio of three collinear points A, B, C as

R(A,B,C) =
AB

BC

for some orientation of the line supporting the three points.
(a) Show that the area of any triangle PQR is

A(P,Q,R) =
1

2
PQ×RH =

1

2
PQ× PR sin θ,

where PQ denotes the distance between the two points P and Q, H is the
projection of R onto the line passing through P and Q, and θ is the angle
between the lines joining the point P to the points Q and R.

(b) Show that R(A,B,C) = A(A,B,O)/A(B,C,O), where O is some point
not lying on this line.

8.12. The cross-ratio of four collinear points A, B, C, and D is defined as

{A,B;C,D} =
CA

CB

DB

DA
.

(a) Use the result of the previous problem to show that

{A,B;C,D} =
sin(a+ b) sin(b+ c)

sin(a+ b+ c) sin b
,

where the angles a, b, and c are defined as below.



Section 8.4 Notes 252

B

D4

D3

D2

D1

A

C

D

D’

B’

O

A’

C’

L

L’

a b

c

(b) Use this result to define the cross-ratio of four coplanar lines passing
through the same point.

Hint: Consider the lines L and L′ in the diagram.
8.13. Show that there exists a four-parameter family of solutions to the binocular

projective SFM problem of Section 8.3.2, and that this family is given by
Equation (8.18).

8.14. Show that the value of the error E defined by Equation (8.20) is given by Equa-
tion (8.21) at one of its extrema with respect to the variables Zij , assuming
that the data vectors pij have unit norm.

PROGRAMMING EXERCISES

8.15. Implement the eight-point algorithm.
8.16. Implement the estimation of affine epipolar geometry from image correspon-

dences and the estimation of scene structure from the corresponding projection
matrices.

8.17. Implement the Tomasi–Kanade approach to affine shape from motion.
8.18. Implement the binocular projective SFM algorithm of Section 8.3.2.
8.19. Implement the bundle adjustment algorithm of Section 8.3.3.
8.20. Implement the Euclidean algorithm of Section 8.3.4 for cameras with known

image center and zero skew.



P A R T F O U R

MID-LEVEL VISION



This page intentionally left blank 



C H A P T E R 9

Segmentation by Clustering

A crucial problem in mid-level vision involves coming up with image repre-
sentations that are simultaneously compact and expressive. These representations
must summarize information available from the first stages of visual processing,
and pass them on. Summaries are necessary because early vision produces vast
quantities of information. The richness of the available representation tends to
overwhelm what is significant. Useful summaries could be computed from pixels
or from groups of pixels—for example, by constructing groups of pixels that all
have the same color or texture. They could also be computed from local pattern
elements—for example, by collecting together edge points that seem to lie on a
line or on a circle, or close to some complex geometric structure. The core idea
is collecting together pixels or pattern elements into summary representations that
emphasize important, interesting, or distinctive properties.

Obtaining such representation is known variously as segmentation, grouping,
perceptual organization, or fitting. We use the term segmentation for a wide range
of activities because, although techniques may differ, the motivation for all these
activities is the same: obtain a compact representation of what is helpful in the
image. It’s hard to see that there could be a comprehensive theory of segmentation,
not least because what is interesting and what is not depends on the application.
There is certainly no comprehensive theory of segmentation at time of writing, and
the term is used in different ways in different quarters.

FIGURE 9.1: As these images suggest, an important component of vision involves organiz-
ing image information into meaningful assemblies. The human vision system seems to do
so rather well. In each of these three images, blobs are organized together to form textured
surfaces that appear to bulge out of the page (you may feel that they are hemispheres).
The blobs appear to be assembled “because they form surfaces,” hardly a satisfactory
explanation and one that begs difficult computational questions. Notice that saying that
they are assembled because together they form the same texture also begs questions (how
do we know?). In the case of the surface on the left, it might be quite difficult to write
programs that can recognize a single coherent texture. This process of organization can
be applied to many different kinds of input.

255



Section 9.1 Human Vision: Grouping and Gestalt 256

The details of what the summary representation should be depend on the task,
but there are a number of quite general desirable features. First, there should be
relatively few (that is, not more than later algorithms can cope with) components
in the representation computed for typical pictures. Second, these components
should be suggestive. It should be pretty obvious from these components whether
the objects we are looking for are present, again for typical pictures.

FIGURE 9.2: The famous Müller-Lyer illusion; the horizontal lines are in fact the same
length, although that belonging to the lower figure looks longer. Clearly, this effect arises
from some property of the relationships that form the whole (the gestaltqualität), rather
than from properties of each separate segment.

There are two important threads in segmentation, which aren’t wholly differ-
ent. In the first, our summary is assembled purely locally, by clustering methods
that focus on local relations between items. Here we are trying to assemble items
that look like one another. This approach allows us, for example, to assemble to-
gether clumps of pixels that look similar; such clumps are commonly called regions.
Generally, this approach uses clustering methods, and is the focus of this chapter.
In the second approach, we assemble together items based on global relations—for
example, all items that lie on a straight line. Figure 9.1 shows a collection of small
groups of pixels. When one looks at this figure, these groups of pixels appear to
belong together, most likely because taken together they suggest the presence of a
surface. In this approach, we are interested in methods that can collect together
tokens or pixels of groups of pixels that, when taken together, suggest the presence
of a structure of some form. This approach emphasizes methods that can identify
parametric models in pools of data; we describe such methods in Chapter 10.

9.1 HUMAN VISION: GROUPING AND GESTALT

A key feature of the human vision system is that context affects how things are
perceived (e.g., see the illusion of Figure 9.2). This observation led the Gestalt
school of psychologists to reject the study of responses to stimuli and to emphasize
grouping as the key to understanding visual perception. To them, grouping meant
the tendency of the visual system to assemble some components of a picture together
and to perceive them together (this supplies a rather rough meaning to the word
context used above). Grouping, for example, is what causes the Müller-Lyer illusion
of Figure 9.2: the vision system assembles the components of the two arrows, and
the horizontal lines look different from one another because they are peceived as
components of a whole, rather than as lines. Furthermore, many grouping effects
can’t be disrupted by cognitive input; for example, you can’t make the lines in
Figure 9.2 look equal in length by deciding not to group the arrows.

A common experience of segmentation is the way that an image can resolve
itself into a figure— typically, the significant, important object—and a ground—



Section 9.1 Human Vision: Grouping and Gestalt 257

FIGURE 9.3: One view of segmentation is that it determines which component of the
image forms the figure and which the ground. The figure illustrates one form of ambiguity
that results from this view. The white circle can be seen as figure on the black rectangular
ground, or as ground where the figure is a black rectangle with a circular hole in it and
the ground is then a white square.

the background on which the figure lies. However, as Figure 9.3 illustrates, what
is figure and what is ground can be profoundly ambiguous, meaning that a richer
theory is required.

The Gestalt school used the notion of a gestalt—a whole or a group—and
of its gestaltqualität—the set of internal relationships that makes it a whole (e.g.,
Figure 9.2) as central components in their ideas. Their work was characterized
by attempts to write down a series of rules by which image elements would be
associated together and interpreted as a group. There were also attempts to con-
struct algorithms, which are of purely historical interest (see Gordon (1997) for an
introductory account that places their work in a broad context).

The Gestalt psychologists identified a series of factors, which they felt predis-
posed a set of elements to be grouped. These factors are important because it is
quite clear that the human vision system uses them in some way. Furthermore, it
is reasonable to expect that they represent a set of preferences about when tokens
belong together that lead to a useful intermediate representation.

There are a variety of factors, some of which postdate the main Gestalt move-
ment:

• Proximity: Tokens that are nearby tend to be grouped.

• Similarity: Similar tokens tend to be grouped together.

• Common fate: Tokens that have coherent motion tend to be grouped to-



Section 9.1 Human Vision: Grouping and Gestalt 258

gether.

• Common region: Tokens that lie inside the same closed region tend to be
grouped together.

• Parallelism: Parallel curves or tokens tend to be grouped together.

• Closure: Tokens or curves that tend to lead to closed curves tend to be
grouped together.

• Symmetry: Curves that lead to symmetric groups are grouped together.

• Continuity: Tokens that lead to continuous—as in joining up nicely, rather
than in the formal sense—curves tend to be grouped.

• Familiar configuration: Tokens that, when grouped, lead to a familiar
object tend to be grouped together.

These laws are illustrated in Figures 9.4, 9.5, 9.7, and 9.1.

Not grouped

Proximity

Similarity

Similarity

Common Fate

Common Region

FIGURE 9.4: Examples of Gestalt factors that lead to grouping (which are described in
greater detail in the text).

These rules can function fairly well as explanations, but they are insufficiently
crisp to be regarded as forming an algorithm. The Gestalt psychologists had serious



Section 9.1 Human Vision: Grouping and Gestalt 259

Parallelism

Symmetry

Continuity

Closure

FIGURE 9.5: Examples of Gestalt factors that lead to grouping (which are described in
greater detail in the text).

difficulty with the details, such as when one rule applied and when another. It
is difficult to supply a satisfactory algorithm for using these rules; the Gestalt
movement attempted to use an extremality principle.

Familiar configuration is a particular problem. The key issue is to understand
just what familiar configuration applies in a problem and how it is selected. For
example, look at Figure 9.1. One might argue that the blobs are grouped because



Section 9.1 Human Vision: Grouping and Gestalt 260

they yield a sphere. The difficulty with this view is explaining how this occurred—
where did the hypothesis that a sphere is present come from? A search through all
views of all objects is one explanation, but one must then explain how this search
is organized. Do we check every view of every sphere with every pattern of spots?
How can this be done efficiently?

FIGURE 9.6: Occlusion appears to be an important cue in grouping. It may be possible to
see the pattern on the left as a collection of digits; the pattern next to it is quite clearly
some occluded digits. The black regions in each figure are the same. The important
difference between the two figures seems to be that the superimposed gray regions supply
evidence that the black regions are components of larger objects that are separated for
a reason, rather than just scattered black regions. On the right, two figures consisting
of tokens that suggest the presence of occluding objects whose boundaries don’t contrast
with much of the image. Notice that one has a clear impression of the position of the
entire contour of the occluding figures. These contours are known as illusory contours.

The Gestalt rules do offer some insight because they explain what happens
in various examples. These explanations seem to be sensible because they suggest
that the rules help solve problems posed by visual effects that arise commonly in
the real world—that is, they are ecologically valid. For example, continuity may
represent a solution to problems posed by occlusion; sections of the contour of an
occluded object could be joined up by continuity (see Figure 9.6).

This tendency to prefer interpretations that are explained by occlusion leads
to interesting effects. One is the illusory contour, illustrated in Figure 9.6. Here
a set of tokens suggests the presence of an object, most of whose contour has no
contrast. The tokens appear to be grouped together because they provide a cue to
the presence of an occluding object, which is so strongly suggested by these tokens
that one could fill in the no-contrast regions of contour.

This ecological argument has some force because it is possible to interpret
most grouping factors using it. Common fate can be seen as a consequence of the
fact that components of objects tend to move together. Equally, symmetry is a
useful grouping cue because there are a lot of real objects that have symmetric or
close to symmetric contours. Essentially, the ecological argument says that tokens
are grouped because doing so produces representations that are helpful for the visual
world that people encounter. The ecological argument has an appealing, although
vague, statistical flavor. From our perspective, Gestalt factors provide interesting



Section 9.2 Important Applications 261

1 2 3

4 5 6 7

1 2 3

4 5 6 7

FIGURE 9.7: An example of grouping phenomena in real life. The buttons on an elevator in
the computer science building at U.C. Berkeley used to be laid out as in the top figure. It
was common to arrive at the wrong floor and discover that this was because you’d pressed
the wrong button; the buttons are difficult to group unambiguously with the correct label,
and it is easy to get the wrong grouping at a quick glance. A public-spirited individual
filled in the gap between the numbers and the buttons, as in the bottom figure, and the
confusion stopped because the proximity cue had been disambiguated.

hints, but should be seen as the consequences of a larger grouping process, rather
than the process itself.

9.2 IMPORTANT APPLICATIONS

Simple segmentation algorithms are often useful in significant applications. Gener-
ally, simple algorithms work best when it is easy to tell what a useful decomposition
is. Two important cases are background subtraction—where anything that doesn’t
look like a known background is interesting—and shot boundary detection—where
substantial changes in a video are interesting.

More complex algorithms are required for two other very important applica-
tions. In interactive segmentation, a user guides a segmentation system to cut out
an object from a picture. Finally, a major goal is to form image regions.

9.2.1 Background Subtraction

In many applications, objects appear on a largely stable background. The standard
example is detecting parts on a conveyor belt. Another example is counting motor
cars in an overhead view of a road; the road is pretty stable in appearance. Another,
less obvious, example is in human-computer interaction. Quite commonly, a camera
is fixed (say, on top of a monitor) and views a room. Pretty much anything in the
view that doesn’t look like the room is interesting.

In these kinds of applications, a useful segmentation can often be obtained by



Section 9.2 Important Applications 262

FIGURE 9.8: The figure shows every fifth frame from a sequence of 120 frames of a child
playing on a patterned sofa. The frames are used at an 80 x 60 resolution, for reasons
we discuss in Figure 9.10. Notice that the child moves from one side of the frame to the
other during the sequence.

a b c

FIGURE 9.9: Background subtraction results for the sequence of Figure 9.8 using 80 x
60 frames. We compare two methods of computing the background: (a) The average of
all 120 frames. Notice that the child spent more time on one side of the sofa than the
other, leading to the faint blur in the average there. (b) Pixels whose difference from the
average exceeds a small threshold. (c) Those whose difference from the average exceeds
a somewhat larger threshold. Notice that, in each case, there are some excess pixels and
some missing pixels.

subtracting an estimate of the appearance of the background from the image and
looking for large absolute values in the result. The main issue is obtaining a good
estimate of the background. One method is simply to take a picture. This approach
works rather poorly because the background typically changes slowly over time. For
example, the road may get more shiny as it rains and less when the weather dries
up; people may move books and furniture around in the room; and so on.

An alternative that usually works quite well is to estimate the value of back-
ground pixels using a moving average. In this approach, we estimate the value of



Section 9.2 Important Applications 263

a b c

FIGURE 9.10: Registration can be a significant nuisance in background subtraction, par-
ticularly for textures. These figures show results for the sequence of Figure 9.8, using
160 x 120 frames. We compare two methods of computing the background: (a) The av-
erage of all 120 frames. Notice that the child spent more time on one side of the sofa
than the other, leading to a faint blur in the average there. (b) Pixels whose difference
from the average exceeds a small threshold. (c) Those whose difference from the average
exceeds a somewhat larger threshold. Notice that the number of problem pixels—where
the pattern on the sofa has been mistaken for the child—has markedly increased. This is
because small movements can cause the high spatial frequency pattern on the sofa to be
misaligned, leading to large differences.

Form a background estimate B(0). At each frame F
Update the background estimate, typically by

forming B(n+1) =
waF+

∑
i
wiB(n−i)

wc

for a choice of weights wa, wi and wc.
Subtract the background estimate from the
frame, and report the value of each pixel where
the magnitude of the difference is greater than some
threshold.

end

Algorithm 9.1: Background Subtraction.

a particular background pixel as a weighted average of the previous values. Typi-
cally, pixels in the distant past should be weighted at zero, and the weights increase
smoothly. Ideally, the moving average should track the changes in the background,
meaning that if the weather changes quickly (or the book mover is frenetic), rela-
tively few pixels should have nonzero weights, and if changes are slow, the number
of past pixels with nonzero weights should increase. This yields Algorithm 9.1. For
those who have read the filters chapter, this is a filter that smooths a function of
time, and we would like it to suppress frequencies that are larger than the typical
frequency of change in the background and pass those that are at or below that
frequency. The approach can be quite successful, but needs to be used on quite
coarse scale images as Figures 9.9 and 9.10 illustrate.



Section 9.2 Important Applications 264

For each frame in an image sequence
Compute a distance between this frame and the
previous frame

If the distance is larger than some threshold,
classify the frame as a shot boundary.

end

Algorithm 9.2: Shot Boundary Detection Using Interframe Differences.

9.2.2 Shot Boundary Detection

Long sequences of video are composed of shots: much shorter subsequences that
show largely the same objects. These shots are typically the product of the editing
process. There is seldom any record of where the boundaries between shots fall.
It is helpful to represent a video as a collection of shots; each shot can then be
represented with a key frame. This representation can be used to search for videos
or to encapsulate their content for a user to browse a video or a set of videos.

Finding the boundaries of these shots automatically—shot boundary detec-
tion—is an important practical application of simple segmentation algorithms. A
shot boundary detection algorithm must find frames in the video that are signifi-
cantly different from the previous frame. Our test of significance must take account
of the fact that, within a given shot, both objects and the background can move
around in the field of view. Typically, this test takes the form of a distance; if the
distance is larger than a threshold, a shot boundary is declared (Algorithm 9.2).

There are a variety of standard techniques for computing a distance:

• Frame differencing algorithms take pixel-by-pixel differences between each
two frames in a sequence and sum the squares of the differences. These algo-
rithms are unpopular, because they are slow—there are many differences—
and because they tend to find many shots when the camera is shaking.

• Histogram-based algorithms compute color histograms for each frame and
compute a distance between the histograms. A difference in color histograms
is a sensible measure to use because it is insensitive to the spatial arrangement
of colors in the frame (e.g., small camera jitters will not affect the histogram).

• Block comparison algorithms compare frames by cutting them into a grid of
boxes and comparing the boxes. This is to avoid the difficulty with color his-
tograms, where a red object disappearing off-screen in the bottom-left corner
is equivalent to a red object appearing on screen from the top edge. Typically,
these block comparison algorithms compute an interframe distance that is a
composite—taking the maximum is one natural strategy—of interblock dis-
tances, each computed using methods like those used for interframe distances.

• Edge differencing algorithms compute edge maps for each frame, and then
compare these edge maps. Typically, the comparison is obtained by counting
the number of potentially corresponding edges (nearby, similar orientation,



Section 9.2 Important Applications 265

FIGURE 9.11: A user who wants to cut an object out of an image (left) could mark some
foreground pixels and some background pixels (center), then use an interactive segmen-
tation method to get the cut out components on the right. The method produces a model
of foreground and background pixel appearance from the marked pixels, then uses this
information to decide a figure ground segmentation. This figure was originally published
as Figure 9 of “Interactive Image Segmentation via Adaptive Weighted Distances,” by
Protiere and Sapiro, IEEE Transactions on Image Processing, 2007 c© IEEE, 2007.

etc.) in the next frame. If there are few potentially corresponding edges,
there is a shot boundary. A distance can be obtained by transforming the
number of corresponding edges.

These are relatively ad hoc methods, but are often sufficient to solve the problem
at hand.

9.2.3 Interactive Segmentation

People very often want to cut objects out of images and move them into other
images. There are lots of reasons to do this; we sketched some in Section 6.3, where
we described methods to fill in the resulting hole in the source image. But to do
this efficiently, we need good ways to select the object we want to cut out. It is too
much work to have to paint the object’s pixels, or its boundary on the image.

This is fairly clearly a segmentation problem, but a special one in which there
are two segments, foreground and background. The foreground segment should be
coherent, but the background segment might not be. Different ways to attack the
problem are built around different types of interface. In an intelligent scissors
interface, the user sketches a curve fairly close to the boundary of the object;
this curve is then moved to the boundary using local information, typically image
gradient cues. In a painting interface, the user paints some pixels with a foreground
or background brush. These pixels are used to produce an appearance model of
the foreground and of the background. In turn, these models are fed into a fast



Section 9.2 Important Applications 266

FIGURE 9.12: In a grabcut interface for interactive segmentation, a user marks a box
around the object of interest; foreground and background models are then inferred by a
clustering method, and the object is segmented. If this segmentation isn’t satisfactory,
the user has the option of painting foreground and background strokes on pixels to help
guide the model. This figure was originally published as Figure 1 of “GrabCut Interactive
Foreground Extraction using Iterated Graph Cuts” by C. Rother, V. Kolmogorov, and A.
Blake, ACM Trans. on Graphics (ACM SIGGRAPH Proc), Vol. 23:3 c© 2004, ACM,
Inc. http: // doi. acm. org/ 10. 1145/ 1186562. 1015720 Reprinted by permission.

graph-based segmenter (Section 9.4.3). Figure 9.11 illustrates the process. Finally,
in a grabcut interface, the user draws a box around the object. This box yields
an initial estimate of foreground and background pixels, and from this we get an
initial segmentation, which yields foreground and background models, which yield
an improved segmentation (Figure 9.12).

Quite often, pixels are neither pure background or pure foreground. For exam-
ple, in a picture of a face, the pixels around the boundary of the hair are somewhat
ambiguous; few pixels here contain only hair, or only background. Instead, because
pixels average light coming in through the lens, most have a value that is a weighted
average of hair and background. In this case, we could use interactive segmentations
to prepare a matte, a mask of values in the range [0−1]. The matte is traditionally
written as α, and our model of the ith pixel value is that it is αf + (1 − α)b,
where f and b are foreground and background values (Figure 9.13). Rotoscoping
is a process like matting, but applied to video; here one recovers a set of segments,
one per frame, corresponding to a moving object. These segments could then be
composited onto a new background, making it look as though the object is mov-
ing against the new background. Matting and rotoscoping methods are strongly
related to segmentation methods, but involve slightly different representations. We
give some pointers in the notes.

9.2.4 Forming Image Regions

One application of segmentation is to decompose an image into regions that have
roughly coherent color and texture. Typically, the shape of these regions isn’t
particularly important, but the coherence is important. This process is quite widely
studied—it is often referred to as the exclusive meaning of the term segmentation—
and usually thought of as a first step in recognition. Regions are a valuable image
representation in several applications. Regions can offer a route to compressing an
image. Because each region has coherent appearance, we may be able to compress
the image by describing the shape and appearance of the regions separately (as
opposed to describing each pixel independently).

Regions can be used as the backbone of many other visual computations. For

http://doi.acm.org/10.1145/1186562.1015720


Section 9.2 Important Applications 267

FIGURE 9.13: Matting methods produce a real-valued mask (rather than a foreground-
background mask) to try and compensate for effects in hair, at occluding boundaries, and
so on, where some pixels consist of an average of foreground and background values. The
matte is bright for foreground pixels and dark for background pixels; for some pixels in
the hair, it is gray, meaning that when the foreground is transferred to a new image,
these pixels should become a weighted sum of foreground and background. The gray
value indicates the weight. This figure was originally published as Figure 6 of “Spectral
Matting,” by A. Levin, A. Rav-Acha, and D. Lischinski, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2008 c© IEEE, 2008.

FIGURE 9.14: Superpixels often can expose structure in images that other representations
conceal. Human body segments tend to appear as long, thin segments. In the top row,
an image together with three different edge maps (the edge detector of Section 5.2.1,
with two scales of smoothing, and the Pb of Section 17.1.3) and superpixels computed
at two “scales” (in this case, the number of superpixels was constrained). Notice that
the coarser superpixels tend to expose limb segments in a straightforward way. On the
bottom row, another image, its superpixels, and two versions of the body layout inferred
from the superpixel representation. This figure was originally published as Figure 3 and
part of Figure 10 of “Recovering human body configurations: Combining Segmentation and
Recognition,” by G. Mori, X. Ren, A. Efros, and J. Malik, Proc. IEEE CVPR, 2004 c©
IEEE, 2004.



Section 9.3 Image Segmentation by Clustering Pixels 268

example, if we want to identify correspondences between two images—to compute
optic flow or to register parts of the images, say—correspondences between regions
might be the place to start. As a second example, if we want to label images with
the names of the objects that are present, regions help us keep track of what has
been labelled, because we can use them to tell which image pixels correspond to a
particular label. As yet another example, regions could be matched to other regions
within an image to find the kind of repetition that one sees in, for example, the
windows on the facade of a building—not quite a texture, but still repetitious.

In some applications, regions need to be quite large and may have a complex
shape. We might want regions to largely respect object boundaries (for example,
if we are labelling objects in images). Most clustering methods can be adapted to
produce segmenters that will construct regions like this.

In other applications, it is more useful to have small, compact regions. These
are usually called superpixels. Superpixels are particularly useful when we need
representation that is small compared to the pixel grid, but still very rich (such a
representation is sometimes called an oversegmentation). One example application
is in computing lightness (Section 2.2.3). If we wanted to represent the shading
field, representing it on the pixel grid would be wasteful because it changes slowly;
instead, we might have one shading value per superpixel, and smooth the result.
Other applications are in recognition. For example, human arms and legs tend
to be long and straight; we could try to find them by assembling superpixels to
form suggestive groups. This seems to be easier than cutting up large regions
(Figure 9.14).

9.3 IMAGE SEGMENTATION BY CLUSTERING PIXELS

Clustering is a process whereby a data set is replaced by clusters, which are collec-
tions of data points that belong together. It is natural to think of image segmenta-
tion as clustering; we would like to represent an image in terms of clusters of pixels
that belong together. The specific criterion to be used depends on the application.
Pixels may belong together because they have the same color, they have the same
texture, they are nearby, and so on.

The general recipe for image segmentation by clustering is as follows. We
represent each image pixel with a feature vector. This feature vector contains all
measurements that may be relevant in describing a pixel. Natural feature vectors
include: the intensity at the pixel; the intensity and location of the pixel; the color
of the pixel, represented in whatever color space seems appropriate; the color of the
pixel and its location; and the color of the pixel, its location, and a vector of filter
outputs from a local texture represenation (compare to Section 6.1). We cluster
these feature vectors. Every feature vector belongs to exactly one cluster, and
so each cluster represents an image segment. We can obtain the image segment
represented by a cluster by replacing the feature vector at each pixel with the
number of that feature vector’s cluster center. You should compare this procedure
with vector quantization (Section 6.2.1), which is what it is. Notice that this
description is extremely general; different feature vectors will lead to different kinds
of image segment, as will different clusterers.

Whether a particular combination of feature vector and clusterer yields good



Section 9.3 Image Segmentation by Clustering Pixels 269

performance depends on what one needs. It is possible to make some general state-
ments, though. The general recipe doesn’t guarantee that segments are connected,
which may or may not matter. If one is segmenting images to compress them,
then encoding the US flag as three segments (red, white and blue) might be a good
choice; if one is segmenting to represent objects, this is probably a poor represen-
tation, because it regards all white stars as a single segment. If the feature vector
contains a representation of the position of the pixel, the segments that result tend
to be “blobby,” because pixels that lie very far from the center of a segment will
tend to belong to other clusters. This is one way to ensure that segments are con-
nected. Representing color information tends to make segmenters better, because
in this case it’s hard to get easy images wrong (color doesn’t seem to make hard
images easier, though). For some applications, doing well at easy images is enough.

9.3.1 Basic Clustering Methods

There are two natural algorithms for clustering. In divisive clustering, the entire
data set is regarded as a cluster, and then clusters are recursively split to yield a
good clustering (Algorithm 9.4). In agglomerative clustering, each data item is
regarded as a cluster, and clusters are recursively merged to yield a good clustering
(Algorithm 9.3).

Make each point a separate cluster
Until the clustering is satisfactory

Merge the two clusters with the
smallest inter-cluster distance

end

Algorithm 9.3: Agglomerative Clustering or Clustering by Merging.

Construct a single cluster containing all points
Until the clustering is satisfactory

Split the cluster that yields the two
components with the largest inter-cluster distance

end

Algorithm 9.4: Divisive Clustering, or Clustering by Splitting.

There are two major issues in thinking about clustering:

• What is a good inter-cluster distance? Agglomerative clustering uses an inter-
cluster distance to fuse nearby clusters; divisive clustering uses it to split in-
sufficiently coherent clusters. Even if a natural distance between data points
is available (which might not be the case for vision problems), there is no
canonical inter-cluster distance. Generally, one chooses a distance that seems
appropriate for the data set. For example, one might choose the distance be-



Section 9.3 Image Segmentation by Clustering Pixels 270

tween the closest elements as the inter-cluster distance, which tends to yield
extended clusters (statisticians call this method single-link clustering). An-
other natural choice is the maximum distance between an element of the first
cluster and one of the second, which tends to yield rounded clusters (statis-
ticians call this method complete-link clustering). Finally, one could use an
average of distances between elements in the cluster, which also tends to yield
“rounded” clusters (statisticians call this method group average clustering).

• How many clusters are there? This is an intrinsically difficult task if there
is no model for the process that generated the clusters. The algorithms we
have described generate a hierarchy of clusters. Usually, this hierarchy is
displayed to a user in the form of a dendrogram—a representation of the
structure of the hierarchy of clusters that displays inter-cluster distances—
and an appropriate choice of clusters is made from the dendrogram (see the
example in Figure 9.15).

d
is
ta
n
ce

1 2 3 4 5 6

1

2

3

4

5

6

FIGURE 9.15: Left, a data set; right, a dendrogram obtained by agglomerative clustering
using single-link clustering. If one selects a particular value of distance, then a horizontal
line at that distance splits the dendrogram into clusters. This representation makes it
possible to guess how many clusters there are and to get some insight into how good the
clusters are.

The main difficulty in using either agglomerative or divisive clustering meth-
ods directly is that there are an awful lot of pixels in an image. There is no rea-
sonable prospect of examining a dendrogram because the quantity of data means
that it will be too big. In practice, this means that the segmenters decide when
to stop splitting or merging by using a set of threshold tests. For example, an
agglomerative segmenter might stop merging when the distance between clusters
is sufficiently low or when the number of clusters reaches some value. A divisive
clusterer might stop splitting when the resulting clusters meet some similarity test.



Section 9.3 Image Segmentation by Clustering Pixels 271

FIGURE 9.16: Segmentation results from the watershed algorithm, applied to an image
by Martin Brigdale. Center: watershed applied to the image intensity; notice some long
superpixels. Right: watershed applied to image gradient magnitude; this tends to produce
rounder superpixels. Martin Brigdale c© Dorling Kindersley, used with permission.

It is straightforward to modify both divisive and agglomerative clusterers to
ensure that regions are connected. Agglomerative clusterers need to merge only
clusters with shared boundaries. It is more difficult to modify divisive clusterers,
which need to ensure that the children of any split are connected. One way to do
this is to split along spatial boundaries in the segment being split. It is usually
impractical to look for the best split of a cluster (for a divisive method) or the
best merge (for an agglomerative method). Divisive methods are usually modified
by using some form of summary of a cluster to suggest a good split (for example,
a histogram of pixel colors). Agglomerative methods also need to be modified,
because the number of pixels means that one needs to be careful about the inter-
cluster distance (the distance between cluster centers of gravity is often used).
Finally, it can be useful to merge regions simply by scanning the image and merging
all pairs whose distance falls below a threshold, rather than searching for the closest
pair.

9.3.2 The Watershed Algorithm

An early segmentation algorithm that is still widely used is the watershed algorithm.
Assume we wish to segment image I. In this algorithm, we compute a map of the
image gradient magnitude, ||∇I ||. Zeros of this map are locally extreme intensity
values; we take each as a seed for a segment, and give each seed a unique label.
Now we assign pixels to seeds by a procedure that is, rather roughly, analogous to
filling a height map with water (hence the name). Imagine starting at pixel (i, j);
if we travel backward down the gradient of ||∇I ||, we will hit a unique seed. Each
pixel gets the label of the seed that is hit by this procedure.

You should recognize this description as a form of shortest path algorithm;
it can also be seen as a form of agglomerative clusterer. We start with seed clus-
ters, then agglomerate pixels to clusters when the path to the cluster is “downhill”



Section 9.3 Image Segmentation by Clustering Pixels 272

from the pixel. This means that one can produce rather more efficient algorithms
than the one we sketched, and there is a considerable literature of these algo-
rithms. In this literature, authors tend to criticize the watershed algorithm for
oversegmentation—that is, for producing “too many” segments. More recently,
watershed algorithms are quite widely used because they produce tolerable super-
pixels, and are efficient. Good implementations of watershed algorithms are widely
available; to produce Figure 9.16, we used the implementation in Matlab’s Image
processing toolbox. It is natural to use the gradient magnitude to drive a watershed
transform, because this divides the image up into regions of relatively small gradi-
ent; however, one could also use the image intensity, in which case each region is the
domain of attraction of an intensity minimum or maximum. Gradient watersheds
tend to produce more useful superpixels (Figure 9.16).

9.3.3 Segmentation Using K-means

There is a strong resonance between image segmentation as we have described
it, and vector quantization. In Chapter 6, we described vector quantization in
the context of texture representation and introduced the k-means algorithm. K-
means produces good image segments for some applications. Following the general
recipe, we compute a feature vector representing each pixel, we apply k-means, and
each pixel goes to the segment represented by the cluster center that claims its
feature vector. The main consequence of using k-means is that we know how many
segments there will be. For some applications, this is a good thing; for example,
the segmentations of Figure 9.17 use five segments, and essentially represent a
requantization of the image gray-levels (or colors, respectively) to five levels. This
can be useful for some coding and compression applications.

FIGURE 9.17: On the left, an image of mixed vegetables, which is segmented using k-means
to produce the images at center and on the right. We have replaced each pixel with the
mean value of its cluster; the result is somewhat like an adaptive requantization, as one
would expect. In the center, a segmentation obtained using only the intensity information.
At the right, a segmentation obtained using color information. Each segmentation assumes
five clusters.

One difficulty with using this approach for segmenting images is that segments



Section 9.3 Image Segmentation by Clustering Pixels 273

FIGURE 9.18: Here we show the image of vegetables segmented with k-means, assuming a
set of 11 components. The left figure shows all segments shown together, with the mean
value in place of the original image values. The other figures show four of the segments.
Note that this approach leads to a set of segments that are not necessarily connected.
For this image, some segments are actually quite closely associated with objects, but one
segment may represent many objects (the peppers); others are largely meaningless. The
absence of a texture measure creates serious difficulties, as the many different segments
resulting from the slice of red cabbage indicate.

are not connected and can be very widely scattered (Figures 9.17 and 9.18). This
effect can be reduced by using pixel coordinates as features—an approach that
results in large regions being broken up (Figure 9.19).

FIGURE 9.19: Five of the segments obtained by segmenting the image of vegetables with a
k-means segmenter that uses position as part of the feature vector describing a pixel, now
using 20 segments rather than 11. Note that the large background regions that should be
coherent have been broken up because points got too far from the center. The individual
peppers are now better separated, but the red cabbage is still broken up because there is
no texture measure.

9.3.4 Mean Shift: Finding Local Modes in Data

Clustering can be abstracted as a density estimation problem. We have a set of
sample points in some feature space, which came from some underlying probability
density. Comaniciu and Meer (2002) created an extremely important segmenter,
using the mean shift algorithm, which thinks of clusters as local maxima (local
modes) in this density. To do so, we need an approximate representation of the
density. One way to build an approximation is to use kernel smoothing. Here we
take a set of functions that look like “blobs” or “bumps,” place one over each data
point, and so produce a smooth function that is large when there are many data
points close together and small when the data points are widely separated.



Section 9.3 Image Segmentation by Clustering Pixels 274

This is a quite general strategy that applies to many different bump functions.
We will use a specific kernel smoother, writing

K(x;h) =
(2π)(−d/2)

hd
exp

(
−1

2

||x ||2
h

)

for the bump function. We introduce a positive scale parameter h, which we can
adjust to get the best representation. Then, our model of the density is

f(x) =

(
1

n

) n∑
i=1

K (xi − x;h)

(you should check that this is a density, i.e., that it is non-negative, and that its
integral is one). We can estimate h by maximizing the average likelihood of held-
out data. In this procedure, we repeat the following experiment numerous times:
hold out one data point at random, fit a density model to the remaining data, and
then compute the likelihood of the held-out data point as a function of h (perhaps
by computing values at a set of different sample points in h). We average the
likelihoods computed in this way, then use the h that maximizes that likelihood.

We can simplify notation by writing k(u) = exp
(
− 1

2u
)
(this is called the

kernel profile) and C = (2π)(−d/2)

nhd , so that

f(x) = C

n∑
i=1

k

(
|| x− xi

h
||
2
)

(9.1)

Now write g = d
duk(u). Starting from some point x0, we should like to find a

nearby point that maximizes the density value. We will use this local maximum
(local mode) as a cluster center. The mean shift procedure maximizes expressions
of the form of Equation 9.1. We are seeking y such that the gradient ∇f vanishes
at that point. We must require that

∇f(x) |x=y = 0

= C
∑
i

∇k(|| xi − y

h
||
2

)

= C
2

h

∑
i

[xi − y]

[
g(|| xi − y

h
||
2

)

]

= C
2

h

[∑
i xig(|| xi−y

h ||2)∑
i g(||

xi−y
h ||2)

− y

]
×
[∑

i

g(|| xi − y

h
||
2

)

]
.

We expect that
∑

i g(||
xi−y

h ||2) is nonzero, so that the maximum occurs when[∑
i xig(|| xi−y

h ||2)∑
i g(||

xi−y
h ||2)

− y

]
= 0,



Section 9.3 Image Segmentation by Clustering Pixels 275

or equivalently, when

y =

∑
i xig(|| xi−y

h ||2)∑
i g(||

xi−y
h ||2)

.

The mean shift procedure involves producing a series of estimates y(j) where

y(j+1) =

∑
i xig(|| xi−y(j)

h ||
2

)∑
i g(||

xi−y(j)

h ||
2
)
.

The procedure gets its name from the fact that we are shifting to a point which
has the form of a weighted mean (see Algorithm 9.5).

Start with an estimate of the mode y(0) and a set of n data vectors xi

of dimension d, a scaling constant h, and g the derivative of the kernel profile

Until the update is tiny
Form the new estimate

y(j+1) =

∑
i
xig(||xi−y(j)

h ||
2

)∑
i
g(||xi−y(j)

h ||
2

)

Algorithm 9.5: Finding a Mode with Mean Shift.

9.3.5 Clustering and Segmentation with Mean Shift

Clustering with mean shift is, in principle, straightforward. We start the mean shift
procedure at every data point, producing a mode for each data point. Because we
are working with continuous variables, every one of these modes is different, but
we expect the modes to be very tightly clustered. There should be a small set of
actual modes, and each of these estimates is very close to one of them. These esti-
mates are themselves useful, because they represent a form of filtering of the image.
We could replace each pixel with its mode representation; this gives a significant
smoothing of the image in a way that respects image boundaries (Figure 9.20). To
cluster the data, we apply, say, an agglomerative clusterer to the mode estimates.
Because we expect the modes to be very tightly clustered, group average distance
is a good choice of distance, and we can stop clustering when this distance exceeds
a small threshold. This will produce a set of small, tight clusters that are widely
separated. We now map each data point to the cluster center corresponding to its
mode (Algorithm 9.6).

This recipe can be applied nearly directly to image segmentation. We repre-
sent each pixel with a feature vector, then cluster the feature vectors; each cluster
center represents a segment, and we replace each pixel with the number of its cluster
center. Improved performance can be obtained by a representation that balances
spatial and appearance features more explicitly. In particular, we represent the ith
pixel with a feature vector xi which has two components: xs

i , which has dimension



Section 9.3 Image Segmentation by Clustering Pixels 276

= (8, 8)

(8, 16) (16, 8)

(h , h )
s r

(h , h )=
s r

(h , h )=
s r

FIGURE 9.20: An image (top left) and mean shift modes obtained with different clustering
scales for space hs and appearance hr. If hs is small, the method must produce clusters
that are relatively small and compact spatially because the kernel function smoothes over
a relatively small radius and so will allow many distinct modes. If hr is small, the clusters
are compact in appearance; this means that small hs and large hr will produce small,
blobby clusters that could span a range of appearances, whereas large hs and small hr will
tend toward spatially complex and extended clusters with a small range of appearances.
Cluster boundaries will try harder to follow level curves of intensity. This figure was
originally published as Figure 5 of “Mean Shift: A Robust Approach Toward Feature Space
Analysis,” by D. Comaniciu and P. Meer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002 c© IEEE, 2002.

For each data point xi

Apply the mean shift procedure (Algorithm 9.5), starting with y(0) = xi

Record the resulting mode as yi

Cluster the yi, which should form small tight clusters.
A good choice is an agglomerative clusterer with group average distance,
stopping clustering when the group average distance exceeds a small threshold

The data point xi belongs to the cluster that its mode yi belongs to.

Algorithm 9.6: Mean Shift Clustering.



Section 9.4 Segmentation, Clustering, and Graphs 277

ds and represents the location of the pixel and xr
i , which has dimension dr and

represents everything else. Now we use two kernels and two smoothing parameters
in the density estimation procedure, writing

K(x;hs, hr) =

[
(2π)(−ds/2)

hds
s

k

(
xs

hs

)][
(2π)(−dr/2)

hdr
r

k

(
xr

hr

)]
.

This means that we can balance spatial and appearance clustering and require, for
example, spatially tight clusters with a wide range of appearances, and so on. In
this case, the mean shift update equation changes slightly (Exercises).

For each pixel, pi, compute a feature vector xi = (xs
i ,x

r
i ) representing

spatial and appearance components, respectively.

Choose hs, hr the spatial (resp. appearance) scale of the smoothing kernel.

Cluster the xi using this data and mean shift clustering (Algorithm 9.6).

(Optional) Merge clusters with fewer than tmin pixels with a neighbor;
the choice of neighbor is not significant, because the cluster is tiny.

The i’th pixel belongs to the segment corresponding to its cluster center
(for example, one could label the cluster centers 1 . . . r, and then
identify segments by computing a map of the labels corresponding to pixels).

Algorithm 9.7: Mean Shift Segmentation.

9.4 SEGMENTATION, CLUSTERING, AND GRAPHS

Clustering algorithms deal with similarity between data items. Some algorithms
may summarize data items (for example, the cluster centers in the k-means algo-
rithm), but the core issue is similarity between data items. It might not be useful
to compare all pairs of data items; for example, there might be little real advantage
in comparing very distant image pixels directly. All this rather naturally suggests a
graph. Each data item would be a vertex. There would be a weighted edge between
all pairs of data items that could usefully be compared. The process of clustering
the data then becomes one of segmenting the graph into connected components.

9.4.1 Terminology and Facts for Graphs

We review terminology here very briefly, as it’s quite easy to forget.

• A graph is a set of vertices V and edges E that connect various pairs of
vertices. A graph can be written G = {V,E}. Each edge can be represented
by a pair of vertices—that is, E ⊂ V × V . Graphs are often drawn as a set
of points with curves connecting the points.

• The degree of a vertex is the number of edges incident on that vertex.



Section 9.4 Segmentation, Clustering, and Graphs 278

FIGURE 9.21: Segmentations of images obtained using the mean shift algorithm. This
figure was originally published as Figure 10 of “Mean Shift: A Robust Approach Toward
Feature Space Analysis,” by D. Comaniciu and P. Meer, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 2002 c© IEEE, 2002.

• A directed graph is one in which edges (a, b) and (b, a) are distinct; such a
graph is drawn with arrowheads indicating which direction is intended.

• An undirected graph is one in which no distinction is drawn between edges
(a, b) and (b, a).

• A weighted graph is one in which a weight is associated with each edge.

• Two edges are consecutive if they have a vertex in common.

• A path is a sequence of consecutive edges.

• A circuit is a path which ends at the vertex at which it begins.

• A self-loop is an edge that has the same vertex at each end; self-loops don’t
occur in our applications.

• Two vertices are said to be connectedwhen there is a sequence of edges starting
at the one and ending at the other; if the graph is directed, then the arrows
in this sequence must point the right way.

• A connected graph is one where every pair of vertices is connected.

• A tree is a connected graph with no circuits.



Section 9.4 Segmentation, Clustering, and Graphs 279

• Given a connected graph G = {V,E}, a spanning tree is a tree with vertices V
and edges a subset of E. By our definition, trees are connected, so a spanning
tree is connected.

• Every graph consists of a disjoint set of connected components—that is, G =
{V1 ∪ V2 . . . Vn, E1 ∪ E2 . . . En}, where {Vi, Ei} are all connected graphs and
there is no edge in E that connects an element of Vi with one of Vj for i �= j.

• A forest is a graph whose connected components are trees.

In a weighted graph, there are efficient algorithms for computing minimum
weight spanning trees (see, for example, Jungnickel (1999) or Cormen et al. (2009)).
Another very important problem that can be solved efficiently seeks to maximize
flow in a directed graph. In particular, in a directed graph identify one vertex as a
source s and another as a target t. Associate with each directed edge e a capacity,
c(e), which is a non-negative number. A flow is a non-negative value f(e) associated
with each edge with the following properties. First, 0 ≤ f(e) ≤ c(e). Second, at
any vertex v ∈ {V − s− t},∑

earriving at v

f(e)−
∑

eleaving fromv

f(e) = 0

(i.e., all flow arriving at a vertex leaves it; this is Kirchoff’s law). The value of a
flow is ∑

earriving att

f(e).

There are efficient algorithms to maximize the flow in, for example, Ahuja et al.
(1993) or Cormen et al. (2009). A dual problem is also interesting. Decompose the
vertices into two disjoint sets S and T , such that s ∈ S and t ∈ T . This represents
a cut. Consider W ∈ E, the set of directed edges from S to T . The value of the
cut is ∑

e∈W
c(e).

The value of the cut can again be minimized efficiently; algorithms appear in, for
example, Ahuja et al. (1993), Jungnickel (1999), or Schrijver (2003).

9.4.2 Agglomerative Clustering with a Graph

Felzenszwalb and Huttenlocher (2004) showed how to use graph theoretic ideas to
build a straightforward but very effective segmenter based around an agglomer-
ative clusterer. Represent the image as a weighted graph. There are edges be-
tween any pair of pixels that are neighbors. Each edge has a weight that measures
dissimilarity—i.e., weights are large if pixels are very different, and small if they
are similar. The weights could come from a variety of pixel representations. For
example, we could use the squared difference in intensity; we could represent the
color at each pixel with a vector, and use the length of the difference vector; we
could represent the texture at each pixel with a vector of filter outputs (after the



Section 9.4 Segmentation, Clustering, and Graphs 280

Start with a set of clusters Ci, one cluster per pixel.
Sort the edges in order of non-decreasing edge weight, so that
w(e1) ≥ w(e2) ≥ . . . ≥ w(er).

For i = 1 to r
If the edge ei lies inside a cluster

do nothing
Else

One end is in cluster Cl and the other is in cluster Cm
If diff(Cl, Cm) ≤ MInt(Cl, Cm)

Merge Cl and Cm to produce a new set of clusters.

Report the remaining set of clusters.

Algorithm 9.8: Agglomerative Clustering with Graphs.

local texture representations of Section 6.1), then use the length of the difference
vector; or we could use a weighted sum of all these distances.

We will start with every pixel forming a cluster, then merge clusters until
there is no need to continue. To do this, we need some notion of the distance
between two clusters. Each cluster is a component of the graph, formed from all
the vertices (pixels) in the cluster, and all the edges that start and end inside the
cluster. Then the difference between two components is the minimum weight edge
connecting two components. Write C1, C2 for the two components, E for the edges,
and w(v1, v2) for the weight of the edge joining v1 and v2. Then, we have

diff(C1, C2) = min
v1∈C1,v2∈C2,(v1,v2)∈E

w(v1, v2).

It is also helpful to know how coherent a particular cluster is. This will help us
stop clustering. We define the internal difference of a component to be the largest
weight in the minimum spanning tree of the component. Write M(C) = {VC , EM}
for the minimum spanning tree of C. Then, we have

int(C) = max
e∈M(C)

w(e).

We will start with a set of clusters (or segments) that consists of all the pixels,
one cluster per pixel. We then merge clusters iteratively. We do so by sorting
all edges in order of non-decreasing edge weight. For each edge, starting with the
smallest, we consider the clusters at either end of the edge. If both ends of the
edge lie in the same cluster, there is nothing to do. If there are distinct clusters
at each end, then we could merge them. We do so when the edge weight is small
compared to the internal difference of each of the clusters (this requires some care
for small clusters; details below). We now proceed through all the edges, merging
as necessary. The final segmentation is the set of clusters once the last edge has
been visited (Algorithm 9.8).



Section 9.4 Segmentation, Clustering, and Graphs 281

FIGURE 9.22: Images segmented using Algorithm 9.8, shown next to segments. Figures
obtained from http://people.cs.uchicago.edu/~pff/segment/, by kind permission of
Pedro Felzenszwalb.

Comparing the edge weight to the internal difference of the clusters requires
some care, because in small clusters the internal distance might be zero (if there
is only one vertex), or implausibly small. To deal with this, Felzenszwalb and
Huttenlocher (2004) define a function of two clusters, MInt, as

MInt(C1, C2) = min(int(C1) + τ(C1), int(C2) + τ(C2))

where τ(C) is a term that biases the internal difference upward for small clusters;
Felzenszwalb and Huttenlocher (2004) use τ(C) = k/ | C |, for k some constant
parameter. This algorithm is notably fast and relatively accurate (Figure 9.22).

9.4.3 Divisive Clustering with a Graph

As we have seen (Section 9.2.3), it is extremely useful to separate an image into
a foreground and background based on examples. Assume we have a map of pix-
els, one per image pixel, where each pixel in the map carries one of three labels:
foreground, background or unknown (these maps are sometimes known as trimaps)
depending on whether the corresponding image is in the foreground, background
or is unknown. We should like to take the foreground and background pixels, build
models from these, then label the unknown pixels with these models. There are two
important constraints on the labels. First, a pixel that looks like the foreground
examples should get a foreground label (similarly for background). Second, pixels
should tend to have labels that are the same as their neighbors’.

Boykov and Jolly (2001) phrase this problem as energy minimization. Write F
for the set of pixels with foreground labels, B for the set with background labels, and
U for the unknown pixels. We associate a binary variable δi with the ith unknown

http://people.cs.uchicago.edu/~pff/segment/


Section 9.4 Segmentation, Clustering, and Graphs 282

pixel. We adopt the convention that δi = −1 if the ith pixel is background, and
δi = 1 if the ith pixel is foreground. We will find a value for this binary variable
that minimizes an energy function. The energy will have two types of term. The
first type of term will encourage pixels similar to the foreground (resp. background)
model to have foreground (resp. background) labels. The second will encourage
pixels to have the same label as their neighbors.

Write pi for a vector representing the ith pixel. The vector could contain
intensity; intensity and color; intensity, color and texture; or other information.
Write df (p) for a function that compares the pixel vector p with the foreground
model; this function is large when the pixel is not like the foreground, and small
when it is like the foreground. Similarly, write db(p) for a function that compares
the pixel vector with the background. Write N (i) for the neighbors of pixel i. Write
B(pi,pj) for a non-negative, symmetric function that compares two pixels, which
we will use as a cost for assigning neighboring pixels to different models. This could
be as simple as a constant, which just encourages neighboring pixels to have the
same label. More complicated B should be large for two pixels that are similar,
and small for different pixels; in this case, we will encourage the label to change
between pixels that look different.

Notice that (12 )(1 − δiδj) has the value 1 when δi and δj are different, and 0
otherwise. Write I for the set of all pixels, U for the set of unknown pixels, F for
the set of known foreground pixels, and B for the set of known background pixels.
Now we can write an energy function

E∗(δ) =
∑
i∈I

df (pi)
1

2
(1 + δi) + db(pi)

1

2
(1− δi) +

∑
i∈I

∑
j∈N (i)

B(pi,pj)(
1

2
)(1− δiδj)

which we must minimize subject to δk = 1 for k ∈ F and δk = 0 for k ∈ B. Notice
that we can make this energy function small by labelling pixels that agree with the
foreground model with δ = 1, those that agree with the background model with
δ = −1, and ensuring that labels change at pixels that look different (i.e., where
B is small). Minimizing this energy might be hard, because it is a combinatorial
problem (δj can take only two values).

It turns out that minimizing E can be rephrased as minimizing a cut on a
graph. The easiest way to see this is with a figure. Imagine a cut on the graph of
Figure 9.23. In this graph, each pixel is represented by a vertex, the source ver-
tex corresponds to the foreground label, and the target vertex corresponds to the
background label. There is one edge connecting each pixel to the source and one
connecting it to the target; we can cut the graph by cutting only one of these two
edges, and if we cut both, the cut is not minimal. We can interpret a cut that cuts
only one of these edges as a map from a pixel to foreground (resp. background)
depending on whether the edge to the source (resp. target) remains uncut. Fur-
thermore, the value of a cut that cuts only one of these two edges for each pixel
is the same as the value of the energy function E for the corresponding labelling.
As a result, we can minimize the energy function by computing the minimum cut.
This is known to be polynomial (from the references in Section 9.4.1), but in fact



Section 9.4 Segmentation, Clustering, and Graphs 283

S

D

S

D

d

B

d

B

edge weight case

(i, j) B(pi,pj) i, j, neighbors

(S → i)

K
0

df (i)

p ∈ F
p ∈ B

otherwise

(i → D)

K
0

db(i)

p ∈ B
p ∈ F

otherwise

FIGURE 9.23: On the left, a graph derived from an image to set up foreground/background
segmentation as a graph cut problem. We interpret pixels linked to the source (S) as
foreground pixels, and pixels linked to the drain (D) as background pixels. Some pixels—
whose labels are known—are linked to only one of the two, and to their neighbors. Link
weights are given in the table. The links between neighbors have the same capacity in each
direction, which is why they are drawn without a direction. On the right, a cut of that
graph (edges that have been cut are grayed out). Notice that each pixel is linked to either
the foreground or to the background, but not to both (because otherwise we would not
have disconnected S and D) or to neither (because we could restore one of the two edges
and get a cut with a better value). Furthermore, the sum of weights of cut edges is equal
to the energy cost function. As a result, we can segment the image into foreground and
background by solving for the minimum cost cut. With the weights shown in the table, the
value of a cut on the graph is the same as the value of the energy function, as long as the
cut does not cut both (S → i) and (i → D), and K = 1 + maxp∈I

∑
q:{p,q}∈N

B(p, q).

A minimum cut will not cut both, because a better cut will cut only one; this means that
the energy function in the text can be minimized by cutting the graph.

specialized algorithms are now very fast at cutting graphs from images.
This procedure gives us one way to deal with the problem of Section 6.3.2.

Here we had a hole in an image and a patch that matched the hole; but the patch
typically is square, and the hole typically is not. Place the patch over the hole. For
some pixels we know only one value (those inside the hole, and those outside the
patch), but for others we know two values. For these, we would like to choose which
pixel appears in the final image. Again, we have a combinatorial problem. Write δi
for a variable that takes the value −1 if the ith pixel in the final image should come
from the patch, and 1 otherwise. Write U for the pixels that could take either label,
P for the pixels that can take values only from the patch, and I for the pixels that
can take values only from the image. We do not have a foreground or background
model. Generally, we would like pixels to have a δ that agrees with their neighbors.
When two neighboring pixels have different δ values (i.e., at a point where we cut



Section 9.4 Segmentation, Clustering, and Graphs 284

Property Affinity function Notes

Distance exp
{
−
(
(x− y)t(x− y)/2σ2

d

)}
Intensity exp

{
−
(
(I(x)− I(y))t(I(x)− I(y))/2σ2

I

)}
I(x) is the intensity
of the pixel at x.

Color exp
{
−
(
dist(c(x), c(y))2/2σ2

c

)}
c(x) is the color
of the pixel at x.

Texture exp
{
−
(
(f (x)− f (y))t(f(x)− f(y))/2σ2

I

)}
f(x) is a vector
of filter outputs
describing the
pixel at x

computed as
in Section 6.1.

TABLE 9.1: Different affinity functions comparing pixels for a graph based segmenter.
Notice that affinities can be combined. One attractive feature of the exponential form is
that, say, location, intensity and texture affinities could be combined by multiplying them.

from patch to image), we would like the actual values of the pixels to be as similar
as possible; this is to ensure that we blend at places where the image agrees with the
patch. These criteria can be written into an energy function that can be minimized
with graph cuts.

9.4.4 Normalized Cuts

Segmenting an image by min-cut usually does not work well without good fore-
ground and background models. This is because one can get very good cut values
by cutting off small groups of pixels. The cut does not balance the difference be-
tween segments with the coherence within segments. Shi and Malik (2000) suggest
a normalized cut: cut the graph into two connected components such that the cost
of the cut is a small fraction of the total affinity within each group.

To do this, we need a measure of affinity between pixels. We will model the
image as a graph with one vertex at each pixel, and an edge from each pixel to
all its neighbors. We must place a weight on each edge, which we will call the
affinity between the pixels. The detailed form of the affinity measure depends on
the problem at hand. The weight of an arc connecting similar nodes should be
large, and the weight on an arc connecting different nodes should be small (in the
last section, B was the cost of cutting an edge, and so was small when pixels were
similar, and large when they were different). Table 9.1 gives some affinity functions
in current use.

Recall that a normalized cut must cut the graph into two connected compo-
nents such that the cost of the cut is a small fraction of the total affinity within
each group. We can formalize this as decomposing a weighted graph V into two
components A and B and scoring the decomposition with

cut(A,B)

assoc(A, V )
+

cut(A,B)

assoc(B, V )



Section 9.5 Image Segmentation in Practice 285

(where cut(A,B) is the sum of weights of all edges in V that have one end in A and
the other in B, and assoc(A, V ) is the sum of weights of all edges that have one end
in A). This score is small if the cut separates two components that have few edges
of low weight between them and many internal edges of high weight. We would like
to find the cut with the minimum value of this criterion, called a normalized cut.
The criterion is successful in practice (Figure 9.24).

This problem is too difficult to solve in this form, because we would need to
look at every graph cut. It is a combinatorial optimization problem, so we can’t
use continuity arguments to reason about how good a neighboring cut is given the
value of a particular cut. Worse, it’s an NP-complete problem, even for grid graphs.
However, Shi and Malik (2000) give an approximation algorithm that generates a
good cut.

FIGURE 9.24: The images on top are segmented using the normalized cuts framework,
described in the text, into the components shown. The affinity measures used involved
intensity and texture, as in Table 9.1. The image of the swimming tiger yields one seg-
ment that is essentially tiger, one that is grass, and four components corresponding to the
lake. Similarly, the railing shows as three reasonably coherent segments. Note the im-
provement over k-means segmentation obtained by having a texture measure. This figure
was originally published as Figure 2 of “Image and video segmentation: the normalized
cut framework,” by J. Shi, S. Belongie, T. Leung, and J. Malik, Proc. IEEE Int. Conf.
Image Processing, 1998 c© IEEE, 1998.

9.5 IMAGE SEGMENTATION IN PRACTICE

Code is now available for many important image segmenters. The EDISON codes
(from Rutgers’ computer vision group, available at http://coewww.rutgers.edu/

http://coewww.rutgers.edu/riul/research/robust.html


Section 9.5 Image Segmentation in Practice 286

FIGURE 9.25: Segmenters and edge detectors can be evaluated by comparing the predicted
boundaries to object boundaries that people mark on images. A natural comparison
involves precision (the percentage of the marked boundary points that are real ones)
and recall (the percentage of real boundary points that were marked); the F measure
summarizes precision and recall into a single number F = 2PR/(P + R). On the left,
these measures for various segmenters; on the right, for various edge detectors. This figure
was originally published as Figures 1 and 2 of “Contour Detection and Hierarchical Image
Segmentation” by P. Arbelaez, M. Maire, C. Fowlkes, and J. Malik, IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2011, c© IEEE, 2011.

riul/research/robust.html) implement mean shift image segmentation (Sec-
tion 9.3.5). The same web page distributes a variety of other mean shift codes.
Pedro Felzenszwalb distributes code for his segmenter (Section 9.4.2) at http:

//people.cs.uchicago.edu/~pff/segment/. Jianbo Shi distributes code for nor-
malized cuts at http://www.cis.upenn.edu/~jshi/software/. Greg Mori dis-
tributes code for computing superpixels using normalized-cut algorithms at http:
//www.cs.sfu.ca/~mori/research/superpixels/. Yuri Boykov distributes code
for min-cut problems at http://vision.csd.uwo.ca/code/; this includes codes
for extremely large grids. Vladimir Kolmogorov distributes a min-cut code at
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html.

9.5.1 Evaluating Segmenters

Quantitative evaluation of segmenters is a somewhat vexed issue, because different
methods have different goals. One reasonable goal is predicting object boundaries
that people mark on images. This view yields a quantitative evaluation in terms of
recall and precision for boundary points that people have marked on a test set. A
natural comparison involves precision P (the percentage of the marked boundary
points that are real ones, i.e., were marked by people) and recall R (the percentage
of real boundary points that were marked); the F measure summarizes precision
and recall into a single number, F = 2PR/(P + R). In this framework, human
performance can be evaluated by holding out a test person, comparing the test
person’s markup to all the rest, and then averaging performance statistics over

http://coewww.rutgers.edu/riul/research/robust.html
http://people.cs.uchicago.edu/~pff/segment/
http://people.cs.uchicago.edu/~pff/segment/
http://www.cis.upenn.edu/~jshi/software/
http://www.cs.sfu.ca/~mori/research/superpixels/
http://www.cs.sfu.ca/~mori/research/superpixels/
http://vision.csd.uwo.ca/code/
http://www.cs.ucl.ac.uk/staff/V.Kolmogorov/software.html


Section 9.6 Notes 287

held out test people. Modern segmenters can do quite well at this test, but not as
well as people do (Figure 9.25).

The Berkeley Segmentation Data Set consists of 300 manually segmented im-
ages, and is distributed at http://www.eecs.berkeley.edu/Research/Projects/
CS/vision/bsds/. This page also maintains up-to-date benchmarks on that dataset.
A more recent version (BSDS-500) has 500 manually segmented images; see http://
www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.

html. Again, there is a set of benchmarks on that dataset available. The Lo-
tus Hill Institute provides a large dataset, free for academic use, at http://www.
imageparsing.com/. Annotations are much richer than just region structure, and
extend to a detailed semantic hierarchy of region relations.

9.6 NOTES

Segmentation is a difficult topic, and there are a huge variety of methods. Surveys
of mainly historical interest are Riseman and Arbib (1977), Fu and Mui (1981),
Haralick and Shapiro (1985), Nevatia (1986), and Pal and Pal (1993).

One reason is that it is typically quite hard to assess the performance of a
segmenter at a level more useful than that of showing some examples. The original
clustering segmenter is Ohlander et al. (1978). Clustering methods tend to be rather
arbitrary—remember, this doesn’t mean they’re not useful—because there really
isn’t much theory available to predict what should be clustered and how. It is clear
that what we should be doing is forming clusters that are helpful to a particular
application, but this criterion hasn’t been formalized in any useful way. In this
chapter, we have attempted to give the big picture while ignoring detail, because a
detailed record of what has been done would be unenlightening. Everyone should
know about agglomerative clustering, divisive clustering, k-means, mean shift, and
at least one graph-based clustering algorithm (your choice!), because these ideas
are just so useful for so many applications; segmentation is just one application of
clustering.

There is a large literature on the role of grouping in human visual perception.
Standard Gestalt handbooks include Kanizsa (1979), and Koffka (1935). Subjec-
tive contours were first described by Kanisza; there is a broad summary discus-
sion in Kanizsa (1976). The authoritative book by Palmer (1999) gives a much
broader picture than we can supply here. There is a great deal of information
about the development of different theories of vision and the origins of Gestalt
thinking in Gordon (1997). Some groups appear to be formed remarkably early in
the visual process, a phenomenon known as pop out (Triesman 1982).

We believe the watershed is originally due to Digabel and Lantuéjoul (1978);
see Vincent and Soille (1991). Fukunaga and Hostetler (1975) first described mean
shift, but it was largely ignored until the work of Cheng (1995). It is now a main-
stay of computer vision research; as we shall see in the following chapters, it has
numerous applications.

A variety of graph theoretical clustering methods have been used in vision
(see Sarkar and Boyer (1998), and Wu and Leahy (1993); there is a summary
in Weiss (1999)).

Interactive segmentation became possible because of extremely fast min-cut

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/bsds/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.imageparsing.com/
http://www.imageparsing.com/


Section 9.6 Notes 288

algorithms that solve the relevant two-label Markov random field (see Vogler et al.
(2000); Boykov and Jolly (2001); or Boykov and Funka Lea (2006)). There are now
many important variants. Grabcut is due to Rother et al. (2004); Objcut uses prior
information about object shapes to improve the cut (Kumar et al. 2010); and see
also Duchenne et al. (2008). There are numerous matting methods, which Wang
and Cohen (2007) survey in detail.

The normalized cuts formalism is due to Shi and Malik (1997) and (2000).
Variants include applications to motion segmentation Shi and Malik (1998a) and
methods for deducing similarity metrics from outputs Shi and Malik (1998b). There
are numerous alternate criteria (e.g., Cox et al. (1996), Perona and Freeman (1998)).

There is a considerable early literature on the evaluation of segmentation.
Useful references include: Zhang (1996a); Zhang (1997); Beauchemin and Thom-
son (1997); Zhang and Gerbrands (1994); Correia and Pereira (2003); Lei and
Udupa (2003); Warfield et al. (2004); Paglieroni (2004); Cardoso and Corte Real
(2005); Cardoso and Corte Real (2006); Cardoso et al. (2009); Carleer et al. (2005);
and Crum et al. (2006). Evaluation is easier in the context of a specific task; pa-
pers dealing with assorted tasks include Yasnoff et al. (1977), Hartley et al. (1982),
Zhang (1996b), and Ranade and Prewitt (1980). Martin et al. (2001) introduced
the Berkeley segmentation dataset, which is now a standard for evaluation, but
there are a variety of criteria one can use. Unnikrishnan et al. (2007) use the Rand
index; Polak et al. (2009) use multiple object boundaries; Polak et al. (2009) give a
detailed evaluation of four segmentation algorithms; Hanbury and Stottinger (2008)
compare metrics; and Zhang et al. (2008) give a recent survey of evaluation meth-
ods. Good image segments are most likely internally coherent, but making that
idea useful is hard (Bagon et al. 2008).

Since it is hard to get a segmentation right, Russell et al. (2006) suggest
working with multiple segmentations and then choosing good pieces. This idea is
now very influential. Multiple segmentations have been used to improve estimates
of support (Malisiewicz and Efros 2007), and to drive recognition (Pantofaru et
al. 2008) or (Malisiewicz and Efros 2008). One could organize the multiple segments
into an inclusion hierarchy (Tacc and Ahuja 1997); the hierarchies yield object
models (Todorovic and Ahuja 2008b), and can be matched (Todorovic and Ahuja
2008a).

We haven’t discussed some aspects of perceptual organization in great detail
mainly because our emphasis is on exposition rather than historical accuracy, and
these methods follow from the unified view. For example, there is a long thread of
literature on clustering image edge points or line segments into configurations that
are unlikely to have arisen by accident. We cover some of these ideas in the following
chapter, but also draw the readers attention to Amir and Lindenbaum (1996),
Huttenlocher and Wayner (1992), Lowe (1985), Mohan and Nevatia (1992), Sarkar
and Boyer (1993), and to Sarkar and Boyer (1994). In building user interfaces, it can
(as we hinted before) be helpful to know what is perceptually salient (e.g., Saund
and Moran (1995)).



Section 9.6 Notes 289

PROBLEMS

9.1. The mean shift procedure for finding a mode of a function

f(x) = C

n∑
i=1

k

(
||
x− xi

h
||
2
)

involves producing a series of estimates y(j) where

y
(j+1) =

∑
i xig(||

xi−y(j)

h ||
2

)∑
i g(||

xi−y(j)

h ||
2
)

.

Now assume we have a function

f(x) = C

n∑
i=1

[
(2π)(−ds/2)

hds
s

k

(
xs − xs

i

hs

)][
(2π)(−dr/2)

hdr
r

k

(
xr − xr

i

hr

)]
.

What is the form of the mean shift estimate for this function?

PROGRAMMING EXERCISES

9.2. Implement a mean shift segmenter.
9.3. Implement a graph-based segmenter, after Section 9.4.2.
9.4. Implement a graph-based segmenter, after Section 9.4.3; for this, you should

use one of the fast graph cut packages available on the Web.
9.5. Use your graph-based segmenter to build an interactive segmentation system.



C H A P T E R 10

Grouping and Model Fitting

In the previous chapter, we collected together pixels that “looked like” one another,
using various clustering methods and various ways of measuring similarity. This
view could be applied to tokens (such as points, edge points, superpixels). It is an
intrinsically local view.

An alternative, which emphasizes a more global view, is to collect together
pixels, tokens, or whatever because they conform to some model. This approach
appears rather similar to the clustering approach in intent, but the mechanisms
and outcomes tend to be quite different. In the clustering approach, the results we
produce can have local structure, but will not necessarily have a global structure.
For example, if we try to assemble tokens into a line agglomeratively by testing
whether the token to be added is close to the line formed by the previous two
tokens, we might get a shape that is quite curved. We really need to check whether
all tokens “agree” on the parameters of the line; local consistency is not enough.

These problems are rather difficult, and strategies to attack them for one kind
of model tend to extend rather well to strategies for other kinds of model. In this
chapter, we mainly concentrate on one core problem, which is simple enough to
do in detail. We seek to find all the lines represented by a set of tokens. This
problem is usually referred to as fitting, or sometimes as grouping. There are three
important sub-problems here: If all the tokens agree on a model, what is the model?
Which tokens contribute to a particular model, and which do not? And how many
instances of the model are there?

10.1 THE HOUGH TRANSFORM

Assume we wish to fit a structure to a set of tokens (say, a line to a set of points).
One way to cluster tokens that could lie on the same structure is to record all the
structures on which each token lies and then look for structures that get many votes.
This (quite general) technique is known as the Hough transform. To fit a structure
with a Hough transform, we take each image token and determine all structures
that could pass through that token. We make a record of this set—you should think
of this as voting—and repeat the process for each token. We decide on what is
present by looking at the votes. For example, if we are grouping points that lie on
lines, we take each point and vote for all lines that could go through it; we now
do this for each point. The line (or lines) that are present should make themselves
obvious because they pass through many points and so have many votes.

10.1.1 Fitting Lines with the Hough Transform

A line is easily parametrized as a collection of points (x, y) such that

x cos θ + y sin θ + r = 0.

290



Section 10.1 The Hough Transform 291

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 10.1: The Hough transform maps each point like token to a curve of possible
lines (or other parametric curves) through that point. These figures illustrate the Hough
transform for lines. The left-hand column shows points, and the right-hand column
shows the corresponding accumulator arrays (the number of votes is indicated by the
gray level, with a large number of votes being indicated by bright points). The top row
shows what happens using a set of 20 points drawn from a line. On the top right, the
accumulator array for the Hough transform of these points. Corresponding to each point is
a curve of votes in the accumulator array; the largest set of votes is 20 (which corresponds
to the brightest point). The horizontal variable in the accumulator array is θ, and the
vertical variable is r; there are 200 steps in each direction, and r lies in the range [0, 1.55].
On the bottom, these points have been offset by a random vector, each element of which
is uniform in the range [0, 0.05]. Note that this offsets the curves in the accumulator
array shown next to the points and the maximum vote is now 6 (which corresponds to the
brightest value in this image; this value would be difficult to see on the same scale as the
top image).

Now any pair of (θ, r) represents a unique line, where r ≥ 0 is the perpendicular
distance from the line to the origin and 0 ≤ θ < 2π. We call the set of pairs (θ, r)
line space; the space can be visualized as a half-infinite cylinder. There is a family



Section 10.1 The Hough Transform 292

of lines that passes through any point token. In particular, the lines that lie on
the curve in line space given by r = −x0 cos θ + y0 sin θ all pass through the point
token at (x0, y0).

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

FIGURE 10.2: The Hough transform for a set of random points can lead to quite large sets
of votes in the accumulator array. As in Figure 10.1, the left-hand column shows points,
and the right-hand column shows the corresponding accumulator arrays (the number
of votes is indicated by the gray level, with a large number of votes being indicated by
bright points). In this case, the data points are noise points (both coordinates are uniform
random numbers in the range [0, 1]); the accumulator array in this case contains many
points of overlap, and the maximum vote is now 4 (compared with 6 in Figure 10.1).

Because the image has a known size, there is some R such that we are not
interested in lines for r > R. These lines are too far away, from the origin for us
to see them. This means that the lines we are interested in form a bounded subset
of the plane, and we discretize this with some convenient grid. The grid elements
can be thought of as buckets into which we place votes. This grid of buckets is
referred to as the accumulator array. For each point token, we add a vote to the
total formed for every grid element on the curve corresponding to the point token.
If there are many point tokens that are collinear, we expect there to be many votes
in the grid element corresponding to that line.

10.1.2 Using the Hough Transform

The Hough transform is an extremely general procedure. One could use the proce-
dure described to fit, say, circles to points in the plane, or spheres or even ellipsoids
to three-dimensional data. This works in principle, but in practice, the Hough
transform as described is difficult to use, even for finding lines. There are several
sources of difficulty.

• Grid dimension: The accumulator array for lines has dimension two, but
for circles in the plane, it has dimension three (center location and radius); for
axis-aligned ellipses in the plane it has dimension four; for general ellipses in



Section 10.2 Fitting Lines and Planes 293

the plane, five; for spheres in 3D, four; for axis-aligned ellipsoids in 3D, seven;
and for general ellipsoids in 3D, 10. Even quite simple structures could result
in high-dimensional accumulator arrays, which take unmanageable amounts
of storage.

• Quantization errors: An appropriate grid size is difficult to pick. Too
coarse a grid can lead to large values of the vote being obtained falsely because
many quite different structures correspond to a single bucket. Too fine a grid
can lead to structures not being found because votes resulting from tokens
that are not exactly aligned end up in different buckets, and no bucket has a
large vote (Figure 10.1).

• Noise: The attraction of the Hough transform is that it connects widely
separated tokens that lie close to some structure. This is also a weakness
because it is usually possible to find many quite good phantom structures
in a large set of reasonably uniformly distributed tokens (Figure 10.2). This
means that regions of texture can generate peaks in the voting array that are
larger than those associated with the lines sought.

These difficulties can be avoided, to some extent, by recognizing the Hough
transform as an attempt to find a mode in a distribution. The distribution is
represented by the voting array, and some of the problems are created by the cells
in that array. But to find a mode, we do not necessarily need to use an accumulator
array; instead, we could apply mean shift. The algorithm of Section 9.3.4 can be
applied directly. It can also be useful to ensure the minimum of irrelevant tokens
by, for example, tuning the edge detector to smooth out texture, using lighting that
ensures high-contrast edges, or using tokens with a more complex structure with
edge points.

One natural application of the Hough transform is in object recognition. We
defer the details to Section 18.4.2, but the general picture is as follows. Imagine
an object is made out of known parts. These parts might move around a bit with
respect to one another, but are substantial enough to be detected on their own.
We can then expect each detected part to have an opinion about the location
(and, perhaps, the state) of the object. This means we could detect objects by
first detecting parts, then allowing each detected part to vote for location (and
maybe state) of object instances, and finally using the Hough transform, most
likely in mean shift form, to find instances on which many part detectors agree. This
approach has been successfully applied in numerous forms (Maji and Malik 2009).

10.2 FITTING LINES AND PLANES

In many applications, objects are characterized by the presence of straight lines. For
example, we might wish to build models of buildings using pictures of the buildings
(as in the application in Chapter 19). This application uses polyhedral models of
buildings, meaning that straight lines in the image are important. Similarly, many
industrial parts have straight edges of one form or another; if we wish to recognize
industrial parts in an image, straight lines could be helpful. In either case, a report
of all straight lines in the image is an extremely useful segmentation. All this means
that fitting a line to a set of plane tokens is extremely useful. Fitting planes to



Section 10.2 Fitting Lines and Planes 294

tokens in 3D is also useful, and our methods for fitting lines in the plane apply with
little change.

10.2.1 Fitting a Single Line

We first assume that all the points that belong to a particular line are known, and
the parameters of the line must be found. We adopt the notation

u =

∑
ui

k

to simplify the presentation.
There is a simple strategy for fitting lines, known as least squares. This

procedure has a long tradition (which is the only reason we describe it!), but has
a substantial bias. Most readers will have seen this idea, but many will not be
familiar with the problems that it leads to. For this approach, we represent a line
as y = ax + b. At each data point, we have (xi, yi); we decide to choose the line
that best predicts the measured y coordinate for each measured x coordinate. This
means we want to choose the line that minimizes∑

i

(yi − axi − b)2.

By differentiation, the line is given by the solution to the problem(
y2

y

)
=

(
x2 x
x 1

)(
a
b

)
.

Although this is a standard linear solution to a classical problem, it’s not much help
in vision applications, because the model is an extremely poor one. The difficulty
is that the measurement error is dependent on coordinate frame—we are counting
vertical offsets from the line as errors, which means that near vertical lines lead
to quite large values of the error and quite funny fits (Figure 10.3). In fact, the
process is so dependent on coordinate frame that it doesn’t represent vertical lines
at all.

We could work with the actual distance between the point and the line (rather
than the vertical distance). This leads to a problem known as total least squares.
We can represent a line as the collection of points where ax + by + c = 0. Every
line can be represented in this way, and we can think of a line as a triple of values
(a, b, c). Notice that for λ �= 0, the line given by λ(a, b, c) is the same as the line
represented by (a, b, c). In the exercises, you are asked to prove the simple, but
extremely useful, result that the perpendicular distance from a point (u, v) to a
line (a, b, c) is given by

abs(au+ bv + c) if a2 + b2 = 1.

In our experience, this fact is useful enough to be worth memorizing. To minimize
the sum of perpendicular distances between points and lines, we need to minimize∑

i

(axi + byi + c)2,



Section 10.2 Fitting Lines and Planes 295

FIGURE 10.3: Left: Least squares finds the line that minimizes the sum of squared vertical
distances between the line and the tokens (because it assumes that the error appears only
in the y coordinate). This yields a (very slightly) simpler mathematical problem at the
cost of a poor fit. Right: Total least-squares finds the line that minimizes the sum of
squared perpendicular distances between tokens and the line; this means that, for example,
we can fit near-vertical lines without difficulty.

subject to a2 + b2 = 1. Now using a Lagrange multiplier λ, we have a solution if⎛
⎝ x2 xy x

xy y2 y
x y 1

⎞
⎠
⎛
⎝ a

b
c

⎞
⎠ = λ

⎛
⎝ 2a

2b
0

⎞
⎠ .

This means that
c = −ax− by,

and we can substitute this back to get the eigenvalue problem(
x2 − x x xy − x y

xy − x y y2 − y y

)(
a
b

)
= μ

(
a
b

)
.

Because this is a 2D eigenvalue problem, two solutions up to scale can be obtained
in closed form (for those who care, it’s usually done numerically!). The scale is
obtained from the constraint that a2 + b2 = 1. The two solutions to this problem
are lines at right angles; one maximizes the sum of squared distances and the other
minimizes it.

10.2.2 Fitting Planes

Fitting planes is very similar to fitting lines. We could represent a plane as z =
ux + vy + w, then apply least squares. This will be biased, just like least squares
line fitting, because it will not represent vertical planes well. Total least squares
is a better strategy, just as in line fitting. We represent the plane as ax + by +
cz + d = 0; then the distance from a point xi = (xi, yi, zi) to the plane will be
(axi + byi + czi + d)2 if a2 + b2 + c2 = 1, and we can now use the analysis above
with small changes.



Section 10.2 Fitting Lines and Planes 296

10.2.3 Fitting Multiple Lines

Now assume we have a set of tokens (say, points), and we want to fit several lines to
this set of tokens. This problem can be difficult because it can involve searching over
a large combinatorial space. One approach is to notice that we seldom encounter
isolated points; instead, in many problems, we are fitting lines to edge points. We
can use the orientation of an edge point as a hint to the position of the next point
on the line. If we are stuck with isolated points, then k-means can be applied.

Incremental line fitting algorithms take connected curves of edge points
and fit lines to runs of points along the curve. Connected curves of edge points
are fairly easily obtained from an edge detector whose output gives orientation (see
exercises). An incremental fitter then starts at one end of a curve of edge points and
walks along the curve, cutting off runs of pixels that fit a line well (the structure of
the algorithm is shown in Algorithm 10.1). Incremental line fitting can work well,
despite the lack of an underlying statistical model. One feature is that it reports
groups of lines that form closed curves. This is attractive when the lines of interest
can reasonably be expected to form a closed curve (e.g., in some object recognition
applications) because it means that the algorithm reports natural groups without
further fuss. When one uses this strategy, occlusion of an edge can lead to more
than one line segment being fitted to the boundary. This difficulty can be addressed
by postprocessing the lines to find pairs that (roughly) coincide, but the process is
somewhat unattractive because it is hard to give a sensible criterion by which to
decide when two lines do coincide.

Put all points on curve list, in order along the curve
Empty the line point list
Empty the line list
Until there are too few points on the curve
Transfer first few points on the curve to the line point list
Fit line to line point list
While fitted line is good enough
Transfer the next point on the curve
to the line point list and refit the line

end
Transfer last point(s) back to curve
Refit line
Attach line to line list

end

Algorithm 10.1: Incremental Line Fitting.

Now assume that points carry no hints about which line they lie on (i.e., there
is no color information or anything like it to help, and, crucially, the points are not
linked). Furthermore, assume that we know how many lines there are. We can
attempt to determine which point lies on which line using a modified version of
k-means. In this case, the model is that there are k lines, each of which generates



Section 10.3 Fitting Curved Structures 297

some subset of the data points. The best solution for lines and data points is
obtained by minimizing∑

li∈lines

∑
xj∈data due to ith line

dist(li, xj)
2

over both correspondences and lines. Again, there are too many correspondences
to search this space.

It is easy to modify k-means to deal with this problem. The two phases are
as follows:

• Allocate each point to the closest line.

• Fit the best line to the points allocated to each line.

This results in Algorithm 10.2. Convergence can be tested by looking at the size
of the change in the lines, at whether labels have been flipped (probably the best
test), or at the sum of perpendicular distances of points from their lines.

Hypothesize k lines (perhaps uniformly at random)
or
Hypothesize an assignment of lines to points
and then fit lines using this assignment

Until convergence
Allocate each point to the closest line
Refit lines

end

Algorithm 10.2: K-means Line Fitting.

10.3 FITTING CURVED STRUCTURES

Curves in 2D are different from lines in 2D. For every token on the plane, there is
a unique, single point on a line that is closest to it. This is not true for a curve.
Because curves curve, there might be more than one point on the curve that looks
locally as though it is closest to the token (Figure 10.4). This means it can be
very hard to find the smallest distance between a point and a curve. Similar effects
occur for surfaces in 3D. If one ignores this difficulty, fitting curves is similar to
fitting lines. We minimize the sum of squared distances between the points and the
curve as a function of the choice of curve.

Assume that the curve is implicit, and so has the form φ(x, y) = 0. The vector
from the closest point on the implicit curve to the data point is normal to the curve,
so the closest point is given by finding all the (u, v) with the following properties:

1. (u, v) is a point on the curve, which means that φ(u, v) = 0.

2. s = (dx, dy)− (u, v) is normal to the curve.



Section 10.3 Fitting Curved Structures 298

FIGURE 10.4: There can be more than one point on a curve that looks locally as if it is
closest to a token. This makes fitting curves to points very difficult. On the left, a curve
and a token; dashed lines connect the token to the two points on the curve that, by a
local test, could be closest. The local test checks that the dashed line and the tangent to
the curve are at right angles. Center and right, we show copies of part of the curve; for
each, the closest point on the segment to the token is different, because part of the curve
is missing. As a result, we cannot perform a local test that guarantees that a point is
closest. We must check all candidates.

Given all such s, the length of the shortest is the distance from the data point to
the curve.

The second criterion requires a little work to determine the normal. The
normal to an implicit curve is the direction in which we leave the curve fastest;
along this direction, the value of φ must change fastest, too. This means that the
normal at a point (u, v) is (

∂φ

∂x
,
∂φ

∂y

)
,

evaluated at (u, v). If the tangent to the curve is T , then we must have T .s = 0.
Because we are working in 2D, we can determine the tangent from the normal, so
that we must have

ψ(u, v; dx, dy) =
∂φ

∂y
(u, v) {dx − u} − ∂φ

∂x
(u, v) {dy − v} = 0

at the point (u, v). We now have two equations in two unknowns, and, in principle
can solve them. However, this is very seldom as easy as it looks, because there
might be many solutions. We expect d2 in the case that φ is a polynomial of degree
d, though some of them might be complex.

The situation is not improved by using a parametric curve. The coordinates of
a point on a parametric curve are functions of a parameter, so if t is the parameter,
the curve could be written as (x(t), y(t)). Assume we have a data point (dx, dy).
The closest point on a parametric curve can be identified by its parameter value,
which we shall write as τ . This point could lie at one or the other end of the
curve. Otherwise, the vector from our data point to the closest point is normal to
the curve. This means that s(τ) = (dx, dy)− (x(τ), y(τ)) is normal to the tangent
vector, so that s(τ).T = 0. The tangent vector is(

dx

dt
(τ),

dy

dt
(τ)

)
,



Section 10.4 Robustness 299

which means that τ must satisfy the equation

dx

dt
(τ) {dx − x(τ)} + dy

dt
(τ) {dy − y(τ)} = 0.

Now this is only one equation, rather than two, but the situation is not much better
than that for parametric curves. It is almost always the case that x(t) and y(t) are
polynomials because it is usually easier to do root finding for polynomials. At worst,
x(t) and y(t) are ratios of polynomials because we can rearrange the left-hand side
of our equation to come up with a polynomial in this case, too. However, we are still
faced with a possibly large number of roots. The underlying problem is geometric:
there may be many points on a curve that, locally, appear to be the closest point
to a given data point. This is because the curve is not flat (Figure 10.4). There
is no way to tell which is closest without checking each in turn. In some cases
(for example, circles), one can duck around this problem. This difficulty applies to
fitting curved surfaces to points in 3D as well.

There are two strategies for dealing with this quite general problem. One
is to substitute some approximation for the distance between a point and a curve
(or, in 3D, a point and a surface), which is sometimes effective. The other is to
modify the representation of the curve or of the surface. For example, one might
represent a curve with a set of samples, or with a set of line segments. Similarly, a
surface might be represented with a set of samples, or a mesh. We could then use
the methods of Chapter 12 to register these representations to the data, or even to
deform them to fit the data.

10.4 ROBUSTNESS

All of the line fitting methods described involve squared error terms. This can
lead to poor fits in practice because a single wildly inappropriate data point might
give errors that dominate those due to many good data points; these errors could
result in a substantial bias in the fitting process (Figure 10.5). This effect results
from the squaring of the error. It is difficult to avoid such data points—usually
called outliers—in practice. Errors in collecting or transcribing data points is
one important source of outliers. Another common source is a problem with the
model. Perhaps some rare but important effect has been ignored or the magnitude
of an effect has been badly underestimated. Finally, errors in correspondence are
particularly prone to generating outliers. Practical vision problems usually involve
outliers.

This problem can be resolved either by reducing the influence of distant points
on the estimate (Section 10.4.1), or by identifying outlying points and ignoring
them. There are two methods to identify outlying points. We could search for good
points. A small set of good points will identify the thing we wish to fit; other good
points will agree, and the points that disagree are bad points. This is the basis of an
extremely important approach, described in Section 10.4.2. Alternatively, we could
regard this as a problem with missing data, and use the EM algorithm described
in Section 10.5.



Section 10.4 Robustness 300

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10.5: Line fitting with a squared error is extremely sensitive to outliers, both in
x and y coordinates. We show an example using least squares. At the top left, a good
least-squares fit of a line to a set of points. Top right shows the same set of points,
but with the x coordinate of one point corrupted; this means that the point has been
translated horizontally from where it should be. As a result, it contributes an enormous
error term to the true line, and a better least-squares fit is obtained by making a significant
change in the line’s orientation. Although this makes the errors at most points larger, it
reduces the very large error at the outlier. Bottom left shows the same set of points, but
with the y coordinate of one point corrupted. In this particular case, the x intercept has
changed. These three figures are on the same set of axes for comparison, but this choice
of axes does not clearly show how bad the fit is for the third case. Bottom right shows
a detail of this case, in which the line is clearly a bad fit.

10.4.1 M-Estimators

An M-estimator estimates parameters by replacing the squared error term with a
term that is better behaved. This means we minimize an expression of the form∑

i

ρ(ri(xi, θ);σ),

where θ are the parameters of the model being fitted (for example, in the case of
the line, we might have the orientation and the y intercept), and ri(xi, θ) is the
residual error of the model on the ith data point. Using this notation, our least



Section 10.4 Robustness 301

-10 -8 -6 -4 -2 0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

1

10

0.1

y=x2

FIGURE 10.6: The function ρ(x;σ) = x2/(σ2 +x2), plotted for σ2 = 0.1, 1, and 10, with a
plot of y = x2 for comparison. Replacing quadratic terms with ρ reduces the influence of
outliers on a fit. A point that is several multiples of σ away from the fitted curve is going
to have almost no effect on the coefficients of the fitted curve, because the value of ρ will
be close to 1 and will change extremely slowly with the distance from the fitted curve.

squares and total least squares line-fitting errors—which differ only in the form of
the residual error—both have ρ(u;σ) = u2. The trick to M-estimators is to make
ρ(u;σ) look like u2 for part of its range and then flattens out; we expect that ρ(u;σ)
increases monotonically, and is close to a constant value for large u. A common
choice is

ρ(u;σ) =
u2

σ2 + u2
.

The parameter σ controls the point at which the function flattens out, and we have
plotted a variety of examples in Figure 10.6. There are many other M-estimators
available. Typically, they are discussed in terms of their influence function, which
is defined as

∂ρ

∂θ
.

This is natural because our minimization criterion yields∑
i

ρ(ri(xi, θ);σ)
∂ρ

∂θ
= 0

at the solution. For the kind of problems we consider, we would expect a good
influence function to be antisymmetric— there is no difference between a slight
overprediction and a slight underprediction—and to tail off with large values—
because we want to limit the influence of the outliers.

There are two tricky issues with using M-estimators. First, the minimization
problem is non-linear and must be solved iteratively. The standard difficulties
apply: there might be more than one local minimum, the method might diverge,
and the behavior of the method is likely to be quite dependent on the start point.



Section 10.4 Robustness 302

For s = 1 to s = k
Draw a subset of r distinct points, chosen uniformly at random
Fit to this set of points using least squares to obtain an initial
set of parameters θ0s

Estimate σ0
s using θ0s

Until convergence (usually |θns − θn−1
s | is small):

Take a minimizing step using θn−1
s , σn−1

s

to get θns
Now compute σn

s

end
end
Report the best fit of this set of k trials, using the median of the residuals
as a criterion

Algorithm 10.3: Using an M-Estimator to Fit a Least Squares Model.

A common strategy for dealing with this problem is to draw a subsample of the
dataset, fit to that subsample using least squares, and use this as a start point for
the fitting process. We do this for a large number of different subsamples, enough
to ensure that there is a high probability that there is at least one subsample that
consists entirely of good data points (Algorithm 10.3).

Second, as Figures 10.7 and 10.8 indicate, the estimators require a sensible
estimate of σ, which is often referred to as scale. Typically, the scale estimate is
supplied at each iteration of the solution method; a popular estimate of scale is

σ(n) = 1.4826 mediani |r(n)i (xi; θ
(n−1))| .

We summarize a general M-estimator in Algorithm 10.3.

10.4.2 RANSAC: Searching for Good Points

An alternative to modifying the cost function is to search the collection of data
points for good points. This is quite easily done by an iterative process: First, we
choose a small subset of points and fit to that subset, and then we see how many
other points fit to the resulting object. We continue this process until we have a
high probability of finding the structure we are looking for.

For example, assume that we are fitting a line to a dataset that consists of
about 50% outliers. We can fit a line to only two points. If we draw pairs of points
uniformly and at random, then about a quarter of these pairs will consist entirely
of good data points. We can identify these good pairs by noticing that a large
collection of other points lie close to the line fitted to such a pair. Of course, a
better estimate of the line could then be obtained by fitting a line to the points
that lie close to our current line.

Fischler and Bolles (1981) formalized this approach into an algorithm—search
for a random sample that leads to a fit on which many of the data points agree.
The algorithm is usually called RANSAC, for RANdom SAmple Consensus, and is



Section 10.4 Robustness 303

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10.7: The top row shows lines fitted to the second dataset of Figure 10.5 using a
weighting function that deemphasizes the contribution of distant points (the function φ of
Figure 10.6). On the left, μ has about the right value; the contribution of the outlier has
been down-weighted, and the fit is good. In the center, the value of μ is too small so that
the fit is insensitive to the position of all the data points, meaning that its relationship to
the data is obscure. On the right, the value of μ is too large, meaning that the outlier
makes about the same contribution as it does in least squares. The bottom row shows
closeups of the fitted line and the non-outlying data points for the same cases.

displayed in Algorithm 10.4. To make this algorithm practical, we need to choose
three parameters.

The Number of Samples Required
Our samples consist of sets of points drawn uniformly and at random from

the dataset. Each sample contains the minimum number of points required to fit
the abstraction of interest. For example, if we wish to fit lines, we draw pairs of
points; if we wish to fit circles, we draw triples of points, and so on. We assume
that we need to draw n data points, and that w is the fraction of these points that
are good (we need only a reasonable estimate of this number). Now the expected
value of the number of draws k required to get one point is given by

E[k] = 1P (one good sample in one draw) +

2P (one good sample in two draws) + . . .

= wn + 2(1− wn)wn + 3(1− wn)2wn + . . .

= w−n

(where the last step takes a little manipulation of algebraic series). We would like
to be fairly confident that we have seen a good sample, so we wish to draw more
than w−n samples; a natural thing to do is to add a few standard deviations to this



Section 10.4 Robustness 304

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 10.8: The top row shows lines fitted to the third dataset of Figure 10.5 using a
weighting function that deemphasizes the contribution of distant points (the function φ of
Figure 10.6). On the left, μ has about the right value; the contribution of the outlier has
been down-weighted, and the fit is good. In the center, the value of μ is too small, so that
the fit is insensitive to the position of all the data points, meaning that its relationship to
the data is obscure. On the right, the value of μ is too large, meaning that the outlier
makes about the same contribution as it does in least squares. The bottom row shows
close ups of the fitted line and the non-outlying data points, for the same cases.

number. The standard deviation of k can be obtained as

SD(k) =

√
1− wn

wn
.

An alternative approach to this problem is to look at a number of samples that
guarantees a low probability z of seeing only bad samples. In this case, we have

(1 − wn)k = z,

which means that

k =
log(z)

log(1 − wn)
.

It is common to have to deal with data where w is unknown. However, each fitting
attempt contains information about w. In particular, if n data points are required,
then we can assume that the probability of a successful fit is wn. If we observe
a long sequence of fitting attempts, we can estimate w from this sequence. This
suggests that we start with a relatively low estimate of w, generate a sequence
of attempted fits, and then improve our estimate of w. If we have more fitting
attempts than the new estimate of w predicts, the process can stop. The problem
of updating the estimate of w reduces to estimating the probability that a coin
comes up heads or tails given a sequence of fits.



Section 10.4 Robustness 305

Determine:
n—the smallest number of points required (e.g., for lines, n = 2,
for circles, n = 3)

k—the number of iterations required
t—the threshold used to identify a point that fits well
d—the number of nearby points required
to assert a model fits well

Until k iterations have occurred
Draw a sample of n points from the data
uniformly and at random

Fit to that set of n points
For each data point outside the sample
Test the distance from the point to the structure
against t; if the distance from the point to the structure
is less than t, the point is close

end
If there are d or more points close to the structure
then there is a good fit. Refit the structure using all
these points. Add the result to a collection of good fits.

end
Use the best fit from this collection, using the
fitting error as a criterion

Algorithm 10.4: RANSAC: Fitting Structures Using Random Sample Consensus.

Telling Whether a Point Is Close
We need to determine whether a point lies close to a line fitted to a sample.

We do this by determining the distance between the point and the fitted line, and
testing that distance against a threshold d; if the distance is below the threshold,
the point lies close. In general, specifying this parameter is part of the modeling
process. Obtaining a value for this parameter is relatively simple. We generally need
only an order of magnitude estimate, and the same value applies to many different
experiments. The parameter is often determined by trying a few values and seeing
what happens; another approach is to look at a few characteristic datasets, fitting
a line by eye, and estimating the average size of the deviations.

The Number of Points That Must Agree
Assume that we have fitted a line to some random sample of two data points,

and we need to know whether that line is good. We do this by counting the number
of points that lie within some distance of the line (the distance was determined in
the previous section). In particular, assume that we know the probability that an
outlier lies in this collection of points; write this probability as y. We would like to
choose some number of points t such that the probability that all points near the
line are outliers, yt, is small (say, less than 0.05). Notice that y ≤ (1−w) (because
some outliers should be far from the line), so we could choose t such that (1−w)t



Section 10.5 Fitting Using Probabilistic Models 306

is small.

10.5 FITTING USING PROBABILISTIC MODELS

It is straightforward to build probabilistic models from the fitting procedures we
have described. Doing so yields a new kind of model, and a new algorithm; both
are extremely useful in practice. The key is to view our observed data as having
been produced by a generative model. The generative model specifies how each
data point was produced.

In the simplest case, line fitting with least squares, we can recover the same
equations we worked with in Section 10.2.1 by using a natural generative model.
Our model for producing data is that the x coordinate is uniformly distributed
and the y coordinate is generated by (a) finding the point axi+ b on the line corre-
sponding to the x coordinate and then (b) adding a zero mean normally distributed
random variable. Now write x ∼ p to mean that x is a sample from the probability
distribution p; write U(R) for the uniform distribution over some range of values
R; and write N(μ, σ2) for the normal distribution with mean mu and variance σ2.
With our notation, we can write:

xi ∼ U(R)

yi ∼ N(axi + b, σ2).

We can estimate the unknown parameters of this model in a straightforward way.
The important parameters are a and b (though knowing σ might be useful). The
usual way to estimate parameters in a probabilistic model is to maximize the like-
lihood of the data, typically by working with the negative log-likelihood and mini-
mizing that. In this case, the log-likelihood of the data is

L(a, b, σ) =
∑

i∈data

logP (xi, yi|a, b, σ)

=
∑

i∈data

logP (yi|xi, a, b, σ) + logP (xi)

=
∑

i∈data

− (yi − (axi + b))2

2σ2
− 1

2
log 2πσ2 +Kb

where Kb is a constant representing logP (xi). Now, to minimize the negative log-
likelihood as a function of a and b we could minimize

∑
i∈data(yi − (axi + b))2

as a function of a and b (which is what we did for least-squares line fitting in
Section 10.2.1).

Now consider total least-squares line fitting. Again, we can recover the equa-
tions we worked with in Section 10.2.1 from a natural generative model. In this
case, to generate a data point (xi, yi), we generate a point (ui, vi) uniformly at ran-
dom along the line (or rather, along a finite length segment of the line likely to be of
interest to us), then sample a distance ξi (where ξi ∼ N(0, σ2), and move the point
(ui, vi) perpendicular to the line by that distance. If the line is ax + by + c = 0
and if a2 + b2 = 1, we have that (xi, yi) = (ui, vi) + ξi(a, b). We can write the



Section 10.5 Fitting Using Probabilistic Models 307

log-likelihood of the data under this model as

L(a, b, c, σ) =
∑

i∈data

logP (xi, yi|a, b, c, σ)

=
∑

i∈data

logP (ξi|σ) + logP (ui, vi|a, b, c).

But P (ui, vi|a, b, c) is some constant, because this point is distributed uniformly
along the line. Since ξi is the perpendicular distance from (xi, yi) to the line (which
is ||(axi + byi + c) || as long as a2 + b2 = 1), we must maximize

∑
i∈data

logP (ξi|σ) =
∑

i∈data

− ξ2i
2σ2

− 1

2
log 2πσ2

=
∑

i∈data

− (axi + byi + c)2

2σ2
− 1

2
log 2πσ2

(again, subject to a2 + b2 = 1). For fixed (but perhaps unknown) σ this yields the
problem we were working with in Section 10.2.1. So far, generative models have
just reproduced what we know already, but a powerful trick makes them much more
interesting.

10.5.1 Missing Data Problems

A number of important vision problems can be phrased as problems that happen to
be missing useful elements of the data. For example, we can think of segmentation
as the problem of determining from which of a number of sources a measurement
came. This is a general view. More specifically, fitting a line to a set of tokens
involves segmenting the tokens into outliers and inliers, then fitting the line to
the inliers; segmenting an image into regions involves determining which source of
color and texture pixels generated the image pixels; fitting a set of lines to a set
of tokens involves determining which tokens lie on which line; and segmenting a
motion sequence into moving regions involves allocating moving pixels to motion
models. Each of these problems would be easy if we happened to possess some data
that is currently missing (respectively, whether a point is an inlier or an outlier,
which region a pixel comes from, which line a token comes from, and which motion
model a pixel comes from).

A missing data problem is a statistical problem where some data is missing.
There are two natural contexts in which missing data are important: In the first,
some terms in a data vector are missing for some instances and present for others
(perhaps someone responding to a survey was embarrassed by a question). In the
second, which is far more common in our applications, an inference problem can be
made much simpler by rewriting it using some variables whose values are unknown.
Fortunately, there is an effective algorithm for dealing with missing data problems;
in essence, we take an expectation over the missing data. We demonstrate this
method and appropriate algorithms with two examples.



Section 10.5 Fitting Using Probabilistic Models 308

Example: Outliers and Line Fitting
We wish to fit a line to a set of tokens that are at xi = (xi, yi). Some tokens

might be outliers, but we do not know which ones are. This means we can model the
process of generating a token as first, choosing whether it will come from the line
or be an outlier, and then, choosing the token conditioned on the original choice.
The first choice will be random, and we can write P (token comes from line) = π.
We have already given two models of how a point could be generated from a line
model. We model outliers as occuring uniformly and at random on the plane. This
means that we can write the probability of generating a token as

P (xi|a, b, c, π) = P (xi, line|a, b, c, π) + P (xi, outlier|a, b, c, π)
= P (xi|line, a, b, c)P (line) + P (xi|outlier, a, b, c)P (outlier)

= P (xi|line, a, b, c)π + P (xi|outlier, a, b, c)(1− π).

If we knew for every data item whether it came from the line or was an outlier,
then fitting the line would be simple; we would ignore all the outliers, and apply the
methods of Section 10.2.1 to the other points. Similarly, if we knew the line, then
estimating which point is an outlier and which is not would be straightforward (the
outliers are far from the line). The difficulty is that we do not; the key to resolving
this difficulty is repeated re-estimation (Section 10.5.3), which provides a standard
algorithm for this class of problem. Figure 10.9 shows typical results using the
standard algorithm.

By a very small manipulation of the equations above (replace “line” with
“background” and “outlier” with “foreground”), we can represent a background
subtraction problem, too. We model the image in each frame of video as the
same, multiplied by some constant to take account of automatic gain control, but
with noise added. We model the noise as coming from some uniform source. Fig-
ures 10.10 and 10.11 show results, obtained with the standard algorithm for these
problems (Section 10.5.3).

Example: Image Segmentation
At each pixel in an image, we compute a d-dimensional feature vector x,

which might contain position, color, and texture information. We believe the image
contains g segments, and each pixel is produced by one of these segments. Thus, to
produce a pixel, we choose an image segment and then generate the pixel from the
model of that segment. We assume that the lth segment is chosen with probability
πl, and we model the density associated with the lth segment as a Gaussian, with
known covariance Σ and unknown mean θl = (μl) that depends on the particular
segment. We encapsulate these parameters into a parameter vector to get Θ =
(π1, . . . , πg, θ1, . . . , θg). This means that we can write the probability of generating
a pixel vector x as

p(x|Θ) =
∑
i

p(x|θl)πl.

Fitting this model would be simple if we knew which segment produced which pixel,
because then we could estimate the mean of each segment separately. Similarly, if
we knew the means, we could estimate which segment produced the pixel. This is
quite a general situation.



Section 10.5 Fitting Using Probabilistic Models 309

10.5.2 Mixture Models and Hidden Variables

Each of the previous examples are instances of a general form of model, known
as a mixture model, where a data item is generated by first choosing a mixture
component (the line or the outlier; which segment the pixel comes from), then
generating the data item from that component. Call the parameters for the lth
component θl, the probability of choosing the lth component πl, and write Θ =
(π1, . . . , πl, θ1, . . . , θl). Then, we can write the probability of generating x

p(x|Θ) =
∑
j

p(x|θj)πj .

This is a weighted sum, or mixture, of probability models; the πl are usually called
mixing weights. One can visualize this model as a density in the space of x that
consists of a set of g “blobs” of probability, each of which is associated with a
component of the model. We want to determine: (a) the parameters of each of
these blobs, (b) the mixing weights, and usually (c) from which component each
token came. The log-likelihood of the data for a general mixture model is

L(Θ) =
∑

i∈observations

log

⎛
⎝ g∑

j=1

πjpj(xi|θj)

⎞
⎠ .

This function is hard to maximize, because of the sum inside the logarithm. Just
like the last two examples, the problem would be simplified if we knew the mix-
ture component from which each token came, because then we would estimate the
components independently.

We now introduce a new set of variables. For each data item, we have a vector
of indicator variables (one per component) that tells us from which component each
data item came. We write δi for the vector associated with the ith data item, and
δij for the j’th component of δi. Then, we have

δij =

{
1 if item i came from component j
0 otherwise

.

and these variables are unknown. If we did know these variables, we could maximize
the complete data log-likelihood,

Lc(Θ) =
∑

i∈observations

logP (xi, δi|Θ),

which would be quite easy to do (because it would boil down to estimating the
components independently). We regard δ as part of our data that happens to be
missing (which is why we call this the complete data log-likelihood). The form of
Lc(Θ) for mixture models is worth remembering because it involves a neat trick:



Section 10.5 Fitting Using Probabilistic Models 310

using the δij to switch on and off terms. We have

Lc(Θ) =
∑

i∈observations

logP (xi, δi|Θ)

=
∑

i∈observations

log
∏

j∈components

[pj(xi|θj)πj ]
δij

=
∑

i∈observations

⎛
⎝ ∑

j∈components

[(log pj(xi|θj) log πj) δij ]

⎞
⎠

(keeping in mind that the δij are either one or zero, and that
∑

j δij = 1, equivalent
to requiring that each data point comes from exactly one model).

10.5.3 The EM Algorithm for Mixture Models

For each of our examples, if we knew the missing data, we could estimate the
parameters effectively. Similarly, if we knew the parameters, the missing data
would follow. This suggests an iterative algorithm:

1. Obtain some estimate of the missing data using a guess at the parameters.

2. Form a maximum likelihood estimate of the free parameters using the estimate
of the missing data.

We would iterate this procedure until (hopefully!) it converged. In the case of line
fitting, the algorithm would look like this:

1. Obtain some estimate of which points lie on the line and which are off lines,
using an estimate of the line.

2. Form a revised estimate of the line, using this information.

For image segmentation, this would look like the following:

1. Obtain some estimate of the component from which each pixel’s feature vector
came, using an estimate of the θl.

2. Update the θl and the mixing weights, using this estimate.

Although it would be nice if the procedures given for missing data converged,
there is no particular reason to believe that they do. In fact, given appropriate
choices in each stage, they do. This is most easily seen by showing that they are
examples of a general algorithm—the expectation-maximization (EM) algorithm.

The key idea in EM is to obtain a set of working values for the missing data
(and so for Θ) by substituting an expectation for each missing value. In particular,
we fix the parameters at some value, and then compute the expected value of each
δij , given the value of xi and the parameter values. We then plug the expected
value of δij into the complete data log-likelihood, which is much easier to work
with, and obtain a value of the parameters by maximizing that. At this point, the
expected values of δij may have changed. We obtain an algorithm by alternating the
expectation step with the maximization step and iterate until convergence. More



Section 10.5 Fitting Using Probabilistic Models 311

formally, given Θ(s), we form Θ(s+1) by:

1. Computing an expected value for the complete data log-likelihood using the
incomplete data and the current value of the parameters. That is, we compute

Q(Θ;Θ(s)) = Eδ|x,Θ(s)Lc(Θ).

Notice that this object is a function of Θ, obtained by taking an expectation
of a function of Θ and δ; the expectation is with respect to P (δ|x,Θ(s)). This
is referred to as the E-step.

2. Maximizing this object as a function of Θ. That is, we compute

Θ(s+1) = argmax
Θ

Q(Θ;Θ(s)).

This is known as the M-step.

It can be shown that the incomplete data log-likelihood is increased at each step,
meaning that the sequence us converges to a (local) maximum of the incom-
plete data log-likelihood (e.g., Dempster et al. (1977) or McLachlan and Krishnan
(1996)). Of course, there is no guarantee that this algorithm converges to the cor-
rect local maximum, and finding the correct local maximum can be a mild nuisance.

EM is considerably easier than it looks for a mixture model. First, recall from
Section 10.5.2 that the complete data log-likelihood for a mixture model is

Lc(Θ) =
∑

i∈observations

∑
j∈components

[(log pj(xi|θj) log πj) δij ] .

which is linear in δ. Because taking expectations is linear, Q(Θ;Θ(s)) can be ob-
tained from Lc(Θ) by substituting the expected values of δij . Now write

αij = Eδ|x,Θ(s) [δij ]

(which is the expected value of δij , taking the expectation using the posterior on δ
given data and the current estimate of parameters Θ(s)); these are commonly called
soft weights. We can now write

Q(Θ;Θ(s)) =
∑

i∈observations

∑
j∈components

[(log pj(xi|θj) log πj)αij ] .

Second, notice that the ith missing variable is conditionally independent of all
others given the ith data point and the parameters of the model. If you find this
confusing, think about the examples. In the case of line fitting, the only information
you need to tell whether a particular point is an outlier is that point together with
your estimate of the line; no other points have anything to say about it. Finally,
notice that

αij = Eδ|x,Θ(s) [δij ]

= Eδi|xi,Θ(s) [δij ]

= 1 · P (δij = 1|xi,Θ
(s)) + 0 · P (δij = 0|xi,Θ

(s))

= P (δij = 1|xi,Θ
(s)).



Section 10.5 Fitting Using Probabilistic Models 312

Now we must compute

P (δij = 1|xi,Θ
(s)) =

P (xi, δij = 1|Θ(s))

P (xi|Θ(s))

=
P (xi|δij = 1,Θ(s))P (δij = 1|Θ(s))

P (xi|Θ(s))

=
pj(xi|Θ(s))πj∑

l P (xi, δil = 1|Θ(s))

=
pj(xi|Θ(s))πj∑
l pl(xi|Θ(s))πl

because the numerator is the probability of getting a data point out of model j,
and the denominator is the probability of getting that point at all. Our steps are
then as follows.

The E-Step For each i, j, compute the soft weights

αij = P (δij = 1|xi,Θ
(s)) =

pj(xi|Θ(s))πj∑
l pl(xi|Θ(s))πl

.

Then, we have

Q(Θ;Θ(s)) =
∑

i∈observations

∑
j∈components

[(log pl(xi|θl) log πl)αij ] .

The M-Step We must maximize

Q(Θ;Θ(s)) =
∑

i∈observations

∑
j∈components

[(log pl(xi|θl) log πl)αij ] .

as a function of Θ. Notice that this is equivalent to allocating each data point
to the j’th model with weight αij , then maximizing the likelihood of each model
separately. The process behaves as if each model accounts for some fraction of each
data point, which is why these terms are called soft weights. This will become more
apparent when you study the equations for the examples (see the exercises).

10.5.4 Difficulties with the EM Algorithm

EM is inclined to get stuck in local minima. These local minima typically are as-
sociated with combinatorial aspects of the problem being studied. In the example
of fitting lines subject to outliers, the algorithm is, in essence, trying to decide
whether a point is an outlier. Some incorrect labelings might be stable. For exam-
ple, if there is only one outlier, the algorithm could find a line through that point
and one other, and label all remaining points outliers (Figure 10.9).

One useful strategy is to notice that the final configuration of the algorithm is a
deterministic function of its start point and use carefully chosen start points. One
might start in many different (randomly chosen) configurations and sift through



Section 10.6 Motion Segmentation by Parameter Estimation 313

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-14 -12 -10 -8 -6 -4 -2 0 2 4 6
-14

-12

-10

-8

-6

-4

-2

0

2

4

6

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 2 4 6 8 10 12 14 16 18 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FIGURE 10.9: EM can be used to reject outliers. Here we demonstrate a line fit to the
second dataset of Figure 10.5. The top row shows the correct local minimum, and the
bottom row shows another local minimum. The first column shows the line superim-
posed on the data points using the same axes as Figure 10.5; the second column shows
a detailed view of the line, indicating the region around the data points; and the third
column shows a plot of the probability that a point comes from the line, rather than
from the noise model, plotted against the index of the point. Notice that at the correct
local minimum, all but one point is associated with the line, whereas at the incorrect local
minimum, there are two points associated with the line and the others are allocated to
noise.

the results looking for the best fit, rather like RANSAC. One might preprocess the
data using something like a Hough transform to look for the best fit. Neither is
guaranteed.

A second difficulty is that some points will have extremely small expected
weights. This presents us with a numerical problem: it isn’t clear what happens if
we regard small weights as being equivalent to zero (this usually isn’t a wise thing
to do). In turn, we might need to adopt a numerical representation that allows us
to add many very small numbers and come up with a nonzero result. This issue is
rather outside the scope of this book, but you should not underestimate its nuisance
value because we don’t treat it in detail.

10.6 MOTION SEGMENTATION BY PARAMETER ESTIMATION

Consider two frames of a motion sequence produced by a moving camera. For
a small movement, we will see relatively few new points, and lose relatively few
points, so we can join each point in the first frame to its corresponding point on
the second frame (which is overlaid) with an arrow. The head is at the point in the
second frame, and, if the elapsed time is short, the field of arrows can be thought
of as the instantaneous movement in the image. The arrows are known as the
optical flow, a notion originally due to Gibson (1950). The structure of an optical



Section 10.6 Motion Segmentation by Parameter Estimation 314

a b c

d e

FIGURE 10.10: Background subtraction for the sequence of Figure 9.8, using EM. (a),
(b), and (c) are from Figure 9.9, for comparison. (d) shows the estimated background
and (e) shows the estimated foreground. Notice that, in each case, there are some excess
pixels and some missing pixels.

a b c

d e

FIGURE 10.11: Background subtraction for the sequence of Figure 9.8, using EM. (a), (b),
and (c) are from Figure 9.10, for comparison. (d) shows the estimated background, and
(e) shows the estimated foreground. Notice that the number of problem pixels—where
the pattern on the sofa has been mistaken for the child—has markedly increased. This is
because small movements can cause the high spatial frequency pattern on the sofa to be
misaligned, leading to large differences.

flow field can be quite informative about a scene (Section 10.6.1), and quite simple
parametric models of optical flow are often good representations (Section 10.6.2).



Section 10.6 Motion Segmentation by Parameter Estimation 315

Frame 2

Frame 1

Frame 1

Frame 2
f

R

Image

plane

focal

point

FIGURE 10.12: A sphere of radius R approaches a camera along the Z axis, at velocity
V (side view on the left). The image is a circle, which grows as the sphere gets closer
(center). The flow is radial, about a focus of expansion, and provides an estimate of the
time to contact (right). This estimate works for other objects, too.

As a result, motion sequences often consist of large regions that have similar motion
internally. In turn, this gives us a segmentation principle: we want to decompose
a motion sequence into a set of moving layers, that compose to make the sequence
(Section 10.6.3).

10.6.1 Optical Flow and Motion

Flow is particularly informative about relations between the viewer’s motion, usu-
ally called egomotion, and the 3D scene. For example, when viewed from a moving
car, distant objects have much slower apparent motion than close objects, so the
rate of apparent motion can tell us something about distance. This means that
the flow arrows on distant objects will be shorter than those on nearby objects.
As another example, assume the egomotion is pure translation in some direction.
Then the image point in that direction, which is known as the focus of expansion,
will not move, and all the optical flow will be away from that point (Figure 10.12).
This means that simply observing such a flow field tells us something about how we
are moving. Further simple observations tell us how quickly we will hit something.
Assume the camera points at the focus of expansion, and make the world move to
the camera. A sphere of radius R whose center lies along the direction of motion
and is at depth Z will produce a circular image region of radius r = fR/Z. If it
moves down the Z axis with speed V = dZ/dt, the rate of growth of this region in
the image will be dr/dt = −fRV/Z2. This means that

time to contact = −Z

V
=

r

(drdt )
.

The minus sign is because the sphere is moving down the Z axis, so Z is
getting smaller and V is negative. The object doesn’t need to be a sphere for this
argument to work, and if the camera is spherical, we don’t need to be looking in
the direction we are traveling either. This means that an animal that is translating
quickly can get an estimate of how long until it hits something very quickly and
very easily.



Section 10.6 Motion Segmentation by Parameter Estimation 316

FIGURE 10.13: Optic flow fields can be used to structure or segment a scene. On the left,
a very simple scene. Now imagine we view this scene with a camera whose image plane is
parallel to the white rectangle, and that is moving left; we will see flow fields that look like
the image on the right. The flow on the white rectangle is constant (because the plane is
parallel to the direction of translation and the image plane) and small (it is distant); on
the light gray rectangle, it is constant, but larger; and on the inclined plane, it is small at
distant points and large at nearby points. With a parametric model of such flow fields, we
could segment scenes like this, because different structures would correspond to different
flow fields.

10.6.2 Flow Models

Quite simple parametric flow models can group together parts of a scene (Fig-
ure 10.13). It is helpful to build models that are linear in their parameters. Writing
θi for the ith component of the parameter vector, F i for the ith flow basis vector
field, and v(x) for the flow vector at pixel x, one has

v(x) =
∑
i

θiF i

In the affine motion model, we have

v(x) =

(
1 x y 0 0 0
0 0 0 1 x y

)
⎛
⎜⎜⎜⎜⎜⎜⎝

θ1
θ2
θ3
θ4
θ5
θ6

⎞
⎟⎟⎟⎟⎟⎟⎠ .

If flows involve what are essentially 2D effects—this is particularly appropriate for
lateral views of human limbs—a set of basis flows that encodes translation, rotation
and some affine effects is probably sufficient. Write (x, y) for the components of x.



Section 10.6 Motion Segmentation by Parameter Estimation 317

FIGURE 10.14: Typical flows generated by the model (u(x), v(x)T = (θ1 + θ2x + θ3y +
θ7x

2 + θ8xy, θ4 + θ5x+ θ6y + θyxy + θ8y
2). Different values of the θi give different flows,

and the model can generate flows typical of a 2D figure moving in 3D. Divergence occurs
when the image is scaled; for example, θ = (0, 1, 0, 0, 0, 1, 0, 0). Deformation occurs when
one direction shrinks and another grows (for example, rotation about an axis parallel to
the view plane in an orthographic camera); for example, θ = (0, 1, 0, 0, 0,−1, 0, 0). Curl
can result from in plane rotation; for example, θ = (0, 0,−1, 0, 1, 0, 0, 0). Yaw models
rotation about a vertical axis in a perspective camera; for example θ = (0, 0, 0, 0, 0, 1, 0).
Finally, pitchmodels rotation about a horizontal axis in a perspective camera; for example
θ = (0, 0, 0, 0, 0, 0, 1). This figure was originally published as Figure 2 of “Cardboard
People: A Parameterized Model of Articulated Image Motion,” S. Ju, M. Black, and Y.
Yacoob, IEEE Int. Conf. Face and Gesture, 1996 c© IEEE, 1996.

One can obtain such flows using the simple model

v(x) =

(
1 x y 0 0 0 x2 xy
0 0 0 1 x y xy y2

)
⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

θ1
θ2
θ3
θ4
θ5
θ6
θ7
θ8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This model is linear in θ, and provides a reasonable encoding of flows resulting from
3D motions of a 2D rectangle (see Figure 10.14). Alternatively, we could obtain
basis flows by a singular value decomposition of a pool of examples of the types of
flow one would like to track, and try to find a set of basis flows that explains most
of the variation (for examples, see Ju et al. (1996)).

10.6.3 Motion Segmentation with Layers

We now wish to segment a video sequence using a parametric flow model. Assume
for the moment that there are just two frames in the sequence and that we know
there are k segments (otherwise, we will need to use the methods of Section 10.7
to search over different numbers of segments). We will estimate a flow model for
the two frames that is a mixture of k parametric flow models. The motion at each
pixel in the first frame will come from this mixture, and will take the pixel to some



Section 10.6 Motion Segmentation by Parameter Estimation 318

FIGURE 10.15: Frames 1, 15, and 30 of the MPEG flower garden sequence, which is often
used to demonstrate motion segmentation algorithms. This sequence appears to be taken
from a translating camera, with the tree much closer to the camera than the house and a
flower garden on the ground plane. As a result, the tree appears to be translating quickly
across the frame, and the house slowly; the plane generates an affine motion field. This
figure was originally published as Figure 6 from “Representing moving images with layers,”
by J. Wang and E.H. Adelson, IEEE Transactions on Image Processing, 1994, c© IEEE,
1994.

pixel in the second frame, which we expect will have the same brightness value.
We could segment the first image (or the second; when we have the flow model,
this doesn’t really matter) by assigning each pixel to its flow model, so the pixels
whose flow came from the first model would be in segment one, and so on. This
model encapsulates a set of distinct, internally consistent motion fields, one per
flow model. These might come from, say, a set of rigid objects at different depths
and a moving camera (Figure 10.15). The separate motion fields are often referred
to as layers and the model as a layered motion model.

Given a pair of images, we wish to determine (a) which motion field a pixel
belongs to and (b) the parameter values for each field. All this should look a great
deal like the first two examples, in that if we knew the first, the second would be
easy, and if we knew the second, the first would be easy. This is again a missing
data problem: the missing data is the motion field to which a pixel belongs, and
the parameters are the parameters of each field and the mixing weights.

To work out the problem, we also need a probabilistic model of our observa-
tions. We assume that the intensity of a pixel in image two is obtained by taking
the pixel in image one, moving it along the flow arrow for that pixel, and then
adding a zero-mean Gaussian random variable with variance σ2. Now assume that
the pixel at (x, y) in the first image belongs to the lth motion field, with parameters
θl. This means that this pixel has moved to (x, y) + v(x, y; θl) in the second frame,
and so that the intensity at these two pixels is the same, up to measurement noise.
We write I1(x, y) for the image intensity of the first image at the x, yth pixel, and
so on. The missing data is the motion field to which the pixel belongs. We can
represent this by an indicator variable Vxy,j, where

Vuv,j =

{
1, if the x, yth pixel belongs to the jth motion field

0, otherwise

}
.

The complete data log-likelihood becomes

L(V,Θ) = −
∑
xy,j

Vxy,j
(I1(x, y)− I2(x + v1(x, y; θj), y + v2(x, y; θj)))

2

2σ2
+ C,



Section 10.7 Model Selection: Which Model Is the Best Fit? 319

FIGURE 10.16: On the top left, a map indicating to which layer pixels in a frame of the
flower garden sequence belong, obtained by clustering local estimates of image motion.
Each gray level corresponds to a layer, and each layer is moving with a different affine
motion model. This map can be refined by checking the extent to which the motion of
pixel neighborhoods is consistent with neighborhoods in future and past frames, resulting
in the map on the top right. Three of the layers and their motion models are shown on the
bottom. This figure was originally published as Figures 11 and 12 from “Representing
moving images with layers,” by J. Wang and E.H. Adelson, IEEE Transactions on Image
Processing, 1994, c© IEEE, 1994.

where Θ = (θ1, . . . , θk). Setting up the EM algorithm from here on is straightfor-
ward. As before, the crucial issue is determining

P {Vxy,j = 1|I1, I2,Θ} .

These probabilities are often represented as support maps—maps assigning a gray-
level representing the maximum probability layer to each pixel (Figure 10.16).

Layered motion representations are useful for several reasons: First, they clus-
ter together points moving “in the same way.” Second, they expose motion bound-
aries. Finally, new sequences can be reconstructed from the layers in interesting
ways (Figure 10.17).

10.7 MODEL SELECTION: WHICH MODEL IS THE BEST FIT?

To date, we have assumed that we knew how many components our model has. For
example, we assumed that we were fitting a single line; in the image segmentation
example, we assumed we knew the number of segments; for general mixture models,
we assumed the number of components was known. Generally, this is not a safe
assumption.

We could fit models with different numbers of components (such as lines,
segments, and so on), and see which model fits best. This strategy fails, because
the model with more components will always fit best. In the extreme case, a really
good fit of lines to points involves passing one line through each pair of points. This
representation will be a perfect fit to the data, but will be useless in almost every



Section 10.7 Model Selection: Which Model Is the Best Fit? 320

FIGURE 10.17: One feature of representing motion in terms of layers is that one can
reconstruct a motion sequence without some of the layers. In this example, the MPEG
garden sequence has been reconstructed with the tree layer omitted. The figure on the left
shows frame 1, that in the center shows frame 15, and that on the right shows frame 30.
This figure was originally published as Figure 13 from “Representing moving images with
layers,” by J. Wang and E.H. Adelson, IEEE Transactions on Image Processing, 1994,
c© IEEE, 1994.

case. It will be useless because it is too complex to manipulate and because it will
be very poor at predicting new data.

Another way to look at this point is as a trade off between bias and variance.
The data points are a sample that comes from some underlying process, that we
are trying to represent. Representing a lot of data points with, say, a single line
is a biased representation, because it cannot represent all the complexity of the
model that produced the dataset. Some information about the underlying process
is inevitably lost. However, we can estimate the properties of the line used to
represent the data points very accurately indeed with some care, so there is little
variance in our estimate of the model that we do fit. Alternatively, if we were
to represent the data points with a zigzag set of lines that joined them up, the
representation would have no bias, but would be different for each new sample of
data points from the same source. As a result, our estimate of the model we fit
changes wildly from sample to sample; it is overwhelmed by variance.

We want a trade off. Fitting error gets smaller with the number of parameters,
so we need to add a term to the fitting error that increases with the number of com-
ponents. This penalty compensates for the decrease in fitting error (equivalently,
negative log-likelihood) caused by the increasing number of parameters. Instead, we
can choose from a variety of techniques, each of which uses a different discount cor-
responding to a different extremality principle and different approximate estimates
of the criterion.

Another way to look at this point is that we wish to predict future samples
from the model. Our dataset is a sample from a parametric model that is a member
of a family of models. A proper choice of the parameters predicts future samples
from the model—a test set—as well as the dataset (which is often called the train-
ing set). Unfortunately, these future samples are not available. Furthermore, the
estimate of the model’s parameters obtained using the dataset is likely to be bi-
ased because the parameters chosen ensure that the model is an optimal fit to the
training set, rather than to the entire set of possible data. The effect is known as
selection bias. The training set is a subset of the entire set of data that could have
been drawn from the model; it represents the model exactly only if it is infinitely



Section 10.7 Model Selection: Which Model Is the Best Fit? 321

large. This is why the negative log-likelihood is a poor guide to the choice of model:
the fit looks better because it is increasingly biased.

Now write the best choice of parameters as Θ∗ and the log-likelihood of the
fit to the dataset as L(x; Θ∗), p for the number of free parameters, and N for
the number of data items. We will compute a score from the log-likelihood and a
penalty that discourages too many parameters. There are several possibilities for
the score, but the procedure involves searching a space of models to find the one that
optimizes this score (for example, we could increase the number of components).

AIC: An Information Criterion
Akaike proposed a penalty, widely called AIC (for “an information criterion,”

not “Akaike information criterion”), that leads to choosing the model with the
minimum value of

−2L(x; Θ∗) + 2p.

There is a collection of statistical debate about the AIC. The first main point is
that it lacks a term in the number of data points. This is suspicious because our
estimate of the parameters of the real model should get better as the number of
data points goes up. Second, there is a body of experience that the AIC tends to
overfit—that is, to choose a model with too many parameters that fits the training
set well but doesn’t perform as well on test sets.

Bayesian Methods and Schwartz’s BIC
For simplicity, let us write D for the data, M for the model, and θ for the

parameters. Bayes’ rule then yields:

P (M|D) =
P (D|M)

P
(M)P (D)

=

∫
P (D|Mi, θ)P (θ)dθP (M)

P (D)
.

Now we could choose the model for which the posterior is large. Computing this
posterior can be difficult, but, by a series of approximations, we can obtain a
criterion

−L(D; θ∗) +
p

2
logN

(where N is the number of data items). Again, we choose the model that minimizes
this score. This is called the Bayes information criterion, or BIC. Notice that this
does have a term in the number of data items.

Description Length
Models can be selected by criteria not intrinsically statistical. After all, we

are selecting the model, and we can say why we want to select it. A criterion
that is somewhat natural is to choose the model that encodes the dataset most
crisply. This minimum description length criterion chooses the model that allows
the most efficient transmission of the dataset. To transmit the dataset, one codes
and transmits the model parameters, and then codes and transmits the data given
the model parameters. If the data fits the model poorly, then this latter term is
large because one has to code a noise-like signal.



Section 10.8 Notes 322

A derivation of the criterion used in practice is rather beyond our needs. The
details appear in Rissanen (1983), (1987), and in Wallace and Freeman (1987); there
are similar ideas rooted in information theory, due to Kolmogorov, and expounded
in Cover and Thomas (1991). Surprisingly, the BIC emerges from this analysis,
yielding

−L(D; θ∗) +
p

2
logN.

Again, we choose the model that minimizes this score.

10.7.1 Model Selection Using Cross-Validation

The key difficulty in model selection is that we should be using a quantity we
can’t measure: the model’s ability to predict data not in the training set. Given a
sufficiently large training set, we could split the training set into two components,
and use one to fit the model and the other the test the fit. This approach is known
as cross-validation.

We can use cross-validation to determine the number of components in a model
by splitting the dataset into training and test data, fitting a variety of different
models to training data, and then choosing the model that performs best on the
test data. To evaluate performance, we could look at log-likelihood on the test
data. We expect this process to estimate the number of components because a
model that has too many parameters will fit the training dataset well, but predict
the test set badly.

Using a single choice of a split into two components introduces a different
form of selection bias, and the safest thing to do is average the estimate over all
such splits. This becomes unwieldy if the test set is large, because the number
of splits is huge. The most usual version is leave-one-out cross-validation. In this
approach, we fit a model to each set of N − 1 of the training set, compute the error
on the remaining data point, and sum these errors to obtain an estimate of the
model error. The model that minimizes this estimate is then chosen.

10.8 NOTES

The origins of least squares fitting are opaque to us, though we believe that Gauss
himself invented the method. Total least squares appears to be due to Dem-
ing (1943). There is a large literature on fitting curves or curved surfaces us-
ing least squares methods, or approximations (one could start with work on con-
ics (Bookstein 1979, Fitzgibbon et al. 1999, Kanatani 2006, Kanatani 1994, Porrill
1990, Sampson 1982); more complicated problems in (Taubin 1991)).

The Hough Transform

The Hough transform is due to Hough (1962) (a note in Keith Price’s wonderful
bibliography remarks: “The most cited and least read reference”). There was
a large literature on the Hough transform, which was seen as having theoretical
significance; the interested might start with Ballard (1981), then Ballard (1984).
The topic then began to seem dated, but was revived by mean shift methods and
by the observation, due to Maji and Malik (2009), that not every token needed to
have the same vote, and the weights could be learned. The idea that multiple pieces



Section 10.8 Notes 323

of an object could reinforce one another by voting on the location of the object is
very old (see Ballard (1981); Ballard (1984)); the most important recent version
is Bourdev et al. (2010).

RANSAC

RANSAC is a hugely important algorithm, very easy to implement and use, and
very effective. The original paper (Fischler and Bolles 1981) is still worth reading.
There are numerous variants, depending on what one knows about the data and
the problem; see Torr and Davidson (2003) and Torr and Zisserman (2000) for a
start.

EM and Missing Variable Models

EM was first formally described in the statistical literature by Dempster et al.
(1977). A very good summary reference is McLachlan and Krishnan (1996), which
describes numerous variants. For example, it isn’t necessary to find the maximum
of Q(u;u(s)); all that is required is to obtain a better value. As another example,
the expectation can be estimated using stochastic integration methods.

Missing variable models seem to crop up in all sorts of places. All the models
we are aware of in computer vision arise from mixture models (and so have complete
data log-likelihood that is linear in the missing variables), and so we have concen-
trated on this case. It is natural to use a missing variable model for segmentation
(see, for example Belongie et al. (1998a); Feng and Perona (1998); Vasconcelos
and Lippman (1997); Adelson and Weiss (1996); or Wells et al. (1996)). Various
forms of layered motion now exist (see Dellaert et al. (2000); Wang and Adelson
(1994); Adelson and Weiss (1996); Tao et al. (2000); and Weiss (1997)); one can
also construct layers that lie at the same depth (see Brostow and Essa (1999); Torr
et al. (1999b); or Baker et al. (1998)), or have some other common property. Other
interesting cases include motions resulting from transparency, specularities, etc.
(see Darrell and Simoncelli (1993); Black and Anandan (1996); Jepson and Black
(1993); Hsu et al. (1994); or Szeliski et al. (2000)). The resulting representation
can be used for quite efficient image based rendering (see Shade et al. (1998)).

EM is an extremely successful inference algorithm, but it isn’t magical. The
primary source of difficulty for the kinds of problem that we have described is
local maxima. It is common for problems that have very large numbers of missing
variables to have large numbers of local maxima. This could be dealt with by
starting the optimization close to the right answer, which rather misses the point.

Model Selection

Model selection is a topic that hasn’t received as much attention as it deserves.
There is significant work in motion, the question being which camera model (or-
thographic, perspective, etc.) to apply (see Torr (1999); Torr (1997); Kinoshita
and Lindenbaum (2000); or Maybank and Sturm (1999)). Similarly, there is work
in segmentation of range data, where the question is to what set of parametric sur-
faces the data should be fitted (i.e., are there two planes or three, etc.) (Bubna and
Stewart 2000). In reconstruction problems, one must sometimes decide whether



Section 10.8 Notes 324

a degenerate camera motion sequence is present (Torr et al. 1999a). The stan-
dard problem in segmentation is how many segments are present (see Raja et al.
(1998); Belongie et al. (1998a); and Adelson and Weiss (1996)). If one is using
models predictively, it is sometimes better to compute a weighted average over
model predictions (real Bayesians don’t do model selection) (Torr and Zisserman
1998, Ripley 1996). We have described only some of the available methods; one
important omission is Kanatani’s geometric information criterion (Kanatani 1998).

PROBLEMS

10.1. Prove the simple, but extremely useful, result that the perpendicular distance
from a point (u, v) to a line (a, b, c) is given by abs(au+ bv+ c) if a2 + b2 = 1.

10.2. Derive the eigenvalue problem(
x2 − x x xy − x y

xy − x y y2 − y y

)(
a
b

)
= μ

(
a
b

)
from the generative model for total least squares. This is a simple exercise—
maximum likelihood and a little manipulation will do it—but worth doing
right and remembering. The technique is extremely useful.

10.3. How do we get a curve of edge points from an edge detector that returns
orientation? Give a recursive algorithm.

10.4. A slightly more stable variation of incremental fitting cuts the first few pixels
and the last few pixels from the line point list when fitting the line because
these pixels might have come from a corner.
(a) Why would this lead to an improvement?
(b) How should one decide how many pixels to omit?

10.5. Assume we have a fixed camera, and a single, plane moving object, whose plane
is parallel to the image plane. Show that an affine flow model can account for
flow resulting from:
(a) Translation of the plane object.
(b) In-plane rotation of a plane object parallel to the image plane.

10.6. Assume we have a fixed camera with focal length f . Write the coordinates of
world points in capital letters, and of image points in lowercase letters. Place
the focal point of the camera at (0, 0, 0), and the image plane at Z = −f . We
have a plane object lying on the plane Z = aX + b, with |a | > 0, |b | > 0.
(a) What translations of this object give image motion fields that are exactly

represented by an affine motion model?
(b) Under what circumstances does an affine motion model give a reason-

able approximation to the image flow fields produced by translating this
object?

10.7. Refer to Section 10.5.1 for notation for the line and outliers example. Write
δi for an indicator variable for the ith example, where δi = 1 if the example
comes from the line and δi = 0 otherwise. Assume that we wish to fit using
total least squares. Assume we know σ, the standard deviation of the errors.
Assume that the probability of an outlier is independent of its position. For
this example, show that the complete data log-likelihood is

Lc(a, b, c, π) =
∑
i

[
−
(axi + byi + c)2

2σ2
+ log π

]
δi+[K + log(1− π)] (1−δi)+L

where K is a constant expressing the probability of obtaining an outlier and
L does not depend on a, b, c, or π.



Section 10.8 Notes 325

10.8. Refer to Section 10.5.1 and the previous example for notation for the line
and outliers example. For this example, produce an expression for αi =
Eδ|x,Θ(s) [δi], where Θ = (a, b, c, π).

10.9. Refer to Section 10.5.1 for notation for the image segmentation example. Write
δij for an indicator variable for the ith example, where δij = 1 if the example
comes from the j’th segment, and δij = 0 otherwise. Assume we know Σ,
the covariance of the image segment probability distributions, and that this
is the same per segment. For this example, show that the complete data log-
likelihood is

Lc(π1, . . . , πg , μ1, . . . , μg) =
∑
ij

[
−
(xi − μj)

TΣ−1(xi − μj)

2
+ log πj

]
δij +L

where L does not depend on μj or πj .
10.10. Refer to Section 10.5.1 for notation for the image segmentation example. For

this example, produce an expression for αij = Eδ|x,Θ(s) [δij ], where

Θ = (π1, . . . , πg, μ1, . . . , μg).
10.11. Refer to Section 10.5.1 for notation for the line and outliers example. For this

example, show that the updates produced in the M-step will be

π(s+ 1) =

∑
i αij∑
i,j αij

and

μ
(s+1)
j =

∑
i αijxi∑
i αij

10.12. Refer to Section 10.5.1 for notation for the image segmentation example. For
this example, show that the updates produced in the M-step will be

π
(s+1)
j =

∑
i αij∑
i,j αij

and

μ
(s+1)
j =

∑
i αijxi∑
i αij

PROGRAMMING EXERCISES

10.13. Implement an incremental line fitter. Determine how significant a difference
results from leaving out the first few pixels and the last few pixels from the
line point list (put some care into building this; in our experience, it’s a useful
piece of software to have lying around).

10.14. Implement a Hough transform based line finder.
10.15. Count lines with an HT line finder. How well does it work?
10.16. Refer to Section 10.5.1 for notation for the image segmentation example. Use

your expression for αij = Eδ|x,Θ(s) [δij ], where Θ = (π1, . . . , πg, μ1, . . . , μg),
to implement an EM algorithm to segment images. It is sufficient to use RGB
color and location as a feature vector.



C H A P T E R 11

Tracking

Tracking is the problem of generating an inference about the motion of an object
given a sequence of images. Generally, we will have some measurements that appear
at each tick of a (notional) clock. These measurements could be the position of
some image points, the position and moments of some image regions, or pretty
much anything else. They are not guaranteed to be relevant, in the sense that some
could come from the object of interest and some might come from other objects or
from noise. We will have an encoding of the object’s state and some model of how
this state changes from tick to tick. We would like to infer the state of the world
from the measurements and the model of dynamics.

Tracking problems are of great practical importance. There are very good
reasons to want to, say, track aircraft using radar returns (good summary histories
include Brown (2000); Buderi (1998); and Jones (1998); comprehensive reviews
of technique in this context include Bar-Shalom and Li (2001); Blackman and
Popoli (1999); and Gelb and of the Analytical Sciences Corporation (1974)). Other
important applications include:

• Motion Capture: If we can track the 3D configuration of a moving person
accurately, then we can make an accurate record of their motions. Once we
have this record, we can use it to drive a rendering process; for example,
we might control a cartoon character, thousands of virtual extras in a crowd
scene, or a virtual stunt avatar. Furthermore, we could modify the motion
record to obtain slightly different motions. This means that a single performer
can produce sequences they wouldn’t want to do in person.

• Recognition from Motion: The motion of objects is quite characteristic.
We might be able to determine the identity of the object from its motion. We
should be able to tell what it’s doing.

• Surveillance: Knowing what the objects are doing can be very useful. For
example, different kinds of trucks should move in different, fixed patterns in
an airport; if they do not, then something is going wrong. Similarly, there
are combinations of places and patterns of motions that should never occur
(e.g., no truck should ever stop on an active runway). It could be helpful to
have a computer system that can monitor activities and give a warning when
it detects a problem case.

• Targeting: A significant fraction of the tracking literature is oriented toward
(a) deciding what to shoot, and (b) hitting it. Typically, this literature de-
scribes tracking using radar or infrared signals (rather than vision), but the
basic issues are the same: What do we infer about an object’s future position
from a sequence of measurements? Where should we aim?

326



Section 11.1 Simple Tracking Strategies 327

Generally, we regard a moving object as having a state. This state—which
might not be observed directly—encodes all the properties of the object we care
to deal with, or need to encode its motion. For example, state might contain:
position; position and velocity; position, velocity, and acceleration; position and
appearance; and so on. This state changes at each tick of time, and we then get
new measurements that depend on the new state. These measurements are referred
to as observations. In many problems, the observations are measurements of state,
perhaps incorporating some noise. For example, the state might be the position
of the object, and we observe its position. In other problems, the observations
are functions of state. For example, the state might be position and velocity, but
we observe only position. In some tracking problems, we have a model of how
the state changes with time. The information in this model is referred to as the
object’s dynamics. Tracking involves exploiting both observations and dynamics to
infer state.

The most important property of visual tracking problems is that observations
are usually hidden in a great deal of irrelevant information. For example, if we
wish to track a face in a video frame, in most cases the face occupies fewer than
a third of the pixels in the video frame. In almost every case, the pixels that do
not lie on the face have nothing useful to offer about the state of the face. This
means that we face significant problems identifying which observations are likely
to be helpful. The main methods for doing so involve either building a detector
(Section 11.1.1) or exploiting the tendency for objects to look the same over time,
and to move coherently (Section 11.1.2 and Section 11.2). It is straightforward to
balance dynamical predictions against measurements using probabilistic methods if
the dynamical model is relatively straightforward, because the probability models
are easy to represent (Section 11.3). Furthermore, dynamical predictions can be
used to identify useful measurements (Section 11.4). Non-linear dynamical mod-
els can produce probability models that need to be represented with approximate
methods (Section 11.5).

11.1 SIMPLE TRACKING STRATEGIES

There are two simple ways to track objects. In the first, tracking by detection, we
have a strong model of the object, strong enough to identify it in each frame. We
find it, link up the instances, and we have a track. Some additional machinery can
compensate for weaker models in many cases, too (Section 11.1.1). In the second,
tracking by matching, we have a model of how the object moves. We have a domain
in the nth frame in which the object sits, and then use this model to search for a
domain in the n+1th frame that matches it (Section 11.1.2). Tracking by matching
strategies become more elaborate as the motion model and the matching model
becomes more elaborate; we deal with the more elaborate strategies in Section 11.2.

11.1.1 Tracking by Detection

Assume that we will see only one object in each frame of video, that the state we
wish to track is position in the image, and that we can build a reliable detector for
the object we wish to track. In this case, tracking is straightforward: we report
the location of the detector response in each frame of the video. This observation



Section 11.1 Simple Tracking Strategies 328

n

n+1

n+2

n

n+1

n+2

Track 2

Track 1

(a)
(b)

(c)

FlowAppearance

FIGURE 11.1: In tracking problems, we want to build space time paths followed by
tokens—which might be objects, or regions, or interest points, or image windows—in
an image sequence (left). There are two important sources of information; carefully used,
they can resolve many tracking problems without further complexity. One is the appear-
ance of the token being tracked. If there is only one token in each frame with a distinctive
appearance, then we could detect it in each frame, then link the detector responses (a).
Alternatively, if there is more than one instance per frame, a cost function together with
weighted bipartite matching could be enough to build the track (b). If some instances
drop out, we will need to link detector responses to abstract tracks (c); in the figure, track
1 has measurements for frames n and n+ 2, but does not have a measurement for frame
n+ 1. Another important source of information is the motion of the token; if we have a
manageable model of the flow, we could search for the flow that generates the best match
in the next frame. We choose that match as the next location of the token, then iterate
this procedure (right).

is a good source of simple and effective tracking strategies, because we can build
good detectors for some objects. For example, consider tracking a red ball on a
green background, where the detector might just look for red pixels. In other cases,
we might need to use a more sophisticated detector; for example, we might wish
to track a frontal face looking at a camera (detectors are discussed in detail in
Chapter 17).

In most cases, we can’t assume only one object, or a reliable detector. If
objects can enter or leave the frame (or if the detector occasionally fails to detect
something), then it isn’t enough to just report the location of an object at each
frame. We must account for the fact that some frames have too many (or too
few) objects in them. To do this, we will have an abstraction called a track,
which represents a timeline for a single object. Assume that we have tracked for



Section 11.1 Simple Tracking Strategies 329

a while and wish to deal with a new frame. We copy the tracks from the previous
frame to this frame, and then allocate object detector responses to tracks. How
we allocate depends on the application (we give some examples below). Each track
will get at most one detector response, and each detector response will get at most
one track. However, some tracks may not receive a detector response, and some
detector responses may not be allocated a track. Finally, we deal with tracks
that have no response and with responses that have no track. For every detector
response that is not allocated to a track, we create a new track (because a new
object might have appeared). For every track that has not received a response for
several frames, we prune that track (because the object might have disappeared).
Finally, we may postprocess the set of tracks to insert links where justified by the
application. Algorithm 11.1 breaks out this approach.

The main issue in allocation is the cost model, which will vary from application
to application. We need a charge for allocating detects to tracks. For slow-moving
objects, this charge could be the image distance between the detect in the current
frame and the detect allocated to the track in the previous frame. For objects
with slowly changing appearance, the cost could be an appearance distance (e.g.,
a χ-squared distance between color histograms). How we use the distance again
depends on the application. In cases where the detector is very reliable and the
objects are few, well-spaced, and slow-moving, then a greedy algorithm (allocate the
closest detect to each track) is sufficient. This algorithm might attach one detector
response to two tracks; whether this is a problem or not depends on the application.
The more general algorithm solves a bipartite matching problem. The tracks form
one side of a bipartite graph, and the detector responses are the other side. Each
side is augmented by NULL nodes, so that a track (or response) can go unmatched.
The edges are weighted by matching costs, and we must solve a maximum weighted
bipartite matching problem (Figure 11.1). We could solve this exactly with the
Hungarian algorithm (see, for example, Cormen et al. (2009); Schrijver (2003);
or Jungnickel (1999)); very often, however, the quite good approximation that a
greedy algorithm will supply is sufficient. In some cases, we know where objects can
appear and disappear, so that tracks can be created only for detects that occur in
some region, and tracks can be reaped only if the last detect occurs in a disappear
region.

Background subtraction is often a good enough detector in applications where
the background is known and all trackable objects look different from the back-
ground. In such cases, it can be enough to apply background subtraction and
regard the big blobs as detector responses. This strategy is simple, but can be very
effective. One useful case occurs for people seen on a fixed background, such as a
corridor or a parking lot. If the application doesn’t require a detailed report of the
body configuration, and if we expect people to be reasonably large in view, we can
reason that large blobs produced by background subtraction are individual people.
Although this method has weaknesses—for example, if people are still for a long
time, they might disappear; it would require more work to split up the large blob of
foreground pixels that occurs when two people are close together; and so on—many
applications require only approximate reports of the traffic density, or alarms when
a person appears in a particular view. The method is well suited to such cases.

This basic recipe for tracking by detection is worth remembering. In many



Section 11.1 Simple Tracking Strategies 330

Notation:
Write xk(i) for the k’th response of the detector in the ith frame
Write t(k, i) for the k’th track in the ith frame
Write ∗t(k, i) for the detector response attached to the k’th track in the ith frame
(Think C pointer notation)

Assumptions: We have a detector which is reasonably reliable.
We know some distance d such that d(∗t(k, i− 1), ∗t(k, i)) is always small.

First frame: Create a track for each detector response.

N’th frame:
Link tracks and detector responses by solving a bipartite matching problem.
Spawn a new track for each detector response not allocated to a track.
Reap any track that has not received a detector response for some number of
frames.

Cleanup: We now have trajectories in space time. Link anywhere this is
justified (perhaps by a more sophisticated dynamical or appearance model, derived
from the candidates for linking).

Algorithm 11.1: Tracking by Detection.

situations, nothing more complex is required. The trick of creating tracks promis-
cuously and then pruning any track that has not received a measurement for some
time is quite general and extremely effective.

11.1.2 Tracking Translations by Matching

Assume we have a television view of a soccer field with players running around.
Each player might occupy a box about 10–30 pixels high, so it would be hard to
determine where arms and legs are (Figure 11.2). The frame rate is 30Hz, and body
parts don’t move all that much (compared to the resolution) from frame to frame.
In a case like this, we can assume that the domain translates. We can model a
player’s motion with two components. The first is the absolute motion of a box
fixed around the player and the second is the player’s movement relative to that
box. To do so, we need to track the box, a process known as image stabilization.
As another example of how useful image stabilization is, one might stabilize a
box around an aerial view of a moving vehicle; now the box contains all visual
information about the vehicle’s identity.

In each example, the box translates. If we have a rectangle in frame n, we
can search for the rectangle of the same size in frame n + 1 that is most like the
original. We are looking for a box that looks a lot like the current box, so we can
use the sum-of-squared differences (or SSD) of pixel values as a test for similarity.

If we write R(n) for the rectangle in the nth frame, R(n)
ij for the i, jth pixel in the



Section 11.1 Simple Tracking Strategies 331

FIGURE 11.2: A useful application of tracking is to stabilize an image box around a more
interesting structure, in this case a football player in a television-resolution video. A frame
from the video is shown on the left. Inset is a box around a player, zoomed to a higher
resolution. Notice that the limbs of the player span a few pixels, are blurry, and are
hard to resolve. A natural feature for inferring what the player is doing can be obtained
by stabilizing the box around the player, then measuring the motion of the limbs with
respect to the box. Players move relatively short distances between frames, and their body
configuration changes a relatively small amount. This means the new box can be found
by searching all nearby boxes of the same size to get the box whose pixels best match
those of the original. On the right, a set of stabilized boxes; the strategy is enough to
center the player in a box. This figure was originally published as Figure 7 of “Recognizing
Action at a Distance,” A. Efros, A.C. Berg, G. Mori, and J. Malik, Proc. IEEE ICCV,
2003, c© IEEE, 2003.

rectangle in the nth image, then we choose R(n+1) to minimize∑
i,j

(R(n)
ij −R(n+1)

ij )2.

In many applications the distance the rectangle can move in an inter-frame interval
is bounded because there are velocity constraints. If this distance is small enough,
we could simply evaluate the sum of squared differences to every rectangle of the
appropriate shape within that bound, or we might consider a search across scale
for the matching rectangle (see Section 4.7 for more information).

Now write Pt for the indices of the patch in the tth frame and I(x, t) for the
tth frame. Assume that the patch is at xt in the tth frame and it translates to
xt + h in the t+ 1th frame. Then we can determine h by minimizing

E(h) =
∑
u∈Pt

[I(u, t)− I(u+ h, t+ 1)]
2

as a function of h. The minimum of the error occurs when

∇hE(h) = 0.

Now if h is small, we can write I(u + h, t+ 1) ≈ I(u, t) + hT∇I, where ∇I is the



Section 11.1 Simple Tracking Strategies 332

FIGURE 11.3: It is natural to track local neighborhoods, like those built in Section 5.3.2;
however, for these neighborhoods to yield good tracks, they should pass a test of appear-
ance complexity, shown in the text. This test checks that estimates of the translation
of the neighborhood are stable. Top left: the first frame of an image sequence, with
possible neighborhoods that pass this test shown on the bottom left. On the right,
the sum-of-squared differences between the translated patch in frame n and the original
in frame 1. Notice how this drifts up, meaning that the accumulated motion over many
frames is not a translation; we need a better test to identify good tracks. This figure was
originally published as Figures 10, 11, 12 of “Good features to track,” by J. Shi and C.
Tomasi, Proc. IEEE CVPR 1994, c© IEEE, 1994.

image gradient. Substituting, and rearranging, we get[ ∑
u∈Pt

(∇I)(∇I)T

]
h =

∑
u∈Pt

[I(u, t)− I(u, t+ 1)]∇I,

which is a linear system we could solve directly for h. The solution of this system
will be unreliable if the smaller eigenvalue of the symmetric positive semidefinite
matrix

[∑
u∈Pt

(∇I)(∇I)T
]
is too small. This occurs when the image gradients

in P are all small—so the patch is featureless—or all point in one direction—so
that we cannot localize the patch along that flow direction. If the estimate of h
is unreliable, we must end the track. As Shi and Tomasi (1994) point out, this
means that we can test the smallest eigenvalue of this matrix to tell whether a local
window is worth tracking.

11.1.3 Using Affine Transformations to Confirm a Match

Some patches are like the soccer player example in Figure 11.2: the patch just
translates. For other patches, the movement from frame n to n + 1 is quite like a
translation, but when one compares frame 1 to frame n+1, a more complex model
of deformation is required. This could occur because, for example, the surface



Section 11.1 Simple Tracking Strategies 333

FIGURE 11.4: On the top left, the first frame of the sequence shown in Figure 11.3, with
some neighborhoods overlaid. On the bottom left, the neighborhoods associated with
these features (vertical) for different frames (horizontal). Notice how the pattern in the
neighborhood deforms, perhaps because the object is rotating in 3D. This means that a
translation model is good for the movement from frame n to frame n + 1, but does not
explain the movement from frame 1 to frame n + 1. For this, we need to use an affine
model. On the right, the value of the sum-of-squared differences between neighborhoods
on a track in frame n and in frame 1, plotted against n. In this case, the neighborhood
has been rectified by an affine transform, as in Section 11.1.3, before computing the SSD.
Notice how some tracks are obviously good and others can be seen to have drifted. We
could use this property to prune tracks. This figure was originally published as Figures
13, 14, 15 of “Good features to track,” by J. Shi and C. Tomasi, Proc. IEEE CVPR 1994,
c© IEEE, 1994.

on which the patch lies is rotating in 3D. In cases such as this, we should use a
translation model to build a track, and then prune tracks by checking the patch in
frame n+ 1 against frame 1. Because the image patch is small, an affine model is
appropriate. The affine model means that the point x in frame 1 will become the
point Mx+ c in frame t. To estimate M and c, we will minimize

E(M, c) =
∑
u∈P1

[I(u, 1)− I(Mu+ c, t)]
2
.

Notice that, because we are comparing the original patch in frame 1 with that in
the current frame, the sum is over u ∈ P1. Once we have M and c, we can evaluate
the SSD between the current patch and its original, and if this is below a threshold,
the match is acceptable.

These two steps lead to a quite flexible mechanism. We can start tracks using
an interest point operator, perhaps a corner detector. To build a tracker that can



Section 11.2 Tracking Using Matching 334

30 75 140 150

FIGURE 11.5: Four frames from a sequence depicting football players, with superimposed
domains. The object to be tracked is the blob on top of player 78 (at the center right in
frame 30). We have masked off these blobs (below) to emphasize just how strongly the
pixels move around in the domain. Notice the motion blur in the final frame. These blobs
can be matched to one another, and this is done by comparing histograms (in this case,
color histograms), which are less affected by deformation than individual pixel values.
This figure was originally published as Figure 1 of “Kernel-Based Object Tracking” by
D. Comaniciu, V. Ramesh, and P. Meer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2003, c© IEEE 2003.

create and reap tracks as necessary, we find all interest points in frame 1. We then
find the location of each of these in the next frame, and check whether the patch
matches the original one. If so, it belongs to a track. If not, the track has ended.
We now look for interest points or corners that don’t belong to tracks and create
new tracks there. Again, we advance tracks to the next frame, check each against
their original patch, reap tracks whose patch doesn’t match well enough, and create
tracks at new interest points. In Section 11.4.1, we show how to link this procedure
with a dynamical model built from a Kalman filter (Kalman filters are described
in Section 11.3).

11.2 TRACKING USING MATCHING

Imagine tracking a face in a webcam. The face is not necessarily frontal, because
computer users occasionally look away from their monitors, and so a detector will
not work. But a face tends to be blobby, tends to have coherent appearance, and
tends only to translate and rotate. As with the strategy of Section 11.1.2, we have
a domain of interest in the nth image, Dn, and we must search for a matching
domain Dn+1 in the n+ 1st image, but our motion model is more complex.

There are two types of match we can work with. In summary matching, we
match summary representations of the whole domain. We will represent a domain
with a set of parameters; for example, we could work with circular domains of fixed
radius, and represent the domain by the location of the center. We then compute a
summary of the appearance within the circle Dn and find the best-matching circle
Dn+1 (Section 11.2.1). In flow-based matching, we search for a transformation of
the pixels in the old domain that produces set of pixels that match well, and so a
good new domain. This allows us to exploit strong motion models (Section 10.6.2).



Section 11.2 Tracking Using Matching 335

Assume we have a sequence of N images; a domain D1,
in the first image represented by parameters
y1 (for a circular domain of fixed size, these would be the
location of the center; for a square, the center and edge length; and so on);
a kernel function k; a scale h; and a feature representation f of each pixel.

For n ∈ [1, . . . , N − 1]

Obtain an initial estimate y
(0)
n+1 of the next domain

either from a Kalman filter, or using yn

Iterate until convergence

y
(j+1)
n+1 =

∑
i
wixig(||xi−y(j)

h ||
2

)∑
i
wig(||

xi−y(j)

h ||
2

)

where pu, k, g are as given in the text

The track is the sequence of converged estimates y1, . . . ,yN .

Algorithm 11.2: Tracking with the Mean Shift Algorithm.

11.2.1 Matching Summary Representations

Look at the football player’s uniform in Figure 9.3.4. From frame to frame, we see
the player’s back at different viewing angles. Individual pixels in one domain might
have no corresponding pixels in the next. For example, the cloth may have folded
slightly; as another example, there is motion blur in some frames. Nonetheless, the
domain is largely white, with some yellow patches. This suggests that a summary
representation of the domain might not change from frame to frame, even though
the fine details do.

There is a quite general idea here. Write the domain of interest in frame n as
Dn. If we are tracking a deforming object, pixels in Dn might have no correspond-
ing pixels in Dn+1, or the motion of the pixels might be extremely complex, and
so we should represent Dn with a well-behaved summary. If the patches deform,
small-scale structures should be preserved, but the spatial layout of these struc-
tures might not be. Example small-scale structures include the colors of pixels, or
the responses of oriented filters. A histogram representation of these structures is
attractive because two histograms will be similar only when the two patches have
similar numbers of similar structures in them, but the similarity is not disrupted
by deformation.

We assume that we have a parametric domain, with parameters y, so that yn

represents Dn. For our treatment, we assume the domain is a circle of fixed radius
whose center is at the pixel location y, but the method can be reworked to apply
to other kinds of domain. The mean shift procedure yields one way to find the
Dn+1 whose histogram is most like that of Dn.

We assume that the features we are working with can be quantized so that the



Section 11.2 Tracking Using Matching 336

histogram can be represented as a vector of bin counts, and we write this vector
as p(y); its uth component representing the count in the u’th bin is pu(y). We
wish to find the y whose histogram is closest to that at yn. We are comparing two
probability distributions, which we can do with the Bhattacharyya coefficient:

ρ(p(y),p(yn)) =
∑
u

√
pu(y)pu(yn).

This will be one if the two distributions are the same and near zero if they are very
different. To obtain a distance function, we can work with

d(p(y),p(yn)) =
√
1− ρ(p(y),p(yn)).

We will obtain yn+1 by minimizing this distance. We will start this search at

y
(0)
n+1. We assume that yn+1 is close to y

(0)
n+1, and as a result, p(yn+1) is similar to

p(y
(0)
n+1). In this case, a Taylor expansion of ρ(p(y),p(yn)) about p(y

(0)
n+1) gives

ρ(p(y),p(yn)) ≈
∑
u

√
pu(y

(0)
n+1)pu(yn) +

∑
u

(pu(y)− pu(y
(0)
n+1))

(
1

2

√
pu(yn)

pu(y
(0)
n+1)

)

=
1

2

∑
u

√
pu(y

(0)
n+1)pu(yn) +

1

2

∑
u

pu(y)

√
pu(yn)

pu(y
(0)
n+1)

.

This means that, to minimize the distance, we must maximize

1

2

∑
u

pu(y)

√
pu(yn)

pu(y
(0)
n+1)

. (11.1)

Now we need a method to construct a histogram vector for the circle with
center y. We expect we are tracking a deforming object, so that pixels far away
from the center of two matching circles may be quite different. To deal with this,
we should allow pixels far away from the center to have a much smaller effect
on the histogram than those close to the center. We can do this with a kernel
smoother. Write the feature vector (for example, the color) for the pixel at location

xi in the circle as f
(n)
i . This feature vector is d-dimensional. Write the histogram

bin corresponding to f
(n)
i as b(f

(n)
i ). Each pixel votes into its bin in the histogram

with a weight that decreases with ||xi − y || according to a kernel profile k (compare
Section 9.3.4). Using this approach, the fraction of total votes in bin u produced
by all features is

pu(y) = Ch

∑
i∈Dn

k(|| xi − y

h
||
2

)δ [b(f i − u)] . (11.2)

where h is a scale, chosen by experiment, and Ch is a normalizing constant to
ensure that the sum of histogram components is one. Substituting Equation 11.2



Section 11.2 Tracking Using Matching 337

FIGURE 11.6: An important pragmatic difficulty with flow-based tracking is that appear-
ance is not always fixed. The folds in loose clothing depend on body configuration, as
these images of trousers indicate. The trousers were tracked using a flow-based tracker,
but enforcing equality between pixel values will be difficult, as the patches indicated by
the arrows suggest. The folds are geometrically small, but, because they produce cast
shadows, have a disproportionate effect on image brightness. This figure was originally
published as Figure 4 of “Cardboard People: A Parameterized Model of Articulated Image
Motion,” by S. Ju, M. Black, and Y. Yacoob, IEEE Int. Conf. Face and Gesture, 1996
c© IEEE, 1996.

into Equation 11.1, we must maximize

f(y) =
Ch

2

∑
i

wik(||
xi − y

h
||
2

), (11.3)

where

wi =
∑
u

δ [b(f i − u)]

√
pu(yn)

pu(y
(0)
n+1)

.

We can use the mean shift procedure of Section 9.3.4 to maximize equation
11.3. Following the derivation there, the mean shift procedure involves producing
a series of estimates y(j) where

y(j+1) =

∑
iwixig(|| xi−y(j)

h ||
2

)∑
iwig(|| xi−y(j)

h ||
2
)

.

The procedure gets its name from the fact that we are shifting to a point that has
the form of a weighted mean. The complete algorithm appears in Algorithm 11.2.

11.2.2 Tracking Using Flow

We can generalize the methods of Section 11.1.2 in a straightforward way. There
we found the best matching translated version of an image domain. Instead, we
could have a family of flow models, as in Section 10.6.1, and find the best matching
domain resulting from a flow model. We write the image as a function of space and
time as I(x, y, t), and scale and translate time so that each frame appears at an
integer value of t.

We have a domain in the nth image, Dn. We must find the domain in the
n+ 1th image that matches best under the flow model. We write ρ(u, v) for a cost



Section 11.2 Tracking Using Matching 338

function that compares two pixel values u and v; this should be small when they
match and large when they do not. We write w(x) for a weighting of the cost
function that depends on the location of the pixel. To find the new domain, we will
find the best flow, and then allow our domain to follow that flow model. Finding
the best flow involves minimizing∑

x∈Dn

w(x)ρ(I(x, n), I(x+ v(x; θ), n+ 1))

as a function of the flow parameters θ.
The cost function should not necessarily be the squared difference in pixel

values. We might wish to compute a more complex description of each location (for
example, a smoothed vector of filter outputs to encode local texture). Some pixels
in the domain might be more reliable than others; for example, we might expect
pixels near the boundary of the window to have more variation, and so we would
weight them down compared to pixels near the center of the window. Robustness is
another important issue. Outlier pixels, which are dramatically different from those
predicted by the right transformation, could be caused by dead pixels in the camera,
specularities, minor deformations on the object, and a variety of other effects. If
we use a squared error metric, then such outlier pixels can have a disproportionate
effect on the results. The usual solution is to adopt an M-estimator. A good choice
of ρ is

ρ(u, v) =
(u− v)2

(u − v)2 + σ2

where σ is a parameter (there is greater detail on M-estimators in Section 10.4.1).

We now have the best value of θ, given by θ̂. The new domain is given by

Dn+1 =
{
u | u = x+ v(x; θ̂), ∀x ∈ Dn

}
.

We can build domain models that simplify estimating Dn+1; for example, if the
domain is always a circle, then the flow must represent a translation, rotation, and
scale, and we would allow the flow to act on the center, radius, and orientation of
the circle.

Tracking can be started in a variety of ways. For a while, it was popular
to start such trackers by hand, but this is now rightly frowned on in most cases.
In some cases, objects always appear in a known region of the image, and in that
case one can use a detector to tell whether an object has appeared. Once it has
appeared, the flow model takes over.

The most important pragmatic difficulty with flow-based trackers is their ten-
dency to drift. A detection-based tracker has a single appearance model for an
object, encoded into the detector. This is applied to all frames. The danger is that
this model might not properly account for changes in illumination, aspect, and so
on, and as a result will fail to detect the object in some frames. In contrast, a flow-
based tracker’s model of the appearance of an object is based on what it looked like
in the previous frame. This means that small errors in localization can accumulate.
If the transformation estimated is slightly incorrect, then the new domain will be
incorrect; but this means the new appearance model is incorrect, and might get



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 339

worse. Section 11.1.3 showed how to prune tracks by testing against a model of
appearance. If we have few tracks, we cannot just prune, but must correct the drift.
This requires a fixed, global model of appearance, like those of Section 20.3.

Another important pragmatic difficulty is that an object’s appearance is often
not as fixed as one would like. Loose clothing is a particularly important problem
here because it forms folds in different ways, depending on the body configura-
tion. These folds are very minor geometric phenomena, but can cause significant
changes in image brightness, because they shadow patches of surface. This means
that there can be a strong, time-varying texture signal that appears on the body
segments (Figure 11.6). Although this signal almost certainly contains some cues
to configuration, they appear to be very difficult to exploit.

11.3 TRACKING LINEAR DYNAMICAL MODELS WITH KALMAN FILTERS

In Section 11.1.1, we described methods to match patches or object detector re-
sponses with tracks. This matching process is straightforward if we can be confident
that the thing we are matching hasn’t moved much: we search around the old loca-
tion for the best match. To know where to search, we don’t really need the object
to be slow-moving. Instead, if it moves in a predictable way, the motion model can
predict a search domain that might be far from the original location, but still reli-
able. Exploiting dynamical information effectively requires us to fuse information
from observations with dynamical predictions. This is most easily done by building
a probabilistic framework around the problem. The algorithmic goal is to maintain
an accurate representation of the posterior on object state, given observations and
a dynamical model.

We model the object as having some internal state; the state of the object at
the ith frame is typically written as Xi. The capital letter indicates that this is a
random variable; when we want to talk about a particular value that this variable
takes, we use small letters. The measurements obtained in the ith frame are values
of a random variable Y i; we write yi for the value of a measurement, and, on
occasion, we write Y i = yi for emphasis. In tracking, (sometimes called filtering or
state estimation), we wish to determine some representation of P (Xk|Y0, . . . , Yk). In
smoothing (sometimes called filtering), we wish to determine some representation
of P (Xk|Y0, . . . , YN ) (i.e., we get to use “future” measurements to infer the state).
These problems are massively simplified by two important assumptions.

• We assume measurements depend only on the hidden state, that is, that
P (Yk|X0, . . . , XN , Y0, . . . , YN ) = P (Yk|Xk).

• We assume that the probability density for a new state is a function only of the
previous state; that is, P (Xk|X0, . . . , Xk−1) = P (Xk|Xk−1) or, equivalently,
that Xi form a Markov chain.

We will use these assumptions to build a recursive formulation for tracking
around three steps.

Prediction: We have seen y0, . . . ,yk−1. What state does this set of mea-
surements predict for the ith frame? To solve this problem, we need to obtain a
representation of P (Xi|Y 0 = y0, . . . ,Y k−1 = yk−1). Straightforward manipula-
tion of probability combined with the assumptions above yields that the prior or



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 340

predictive density
P (Xk|Y 0 = y0, . . . ,Y k−1 = yk−1))

is equal to ∫
P (Xk|Xk−1)P (Xk−1|Y0, . . . , Yk−1)dXk−1

Data association: Some of the measurements obtained from the ith frame
may tell us about the object’s state. Typically, we use P (Xi|Y 0 = y0, . . . ,Y i−1 =
yi−1) to identify these measurements. For example, we might use this predictive
density to build a search location for the methods of Section 11.1.1.

Correction: Now that we have yi—the relevant measurements—we need
to compute a representation of P (Xi|Y 0 = y0, . . . ,Y i = yi). Straightforward
manipulation of probability combined with the assumptions above yields that the
posterior

P (Xk|Y 0 = y0, . . . ,Y k = yk)

is given by

P (Yk = yk|Xk)P (Xk|Y 0 = y0, . . . ,Y k = yk)∫
P (Yk = yk|Xk)P (Xk|Y 0 = y0, . . . ,Y k = yk)dXk

.

Representing these probability distributions can be very difficult when the
distributions have an arbitrary form. However, if the measurement models and the
dynamical models are linear (in a sense to be described below), then all probability
distributions will turn out to be Gaussian. In turn, this means that tracking and
smoothing involve maintaining the values of the mean and covariance of the relevant
densities (Section 11.3.2).

11.3.1 Linear Measurements and Linear Dynamics

We will use the simplest possible measurement model, where the measurement is
obtained from the state by multiplying by some known matrix (which may depend
on the frame), and then adding a normal random variable of zero mean and known
covariance (which again may depend on the frame). We use the notation

x ∼ N(μ,Σ)

to mean that x is the value of a random variable with a normal probability distri-
bution with mean μ and covariance Σ. We write xk for the state at step k. Our
model is that P (Yk|Xk = xk) is a Gaussian with mean Bkxk and covariance Σ.
Using the notation above, we can write our model of measurements as

yk ∼ N(Bkxk,Σk).

This model may seem limited, but is very powerful (it is the cornerstone of a huge
control industry). We do not need to observe the whole of the state vector at
any given time to infer it. For example, if we have enough measurements of the
position of a moving point, we can deduce its velocity and its acceleration. This
means that the matrix Bk does not need to have full rank (and in most practical
cases, it doesn’t).



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 341

In the simplest possible dynamical model, the state is advanced by multiply-
ing it by some known matrix (which may depend on the frame) and then adding
a normal random variable of zero mean and known covariance. Similarly, the mea-
surement is obtained by multiplying the state by some matrix (which may depend
on the frame) and then adding a normal random variable of zero mean and known
covariance. We can write our dynamical model as

xi ∼ N(Dixi−1; Σdi);

yi ∼ N(Mixi; Σmi).

Notice that the covariances could be different from frame to frame, as could the
matrices. Although this model appears limited, it is in fact extremely powerful; we
show how to model some common situations next.

Drifting Points Let us assume that x encodes the position of a point. If
Di = Id, then the point is moving under random walk; its new position is its old
position plus some Gaussian noise term. This form of dynamics isn’t obviously
useful, because it appears that we are tracking stationary objects. It is quite com-
monly used for objects for which no better dynamic model is known; we assume
that the random component is quite large and hope we can get away with it.

This model also illustrates aspects of the measurement matrix M. The
most important thing to keep in mind is that we don’t need to measure every
aspect of the state of the point at every step. For example, assume that the point
is in 3D. Now, if M3k = (0, 0, 1), M3k+1 = (0, 1, 0), and M3k+2 = (1, 0, 0), then
at every third frame we measure, respectively, the z, y, or x position of the point.
Notice that we can still expect to track the point, even though we measure only one
component of its position at a given frame. If we have sufficient measurements, the
state is observable, which means we can reconstruct it. We explore observability
in the exercises.

Constant Velocity Assume that the vector p gives the position and v the
velocity of a point moving with constant velocity. In this case, pi = pi−1+(Δt)vi−1

and vi = vi−1. This means that we can stack the position and velocity into a single
state vector, and our model applies (Figure 11.7). In particular,

x =

{
p

v

}
and

Di =

{
Id (Δt)Id
0 Id

}
.

Notice that, again, we don’t have to observe the whole state vector to make a useful
measurement. For example, in many cases, we would expect that

Mi =
{

Id 0
}

(i.e., that we see only the position of the point). Because we know that it’s mov-
ing with constant velocity—that’s the model—we expect that we could use these
measurements to estimate the whole state vector rather well.



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 342

0 2 4 6 8 10 12 14 16
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

FIGURE 11.7: A constant velocity dynamic model for a point on the line. In this case,
the state space is two dimensional, with one coordinate for position, one for velocity. The
figure on the top left shows a plot of the state; each asterisk is a different state. Notice
that the vertical axis (velocity) shows some small change compared with the horizontal
axis. This small change is generated only by the random component of the model, so
the velocity is constant up to a random change. The figure on the top right shows
the first component of state (which is position) plotted against the time axis. Notice
we have something that is moving with roughly constant velocity. The figure on the
bottom overlays the measurements (the circles) on this plot. We are assuming that the
measurements are of position only, and are quite poor; as we see, this doesn’t significantly
affect our ability to track.

Constant Acceleration Assume that the vector p gives the position, vec-
tor v the velocity, and vector a the acceleration of a point moving with constant
acceleration. In this case, pi = pi−1 + (Δt)vi−1, vi = vi−1 + (Δt)ai−1, and
ai = ai−1. Again, we can stack the position, velocity, and acceleration into a single
state vector, and our model applies (Figure 11.8). In particular,

x =

⎧⎨
⎩

p

v

a

⎫⎬
⎭



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 343

and

Di =

⎧⎨
⎩

Id (Δt)Id 0
0 Id (Δt)Id
0 0 Id

⎫⎬
⎭ .

Notice that, again, we don’t have to observe the whole state vector to make a useful
measurement. For example, in many cases, we would expect that

Mi =
{

Id 0 0
}

(i.e., that we see only the position of the point). Because we know that it’s moving
with constant acceleration—that’s the model—we expect that we could use these
measurements to estimate the whole state vector rather well.

-20 0 20 40 60 80 100 120 140 160
0

2

4

6

8

10

12

14

16

18

20

0 2 4 6 8 10 12 14 16 18 20
-20

0

20

40

60

80

100

120

140

160

FIGURE 11.8: This figure illustrates a constant acceleration model for a point moving
on the line. On the left, we show a plot of the first two components of state, with the
position on the x-axis and the velocity on the y-axis. In this case, we expect the plot to
look like (t2, t), which it does. On the right, we show a plot of the position against time.
Note that the point is moving away from its start position increasingly quickly.

Periodic Motion Assume we have a point moving on a line with a periodic
movement. Typically, its position p satisfies a differential equation such as

d2p

dt2
= −p.

This can be turned into a first-order linear differential equation by writing the
velocity as v and stacking position and velocity into a vector u = (p, v); we then
have

du

dt
=

(
0 1
−1 0

)
u = Su.

Now assume we are integrating this equation with a forward Euler method, where



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 344

the steplength is Δt; we have

ui = ui−1 +Δt
du

dt
= ui−1 +ΔtSui−1

=

(
1 Δt

−Δt 1

)
ui−1.

We can either use this as a state equation or use a different integrator. If we
use a different integrator, we might have some expression in ui−1, . . . ,ui−n, and
we would need to stack ui−1, . . . ,ui−n into a state vector and arrange the matrix
appropriately (see exercises). This method works for points on the plane, in 3D,
and so on (again, see exercises).

0 5 10 15 20 25
-5

0

5

10

15

20

25

30

FIGURE 11.9: The Kalman filter for a point moving on the line under our model of constant
velocity (compare with Figure 11.7). The state is plotted with open circles as a function of
the step i. The *s give x−

i , which is plotted slightly to the left of the state to indicate that
the estimate is made before the measurement. The xs give the measurements, and the +s
give x+

i , which is plotted slightly to the right of the state. The vertical bars around the
*s and the +s are three standard deviation bars, using the estimate of variance obtained
before and after the measurement, respectively. When the measurement is noisy, the bars
don’t contract all that much when a measurement is obtained (compare with Figure 11.10).

11.3.2 The Kalman Filter

An important feature of linear dynamic models is that all the conditional proba-
bility distributions we need to deal with are normal distributions. In particular,
P (Xi|y1, . . . ,yi−1) is normal, as is P (Xi|y1, . . . ,yi). This means that they are
relatively easy to represent; all we need to do is maintain representations of the
mean and the covariance for the prediction and correction phase.

All this is much simplified when the emission model is linear, the dynamic
model is linear, and all noise is Gaussian. In this case, all densities are normal,
and the mean and covariance are sufficient to represent them. Both tracking and



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 345

0 5 10 15 20 25
-20

0

20

40

60

80

100

120

140

160

180

FIGURE 11.10: The Kalman filter for a point moving on the line under our model of
constant acceleration (compare with Figure 11.8). The state is plotted with open circles
as a function of the step i. The *s give x−

i , which is plotted slightly to the left of the
state to indicate that the estimate is made before the measurement. The xs give the
measurements, and the +s give x+

i , which is plotted slightly to the right of the state.
The vertical bars around the *s and the +s are three standard deviation bars, using
the estimate of variance obtained before and after the measurement, respectively. When
the measurement is noisy, the bars don’t contract all that much when a measurement is
obtained.

filtering boil down to maintenance of these parameters. There is a simple set of
update rules (given in Algorithm 11.3; notation below) known as the Kalman filter.

Notation: We write X ∼ N(μ; Σ) to mean that X is a normal random
variable with mean μ and covariance Σ. Both dynamics and emission are linear, so
we can write

Xk ∼ N(AkXk−1; Σ
(d)
k )

and
Yk ∼ N(BkXk; Σ

(m)
k ).

We will write X
−
i for the mean of P (Xi|y0, . . . , yi−1) and X

+

i for the mean of
P (Xi|y0, . . . , yi); the superscripts suggest that they represent our belief about Xi

immediately before and immediately after the ith measurement arrives. Simi-
larly, we will represent the standard deviation of P (Xi|y0, . . . , yi−1) as Σ−

i and
of P (Xi|y0, . . . , yi) as Σ+

i . In each case, we will assume that P (Xi−1|y0, . . . , yi−1)

is known, meaning that we know X
+

i−1 and Σ+
i−1.

11.3.3 Forward-backward Smoothing

It is important to notice that P (Xi|y0, . . . ,yi) is not the best available repre-
sentation of Xi; this is because it doesn’t take into account the future behavior
of the point. In particular, all the measurements after yi could affect our repre-
sentation of Xi. This is because these future measurements might contradict the
estimates obtained to date—perhaps the future movements of the point are more in
agreement with a slightly different estimate of the position of the point. However,
P (Xi|y0, . . . ,yi) is the best estimate available at step i.



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 346

Dynamic Model:

xi ∼ N(Dixi−1,Σdi)

yi ∼ N(Mixi,Σmi)

Start Assumptions: x−
0 and Σ−

0 are known
Update Equations: Prediction

x−
i = Dix

+
i−1

Σ−
i = Σdi +Diσ

+
i−1Di

Update Equations: Correction

Ki = Σ−
i MT

i

[
MiΣ

−
i MT

i +Σmi

]−1

x+
i = x−

i +Ki

[
yi −Mix

−
i

]
Σ+

i = [Id−KiMi] Σ
−
i

Algorithm 11.3: The Kalman Filter.

What we do with this observation depends on the circumstances. If our ap-
plication requires an immediate estimate of position—perhaps we are tracking a
car in the opposite lane—there isn’t much we can do. If we are tracking off-line—
perhaps for forensic purposes, we need the best estimate of what an object was doing
given a videotape—then we can use all data points, and so we want to represent
P (Xi|y0, . . . ,yN ). A common alternative is that we need a rough estimate imme-
diately, and can use an improved estimate that has been time-delayed by a number
of steps. We want to represent P (Xi|y0, . . . ,yi+k). We have to wait until time
i+k for this representation, but it should be an improvement on P (Xi|y0, . . . ,yi).

We can incorporate future measurements with a clever trick. We must com-
bine P (Xi|y0, . . . ,yi)—which we know how to obtain—with P (Xi|yi+1, . . . ,yN ).
We actually know how to obtain a representation of P (Xi|yi+1, . . . ,yN ), too. We
could simply run the Kalman filter backward in time, using backward dynamics,
and take the predicted representation of Xi (we leave the details of relabeling the
sequence, etc., to the exercises).

Now we have two representations of Xi: one obtained by running a forward
filter and incorporating all measurements up to yi; and one obtained by running a
backward filter and incorporating all measurements after yi. We need to combine
these representations. We can get the answer by noting that this is like having
another measurement. In particular, we have a new measurement generated by
Xi—that is, the result of the backward filter—to combine with our estimate from



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 347

Forward filter: Obtain the mean and variance of P (Xi|y0, . . . ,yi) using the

Kalman filter. These are X
f,+

i and Σf,+
i .

Backward filter: Obtain the mean and variance of P (Xi|yi+1, . . . ,yN )

using the Kalman filter running backward in time. These are X
b,−
i and Σb,−

i .

Combining forward and backward estimates: Regard the backward
estimate as a new measurement for Xi, and insert into the Kalman filter equations
to obtain

Σ∗
i =

[
(Σf,+

i )−1 + (Σb,−
i )−1

]−1

;

X
∗
i = Σ∗

i

[
(Σf,+

i )−1X
f,+

i + (Σb,−
i )−1X

b,−
i

]
.

Algorithm 11.4: Forward-Backward Smoothing.

the forward filter; this yields Algorithm 11.4. Forward-backward estimates can
make a substantial difference, as Figure 11.11 illustrates.

Using smoothing requires some care about priors. In typical vision applica-
tions, we are tracking forward in time. This leads to an inconvenient asymmetry:
we might have a good idea of where the object started, but only a poor one of
where it stopped (i.e., we are likely to have a fair prior for P (x0), but might have
difficulty supplying a prior for P (xN ) for the forward-backward filter). One option
is to use P (xN |y0, . . . ,yN ) as a prior. This is a dubious act, as this probability
distribution does not in fact reflect our prior belief about P (xN ); we’ve used all the
measurements to obtain it. Consequently, this distribution could understate our
uncertainty in xN and so lead to a forward-backward estimate that significantly
underestimates the covariance for the later states. An alternative is to use the
mean supplied by the forward filter but enlarge the covariance substantially; the
consequences are a forward-backward estimate that overestimates the covariance
for the later states.

Not all applications have this asymmetry. For example, if we are engaged in
a forensic study of a videotape, we might be able to start both the forward tracker
and the backward tracker by hand and provide a good estimate of the prior in each
case. If this is possible, then we have a good deal more information that may be
able to help choose correspondences, and so on; the forward tracker should finish
rather close to where the backward tracker starts.

Although our formulation of forward-backward smoothing assumed that the
backward filter started at the last data point, it is easy to start this filter a fixed
number of steps ahead of the forward filter. If we do this, we obtain an estimate of
state in real time (essentially immediately after the measurement) and an improved
estimate some fixed numbers of measurements later. This is sometimes useful.



Section 11.3 Tracking Linear Dynamical Models with Kalman Filters 348

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

0 2 4 6 8 10 12 14 16 18 20
-5

0

5

10

15

20

FIGURE 11.11: Forward-backward estimation for a dynamic model of a point moving on
the line with constant velocity. We are plotting the position component of state against
time. On the top left, we show the forward estimates, again using the convention that
the state is shown with circles, the data is shown with an x, the prediction is shown with
a *, and the corrected estimate is shown with a +; the bars give one standard deviation in
the estimate. The predicted estimate is shown slightly behind the state, and the corrected
estimate is shown slightly ahead of the state. You should notice that the measurements are
noisy. On the top right we show the backward estimates. Now time is running backward
(although we have plotted both curves on the same axis), so that the prediction is slightly
ahead of the measurement and the corrected estimate is slightly behind. We have used the
final corrected estimate of the forward filter as a prior. Again, the bars give one standard
deviation in each variable. On the bottom, we show the combined forward-backward
estimate. The squares give the estimates of state. Notice the significant improvement in
the estimate.

Furthermore, it is an efficient way to obtain most of the improvement available
from a backward filter if we can assume that the effect of the distant future on
our estimate is relatively small compared with the effect of the immediate future.
Notice that we need to be careful about priors for the backward filter here; we
might take the forward estimate and enlarge its covariance somewhat.



Section 11.4 Data Association 349

11.4 DATA ASSOCIATION

Not all observations are informative. For example, if one wishes to track an
aircraft—where state might involve pose, velocity and acceleration variables, and
measurements might be radar returns giving distance and angle to the aircraft from
several radar aerials—some of the radar returns measured might not come from the
aircraft. Instead, they might be the result of noise, of other aircraft, of strips of foil
dropped to confuse radar apparatus (chaff or window; see Jones (1998)), or of other
sources. The problem of determining which observations are informative and which
are not is known as data association. Data association is the dominant difficulty
when tracking objects in video. This is because so few of the very many pixels in
each frame lie on objects of interest. It can be spectacularly difficult to tell which
pixels in an image come from an object of interest and which do not. The tracking
methods of the first two sections focus on solving data association problems us-
ing familiar ideas of detection and of coherent appearance (Section 11.1.1). These
methods can be linked to probabilistic representations, to exploit any dynamical
information that happens to be available.

11.4.1 Linking Kalman Filters with Detection Methods

In Section 11.1.2, we took a patch in image n and looked for one in image n+1 that
was “similar.” To find a match, we assumed that the patch translated a relatively
small distance from a known start point, and searched around that start point using
an approximate method to find the best SSD match. In that section, we assumed
that the start point was the patch’s location in image n. It could, instead, be
predicted by a Kalman filter. Similarly, in Section 11.2.1, we had a domain that
was a circle of a fixed size in image n, and we searched around a start point for
a matching domain in image n + 1 using an approximate method to find the best
matching histogram. Again, we assumed the start point was the circle’s location in
image n, but it could be predicted by a Kalman filter. We will describe the case of
the circle in somewhat greater detail to illustrate how this works.

The circular domain was represented with a vector y giving the center of the
circle. Our search needed a start point, which we wrote as y0. This start point could
come from a dynamical model. In fact, assuming as we did in Section 11.2.1 that it
was the configuration of domain in image n is a simple dynamical model where the
object doesn’t move. An alternative model might be better. For example, we might
be observing an object in free fall in a plane parallel to the camera plane. In this
case, the object might move a considerable distance between frames, but its location
in image n+1 is quite easily predicted from earlier locations. To predict y0 with a
Kalman filter, we choose a state vector representation, so that the configuration y

is a linear function of the state vector. We apply the prediction step of the Kalman
filter to obtain the predicted state vector, and compute y0 from that. We then
search for y(n+1), as in Section 11.2. The computed value is the observation for the
Kalman filter, and we use this to obtain the revised estimate of the state vector.

As an example, the state vector is x = (y, ẏ)T . The velocity drifts slightly,
so the dynamical model is given by

xn+1 = Axn + ξ =

(
I ΔtI
0 I

)
xn + ξn+1,



Section 11.5 Particle Filtering 350

where ξn+1 ∼ N(0,Σd). The measurement model is given by

yn = Bxn =
(
I 0

)
xn + ηn,

where ηn ∼ N(0,Σm). Now assume we have x
(+)
n . We predict x

(−)
n+1 = Ax

(+)
n ,

which gives a prediction y0 = Bx(−)
n+1. We start the search at this point, and obtain

y(n+1). This goes into the Kalman gain formula (Algorithm 11.3) to give x
(+)
n+1.

The advantage of doing this is that, if the object has a significant but fixed velocity,
our search starts at the location predicted by this velocity model, and so is much
more likely to find the match we want.

11.4.2 Key Methods of Data Association

The case of the Kalman filter applied to tracking by detection is an instance of a
general strategy. In particular, we have an estimate of P (Xn|Y0, . . . , Yn−1), and we
know P (Yn|Xn). From this we can obtain an estimate of P (Yn|Y0, . . . Yn−1), which
gives us hints as to where the measurement might be. These hints can be applied
in a variety of ways.

One can use a gate and look only at measurements that lie in a domain where
P (Yn|Y0, . . . , Yn−1) is big enough. This is a method with roots in radar tracking of
missiles and airplanes, where one must deal with only a small number of returns
compared with the number of pixels in an image. The idea has also been useful
in visual tracking applications. For example, if we are tracking using an object
detector, we would apply it only within the gate (or ignore detector responses
outside the gate). This approach is quite commonly adopted within vision, and is
useful.

One can use nearest neighbors. In the classical version, we have a small set of
possible measurements, and we choose the measurement with the largest value of
P (Yn|Y0, . . . , Yn−1). This has all the dangers of wishful thinking—we are deciding
that a measurement is valid because it is consistent with our track—but is often
useful in practice. Our example of using a Kalman filter to identify a start point for
a search is a nearest neighbors strategy. Again, this approach is commonly adopted
and is useful.

One can use probabilistic data association, where we construct a virtual ob-
servation from a weighted combination of measurements within a gate, weighted
using (a) the predicted measurement and (b) the probability a detector has failed to
detect. For example, if we are using tracking by detection, we could form a virtual
observation as a weighted sum of detects that appear within a gate. This approach
tends not to be used, however, perhaps because it is uncommon in practice to have
a detector that is reliable enough to use like this but not good enough to support
nearest neighbors.

11.5 PARTICLE FILTERING

The Kalman filter is the workhorse of estimation and can give useful results under
many conditions. One doesn’t need a guarantee of linearity to use a Kalman filter.
If the logic of the application indicates that a linear model is reasonable, there
is a good chance a Kalman filter will work. Nonlinear dynamics—or nonlinear



Section 11.5 Particle Filtering 351

measurement processes, or both—can create serious problems. The basic difficulty
is that even quite innocuous looking setups can produce densities that are not
normal, and are very difficult to represent and model. Quite small non-linearities
in dynamics can cause probability to be concentrated in ways that are very difficult
to represent. In particular, nonlinear dynamics are likely to produce densities
with complicated sufficient statistics. There are cases where nonlinear dynamics
does lead to densities that can be guaranteed to have finite-dimensional sufficient
statistics (see Benes̆ (1981); Daum (1995b); or Daum (1995a)).

More generally, we expect it to be difficult to maintain a satisfactory represen-
tation of P (xi|y0, . . . ,yi). This representation should handle multiple peaks in the
distribution, and should be able to handle a high-dimensional state vector without
difficulty. There is no completely satisfactory general solution to this problem (and
there will never be). In this section, we discuss an approach that has been useful
in many applications.

The richest source of multiple modes is data association problems. An easy
example illustrates how nasty this problem can be. Assume we have a problem with
linear dynamics and a linear measurement model. However, at each tick of the clock
we receive more than one measurement, exactly one of which comes from the process
being studied. We will continue to write the states as Xi and the measurements
as Y i, but we now have δi, an indicator variable that tells which measurement
comes from the process (and is unknown). P (XN |Y 1..N , δ1..N) is clearly Gaussian.
We want P (XN |Y 1..N ) =

∑
histories P (XN |Y 1..N , δ1..N)P (δ1..N |Y 1..N ), which is

clearly a mixture of Gaussians. The number of components is exponential in the
number of frames—there is one component per possible history—meaning that
P (XN |Y 1..N ) could have a very large number of modes.

11.5.1 Sampled Representations of Probability Distributions

A natural way to think about representations of probability distributions is to ask
what a probability distribution is for. Computing a representation of probability
distributions is not our primary objective; we wish to represent a probability dis-
tribution so that we can compute one or another expectation. For example, we
might wish to compute the expected state of an object given some information, the
variance in the state, the expected utility of shooting at an object, etc. Probability
distributions are devices for computing expectations, thus our representation should
be one that gives us a decent prospect of computing an expectation accurately. This
means that there is a strong resonance between questions of representing probability
distributions and questions of efficient numerical integration.

Monte Carlo Integration using Importance Sampling
Assume that we have a collection of N points ui, and a collection of weights

wi. These points are independent samples drawn from a probability distribution
S(U), which we call the sampling distribution; notice that we have broken with
our usual convention of writing any probability distribution with a P . We assume
that S(U) has a probability density function s(U).

The weights have the form wi = f(ui)/s(ui) for some function f . Now it is



Section 11.5 Particle Filtering 352

a fact that

E

[
1

N

∑
i

g(ui)wi

]
=

∫
g(U)

f(U)

s(U )
s(U)dU

=

∫
g(U)f(U )dU ,

where the expectation is taken over the distribution on the collection of N inde-
pendent samples from S(U) (you can prove this fact using the weak law of large
numbers). The variance of this estimate goes down as 1/N , and is independent of
the dimension of U .

Representing Distributions Using Weighted Samples

Represent a probability distribution

pf (X) =
f(X)∫
f(U)dU

by a set of N weighted samples {
(ui, wi)

}
,

where ui ∼ s(u) and wi = f(ui)/s(ui).

Algorithm 11.5: Obtaining a Sampled Representation of a Probability Distribution.

We have a representation of a probability distribution

pf (X) =
f(X)∫
f(U)dU

by a set of weighted samples {
(ui, wi)

}
,

where ui ∼ s(u) and wi = f(ui)/s(ui). Then:∫
g(U)pf (U )dU ≈

∑N
i=1 g(u

i)wi∑N
i=1 w

i

Algorithm 11.6: Computing an Expectation Using a Set of Samples.

If we think about a distribution as a device for computing expectations—which
are integrals—we can obtain a representation of a distribution from the integration



Section 11.5 Particle Filtering 353

method described above. This representation will consist of a set of weighted points.
Assume that f is non-negative and that

∫
f(U)dU exists and is finite. Then

f(X)∫
f(U)dU

is a probability density function representing the distribution of interest. We write
this probability density function as pf (X).

Now we have a collection of N points ui ∼ S(U) and a collection of weights
wi = f(ui)/s(ui). Using this notation, we have that

E

[
1

N

∑
i

wi

]
=

∫
1
f(U)

s(U)
s(U)dU

=

∫
f(U)dU .

Now this means that

Epf
[g] =

∫
g(U)pf (U )dU

=

∫
g(U)f(U)dU∫

f(U)dU

= E

[∑
i g(ui)wi∑

i wi

]

≈
∑

i g(ui)wi∑
iwi

(where we have cancelled some Ns). This means that we can in principle represent
a probability distribution by a set of weighted samples (Algorithm 11.5). There
are some significant practical issues here, however. Before we explore these, we will
discuss how to perform various computations with sampled representations. We
have already shown how to compute an expectation (above, and in Algorithm 11.6).
There are two other important activities for tracking: marginalization and turning
a representation of a prior into a representation of a posterior.

Marginalizing a Sampled Representation
An attraction of sampled representations is that some computations are par-

ticularly easy. Marginalization is a good and useful example. Assume we have a
sampled representation of pf (U) = pf ((M ,M )). We write U as two components
(M ,N ) so that we can marginalize with respect to one of them.

Now assume that the sampled representation consists of a set of samples,
which we can write as {

((mi,ni), wi)
}
.

In this representation, (mi,ni) ∼ s(M ,N) and wi = f((mi,ni))/s((mi,ni)).
We want a representation of the marginal pf (M ) =

∫
pf (M ,N)dN . We

will use this marginal to estimate integrals, so we can derive the representation by



Section 11.5 Particle Filtering 354

thinking about integrals. In particular∫
g(M )pf (M)dM =

∫
g(M)

∫
pf (M ,N)dNdM

=

∫ ∫
g(M )pf (M ,N )dNdM

≈
∑N

i=1 g(m
i)wi∑N

i=1 w
i

,

meaning that we can represent the marginal by dropping the ni components of the
sample (or ignoring them, which may be more efficient!).

Transforming a Prior into a Posterior
Appropriate manipulation of the weights of a sampled distribution yields rep-

resentations of other distributions. A particularly interesting case is representing a
posterior given some measurement. Recall that

p(U |V = v0) =
p(V = v0|U)p(U)∫
p(V = v0|U)p(U)dU

=
1

K
p(V = v0|U), p(U)

where v0 is some measured value taken by the random variable V .
Assume we have a sampled representation of p(U), given by

{
(ui, wi)

}
. We

can evaluate K fairly easily:

K =

∫
p(V = v0|U)p(U)dU

= E

[∑N
i=1 p(V = v0|ui)wi∑N

i=1 w
i

]

≈
∑N

i=1 p(V = v0|ui)wi∑N
i=1 w

i
.

Now let us consider the posterior∫
g(U)p(U |V = v0)dU =

1

K

∫
g(U)p(V = v0|U)p(U)dU

≈ 1

K

∑N
i=1 g(u

i)p(V = v0|ui)wi∑N
i=1 w

i

≈
∑N

i=1 g(u
i)p(V = v0|ui)wi∑N

i=1 p(V = v0|ui)wi

(where we substituted the approximate expression for K in the last step). This
means that, if we take

{
(ui, wi)

}
and replace the weights with

w′i = p(V = v0|ui)wi,

the result
{
(ui, w′i)

}
is a representation of the posterior.



Section 11.5 Particle Filtering 355

Assume we have a representation of p(U) as{
(ui, wi)

}
,

Assume we have an observation V = v0, and a likelihood model p(V |U). The
posterior, p(U |V = v0) is represented by

{
(ui, w′i)

}
,

where
w′i = p(V = v0|ui)wi.

Algorithm 11.7: Obtaining a Sampled Representation of a Posterior from a Prior.

11.5.2 The Simplest Particle Filter

Assume that we have a sampled representation of P (X i−1|y0, . . . ,yi−1), and we
need to obtain a representation of P (Xi|y0, . . . ,yi). We will follow the usual two
steps of prediction and correction.

We can regard each sample as a possible state for the process at step Xi−1.
We are going to obtain our representation by first representing

P (X i,Xi−1|y0, . . . ,yi−1),

and then marginalising out Xi−1 (which we know how to do). The result is the
prior for the next state, and because we know how to get posteriors from priors, we
will obtain P (Xi|y0, . . . ,yi).

Prediction
Now,

p(Xi,Xi−1|y0, . . . ,yi−1) = p(Xi|Xi−1)p(X i−1|y0, . . . ,yi−1).

Write our representation of p(Xi−1|y0, . . . ,yi−1) as{
(uk

i−1, w
k
i−1)

}
(the superscripts index the samples for a given step i, and the subscript gives the
step).

Now for any given sample uk
i−1, we can obtain samples of p(Xi|Xi−1 = uk

i−1)
fairly easily. This is because our dynamic model is

xi = f (xi−1) + ξi,



Section 11.5 Particle Filtering 356

where ξi ∼ N(0,Σmi). Thus, for any given sample uk
i−1, we can generate samples

of p(Xi|Xi−1 = uk
i−1) as {

(f(uk
i−1) + ξli, 1)

}
,

where ξli ∼ N(0,Σmi). The index l indicates that we might generate several such
samples for each uk

i−1.
We can now represent p(Xi,Xi−1|y0, . . . ,yi−1) as{

((f(uk
i−1) + ξli,u

k
i−1), w

k
i−1)

}
(notice that there are two free indexes here, k and l; by this we mean that for each
sample indexed by k, there might be several different elements of the set, indexed
by l).

Because we can marginalize by dropping elements, the representation of

P (xi|y0, . . . ,yi−1)

is given by {
(f(uk

i−1) + ξli, w
k
i−1)

}
(we walk through a proof in the exercises). We will reindex this collection of
samples—which may have more than N elements—and rewrite it as{

(uk,−
i , wk,−

i )
}
,

assuming that there are M elements. Just as in our discussion of Kalman filters,
the superscript “−” indicates that this is our representation of the ith state before
a measurement has arrived. The superscript k gives the individual sample.

Correction Correction is simple: we need to take the prediction, which
acts as a prior, and turn it into a posterior. We do this by choosing an appropriate
weight for each sample, following Algorithm 11.7. The weight is

p(Y i = yi|Xi = s
k,−
i )wk,−

i

(you should confirm this by comparing it with Algorithm 11.7), and our represen-
tation of the posterior is{

(sk,−i , p(Y i = yi|Xi = s
k,−
i )wk,−

i )
}

11.5.3 The Tracking Algorithm

In principle, we now have most of a tracking algorithm. The only missing step
is to explain where the samples of p(X0) came from. The easiest thing to do
here is to start with a diffuse prior of a special form that is easily sampled—
a Gaussian with large covariance might do it—and give each of these samples a
weight of 1. It is a good idea to implement this tracking algorithm to see how
it works (see the exercises!); you will notice that it works poorly, even on the
simplest problems (Figure 11.12 compares estimates from this algorithm to exact



Section 11.5 Particle Filtering 357

0 5 10 15 20 25 30 35 40
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 11.12: The simple particle filter behaves very poorly, as a result of a phenomenon
called sample impoverishment, which is rather like quantization error. In this example, we
have a point on the line drifting on the line (i.e., xi ∼ N(xi−1, σ

2)). The measurements are
corrupted by additive Gaussian noise. In this case, we can get an exact representation of
the posterior using a Kalman filter. In the figure on the left, we compare a representation
obtained exactly using a Kalman filter with one computed from simple particle filtering.
We show the mean of the posterior as a point with a one standard deviation bar (previously
we used three standard deviations, but that would make these figures difficult to interpret).
The mean obtained using a Kalman filter is given as an x; the mean obtained using a
particle filter is given as an o; and we have offset the standard deviation bars from one
another to make the phenomenon clear. Notice that the mean is poor, but the standard
deviation estimate is awful, and gets worse as the tracking proceeds. In particular, the
standard deviation estimate woefully underestimates the standard deviation, which could
mislead a user into thinking the tracker was working and producing good estimates, when
in fact it is hopelessly confused. The figure on the right indicates what is going wrong.
We plot the tracks of 10 particles, randomly selected from the 100 used. Note that
relatively few particles ever lie within one standard deviation of the mean of the posterior;
in turn, this means that our representation of P (xi+1|y0, . . . , y0) will tend to consist of
many particles with very low weight and only one with a high weight. This means that
the density is represented very poorly, and the error propagates.

expectations computed with a Kalman filter). The algorithm gives bad estimates
because most samples represent no more than wasted computation. In jargon, the
samples are called particles.

If you implement this algorithm, you will notice that weights get small very
quickly; this isn’t obviously a problem, because the mean value of the weights is
cancelled in the division, so we could at each step divide the weights by their mean
value. If you implement this step, you will notice that very quickly one weight
becomes close to one and all others are extremely small. It is a fact that in the
simple particle filter, the variance of the weights cannot decrease with i (meaning
that, in general, it will increase and we will end up with one weight very much
larger than all the others).

If the weights are small, our estimates of integrals are likely to be poor. In
particular, a sample with a small weight is positioned at a point where f(u) is much
smaller than p(u); in turn (unless we want to take an expectation of a function that



Section 11.5 Particle Filtering 358

is very large at this point), this sample is likely to contribute relatively little to the
estimate of the integral.

Generally, the way to get accurate estimates of integrals is to have samples
that lie where the integral is likely to be large; we certainly don’t want to miss these
points. We are unlikely to want to take expectations of functions that vary quickly,
and so we would like our samples to lie where f(u) is large. In turn, this means
that a sample whose weight w is small represents a waste of resources; we’d rather
replace it with another sample with a large weight. This means that the effective
number of samples is decreasing; some samples make no significant contribution to
the expectations we might compute, and should ideally be replaced (Figure 11.12
illustrates this important effect). In the following section, we describe ways of
maintaining the set of particles that lead to effective and useful particle filters.

11.5.4 A Workable Particle Filter

Particles with very low weights are fairly easily dealt with; we will adjust the collec-
tion of particles to emphasize those that appear to be most helpful in representing
the posterior. This will help us deal with another difficulty, too. In discussing
the simple particle filter, we did not discuss how many samples there were at each
stage. If, at the prediction stage, we drew several samples of P (Xi|Xi−1 = s

k,+
i−1)

for each s
k,+
i−1, the total pool of samples would grow as i got bigger. Ideally, we

would have a constant number of particles N . All this suggests that we need a
method to discard samples, ideally concentrating on discarding unhelpful samples.
There are a number of popular strategies.

Resampling the Prior
At each step i, we have a representation of

P (Xi−1|y0, . . . ,yi−1)

via weighted samples. This representation consists of N (possibly distinct) samples,
each with an associated weight. Now, in a sampled representation, the frequency
with which samples appear can be traded off against the weight with which they
appear. For example, assume we have a sampled representation of P (U) consisting
of N pairs (sk, wk). Form a new set of samples consisting of a union of Nk copies
of (sk, 1) for each k. If

Nk∑
k Nk

= wk,

this new set of samples is also a representation of P (U) (you should check this).
Furthermore, if we take a sampled representation of P (U) using N samples,

and draw N ′ elements from this set with replacement, uniformly and at random,
the result will be a representation of P (U), too (you should check this, too). This
suggests that we could (a) expand the sample set and then (b) subsample it to get
a new representation of P (U). This representation will tend to contain multiple
copies of samples that appeared with high weights in the original representation.

This procedure is equivalent to the rather simpler process of making N draws
with replacement from the original set of samples, using the weights wi as the
probability of drawing a sample. Each sample in the new set would have weight



Section 11.5 Particle Filtering 359

1; the new set would predominantly contain samples that appeared in the old set
with large weights. This process of resampling might occur at every frame, or only
when the variance of the weights is too high.

Initialization: Represent P (X0) by a set of N samples{
(sk,−0 , wk,−

0 )
}
,

where
s
k,−
0 ∼ Ps(S) and wk,−

0 = P (sk,−0 )/Ps(S = s
k,−
0 ).

Ideally, P (X0) has a simple form, and s
k,−
0 ∼ P (X0) and wk,−

0 = 1.
Prediction: Represent P (Xi|y0,yi−1) by{

(sk,−i , wk,−
i )

}
,

where
s
k,−
i = f(sk,+i−1) + ξki and wk,−

i = wk,+
i−1 and ξki ∼ N(0,Σdi).

Correction: Represent P (Xi|y0,yi) by{
(sk,+i , wk,+

i )
}
,

where
s
k,+
i = s

k,−
i and wk,+

i = P (Y i = yi|Xi = s
k,−
i )wk,−

i .

Resampling: Normalize the weights so that
∑

i w
k,+
i = 1, and compute the vari-

ance of the normalized weights. If this variance exceeds some threshold, then con-
struct a new set of samples by drawing, with replacement, N samples from the old
set, using the weights as the probability that a sample will be drawn. The weight
of each sample is now 1/N .

Algorithm 11.8: A Practical Particle Filter Resamples the Posterior.

Resampling Predictions
A slightly different procedure is to generate several samples of P (Xi|Xi−1 =

s
k,+
i−1) for each s

k,+
i−1, make N draws, with replacement, from this set, using the

weights wi as the probability of drawing a sample, to get N particles. Again, this
process will emphasize particles with larger weight over those with smaller weights.

The Consequences of Resampling
Figure 11.13 illustrates the improvements that can be obtained by resam-

pling. Resampling is not a uniformly benign activity, however: it is possible—but



Section 11.5 Particle Filtering 360

Initialization: Represent P (X0) by a set of N samples{
(sk,−0 , wk,−

0 )
}
,

where
s
k,−
0 ∼ Ps(S) and wk,−

0 = P (sk,−0 )/Ps(S = s
k,−
0 ).

Ideally, P (X0) has a simple form and s
k,−
0 ∼ P (X0) and wk,−

0 = 1.
Prediction: Represent P (Xi|y0,yi−1) by{

(sk,−i , wk,−
i )

}
,

where
s
k,l,−
i = f(sk,+i−1) + ξli and wk,l,−

i = wk,+
i−1

and
ξli ∼ N(0,Σdi).

and the free index l indicates that each s
k,+
i−1 generates M different values of sk,l,−i .

This means that there are now MN particles.
Correction: We reindex the set of MN samples by k. Represent P (Xi|y0,yi) by{

(sk,+i , wk,+
i )

}
,

where
s
k,+
i = s

k,−
i and wk,+

i = P (Y i = yi|Xi = s
k,−
i )wk,−

i .

Resampling: As in Algorithm 11.8.

Algorithm 11.9: An Alternative Practical Particle Filter.

unlikely—to lose important particles as a result of resampling, and resampling can
be expensive computationally if there are many particles.

11.5.5 Ifs, Ands and Buts: Practical Issues in Building Particle Filters

Particle filters have been extremely successful in many practical applications in
vision, but can produce some nasty surprises. One important issue has to do with
the number of particles: the expected value of an integral estimated with a sampled
representation is the true value of the integral, it may require a very large number
of particles before the variance of the estimate is low enough to be acceptable. It
is difficult to say how many particles will be required to produce usable estimates.
In practice, this problem usually is solved by experiment.

Unfortunately, these experiments might be misleading. You can (and should!)
think about a particle filter as a form of search; we have a series of estimates of
state, which we update using the dynamic model, and then compare to the data;



Section 11.5 Particle Filtering 361

0 5 10 15 20 25 30 35 40
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0 5 10 15 20 25 30 35 40
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

FIGURE 11.13: Resampling hugely improves the behavior of a particle filter. We now show
a resampled particle filter tracking a point drifting on the line (i.e., xi ∼ N(xi−1, σ

2)).
The measurements are corrupted by additive Gaussian noise and are the same as for
Figure 11.12. In the figure on the left, we compare an exact representation obtained
using a Kalman filter with one computed from simple particle filtering. We show the
mean of the posterior as a point with a one standard deviation bar. The mean obtained
using a Kalman filter is given as an x; the mean obtained using a particle filter is given as
an o and we have offset the standard deviation bars from one another so as to make the
phenomenon clear. Notice that estimates of both mean and standard deviation obtained
from the particle filter compare well with the exact values obtained from the Kalman filter.
The figure on the right indicates where this improvement came from. We plot the tracks
of 10 particles, randomly selected from the 100 used. Because we are now resampling
the particles according to their weights, particles that tend to reflect the state rather well
usually reappear in the resampled set. This means that many particles lie within one
standard deviation of the mean of the posterior, and so the weights on the particles tend
to have much smaller variance, meaning the representation is more efficient.

estimates that look as though they could have yielded the data are kept, and the
others are discarded. The difficulty is that we might miss good hypotheses. This
could occur when, for example, the likelihood function has many narrow peaks. We
may end up with updated estimates of state that lie in some but not all of these
peaks; this would result in good state hypotheses being missed. While this problem
can occur in one dimension, it is particularly serious in high dimensions. This is
because real likelihood functions can have many peaks, and these peaks are easy to
miss in high dimensional spaces. It is extremely difficult to get good results from
particle filters in spaces of dimension much greater than about 10.

The problem can be significant in low dimensions, too. Its significance de-
pends, essentially, on how good a prediction of the likelihood we can make. This
problem manifests itself in the best-known fashion when one uses a particle filter to
track people. Because there tend to be many image regions that are long, roughly
straight, and coherent, it is relatively easy to obtain many narrow peaks in the like-
lihood function. These correspond, essentially, to cases where the configuration for
which the likelihood is being evaluated has a segment lying over one of these long,
straight coherent image regions. Although there are several tricks for addressing
this problem—all involve refining some form of search over the likelihood—there is



Section 11.6 Notes 362

no standard solution yet.

11.6 NOTES

There is an extensive and rich literature dealing with hard cases in visual tracking;
typically, this literature emphasizes powerful and complex probabilistic machinery.
What is sometimes missed is that careful use of detectors, models, and appearance
reasoning can make hard cases easy. Generally, paying close attention to visual
representation is a good way to attack a tracking problem.

The Kalman filter is an extremely useful trick. It is regularly rediscovered,
and appears in different guises in different fields. Often dynamics that are not linear
can be represented as linear dynamics well enough to fit a Kalman filter. We refer
interested readers to Chui (1991), Gelb and of the Analytical Sciences Corporation
(1974), and West and Harrison (1997).

We have not discussed the process of fitting a linear dynamic model. The
matter is relatively straightforward if one knows the order of the model, a natural
state space to use, and a reasonable measurement model. Otherwise, things get
tricky. There is an entire field of control theory dedicated to the topic in this case
known as system identification. We recommend, in the first instance, Ljung (1995).

If neither simple tricks nor a Kalman filter will work, you are in real trou-
ble. Particle filters might help, but how helpful they are depends a lot on the
details of the problem. We have been able to provide only a brief overview, and
have deliberately phrased our discussion rather abstractly, to bring out the issues
that are most problematic and to motivate a view of particle filters as convenient
approximations. Particle filters have surfaced in a variety of forms in a variety
of literatures. The statistics community, where they originated, knows them as
particle filters (e.g. (Kitagawa 1987); see also the collection edited by Doucet et
al. (2001)). In the AI community, the method is sometimes called survival of the
fittest (Kanazawa et al. 1995). In the vision community, the method is sometimes
known as condensation (see Isard and Blake (1996); Blake and Isard (1996); or
Blake and Isard (1998)).

Particle filters have been the subject of a great deal of work in vision. Much
of the work attempts to sidestep the difficulties with likelihood functions that
we sketched in the particle filtering section (in particular, the annealing method
of Deutscher et al. (2000) and the likelihood corrections of Sullivan et al. (1999)).
Unfortunately, all uses of the particle filter have been relentlessly top-down, in the
sense that one updates an estimate of state and then computes some comparison
between an image and a rendering, which is asserted to be a likelihood. Although
this strategy can represent an effective end-run around data association, it can also
mean that we are committed to searching rather nasty likelihoods.

There is a strong analogy between particle filters and search. This can be used
to give some insight into what they do and where they work well. For example,
a high-dimensional likelihood function with many peaks presents serious problems
to a particle filter. This is because there is no reason to believe that any of the
particles each step advances will find a useful peak. This is certainly not an intrinsic
property of the technique—which is just an algorithm—and is almost certainly a
major strategic error.



Section 11.6 Notes 363

Particle filters are an entirely general inference mechanism (meaning that
they can be used to attack complex inference problems uniting high-level and low-
level vision as in Isard and Blake (1998a) or (1998b)). This should be regarded
as a sign that it can be very difficult to get them to work, because there are
inference problems that are, essentially, intractable. One source of difficulties is
the dimension of the state space. It is silly to believe that one can represent the
covariance of a high-dimensional distribution with a small number of particles,
unless the covariance is very strongly constrained. A particular problem is that it
can be quite hard to tell when a particle filter is working. Obviously, if the tracker
has lost track, there is a problem, but the fact that the tracker seems to be keeping
track is not necessarily a guarantee that all is well. For example, the covariance
estimates may be poor; we need to ask for how long the tracker will keep track; etc.

One way to simplify this problem is to use tightly parametrized motion mod-
els. This reduces the dimension of the state space in which we wish to track,
but at the cost of not being able to track some objects or of being compelled to
choose which model to use. This approach has been extremely successful in ap-
plications such as gesture recognition (Black and Jepson 1998); tracking moving
people (Sidenbladh et al. 2000); and classifying body movements (Rittscher and
Blake 1999). A tracker could track the state of its own platform, instead of track-
ing a moving object (Dellaert et al. 1999).

There are other methods for maintaining approximations of densities. One
might, for example, use a mixture of Gaussians with a constant number of compo-
nents. It is rather natural to do data association by averaging, which will result in
the number of elements in the mixture going up at each step. One is then supposed
to cluster the elements and cull some components.

PROBLEMS

11.1. We must maximize

f(y) =
Ch

2

∑
i

wik(||
xi − y

h
||
2
) (11.4)

(where k is a kernel profile) as a function of y. Show that the iteration

y
(j+1) =

∑
i wixig(||

xi−y(j)

h ||
2

)∑
i wig(||

xi−y(j)

h ||
2
)

.

has a stationary point when y(j) is the location of the maximum (you can
follow the form of the derivation in Section 9.3.4).

11.2. Assume we have a model xi = Dixi−1 and yi = MT
i xi. Here the mea-

surement yi is a one-dimensional vector (i.e., a single number) for each i and
xi is a k-dimensional vector. We say model is observable if the state can be
reconstructed from any sequence of k measurements.
(a) Show that this requirement is equivalent to the requirement that the ma-

trix [
M iD

T
i M i+1D

T
i DT

i+1M i+2 . . .D
T
i . . .DT

i+k−2M i+k−1

]
has full rank.



Section 11.6 Notes 364

(b) The point drifting in 3D, where M3k = (0, 0, 1), M3k+1 = (0, 1, 0), and
M3k+2 = (1, 0, 0) is observable.

(c) A point moving with constant velocity in any dimension, with the obser-
vation matrix reporting position only, is observable.

(d) A point moving with constant acceleration in any dimension, with the
observation matrix reporting position only, is observable.

11.3. A point on the line is moving under the drift dynamic model. In particular,
we have xi ∼ N(xi−1, 1). It starts at x0 = 0.
(a) What is its average velocity? (Remember, velocity is signed.)
(b) What is its average speed? (Remember, speed is unsigned.)
(c) (This one requires some thought.) Assume we have two nonintersecting

intervals, one of length 1 and one of length 2; what is the limit of the ratio
(average percentage of time spent in interval one)/ (average percentage of
time spent in interval two) as the number of steps becomes infinite?

(d) You probably guessed the ratio in the previous question; now run a simu-
lation and see how long it takes for this ratio to look like the right answer.

11.4. Assume that we have the dynamics

xi ∼ N(dixi−1, σ
2
di
);

yi ∼ N(mixi, σ
2
mi

).

(a) P (xi|xi−1) is a normal density with mean dixi−1 and variance σ2
di
. What

is P (xi−1|xi)?
(b) Now show how we can obtain a representation of P (xi|yi+1, . . . ,yN ) using

a Kalman filter.

PROGRAMMING EXERCISES

11.5. Implement a 2D Kalman filter tracker to track something in a simple video
sequence. We suggest that you use a background subtraction process and track
the foreground blob. The state space should probably involve the position of
the blob, its velocity, its orientation—which you can get by computing the
matrix of second moments—and its angular velocity.

11.6. If one has an estimate of the background, a Kalman filter can improve back-
ground subtraction by tracking illumination variations and camera gain changes.
Implement a Kalman filter that does this. How substantial an improvement
does this offer? Notice that a reasonable model of illumination variation has
the background multiplied by a noise term that is near one; you can turn this
into linear dynamics by taking logs.



P A R T F I V E

HIGH-LEVEL VISION



This page intentionally left blank 



C H A P T E R 12

Registration

Registration is the problem of finding a transformation that takes one dataset to
another. In the most straightforward form of the problem, the two datasets have the
same dimension (i.e., we are registering 3D data to 3D data or 2D data to 2D data),
and the transformation is rotation, translation, and perhaps scale (Section 12.1).
Good solutions to this problem are extremely useful. There are many cases where
one wants to know the pose—the position and orientation in world coordinates—of
a known object in a dataset of the same dimension of the object. For example,
we might have an MRI image (which is a 3D dataset) of a patient’s interior that
we wish to superimpose on a view of the real patient to help guide a surgeon. In
this case, we need to know the rotation, translation, and scale that will put one on
top of the other. As another example, we might have a 2D image template of a
building that we want to find in an overhead aerial image. Again, we need to know
the rotation, translation, and scale that will put one on top of the other; we might
also use a match quality score to tell whether we have found the right building.
We can solve these problems using search, exploiting a property sometimes known
as pose consistency. Pose consistency means that different groups of features on a
rigid object will all report the same pose for the object. As a result, pretty much
any search to register rigid objects should be simple, because we need to find only
a small set of features to estimate the pose of the object, and we can then use all
the others to confirm that pose.

An important variant of this problem treats registration under projection. In
this case we see an image of a 3D object, and need to register the object to the
image. Generally, this problem can be solved by the same search algorithms that
register datasets of the same dimension, though some details need to be changed
(Section 12.2). Here we are helped by a property sometimes known as camera
consistency, which means that all the features in the image are viewed in the same
camera. Camera consistency means that pretty much any search to register rigid
objects to an image should be simple, too, because we need to find only a small set
of features to estimate the pose of the object and the camera calibration, and we
can then use all the others to confirm that pose.

The most complex registration problem treats objects that can deform. In this
case, the family of transformations that could register the two datasets is large,
and the search for a particular transformation is correspondingly more difficult
(Section 12.3). Registering deformable objects is a core technology for medical
image analysis, because human organs deform and because it is quite usual to
image the same body component using different imaging modes.

367



Section 12.1 Registering Rigid Objects 368

12.1 REGISTERING RIGID OBJECTS

Imagine we have two point sets, S = {xi} a source set and T =
{
yj

}
a target

set. The target set is a rotated, translated, and scaled version of the source set,
and there might be some noise. We wish to compute the rotation, translation, and
scale.

This problem can be formulated in a straightforward way, if we know which
xi corresponds to which yj . Write c(i) for the index of the point in the target
set corresponding to the ith source point. In that case, we could compute a least
squares solution, minimizing

∑
i

[
(sR(θ)xi + t)− yc(i)

]2
for the scale s, the rotation R(θ), and the translation t. If the target isn’t scaled,
we can set s = 1. We could do this using a numerical optimization method, though
in this case, a closed form solution is available. Horn (1987b) shows that the trans-
lation can be recovered from the centroids, and the rotation and scale from various
moments of the point datasets. In fact, this paper shows that if we know that
the target is a rotated, translated, and scaled version of the source, correspon-
dences don’t matter. This case is an important point of departure for registration
problems, but it doesn’t arise very often in practice.

More commonly, S is a set of points sampled from some geometric structure,
and T is a set of points sampled from a rotated, translated, and scaled version
of the same structure. For example, S might be a set of points on a geometrical
model of an object, and T are points obtained from a stereo reconstruction or from
a laser range finder. As another example, S and T might be points obtained from
different 3D imaging datasets of anatomical structures with a feature detector. In
each case, we are confident that S is like a rotated, translated, and scaled version
of T , but there might not be a point in T corresponding to any particular point
in S. Worse, the sampling procedure may mean that we can’t estimate moments
accurately, so Horn’s algorithm doesn’t apply. Worse still, one or another dataset
may contain significant errors or outliers.

Now write
G(s, θ, t)S = {(sR(θ)xi + t) | xi ∈ S}

for the data set obtained by rotating, translating, and scaling the source. At a
solution to this problem, most points (all but the outliers) in G(s, θ, t)S should
lie close to a point of T , and this gives a correspondence between the two sets.
We could search for the right transformation by estimating correspondences, then
estimating a transformation given a correspondence, and repeating (Section 12.1.1).
Alternatively, we could search for small groups that correspond, then use them to
estimate the transformation (Section 12.1.2).

12.1.1 Iterated Closest Points

For the moment, assume we have no outliers. We expect that for any yj ∈ T ,
there is some zi ∈ G that is closest. Furthermore, if we start with a plausible
estimate of the transformation, the distance should not be too great. Notice that



Section 12.1 Registering Rigid Objects 369

the index of this point depends on j, but also on the particular transformation
(s, θ, t). Write the index of the closest such point c(i, (s, θ, t)). Assume we have an
estimate of the transformation (s, θ, t)(n). Then, we could refine this estimate by
iterating: (a) transforming the points of S; (b) for each, finding the closest point
in T ; and (c) re-estimating the transformation with least squares. This yields an
iterative algorithm, due to Besl and McKay (1992), known as the iterated closest
points algorithm (which is described in greater detail in Section 14.3.2). It should
be clear that the algorithm can converge to the right answer.

In practice, it usually does. Two points can help improve its behavior. First,
the re-estimation procedure does not need to converge to make the algorithm use-
ful. For example, rather than fully re-estimating the transformation, we could do a
single step of gradient descent. This will improve the transformation slightly, and
should change the corresponding closest points. Second, we do not need to incor-
porate all points in the minimization process. In particular, if the closest point is
relatively far away, it might be better to omit it from the least squares for the next
step. Doing so will help ensure the algorithm is robust.

You should regard this more as an algorithmic template than an algorithm;
numerous features can be changed successfully. For example, it could be speeded
up with care in data structures to keep track of the closest points. As another ex-
ample, an alternative strategy to obtain robust behavior is to replace the squared
error term with an M-estimator. In fact, this algorithm does not require that both
S and T be point sets. For example, it is relatively straightforward to adapt to
the case where S is a mesh and T is a point set (Besl and McKay 1992). Fur-
thermore, there is good evidence that the objective function in (s, θ, t) that we are
minimizing is quite well-behaved in practice. For example, even though it is not
differentiable (because the closest point changes, leading to step changes in the
derivative), second-order methods such as Newton’s method or LBFGS actually
behave rather well in practice (Fitzgibbon 2003).

12.1.2 Searching for Transformations via Correspondences

Iterated closest points repeatedly re-estimates a correspondence between source
and target points, then uses it to estimate a transformation. As we have seen,
this search might encounter numerous local minima. One alternative is to search
the space of correspondences. This might seem unpromising, because there appear
to be a lot of correspondences, but in the case of rigid objects a relatively small
set of correspondences is enough to register the whole object. Another advantage
of thinking about correspondences directly is that we can then work in terms of
tokens, rather than points. For example, we might place line-segments, corners, or
even point-like features such as blobs in correspondence; the type of the token can
sometimes change details, but has little effect on the overall algorithmic approach.

Quite a small group of source tokens, placed in correspondence with target
tokens, is enough to estimate a transformation. The size of the group depends
somewhat on the transformation and on the tokens. We refer to a group of tokens
from which a transformation could be computed as a frame-bearing group (some-
times frame group for short). Table 12.1 gives some examples of frame-bearing
groups for the 2D to 2D case, and Table 12.2 gives some examples for the 3D to



Section 12.1 Registering Rigid Objects 370

Transformation Frame-bearing groups

Rigid (Euclidean)
One point and one direction, or

two points, or
one line and one point

Rigid and scale
Two points, or

one line and one point off the line
Affine Three points, not co-linear

TABLE 12.1: Some frame-bearing groups for estimating transformations from 2D to 2D.
Assume we have one such group in the source, another in the target, and a correspondence
between the items in the group; then, we can estimate the transformation uniquely (see
the exercises).

3D case. These are explored further in the exercises, too.
Now assume we have a frame-bearing group in the source and in the target.

Then, if we have correspondences between the tokens, we could compute the rel-
evant transformation to place the source on the target. There might be only one
possible correspondence. For example, if the group is a line and a point, then we
can only place the source line (point) in correspondence with the target line (point).
But there might also be multiple possible correspondences; for example, the group
might consist of three points, yielding six total possibilities.

If one of the groups or the correspondence is incorrect, then most of the source
tokens will transform to locations well away from the target. But if they are correct,
then many or most transformed source tokens should lie near target tokens. This
means we can use RANSAC (Section 10.4.2), by repeatedly applying the following
steps, then analyzing the results:

• Select a frame-bearing group for the target and for the source at random;

• Compute a correspondence between the source and target elements (if there
is more than one, we could choose at random), and from this compute a
transformation;

• Apply the transformation to the source data set, and compute a score com-
paring the transformed source to the target.

If we have done this sufficiently often, then we will very probably see at least one
good correspondence between good groups, and we can identify this by looking at
the scores of each probe. From this good correspondence, we can identify pairs of
source and target points that match, and finally compute a transformation using
least squares.

12.1.3 Application: Building Image Mosaics

One way to photograph a big, imposing object in detail is to take numerous small
photographs, then patch them together. Back when it was usual to get photographs
developed and printed, one way to do this was to overlay the pieces of paper on a
corkboard, so that they joined up properly. This led to an image mosaic, a set of
overlapping images. Image mosaics can now be built by registering digital images.



Section 12.1 Registering Rigid Objects 371

Transformation Frame-bearing groups

Rigid (Euclidean)
Three points, or

one line and one point off the line, or
two intersecting lines

Rigid and scale
Three points, or

one line and one point off the line, or
two intersecting lines and a point off their plane.

Affine Four points, no two co-planar

TABLE 12.2: Some frame-bearing groups for estimating transformations from 3D to 3D.
Assume we have one such group in the source, another in the target, and a correspondence
between the items in the group; then, we can estimate the transformation uniquely.

FIGURE 12.1: On the left, frames from a video taken by an aircraft overflying an airport.
These frames are rectified to one another to form a mosaic on the right, which reveals (a)
the overall structure of what was seen and (b) the flight path of the aircraft. This figure
was originally published as Figure 1 of “Video Indexing Based on Mosaic Representations,”
by M. Irani and P. Anandan, Proc. IEEE, v86 n5, 1998, c© IEEE, 1998.

One application is building larger images. There are several other important appli-
cations. For example, imagine we have image frames taken by, say, an orthographic
camera attached to an aircraft; then, if we register the frames to one another, we
see not only the pictures taken by the aircraft in a form that exposes all that it
saw, but also a representation of the flight path, and so of what it could have seen
(Figure 12.1). As another example, imagine we have a fixed camera, that collects
video. By registering the frames with one another, we can make estimates of (a)
the moving objects and (b) the background, and expose this information to viewers
in a novel way (Figure 12.2). As yet another example, we could build either a
cylindrical panorama, a set of pixel samples that mimic the image produced by a
cylindrical camera, or even a spherical panorama, a set of pixel samples that mimic
the image produced by a spherical camera. One feature of these panoramas is that
it is easy to query them for a set of pixels that looks like a perspective image. In
particular, it is easy to use these panoramas to imitate what one would see if a
perspective camera were to rotate about its focal point.

Building mosaics is a useful application of registration. In the simplest case,
we wish to register two images to one another. We do so by finding tokens, deciding
which ones should match, and then choosing the transformation that minimizes



Section 12.1 Registering Rigid Objects 372

FIGURE 12.2: On the left, frames from a video of an aircraft in the air. These frames are
rectified to one another to form a mosaic on the right, which reveals (a) the flight path
of the aircraft in the video and (b) the flight path of the observer. Notice that mosaic
reveals the speed with which the aircraft is moving (see how far apart each instance of the
aircraft is in the mosaic; when they are far apart, it is moving quickly). This figure was
originally published as Figure 4 of “Video Indexing Based on Mosaic Representations,” by
M. Irani and P. Anandan, Proc. IEEE, v86 n5, 1998, c© IEEE, 1998.

the squared matching error. Brown and Lowe (2003) show one strategy for finding
tokens; they find the interest points of Section 5.3, then compute SIFT features for
the neighborhoods (as in Section 5.4.1), and then use approximate nearest neighbors
methods to find matching pairs (as in Section 21.2.3). A small set of matches is
sufficient to fit a transformation.

There are two types of transformation that are useful in this context. In the
simplest case, the camera is an orthographic camera, and it translated. In turn,
this means that image tokens translate, so we need only estimate a translation
that places matching tokens on top of one another. In a more complex case, the
camera is a perspective camera that rotates about its focal point. If we know
nothing about the camera, the map between the relevant portions of I1 and I2 is a
plane projective transformation, sometimes known as a homography. Knowing more
about the camera and the circumstances might result in a more tightly constrained
transformation.

In homogeneous coordinates, the transformation that takes the point x1 =
(x1, y1, 1) in I1 to its corresponding point in I2, x2 = (x2, y2, 1), has the form
of a generic 3 × 3 matrix with nonzero determinant. Write H for this matrix.
We can estimate its elements using four corresponding points on the plane. Write

x
(i)
1 = (x

(i)
1 , y

(i)
1 , 1) for the ith point in I1, which corresponds to x

(i)
2 = (x

(i)
2 , y

(i)
2 , 1).

Now we have (
x
(i)
2

y
(i)
2

)
=

⎛
⎜⎝

h11x
(i)
1 +h12y

(i)
1 +h13

h31x
(i)
1 +h32y

(i)
1 +h33

h21x
(i)
1 +h22y

(i)
1 +h23

h31x
(i)
1 +h32y

(i)
1 +h33

⎞
⎟⎠ ,

so that if we cross-multiply and subtract, we get two homogeneous linear equations



Section 12.1 Registering Rigid Objects 373

FIGURE 12.3: An image of a mountain (top left) and local neighborhoods (bottom left)
that match those in the second view of the mountain (top center; local neighborhoods are
bottom center). These images may look as though they can be rectified by a translation,
but in fact this works poorly. Top right shows a (manually chosen) translation that
appears to work, with the left image superimposed on the center image. In fact, this
isn’t a particularly good registration, as one can see from the bottom right, where the
center image is now on top. A homography is required for a good registration; compare
Figure 12.4. This figure was originally published as Figure 1 M. Brown and D. Lowe,
“Recognizing Panoramas,” Proc. ICCV 2003, c© IEEE, 2003.

in the unknown entries of the matrix for each pair of corresponding points, i.e.,

x
(i)
2 (h31x

(i)
1 + h32y

(i)
1 + h33)− (h11x

(i)
1 + h12y

(i)
1 + h13) = 0

y
(i)
2 (h31x

(i)
1 + h32y

(i)
1 + h33)− (h21x

(i)
1 + h22y

(i)
1 + h23) = 0.

This system admits a solution for H up to scale, which is all that is required
(we are working in homogeneous coordinates). This is a good way to get an estimate
of H for a small group of points, but might not lead to the most accurate solution
when we have a large set of corresponding points. In this case, we should minimize
as a function of H

∑
i∈points

g

(
(x

(i)
2 − h11x

(i)
1 + h12y

(i)
1 + h13

h31x
(i)
1 + h32y

(i)
1 + h33

)2 + (y
(i)
2 − h21x

(i)
1 + h22y

(i)
1 + h23

h31x
(i)
1 + h32y

(i)
1 + h33

)2

)

where g could be the identity function, which is not a good idea if we have outliers,
or is an M-estimator. This function is invariant to the scale of H, so we need
some form of normalization. We could normalize by setting one entry to one (not a
good idea, as it biases the results), or by requiring that the Frobenius norm is one.
Good software for estimating homographies is now available on the Web. Manolis
Lourakis publishes a C/C++ library at http://www.ics.forth.gr/~lourakis/

homest/; there is a set of MATLAB functions for multiple view geometry at http:
//www.robots.ox.ac.uk/~vgg/hzbook/code/, written by David Capel, Andrew
Fitzgibbon, Peter Kovesi, Tomas Werner, Yoni Wexler, and Andrew Zisserman.
Finally, OpenCV has homography estimation routines in it, too.

http://www.ics.forth.gr/~lourakis/homest/
http://www.ics.forth.gr/~lourakis/homest/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/
http://www.robots.ox.ac.uk/~vgg/hzbook/code/


Section 12.1 Registering Rigid Objects 374

FIGURE 12.4: The two mountain images of Figure 12.3, now rectified with a homography.
Notice how well all features line up; this transformation involves more than just rotation
and translation, as you can see from the fact that the corner of the second image (which can
be seen in the middle, near the top), is no longer a right angle. Notice also that intensity
effects in the camera far field mean that the boundary where the two images overlap is
unpleasantly obvious. This figure was originally published as Figure 1 M. Brown and D.
Lowe, “Recognizing Panoramas,” Proc. ICCV 2003, c© IEEE, 2003.

Registering images into mosaics gets more interesting when there are more
than two images. Imagine we have three images, I1, I2, and I3. We could register
image one to image two, then image two to image three. But, if image three has
some features that match to features in image one, this might not be wise. Write
T2→1 for the estimated transformation that takes image two into image one’s frame
(and so on). The problem is that T2→1 ◦ T3→2 might not be a good estimate of
T3→1 the transformation from image three’s frame to image one’s frame. The error
might not be all that large in the case of just three images, but it can accumulate.

To deal with this accumulation, we need some method to estimate all registra-
tions in one go, using all error terms. Doing so is often called bundle adjustment, by
analogy with the relevant term in structure from motion (Section 8.3.3). A natural
method is to choose a coordinate frame within which to work—for example, the
frame of the first image—then search for a set of maps that take each other image
into that frame and minimize the sum of squared errors between all matching pairs
of points. For our example, write

(
x(i),x(k)

)
j
for the jth tuple consisting of a point

x(i) in image i that matches a point x(k) in image k. We would estimate T2→1 and



Section 12.2 Model-based Vision: Registering Rigid Objects with Projection 375

FIGURE 12.5: Top, 80 images registered automatically to one another to create a
panoramic mosaic (which is what one would see if the camera had cylindrical film, and
a 360o field of view). Bottom, the images feathered into one another to suppress the
effects of intensity variation between different views of the same pixel. This figure was
originally published as Figure 3 M. Brown and D. Lowe, “Recognizing Panoramas,” Proc.
ICCV 2003, c© IEEE, 2003.

T3→1 by minimizing ∑
j∈1, 2 matches

g(||x(1)
j − T2→1x

(2)
j ||

2
)+

∑
j∈1, 3 matches

g(||x(1)
j − T3→1x

(3)
j ||

2
)+

∑
j∈2, 3 matches

g(||T2→1x
(2)
j − T3→1x

(3)
j ||

2
)

(where g might be the identity if there are no outliers, and an M-estimator oth-
erwise), and then register with these transformations. Notice that, as the number
of images goes up, this strategy will yield a large and nasty optimization problem
that will most likely exhibit local minima, and so will need to be started with a
good estimate of the transformations. Registering individual pairs of images can
supply that start point. Once images have been registered to one another, we can
come up with a single panorama by overlaying images, then carefully blending pix-
els to account for spatial variations in image brightness caused by the lens system
(Figure 12.5).

12.2 MODEL-BASED VISION: REGISTERING RIGID OBJECTS WITH PROJECTION

We would now like to register rigid objects with images. Solutions to this problem
can be extremely useful in practice, because they allow us to estimate the position,



Section 12.2 Model-based Vision: Registering Rigid Objects with Projection 376

orientation, and scale of a known object in an image with respect to the camera,
despite some uncertainty about which image features lie on the object. Such algo-
rithms can be extremely useful in systems that must interact with the world. For
example, if we wished to move an object into a particular position or grasp it, it
could be really useful to know its configuration with respect to the camera. We use
the same strategy for this problem that we used for registering 3D objects to 3D
objects, that is, repeatedly: find a group; recover the transformation; apply this to
the whole source; and score the similarity between the source and the target. At
the end, we report the transformation with the best score. Furthermore, if the best
available transformation score is good, then the object is there; if it is bad, then it
isn’t.

The source S now consists of tokens on some geometric structure, and T is
the image (in one or another kind of camera) of another set of tokens on a rotated,
translated, and scaled version of that structure. We would like to determine the
rotation, translation, and scale applied. Usually this problem involves a significant
number of outliers in T , which occur because we don’t know which image features
actually came from the object. Almost always the tokens are points or lines; for
S, these are determined from a geometric model of the object, and for T , these
come from edge points or fitting lines to edge points (we could use the machinery
of Chapter 10 to get these lines). This case has two distinctive features. We might
not be able to estimate all transform parameters (which typically won’t matter all
that much), and it can be quite difficult to come up with a satisfactory score of
similarity between the source and the target.

There are numerous ways of estimating transform parameters. The details
depend on whether we need to calibrate the camera, and on what camera model we
impose. In the simplest case, assume we have an orthographic camera, calibrated
up to unknown camera scale, looking down the z axis in the camera coordinate
system. Then we cannot determine depth to the 3D object, because changing the
depth does not change the image. We cannot determine the scale of the object
separate from the scale of the camera, because by changing these two parameters
together we can fix the image. For example, if we double the size of the object,
and also halve the size of the camera units, then the image points will have the
same coordinate values. However, this doesn’t affect the reasoning behind the
search processes described above. For example, if we build the right correspondence
between source and target group, then visible source tokens should end up close to
or on top of target tokens. This means that a RANSAC-style approach applies, as
above. Similarly, if we represent the transformation parameters appropriately (we
could set the camera scale arbitrarily to one), we could vote.

In the case of a single orthographic camera, calibrated up to unknown camera
scale, correspondences between three points are enough to estimate rotation, the
two observable components of translation, and scale (see the exercises, which also
give other frame groups). In most applications, the range of depths across the
object is small compared to the depth to the object. In turn, this means that a
perspective camera can be approximated with the weak perspective approximation
of Section 1.1.2. This is equivalent to a single orthographic camera, calibrated up
to unknown camera scale. If the scale of the camera is known, then it is possible
to recover depth to the object as well.



Section 12.2 Model-based Vision: Registering Rigid Objects with Projection 377

Model Input image Overlaid

FIGURE 12.6: A plane object registered to an image. On the left, an image of an object;
in the center, an image containing two instances of this object, along with some other
stuff (the popular term is clutter). Feature points are detected, and then correspondences
between groups—in this case, triples of points—are searched; each correspondence gives
rise to an affine transformation from the model to the image. Satisfactory correspondences
align many model edge points with image edge points, as in the figure on the left, which
is why the method is sometimes called alignment. The images in this figure come from one
of the earliest papers on the subject and are affected by the poor reproduction techniques
of the time. This figure was originally published as Figure 7 of “Object recognition using
alignment,” D.P. Huttenlocher and S. Ullman, Proc. IEEE ICCV, 1986. c© IEEE, 1986.

12.2.1 Verification: Comparing Transformed and Rendered Source to Target

The main difficulty with a RANSAC-style search for a transformation that registers
a 3D object with an image is that, in practical cases, a good score is difficult to
get. A strategy for computing a scoring function is straightforward, if we recall the
term render, a general-purpose description for producing an image from models,
encompassing everything from constructing line drawings to producing physically
accurate shaded images. We take the estimated transformation, apply it to the
object model, then render the transformed object model using our camera model.
We now take the rendering, and compare it to the image. The difficulty lies in the
form of the comparison (which will determine what we need to render).

We need a scoring function that can take into account all available image evi-
dence. This could include tokens, which could be difficult to identify with certainty
(such as corners or edge points) or such evidence as image texture. If we know
all the lighting conditions under which the object is being viewed, we might even
be able to use pixel intensity (this hardly ever happens in practice). Usually, all
we know about the illumination is that it is bright enough that we can find some
tokens, which is why we have a registration hypothesis to test. This means that
comparisons should be robust to changes in illumination. By far the most impor-
tant test in practice is to render the silhouette of the object and then compare it
to edge points in an image.

A natural test is to overlay object silhouette edges on the image using the
camera model, and then score the hypothesis by comparing these points with ac-
tual image edge points. The usual score is the fraction of the length of predicted
silhouette edges that lie nearby actual image edge points. This is invariant to rota-
tion and translation in the camera frame, which is a good thing, but changes with
scale, which might not be a bad thing. It is usual to allow edge points to contribute



Section 12.3 Registering Deformable Objects 378

to a verification score only if their orientation is similar to the orientation of the
silhouette edge to which they are being compared. The principle here is that the
more detailed the description of the edge point, the more likely one is to know
whether it came from the object.

It is a bad idea to include invisible silhouette components in the score, so
the rendering should be capable of removing hidden lines. The silhouette is used
because edges internal to a silhouette may have low contrast under a bad choice of
illumination. This means that their absence may be evidence about the illumination
rather than the presence or absence of the object.

Edge proximity tests can be quite unreliable. Even orientation information
doesn’t really overcome these difficulties. When we project a set of model bound-
aries into an image, the absence of edges lying near these boundaries could well be
a quite reliable sign that the model isn’t there, but the presence of edges lying near
the boundaries is not a particularly reliable sign that the object is there. For exam-
ple, in textured regions, there are many edge points grouped together. This means
that, in highly textured regions, it is possible to get high verification scores for
almost any model at almost any pose (e.g., see Figure 12.7). Notice that counting
similarity in edge orientation in the verification score hasn’t made any difference
here.

We can tune the edge detector to smooth texture heavily, in the hope that
textured regions will disappear. This is a dodge, and a dangerous one, because it
usually affects the contrast sensitivity so that the objects disappear, too. However,
it can be made to work acceptably and is widely used.

12.3 REGISTERING DEFORMABLE OBJECTS

There are many applications that require registering deformable objects. For ex-
ample, one might wish to register a neutral view of a face to a view displaying
some emotion; in this case, the deformation of the face might reveal the emotion
(Section 12.3.1). As another example, one might wish to register a medical image
of an organ to another image of the same organ (Section 12.3.3). As yet another
example, one might encode a family of shapes as one model shape and a family of
deformations. Notoriously, D’Arcy Thompson argued that side views of different
fish should be seen as deformations of one another (Thompson 1992).

Generally, we have registered objects by a search process that looks for a
minimum of a cost function. This applies in rather a general way to deformable
objects, but we usually cannot use RANSAC, because we cannot estimate the
parameters with a subset of tokens. As a result, registration is usually much slower.

12.3.1 Deforming Texture with Active Appearance Models

An important case is matching face images to one another, despite deformations
of the face, changes in head angle, and so on. In this case, the texture on the face
is an important cue driving the match. Cootes et al. (2001) model the face as a
plane mesh of triangles, as in Figure 12.8. Now assume that this mesh is placed
over an image of a face. If we knew their configuration in a neutral frontal view
of the face, we could generate the intensity field for that view. Call the original
image Io. For the moment, we will assume there is just one triangle in the mesh.



Section 12.3 Registering Deformable Objects 379

FIGURE 12.7: Edge orientation can be a deceptive cue for verification, as this figure
illustrates. The edge points marked on the image come from a model of a spanner,
recognized and verified with 52% of its outline points matching image edge points with
corresponding orientations. Unfortunately, the image edge points come from the oriented
texture on the table, not from an instance of the spanner. As the text suggests, this
difficulty could be avoided with a much better description of the spanner’s interior as
untextured, which would be a poor match to the oriented texture of the table. This
figure was originally published as Figure 4 of “Efficient model library access by projectively
invariant indexing functions,” by C.A. Rothwell et al., Proc. IEEE CVPR, 1992, c© IEEE,
1992.

Each point on this triangle has a reference intensity value, which we can obtain by
querying the image at that location on the triangle. Write v1, v2, v3 for the vertices
of the triangle. We can represent interior points of the triangle using barycentric
coordinates; with a point in the reference triangle given by (s, t) such that 0 ≤ s ≤ 1,
0 ≤ t ≤ 1 and s+ t ≤ 1, we associate the point

p(s, t;v) = sv1 + tv2 + (1− s− t)v3

(which lies inside the triangle). The reference intensity value associated with the
point (s, t) for the triangle (v1,v2,v3) is Io(p(s, t;v)).

We can get the intensity field of the face in a neutral position by moving the
reference points to neutral locations. This represents a deformation of both the
geometry of the mesh and of the intensity field represented by the mesh. Assume
in the neutral location the three triangle vertices vi map to wi. Then, for a small
triangle, we expect that the intensity field of the new triangle is a deformed version
of the intensity field of the original triangle. Now the representation in terms of
barycentric coordinates is useful; you can check that we expect

In(p(s, t;w)) = Io(p(s, t;v))



Section 12.3 Registering Deformable Objects 380

Reference points Relaxed points Relaxed intensity

FIGURE 12.8: A set of reference points placed over a face, on the left. At the center,
these points in a relaxed configuration. Now assume we have a reasonable triangulation
of the original set of points. By placing those points in correspondence with the relaxed
configuration, we can map the intensities of the reference face to a relaxed configuration
(right). This figure was originally published as Figure 1 of “Active Appearance Models,”
by T. Cootes, G. Edwards, and C. Taylor, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2001, c© IEEE, 2001.

(i.e., that the (s, t) values naturally interpolate between the vertices of the triangle).
We can then produce a neutral image of the face simply by moving the vertices to
their neutral position (Figure 12.8).

There is nothing special about the neutral locations of the mesh vertices; we
can generate an intensity field for any configuration of these vertices where triangles
don’t overlap. This means we can search for the location of a deformed triangle
in a new image Id by sampling (s, t) space at a set of points (sj , tj), and then
minimizing ∑

j

g(||Id(p(sj , tj ;w))− In(p(sj , tj;v)) ||2)

as a function of the vertices wi. Here, as before, if we do not expect outliers, then
g is the identity, and if we do, it could be some M-estimator. If we expect that the
illumination might change, then it makes sense to minimize∑

j

g(||aId(p(sj , tj ;w)) + b− In(p(sj , tj ;v)) ||2)

as a function of the vertices wi and of a, b.
When there is more than one triangle, the notation gets slightly more com-

plicated. We write v(k) and w(k) for the vertices of the kth neutral and deformed
triangles respectively. We do not expect the vertices to move independently. A vari-
ety of models are possible, but it is natural to try and make the model linear in some
set of parameters. One reasonable model is obtained by writing V = [v1, . . . ,vn]
(resp. W = [w1, . . . ,wn]) for the 2× n matrices whose columns are the vertices of
the neutral (resp. deformed) points. Now we have a set of r 2×n basis matrices Bl,



Section 12.3 Registering Deformable Objects 381

FIGURE 12.9: Different face intensity masks generated by moving deformation parameters
to different values. Each block shows the effect of a different parameter; the center of that
block shows the parameter at the mean value (where the mean is taken over numerous
example faces), and the left (resp. right) of the block shows the parameter at mean plus
(resp. minus) three standard deviations. Note how a range of expressions is encoded by
these parameter variations. This figure was originally published as Figure 2 of “Active
Appearance Models,” by T. Cootes, G. Edwards, and C. Taylor, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2001, c© IEEE, 2001.

a rotation matrix R, a translation vector t, and a set of parameters θl, and write

W = R(V +
∑
l

Blθl) + t

to get a model of the deformations that also incorporates rotation and translation
of the neutral face.

The matrices Bl could be obtained by manually aligning a mesh with a de-
formed face, for example (Figure 12.9 shows some deformations encoded by one set
of such matrices). The vertices w are a function of the parameters θ, and so we
must minimize∑

k∈triangles

∑
j

g(||aId(p(sj , tj ;w(k)(θ))) + b− In(p(sj , tj ;v(k))) ||2)

as a function of R, t, θl, a, and b.

12.3.2 Active Appearance Models in Practice

We have shown several minimization problems for registering active appearance
models. They are not easy minimization problems at all, though they can be solved
(Figure 12.10). Numerous local minima are likely, and there are several important
strategies that help minimize. First, it is helpful to have an estimate of rotation
and translation before estimating the deformation. We expect that deformations
are relatively small, and that major rotations and translations will be easy to es-
timate. It is natural to first produce a rotation and translation estimate, then fix
that estimate (which is equivalent to working with a new V and a new set of Bl) to
estimate the deformations θl, and then finally polish all estimates simultaneously.



Section 12.3 Registering Deformable Objects 382

Initial 3 it.s 8 it.s 11 it.s ConvergedOriginal

FIGURE 12.10: Active appearance models registered to face images. On the left, the initial
configuration of the model (blurry blob over the face; original face is second from right).
As the minimization process proceeds, the search improves the registration to produce, in
the final converged state, the registration on the right. Once we have this registration, the
location of the vertices of the mesh and the deformation parameters encode the shape of
the face. This figure was originally published as Figure 5 of “Active Appearance Models,”
by T. Cootes, G. Edwards, and C. Taylor, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2001, c© IEEE, 2001.

Second, it is usually helpful to do all searches over scale. Using low-resolution
neutral and deformed images creates an objective function that changes less dra-
matically with changes of parameters, which makes the search easier; this gives a
good starting point for the search in a higher-resolution image. We could do this
by starting with low-resolution neutral and deformed images, estimating rotation
and translation, and then proceeding with increasingly high-resolution neutral and
deformed images, starting the search for rotation and translation estimates at the
point produced by the previous resolution. Once we have a rotation and translation
estimate, we estimate deformation starting at the lowest resolution and working up,
then polish rotation, translation, and deformation estimates starting at the lowest
resolution and working up. Finally, the best results seem to come from using quite
careful line searches (using either a gradient or the Newton direction).

The class of model we have described allows a rich range of variations. One
could filter or otherwise process the neutral and deformed images, thereby chang-
ing the objective function in important ways (for example, emphasizing high spatial
frequencies, or computing a vector of filter outputs to get a texture representation).
The method can be applied to 3D models as well, with the only major change be-
ing the increased complexity of 3D mesh topologies. Different deformation models
can be applied, and a wide range of search strategies have been used. Tim Cootes
publishes a variety of software tools for building, displaying, and using active ap-
pearance models at http://personalpages.manchester.ac.uk/staff/timothy.
f.cootes/software/am_tools_doc/index.html. There are also example datasets

http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html
http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/software/am_tools_doc/index.html


Section 12.3 Registering Deformable Objects 383

FIGURE 12.11: On the top left, a single slice of MRI data with an automatically acquired
segmentation overlaid. The segmentation outlines the brain, vacuoles within the brain,
and the tumor. MRI produces a sequence of slices, which yield a volume model; a view
of a segmented volume model, with different colors showing different regions, is shown at
the top right. Once this data is obtained, it is registered to a patient lying on a table.
Registration is obtained using depth data measured by a laser ranger; the bottom-left
figure shows a camera view of a patient with laser ranger data overlaid. By registering
the segmented data to the patient on the operating table using this laser ranger data
and the surface of the MRI data, we can display a processed version of the MRI im-
agery overlaid on the patient for the surgeon’s information (bottom right). Figures by
kind permission of Eric Grimson; further information can be obtained from his web site,
http://www.ai.mit.edu/people/welg/welg.html.

and a beginner’s guide on this page. Mikkel Stegmann publishes an open-source
software package called AAM-API at http://www2.imm.dtu.dk/~aam/. Dirk-Jan
Kroon has released an open-source set of MATLAB tools for active appearance
models, available at the MATLAB file exchange.

12.3.3 Application: Registration in Medical Imaging Systems

In medical applications, it is usually known what is being looked at, but there is a
crucial need for an accurate measurement of where it is. As a result, registration
methods are a major component of medical applications of computer vision. Rigid
registration methods are an important component of computer-supported surgery.
For example, in brain surgery applications, surgeons are attempting to remove
tumors while doing the minimum damage to a patient’s faculties.

We show examples due to Grimson and colleagues. The general approach is
to obtain images of the patient’s brain, segment these images to show the tumor,
and then display the images to the surgeon. The display is overlaid on pictures of
the patient on the table, obtained using a camera near the surgeon’s view, to cue

http://www.ai.mit.edu/people/welg/welg.html
http://www2.imm.dtu.dk/~aam/


Section 12.3 Registering Deformable Objects 384

the surgeon to the exact position of the tumor inside the patient. Various methods
exist for attaching functional tags to the image of the brain —usually one stimulates
a region of the brain and watches to see what happens — and this information can
also be displayed to the surgeon so that the impact of any damage done can be
minimized. The problem here is pure pose estimation; we need to know the pose
of the brain image and the brain measurements with respect to the person on the
table, so that the brain image can be superimposed on the patient in the surgeon’s
display (Figure 12.11).

FIGURE 12.12: Images obtained with three different imaging modes. Left, an MR image
of a brain, obtained with a patient wearing markers (the bright spots outside the skull).
Center, a positron emission tomography (PET, a kind of NMI) image of the same brain.
Right, a US image of a fetus in a womb. Notice how each modality shows different detail
in different ways; there is high-resolution detail of the brain in the MR image. Compare
this with the brain in the CT image of Figure 12.15, where the skull is much more visible.
Notice the NM image is at low resolution, but in fact reflects function because regions that
respond strongly have taken up some reagent. Finally, the US image has a significant noise
component but shows details of soft tissue—you should be able to see a leg, the body, the
head, and a hand of the fetus. Part of this figure was originally published as Figure 10
of “Medical Image Registration using Mutual Information” by F. Maes, D. Vandermeulen
and P. Suetens, Proc. IEEE, 2003 c© IEEE, 2003.

Deformable registration techniques are an extremely important, practical tool
in medical imaging. Generally, one is trying to register one image of an organ to
another image of the same organ. Organs are not rigid, and might deform during
the imaging process. For example, some kinds of image take time to capture, and
breathing motions might affect the organ. As another example, disease processes
might cause the organ to change. Registering deformable structures is rich with im-
portant applications. If the images were two images of the same patient at different
times, then the registered images might expose changes in the organ (Figure 12.13).
If they were two images of different patients, then the registration might expose
differences between individuals or disease processes. If one image were an atlas—an
image labeled, perhaps by hand, with important structural information, such as the
name of particular tissues—and the other an image of a patient, the registration
could help label, and so segment, the patient image (Figure 12.14). In each of these
applications, we expect that image pixel values in the source and target image have
the same meaning, and much of the machinery described above applies directly.



Section 12.3 Registering Deformable Objects 385

Image 1

Image 2

Difference

Rigid Affine Deformation

FIGURE 12.13: Registering images can expose changes in an organ. These are images
of a breast, where a contrast medium is moving around (the dark material indicated by
the arrow). Notice that in image 2, the contrast medium has moved. If these images are
just superimposed and subtracted (right column), then structures in the difference image
show that the breast moved between the images, too (notice the bright section on the edge;
this means that the breast has shifted somewhat, which you can confirm by comparing
the images). The other columns show registered (resp. difference) images under different
models of motion. A rigid motion clearly improves the situation, as does an affine motion,
but because breasts are deformable, a deformable registration gets a difference image that
more clearly exposes the movement of the contrast medium. This figure was originally
published as Figures 6 and 7 of “Nonrigid registration using free-form deformation,” by
Ruekert et al., IEEE Trans. Medical Imaging, v18, n8, 1999 c© IEEE, 1999.

But a distinctive feature of medical imaging applications is the number of
different ways in which images can be captured. It is desirable to be able to register
two images captured using different imaging technologies. For example, if we have
two images of the same patient captured using different technologies, then the
registered images expose a much richer body of information about the underlying
tissues than each separate image does (Figure 12.15).

There are a variety of imaging technologies available, including magnetic reso-
nance imaging (MRI), which uses magnetic fields to measure the density of protons
and is typically used for descriptions of organs and soft tissue; computed tomog-
raphy imaging (CTI or CT), which measures the density of X-ray absorbtion and
is typically used for descriptions of bones; nuclear medical imaging (NMI), which
measures the density of various injected radioactive molecules and is typically used
for functional imaging; and ultra-sound imaging, which measures variations in the
speed of ultrasound propagation and is often used to obtain information about



Section 12.3 Registering Deformable Objects 386

MR image Segmentation using

atlas registered with

affine transformation

Segmentation using

atlas registered with

deformations

FIGURE 12.14: On the left, an image of a brain, showing enlarged ventricles (the dark
butterfly-shaped blob in the middle). This is a volume of cerebro-spinal fluid, or CSF,
inside the brain. It is desirable to segment the CSF, to measure the volume of the ven-
tricles. One way to do this is to register this image to an atlas, a generic image of a
brain that will be used to provide priors for the segmentation method. This brain will
not be exactly the same in shape as the imaged brain. In the center, the CSF segmented
by registering an atlas to the image using an affine transform; because the registration
aligns the atlas to the brain relatively poorly, the segmentation shows poor detail. On the
right, the same method applied to an atlas registered with a deformable model; notice
the significant improvement in detail. This figure was originally published as Figure 15 of
“Medical Image Registration using Mutual Information,” by F. Maes, D. Vandermeulen,
and P. Suetens, Proc. IEEE, 2003 c© IEEE, 2003.

moving organs (Figure 12.12 illustrates these modes). All of these techniques can
be used to obtain slices of data, which allow a 3D volume to be reconstructed.

Generally, a fair abstraction is that each of these imaging techniques produces
a pixel (or in 3D, a voxel) intensity value that is largely determined by the type
of the tissue inside that pixel (resp. voxel), with added noise. But the same type
of tissue might produce quite different values at the same place (which is why
we bother having different techniques in the first place; each tells us something
quite different about the structure being imaged). This means that the registration
techniques we have discussed to date don’t apply directly, because they assume
that matching pixels (resp. voxels) have the same intensity value. We could try to
build a table recording the value that one technology will produce given the value
that another one produces, but in practice this is difficult because the values are
affected by the particular imaging setup.

This difficulty can be resolved by a clever trick. For the moment, assume we
have an estimate of the registration between two modes. This estimated registration
then yields an estimate of the joint probability of source and target pixel (or voxel)
values. We get this by counting pairs of registered pixel values. Our model is that
the pixel value is largely determined by the type of the underlying tissue. When
the two images are correctly registered, each pixel in the source sees the same type
of tissue as the corresponding pixel in the target. This means that, when the two



Section 12.3 Registering Deformable Objects 387

CT image slice MR image slice Slice of registered volume

FIGURE 12.15: On the left, a 2D slice of a 3D CT image of a brain. Center, a 2D slice of
a 3D MR image of a brain. On the right, a slice through the registered volumes. Notice
how some rotation was required to register the volumes. The two volume boundaries
don’t overlap exactly in the right image, and the line separating the hemispheres of the
brain in the CT image needs to be rotated a few degrees to overlap the same line in the
MR image. Some deformation may have been applied here, too. Notice also that each
image emphasizes a different type of structure. In the CT image, the bone is clearly
visible, but there isn’t much contrast between different soft tissues. In the MR image, soft
tissue detail is visible, and a lesion can be seen (arrow). This means that registering by
lining up pixel values probably will work poorly, and this registration required the mutual
information methods described in the text. By registering the two volumes, we have the
most information about each voxel. This figure was originally published as Figure 1 of
“Medical Image Registration using Mutual Information,” by F. Maes, D. Vandermeulen,
and P. Suetens, Proc. IEEE, 2003 c© IEEE, 2003.

images are correctly registered, the joint probability of source and target values
should be very highly concentrated. One way to measure this concentration is to
compute the mutual information of this joint probability distribution.

Recall the mutual information

I(X ;Y ) =
∑
x

∑
y

p(x, y) log

(
p(x, y)

p(x)p(y)

)
= H(X)−H(X |Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(X,Y )

where H(X) = −∑x p(x) log p(x) is the entropy of the random variable X . You
should think of this as the extent to which knowing the value of Y (resp. X)
reveals the value of X (resp. Y ). If the tissues were perfectly registered, then
we expect to predict Y (the target pixel value) from X (the source pixel value)
exactly; so the mutual information would then be high. This means in turn that
we can register by maximizing the mutual information between deformed source
and corresponding target pixel values. This strategy, originally due to Viola and
III (1995) is now standard, and very effective (Figure 12.15).



Section 12.4 Notes 388

12.4 NOTES

Registration is useful. Useful recent image registration surveys include Zitova and
Flusser (2003); and Dawn et al. (2010). Registration algorithms were once used for
object recognition—one registers a model to an image, then accepts the hypothesis
based on a final score—but different algorithms now dominate in this area. We
believe that future work will integrate what is known about registration with the
statistical methods of Chapters 16 and 17.

A major difficulty in registration is computing the distance to the nearest
point. Chamfer matching uses a representation of distance to the nearest point,
cached on a grid; computing the cache is sometimes known as a distance transfor-
mation. Borgefors (1988) gives what we believe to be the first hierarchical search
algorithm for registering objects using a distance transformation.

Model-Based Vision

The term alignment is due to Huttenlocher and Ullman (1990). It is a convenient
term for a general class of algorithm that reasons about pose consistency. It is hard
to determine who used the approach first, though it is quite likely Roberts (1965);
other possibilities include Faugeras et al. (1984). A contemporary survey is Chin
and Dyer (1986). The noise behavior of some alignment algorithms has been studied
in detail (Grimson et al. 1992, Grimson et al. 1994, Grimson et al. 1990, Sarachik
and Grimson 1993). As a result, alignment algorithms are widely used and there
are numerous variants.

These algorithms fell away as object recognition methods because they have
difficulty in the presence of rich textures, because they scale poorly with increasing
numbers of models, and because they don’t apply to objects that aren’t rigid. Fur-
thermore, although constrained search for a model that is present can be efficient,
showing that a model is absent is expensive (Grimson 1992).

Pose clustering is due to Thompson and Mundy (1987). The analogy to the
Hough transform means that the method can behave quite badly in the presence
of noise (Grimson and Huttenlocher 1990).

Pose consistency can be used in a variety of forms. For example, recognition
hypotheses yield estimates of camera intrinsic parameters. This means that if there
are several objects in an image, all must give consistent estimates of camera intrinsic
parameters (Forsyth et al. 1994).

Tokens could be more abstract than points and lines, and might be as complex
as a stripey patch, an eye, or a nose (Ettinger 1988, Ullman 1996). Verification
has been extremely poorly studied, (but see Grimson and Huttenlocher (1991)).
Verification based on generic evidence—say, edge points—has the difficulty that
we cannot tell which evidence should be counted. Similarly, if we use specific
evidence—say, a particular camouflage pattern—we have problems with abstrac-
tion.

Deformable Models

Registering deformable models is a well-established problem with a long history.
Jain et al. (1996) give an important early methods that applies to purely geometri-



Section 12.4 Notes 389

cal models. Matching algorithms naturally yield tracking algorithms, too (Zhong et
al. 2000) There is a large range of active appearance models. Active shape models
are a variant that encodes geometry, but not intensity, and active contour models,
reviewed in Blake (1999), encode boundaries; a particularly important version be-
came famous as a “snake” (Kass et al. 1988). We have chosen a model to expound
for didactic, rather than historical, reasons. Good places to start in this literature
are Cootes and Taylor (1992); Taylor et al. (1998); Cootes et al. (2001); and Cootes
et al. (1994).

Medical Applications

This is not a topic on which we speak with any authority. Valuable surveys include:
Ayache (1995); Duncan and Ayache (2000); Gerig et al. (1994); Pluim et al. (2003);
Maintz and Viergever (1998); and Shams et al. (2010). The three main topics
appear to be: segmentation, which is used to identify regions of (often 3D) images
that correspond to particular organs; registration, which is used to construct
correspondences between images of different modalities and between images and
patients; and analysis of both morphology—how big is this? has it grown?—and
function. McInerney and Terzopolous (1996) survey the use of deformable models.
There are surveys of registration methods and issues in Lavallee (1996) and in
Maintz and Viergever (1998), and a comparison between registration output and
“ground truth” in West et al. (1997).

PROBLEMS

12.1. Show that one line and one point can be used as a frame-bearing group for
2D rigid transformations (i.e., rotations and translations in the plane). The
easiest way to do this is to show that (a) the translation is determined by
placing the source point over the target point; and (b) the rotation can then
be determined by rotating to place the source line over the target line.
(a) Does every such pair yield a rigid transformation? (Hint: think about the

distance from the point to the line.)
(b) Can the point lie on the line and still yield a unique rigid transformation?

(Hint: does the line have symmetries?)
12.2. Use the methods of the previous exercise to establish that all the frame-bearing

groups of Table 12.1 are, in fact, frame-bearing groups.
12.3. Show that three points can be used as a frame-bearing group for 3D rigid trans-

formations (i.e., rotations and translations in the plane). Start by showing the
translation is determined by placing a source point over a corresponding target
point. Now the rotation follows in two steps: rotate to place a second source
point over the corresponding target point, then rotate about the resulting axis
to place the third source point over the third target point.
(a) Does every such triple yield a rigid transformation? (Hint: think about

the distances between the points.)
12.4. Use the methods of the previous exercise to establish that all the frame bearing-

groups of Table 12.2 are, in fact, frame-bearing groups.
12.5. Check that a weak-perspective camera is equivalent to an orthographic camera,

calibrated up to unknown scale.
12.6. Assume that we are viewing objects in an orthographic camera, calibrated up



Section 12.4 Notes 390

to unknown scale.
(a) Show that three points is a frame group.
(b) Show that a vertex-pair (two points, with a pair of directions leaving one

of the points) is a frame group.
(c) Show that a line and a point is not a frame group.
(d) Explain why it is a good idea to have frame groups composed of different

types of feature.

PROGRAMMING EXERCISES

12.7. Build a robust iterated closest points matcher, and use it to match plane curves
(for example, the edges of a letter to an instance of the letter; see Figure 1
of Fitzgibbon (2003)). You will find it helpful to read Fitzgibbon (2003), which
shows that second-order methods can be used quite effectively, even though
the objective function isn’t differentiable.

12.8. Use one of the available sets of software for active appearance model matching
to build an active appearance model of a face and then match it to a deformed
face image.



C H A P T E R 13

Smooth Surfaces and Their Outlines

Several chapters of this book have explored the quantitative relationship between
simple geometric figures such as points, lines, and planes and the parameters of their
image projections. In this one, we investigate instead the qualitative relationship
between three-dimensional shapes and their pictures, focusing on the outlines of
solids bounded by smooth surfaces. The outline, also named object silhouette or
image contour in this chapter, is formed by intersecting the retina with a viewing
cone (or cylinder in the case of orthographic projection) whose apex coincides with
the pinhole and whose surface grazes the object along a surface curve called the
occluding contour, or rim (Figure 13.1).

The image contour of a solid shape constrains it to lie within the associated
viewing cone, but does not reveal the depth of its occluding contour. In the case of
solids bounded by smooth surfaces, it provides additional information. In particu-
lar, the plane defined by the eye and the tangent to the image contour is tangent
to the surface. Thus, the contour orientation determines the surface orientation
along the occluding contour. In 1977, Marr argued that the silhouette does not, in
general, tell us anything else about shape, claiming for example that the inflections
of a snake’s contour, that separate its convex parts from its concave ones (see the
next section for a formal definition), in general have nothing to do with the intrin-
sic local surface shape, but correspond instead to the boundaries between far and
near parts of the snake’s body, the near regions appearing larger than the far ones
due to perspective effects (Figure 13.2, left). Although intuitively plausible, this
interpretation is incorrect. Indeed, as shown by Koenderink in a delightful 1984
article, the inflections of the contour are the projections of parabolic surface points
that separate convex parts of the surface from saddle-shaped, or hyperbolic ones
(Figure 13.2, right; we will prove a quantitative version of this result later in this
chapter). Thus, they indeed always reveal something of the intrinsic shape of the
observed object.

Koenderink’s view is that of a physicist trying to understand and model the
laws that govern the visual world, and it prevails in this chapter, where the accent
is not on applications but on a theoretical understanding of what can, or cannot
be said about the world by merely looking at it. The proper mathematical setting
for this study is differential geometry, a field of mathematics whose primary aim
is to model the shape of objects such as curves and surfaces in the small—that
is, in the immediate vicinity of a point. This local analysis is particularly fruitful
for understanding the relationship between solid shapes and their outlines. In
particular, it can be shown that the occluding contour is in general a smooth curve,
formed by fold points where the viewing ray is tangent to the surface and a discrete
set of cusp points where the ray is tangent to the occluding contour as well. The
image contour is piecewise smooth, and its only singularities are a discrete set
of cusps formed by the projection of cusp points and T-junctions formed by the

391



392

Image
Contour

Viewing
ConeContour

Occluding

Occluding
Contour

Image
Contour

Viewing
Cylinder

FIGURE 13.1: Occlusion boundaries of a smooth surface. The viewing cone associated
with a perspective camera (left) degenerates into a viewing cylinder under orthographic
projection (right). Most of the discussion in this chapter will focus on the orthographic
case, but generalizes (rather) easily to the perspective one.

transversal superposition of pairs of fold points (Figure 13.3, top). The intuitive
meaning of these exotic terms should be pretty clear: A fold is a point where
the surface folds away from its viewer, and a contour cusps at a point where it
suddenly decides to turn back, following a different path along the same tangent
(this is for transparent objects only; contours of opaque objects terminate at cusps;
see Figure 13.3, top). Likewise, two smooth pieces of contour cross at a T-junction
(unless the object is opaque and one of the branches terminates at the junction).
Figure 13.3 (bottom) shows these features in the outline of an opaque cup (left), or
a transparent glass (right). At the bottom of the stem, two pieces of the contour
form a T-junction (resp. cross) for the cup (resp. glass) before terminating (resp.
cusping).1 The outline in the middle of the figure is not physically possible.

Differential geometry can be used to characterize the static, or instantaneous,
shape of solids’ outlines, but it also dictates the manner in which the contour
changes with viewpoint. This is captured by the aspect graph, a data structure
first introduced by Koenderink and Van Doorn (1976b, 1979) under the name of
visual potential. The aspect graph records all possible stable states of the contour,
and all transitions, or visual events, between these states, and a remarkable fact of
life is that there can be only a finite number of those. Visual events and aspect
graphs are the last topic explored in this chapter. Let us start in the meantime by
introducing the elementary notions of differential geometry that are necessary for

1The reader may have noticed that the contour junctions at the top of the stem and the top
left and right sides of the cup/glass in Figure 13.3 (bottom) are neither cusps nor T-junctions.
This is because the surface is not smooth there, and outlines of piecewise-smooth surfaces may
exhibit more complex singularities, that are beyond the scope of this book.



Section 13.1 Elements of Differential Geometry 393

FIGURE 13.2: Left: A snake (far left) and, on its right, its outline as observed by a
hypothetical eye. In Marr’s interpretation, inflections, shown here as black dots, sepa-
rate portions of the contour corresponding to near surface patches from far ones. Right:
In Koenderink’s (correct) interpretation, they separate convex parts of the contour cor-
responding to convex regions of the surface from concave ones corresponding to saddle-
shaped (hyperbolic) portions of the surface. After Marr (1977) and Koenderink (1984).

understanding some of the geometric properties of our visual world.

13.1 ELEMENTS OF DIFFERENTIAL GEOMETRY

This section presents the rudiments of Euclidean differential geometry necessary to
understand the local relationship between light rays and solid objects. We limit
our discussion of surfaces to those bounding compact solids in E

3. The topic of
our discussion is of course technical, but we attempt to stay at a fairly informal
level, emphasizing descriptive over analytical geometry. In particular, we refrain
from picking a global coordinate system for E

3, although local coordinate systems
attached to a curve or surface in the vicinity of one of its points are used on several
occasions. This is appropriate for the type of qualitative geometric reasoning that
is the focus of this chapter. Analytical differential geometry is discussed in Chapter
14 in the (quantitative) context of range data analysis.

13.1.1 Curves

Let us start with the study of curves that lie in a plane. We examine a curve γ
in the immediate vicinity of some point P and assume that γ does not intersect
itself or, for that matter, terminate in P . If we draw a straight line L through P , it
generally intersects γ in some other point Q, defining a secant of this curve (Figure
13.4). As Q moves closer to P , the secant L rotates about P and approaches a
limit position T called the tangent line to γ in P .

By construction, the tangent T has more intimate contact with γ than any
other line passing through P . Let us now draw a second line N through P and
perpendicular to T and call it the normal to γ in P . Given an (arbitrary) choice
for a unit tangent vector t along T , we can construct a right-handed coordinate
frame whose origin is P and whose axes are t and a unit normal vector n along N .
This local coordinate system is particularly well adapted to the study of the curve
in the neighborhood of P : its axes divide the plane into four quadrants that can



Section 13.1 Elements of Differential Geometry 394

�������	
�
���	���	
� ����

��
��	��

FIGURE 13.3: Top: A contour is made of three types of components, from left to right,
folds, cusps, and T-junctions. The dashed part is not visible for an opaque surface.
Bottom: An opaque cup and its outline are shown in the left panel of the diagram. A
transparent glass with the same shape is shown in the right panel. The line drawing of
the opaque cup in the middle panel is incorrect: the outline of the bottom part of the
stem should not reach the sides of the base, but terminate on the way (or cusp, in the
case of a transparent object). The top part of this figure is reprinted from “Computing
Exact Aspect Graphs of Curved Objects: Algebraic Surfaces,” by S. Petitjean, J. Ponce,
and D.J. Kriegman, International Journal of Computer Vision, 9(3):231–255, (1992). c©
1992 Kluwer Academic Publishers.

be numbered in counterclockwise order as shown in Figure 13.5, the first quadrant
being chosen so it contains a particle traveling along the curve toward (and close
to) the origin. In which quadrant will this particle end up just after passing P?

As shown by the figure, there are four possible answers to this question, and
they characterize the shape of the curve near P . We say that P is regular when
the moving point ends up in the second quadrant and singular otherwise. When
the particle traverses the tangent and ends up in the third quadrant, P is called
an inflection of the curve, and we say that P is a cusp of the first or second kind
in the two remaining cases, respectively. This classification is independent of the
orientation chosen for γ, and it turns out that almost all points of almost all curves
are regular, with singularities occurring only at isolated points.

As noted before, the tangent to a curve γ in P is the closest linear approxi-
mation of γ passing through this point. In turn, constructing the closest circular
approximation now allows us to define the curvature in P—another fundamental



Section 13.1 Elements of Differential Geometry 395

g

Q

P

LT

P

T
g

t

n

N

(a) (b)

FIGURE 13.4: Tangents and normals: (a) definition of the tangent as the limit of secants,
(b) the coordinate system defined by the (oriented) tangent and normal.

P P P P

(d)

43

(c)

11112 2 2

(b)

3 4 3 4 43

2

(a)

FIGURE 13.5: A classification of curve points: (a) a regular point, (b) an inflection, (c)
a cusp of the first kind, (d) a cusp of the second kind. Note that the curve stays on the
same side of the tangent at regular points.

characteristic of the curve shape. Consider a point P ′ as it approaches P along the
curve, and let M denote the intersection of the normal lines N and N ′ in P and
P ′ (Figure 13.6). As P ′ moves closer to P , M approaches a limit position C along
the normal N , called the center of curvature of γ in P .

At the same time, if δθ denotes the (small) angle between the normals N and
N ′ and δs denotes the length of the (short) curve arc joining P and P ′, the ratio
δθ/δs also approaches a definite limit κ, called the curvature of the curve in P , as
δs nears zero. It turns out that κ is just the inverse of the distance r between C and
P (this follows easily from the fact that sinu ≈ u for small angles; see problems).
The circle centered in C with radius r is called the circle of curvature in P , and r
is the radius of curvature.

A simple formula relates the tangent t, the normal n, and the curvature κ
for planar curves parameterized by arc length: Let us assume that some basis has
been chosen for E

3 so we can identify this space with R
3. Given some smooth

parameterization x : U → R
3 of the curve γ by its arc length in some neighborhood



Section 13.1 Elements of Differential Geometry 396

T

P

�

M

P’

N’

T’

N

s�

��

FIGURE 13.6: Definition of the center of curvature as the limit of the intersection of normal
lines through neighbors of P .

U ⊂ R of one of its points, one can show that

d2

ds2
x =

d

ds
t = κn. (13.1)

It can also be shown that a circle drawn through P and two close-by points
P ′ and P ′′ approaches the circle of curvature as P ′ and P ′′ move closer to P . This
circle is indeed the closest circular approximation to γ passing through P . The
curvature is zero at inflections, and the circle of curvature degenerates to a straight
line (the tangent) there: inflections are the flattest points along a curve.

Let us now introduce a device that proves to be extremely important in the
study of both curves and surfaces—the Gauss map. Let us pick an orientation for
the curve γ and associate with every point P on γ the point Q on the unit circle
where the tip of the associated normal vector meets the circle (Figure 13.7). This
mapping from γ to the unit circle is the Gauss map associated with γ.2

Let us have another look at the limiting process used to define the curvature.
As P ′ approaches P on the curve, the Gaussian image Q′ of P ′ approaches the
image Q of P . The (small) angle between N and N ′ is equal to the length of the
arc joining Q and Q′ on the unit circle. The curvature is therefore given by the
limit of the ratio between the lengths of corresponding arcs of the Gaussian image
and of the curve as both approach zero.

The Gauss map also provides an interpretation of the classification of curve
points introduced earlier: Consider a particle traveling along a curve and the motion
of its Gaussian image. The direction of traversal of γ stays the same at regular
points and inflections, but reverses for both types of cusps (Figure 13.5). On the
other hand, the direction of traversal of the Gaussian image stays the same at
regular points and cusps of the first kind, but it reverses at inflections and cusps of
the second kind (Figure 13.7). This indicates a double covering of the unit circle
near these singularities: we say that the Gauss map folds at these points.

2The Gauss map could have been defined just as well by associating with each curve point the
tip of its unit tangent on the unit circle. The two representations are equivalent in the case of
planar curves. The situation will be different when we generalize the Gauss map to twisted curves
and surfaces.



Section 13.1 Elements of Differential Geometry 397

P

�

P �

P’

Gauss Map

Q

Q�

Q’

FIGURE 13.7: The Gaussian image of a plane curve. Observe how the direction of traversal
of the Gaussian image reverses at the inflection P ′ of the curve. Also note that there are
close-by points with parallel tangents/normals on either side of P ′. The Gauss map folds
at the corresponding point Q′.

A sign can be chosen for the curvature at every point of a plane curve γ by
picking some orientation for this curve and deciding, say, that the curvature can
(arbitrarily) be taken positive at a convex point where the center of curvature lies
on the same side of γ as the tip of the oriented normal vector and negative at a
concave point where these two points lie on opposite sides of γ. Thus, the curvature
changes sign at inflections, and reversing the orientation of a curve also reverses
the sign of its curvature.

Twisted space curves are more complicated animals than their planar counter-
parts. Although the tangent can be defined as before as a limit of secants, there is
now an infinity of lines perpendicular to the tangent at a point P , forming a normal
plane to the curve at this point. In general, a twisted curve does not lie in a plane
in the vicinity of one of its points, but there exists a unique plane that lies closest
to it. This is the osculating plane, defined as the limit of the plane containing the
tangent line in P and some close-by curve point Q as the latter approaches P . The
principal normal is the line where the normal and osculating planes intersect.

As in the planar case, the curvature of a twisted curve can be defined in a
number of ways: as the inverse of the radius of the limit circle defined by three
curve points as they approach each other (this circle of curvature lies in the oscu-
lating plane), as the limit ratio of the angle between the tangents at two close-by
points and the distance separating these points as it approaches zero, and so on.
Equation (13.1), which relates the derivative of the tangent to the curvature and
the normal of a planar curve, still holds for twisted curves, but the vector n in this
equation is the principal normal in this case. Likewise, the Gauss map concept can
be extended to space curves, but this time the tips of the tangents and principal
normals draw curves on a unit sphere. Note that it is not possible to give a mean-
ingful sign to the curvature of a twisted curve. In general, such a curve does not
have inflections, and its curvature can be taken to be positive everywhere.

13.1.2 Surfaces

Most of the discussion of the local characteristics of plane and twisted curves can
be generalized in a simple manner to surfaces. Consider a point P on the surface



Section 13.1 Elements of Differential Geometry 398

S

g

N

P
P

T
P

S

g

P

N

t

t

(a) (b)

FIGURE 13.8: Tangent plane and normal sections. (a) The tangent plane Π and the
associated normal line N at a point P of a surface; γ is a surface curve passing through
P , and its tangent line T lies in Π. (b) The intersection of the surface S with the plane
spanned by the normal vector N and the tangent vector t forms a normal section γt of S.

S and all the curves passing through P and lying on S. It can be shown that the
tangents to these curves lie in the same plane Π, appropriately called the tangent
plane in P (Figure 13.8a). The line N passing through P and perpendicular to Π is
called the normal line to P in S, and the surface can be oriented (locally) picking
a sense for a unit normal vector along N (unlike curves, surfaces admit a single
normal but an infinity of tangents at every point). The surface bounding a solid
admits a canonical orientation defined by letting the normal vectors locally point
toward the outside of the solid.3

Intersecting a surface with the planes that contain the normal in P yields a
one-parameter family of planar curves called normal sections (Figure 13.8b). These
curves are, in general, regular in P or may exhibit an inflection there. The curvature
of a normal section is called the normal curvature of the surface in the associated
tangent direction. By convention, we choose a positive sign for the normal curvature
when the normal section lies (locally) on the same side of the tangent plane as the
inward-pointing surface normal and a negative sign when it lies on the other side.
The normal curvature is, of course, zero when P is an inflection of the corresponding
normal section.

With this convention, we can record the normal curvature as the sectioning
plane rotates about the surface normal. It generally assumes its maximum value
κ1 in a definite direction of the tangent plane, and reaches its minimum value
κ2 in a second definite direction. These two directions are called the principal
directions in P , and it can be shown that, unless the normal curvature is constant
over all possible orientations, they are orthogonal to each other (see problems). The

3Of course, the reverse orientation, where, as Koenderink (1990, p. 137) puts it, “the normal
vector points into the ‘material’ of the blob like the arrows in General Custer’s hat,” is just as
valid. The main point is that either choice yields a coherent global orientation of the surface.
Certain surfaces (e.g., Möbius strips) do not admit a global orientation, but they do not bound
solids.



Section 13.1 Elements of Differential Geometry 399

(a) (b) (c)

FIGURE 13.9: Local shape of a surface: (a) an elliptic point, (b) a hyperbolic point, and
(c) a parabolic point (there are actually two distinct kinds of parabolic points; we come
back to those in Section 13.3). Reprinted from “On Computing Structural Changes in
Evolving Surfaces and their Appearance,” by S. Pae and J. Ponce, International Journal
of Computer Vision, 43(2):113–131, (2001). c© 2001 Kluwer Academic Publishers.

principal curvatures κ1 and κ2 and the associated directions define the best local
quadratic approximation of the surface. In particular, we can set up a coordinate
system in P with x- and y-axes along the principal directions and z-axis along the
outward-pointing normal; the surface can be described (up to second order) in this
frame by the paraboloid z = −1/2(κ1x

2 + κ2y
2).

The neighborhood of a surface point can locally take three different shapes
depending on the sign of the principal curvatures (Figure 13.9). A point P where
both curvatures have the same sign is said to be elliptic, and the surface in its
vicinity is egg-shaped (Figure 13.9a). It does not cross its tangent plane, and looks
like the outside shell of an egg (positive curvatures) or the inside of its broken shell
(negative curvatures). We say that P is convex in the former case and concave in the
latter one. When the principal curvatures have opposite signs, we have a hyperbolic
point. The surface is locally saddle-shaped and crosses its tangent plane along two
curves (Figure 13.9b). The corresponding normal sections have an inflection in P ,
and their tangents are called the asymptotic directions of the surface in P . They are
bisected by the principal directions. The elliptic and hyperbolic points form patches
on a surface. These areas are in general separated by curves formed by parabolic
points where one of the principal curvatures vanishes. The corresponding principal
direction is also an asymptotic direction, and the intersection of the surface and its
tangent plane has (in general) a cusp in that direction (Figure 13.9c).

Naturally, we can define the Gaussian image of a surface by mapping every
point onto the place where the associated unit normal pierces the unit sphere (that is
sometimes referred to as the Gauss sphere in the sequel). In the case of plane curves,
the Gauss map is one-to-one in the neighborhood of regular points, but the direction
of traversal of the Gaussian image reverses in the vicinity of certain singularities.
Likewise, it can be shown that the Gauss map is one-to-one in the neighborhood
of elliptic or hyperbolic points. The orientation of a small, closed curve centered
at an elliptic point is preserved by the Gauss map, but the orientation of a curve



Section 13.1 Elements of Differential Geometry 400

Gauss
Map

FIGURE 13.10: Left: A surface in the shape of a kidney bean. It is formed of a convex
area, a hyperbolic region, and the parabolic curve separating them. Right: The cor-
responding Gaussian image. Darkly shaded areas indicate hyperbolic areas, and lightly
shaded ones indicate elliptic ones. Note that the bean is not convex, but does not have any
concavity. Reprinted from “On Computing Structural Changes in Evolving Surfaces and
their Appearance,” by S. Pae and J. Ponce, International Journal of Computer Vision,
43(2):113–131, (2001). c© 2001 Kluwer Academic Publishers.

centered at a hyperbolic point is reversed (Figure 13.10).
The situation is a bit more complicated at a parabolic point. In this case,

any small neighborhood contains points with parallel normals, indicating a double
covering of the sphere near the parabolic point (Figure 13.10). We say that the
Gaussian map folds along the parabolic curve. Note the similarity with inflections
of planar curves.

Let us now consider a surface curve γ passing through P and parameterized
by its arc length s in the neighborhood of P . Since the restriction of the surface
normal to γ has constant (unit) length, its derivative with respect to s lies in the
tangent plane in P . It is easy to show that the value of this derivative depends only
on the unit tangent t to γ and not on γ itself. Thus, we can define a mapping dN
that associates with each unit vector t in the tangent plane in P the corresponding
derivative of the surface normal (Figure 13.11). Using the convention dN(λt) =
λdN (t) when λ �= 1, we can extend dN to a linear mapping defined over the whole
tangent plane and called the differential of the Gauss map in P .

The second fundamental form in P is the bilinear form that associates with
any two vectors u and v lying in the tangent plane the quantity

II(u,v)
def
= u · dN(v).

Because II can be shown to be symmetric—that is, II(u,v) = II(v,u)—
the mapping that associates with any tangent vector u the quantity II(u,u) is a
quadratic form. In turn, this quadratic form is intimately related to the curvature
of the surface curves passing through P . Indeed, note that the tangent t to a surface
curve is everywhere orthogonal to the surface normal N . Differentiating the dot
product of these two vectors with respect to the curve arc length yields

κn ·N + t · dN(t) = 0,



Section 13.1 Elements of Differential Geometry 401

s

N
N ’

N

P’

S

�

�

�

P

FIGURE 13.11: The directional derivative of the surface normal: if P and P ′ are nearby
points on the curve γ, and N and N ′ denote the associated surface normals, with δN =
N ′ −N , the derivative is defined as the limit of 1

δs
δN as the length δs of the curve arc

separating P and P ′ tends toward zero.

where n denotes the principal normal to the curve and κ denotes its curvature.
This can be rewritten as

II(t, t) = −κ cosφ, (13.2)

where φ is the angle between the surface and curve normals. For normal sections,
we have n = ∓N , and it follows that the normal curvature in some direction t is

κt = II(t, t),

where, as before, we use the convention that the normal curvature is positive when
the principal normal to the curve and the surface normal point in opposite direc-
tions. In addition, Equation (13.2) shows that the curvature κ of a surface curve
whose principal normal makes an angle φ with the surface normal is related to the
normal curvature κt in the direction of its tangent t by κ cosφ = −κt. This is
known as Meusnier’s theorem (Figure 13.12).

It turns out that the principal directions are the eigenvectors of the linear map
dN , and the principal curvatures are the associated eigenvalues. The determinant
K of this map is called the Gaussian curvature, and it is equal to the product of
the principal curvatures. Thus, the sign of the Gaussian curvature determines the
local shape of the surface: a point is elliptic when K > 0, hyperbolic when K < 0,
and parabolic when K = 0.

If δA is the area of a small patch centered in P on a surface S and δA′ is the
area of the corresponding patch of the Gaussian image of S, it can also be shown
that the Gaussian curvature is the limit of the (signed) ratio δA′/δA as both areas
approach zero (by convention, the ratio is chosen to be positive when the boundaries
of both small patches have the same orientation and negative otherwise; see Figure
13.10). Note again the strong similarity with the corresponding concepts (Gaussian
image and plain curvature) in the context of planar curves.



Section 13.2 Contour Geometry 402

P

	

S

N




n

�

FIGURE 13.12: Meusnier’s theorem.

13.2 CONTOUR GEOMETRY

Before studying the geometry of surface outlines, let us pause for a minute and
examine the relationship between the local shape of a space curve Γ and that of
its orthographic projection γ onto some plane Π (Figure 13.13). Let us denote
by α the angle between the plane Π and the tangent t to Γ and by β the angle
between Π and the osculating plane of Γ. These two angles completely define the
local orientation of the curve relative to the image plane.

If κ denotes the curvature at some point on Γ and κa denotes its apparent
curvature (i.e., the curvature of γ at the corresponding image point), it is easy to
show analytically (see problems) that

κa = κ
cosβ

cos3 α
. (13.3)

In particular, when the viewing direction is in the osculating plane (cos β =
0), the apparent curvature κa vanishes, and the image of the curve acquires an
inflection. When, in addition, the viewing direction is tangent to the curve (cosα =
cosβ = 0), κa is not well defined anymore and the projection acquires a cusp.

The theorem by Koenderink mentioned in the introduction relates in a similar
fashion the local shape of the surface bounding a solid object to the shape of its
image contour. We present in the rest of this section a few elementary properties
of image contours before stating and proving this theorem formally.

13.2.1 The Occluding Contour and the Image Contour

As noted earlier, the image of a solid bounded by a smooth surface is itself bounded
by an image curve, called the contour, silhouette, or outline of this solid. This curve
is the intersection of the retina with a viewing cone whose apex coincides with
the pinhole and whose surface grazes the object along a second curve, called the
occluding contour, or rim (Figure 13.1, left). We assume orthographic projection
in the rest of this section. In this case, the pinhole moves to infinity and the
viewing cone becomes a cylinder whose generators are parallel to the (fixed) viewing



Section 13.2 Contour Geometry 403

b

�

t

n

P

�

�

	



p

FIGURE 13.13: A space curve and its projection. The vector b is the binormal to Γ—that
is, the normal to the osculating plane. The angle β between Π and the osculating plane is
equal to the angle between the “vertical” viewing direction and b. Note that the tangent
to γ is the projection of the tangent to Γ (e.g., think of the tangent as the velocity of a
particle traveling along the curve). The normal to γ is not, in general, the projection of
the normal n to Γ.

direction. The surface normal is constant along each one of these generators, and it
is parallel to the image plane (Figure 13.1, right). The tangent plane at a point on
the occluding contour projects onto the tangent to the image contour, and it follows
that the normal to this contour is equal to the surface normal at the corresponding
point of the occluding contour. It is important to note that the viewing direction
v is not, in general, perpendicular to the occluding contour tangent t (as noted by
Nalwa (1988), for example, the occluding contour of a tilted cylinder is parallel to
its axis and not to the image plane). In fact, as shown in the next section, these
two directions are conjugate—an extremely important property of the occluding
contour.

More generally, the occluding contour is not (in general) planar. Shadows
demonstrate this quite clearly: attached shadows are delineated by the occluding
contours associated with the light sources, and cast shadows are bounded by the
corresponding object outlines. Thus, we can see a “side view” of the occluding
contour in this case, and observing the attached shadow boundaries of a person’s
face, for example, should convince the interested reader that these curves do not
lie in a plane.

13.2.2 The Cusps and Inflections of the Image Contour

Two directions u and v in the tangent plane are said to be conjugate when II(u,v) =
0. For example, the principal directions are conjugate because they are orthogonal
eigenvectors of dN , and asymptotic directions are self-conjugate.

It is easy to show that the tangent t to the occluding contour is always conju-
gate to the corresponding projection direction v. Indeed, v is tangent to the surface
at every point of the occluding contour, and differentiating the identity N · v = 0



Section 13.2 Contour Geometry 404

with respect to the arc length of this curve yields

0 =

(
d

ds
N

)
· v = dN (t) · v = II(t,v).

Let us now consider a hyperbolic point P0 and project the surface onto a plane
perpendicular to one of its asymptotic directions. Because asymptotic directions
are self-conjugate, the occluding contour in P0 must run along this direction. As
shown by Equation (13.3), the curvature of the contour must be infinite in that
case, and the contour acquires a cusp of the first kind.

We state in a moment a theorem by Koenderink (1984) that provides a quan-
titative relationship between the curvature of the image contour and the Gaussian
curvature of the surface. In the meantime, we prove (informally) a weaker, but still
remarkable result.

Theorem 3. Under orthographic projection, the inflections of the contour
are images of parabolic points (Figure 13.14).

To see why this theorem holds, first note that, under orthographic projection,
the surface normal at a point on the occluding contour is the same as the normal
at the corresponding point of the image contour. Since the Gauss map folds at a
parabolic point, the Gaussian image of the image contour must reverse direction at
such a point. As shown earlier, the Gaussian image of a planar curve reverses at
its inflections and cusps of the second kind. It is possible to show that the latter
singularity does not occur for a general viewpoint, which proves the result.

In summary, the occluding contour is formed by points where the viewing
direction v is tangent to the surface (the fold points mentioned in the introduc-
tion). Occasionally, it becomes tangent to v at a hyperbolic cusp point or crosses
a parabolic line, and cusps (of the first kind) or inflections appear on the contour
accordingly. Unlike the curves mentioned so far, the image contour may also cross
itself (transversally) when two distinct branches of the occluding contour project
onto the same image point, forming a T-junction (Figure 13.3). For general view-
points, these are the only possibilities: there is no cusp of the second kind, nor any
tangential self-intersection, for example. We come back to the study of exceptional
viewpoints and the corresponding contour singularities in the next section.

13.2.3 Koenderink’s Theorem

Let us now state the theorem by Koenderink (1984) that has already been men-
tioned several times. We assume as before orthographic projection, consider a point
P on the occluding contour of a surface S, and denote by p its image on the contour.

Theorem 4. The Gaussian curvature K of S in P and the contour curvature
κc in p are related by

K = κcκr,

where κr denotes the curvature of the radial curve formed by the intersection
of S with the plane defined by the normal to S in P and the projection
direction (Figure 13.15).



Section 13.2 Contour Geometry 405

FIGURE 13.14: The inflections of the contour are images of parabolic points: The top-left
side of this diagram shows the bean-shaped surface with an occluding contour overlaid,
and its top-right side shows the corresponding image contour. As shown in the bottom
part of the drawing, the Gauss map folds at the parabolic point, and so does its restriction
to the great circle formed by the images of the occluding and image contours.

This remarkably simple relation has several important corollaries (starting
with Theorem 3, of course): Note that the radial curvature κr remains positive (or
zero) along the occluding contour because the projection ray locally lies inside the
imaged object at any point where κr < 0. It follows that κc is positive when the
Gaussian curvature is positive and negative otherwise. In particular, the theorem
shows that convexities of the contour corresponds to elliptic points of the surface,
whereas contour concavities correspond to hyperbolic points and contour inflections
correspond to parabolic points.

Among elliptic surface points, it is clear that concave points never appear
on the occluding contour of an opaque solid since their tangent plane lies (locally)
completely inside this solid. Thus, convexities of the contour also correspond to
convexities of the surface. Likewise, we saw earlier that the contour cusps when the
viewing direction is an asymptotic direction at a hyperbolic point. In the case of an
opaque object, this means that concave arcs of the contour may terminate at such a
cusp, where a branch of the contour becomes occluded (on the other hand, a contour
cannot terminate at a convex point!). Thus, we see that Koenderink’s theorem
strengthens and refines the earlier characterization of the geometric properties of
image contours.

Let us now prove the theorem. It is related to a general property of conjugate
directions: if κu and κv denote the normal curvatures in conjugate directions u



Section 13.2 Contour Geometry 406

t

N

w
P

p

w

N

v

u

FIGURE 13.15: Occluding contour and image contour: the viewing direction v and the
occluding contour tangent t are conjugate, and the radial curvature is always non-negative
at a visible point of the contour for opaque solids.

and v, and K denotes the Gaussian curvature, then

K sin2 θ = κuκv, (13.4)

where θ is the angle between u and v. This relation is easy to prove by using the
fact that the matrix associated with the second fundamental form is diagonal in
the basis of the tangent plane formed by conjugate directions (see problems). It is
obviously satisfied for principal directions (θ = π/2) and asymptotic ones (θ = 0).

In the context of Koenderink’s theorem, we obtain

K sin2 θ = κrκt,

where κt denotes the normal curvature of the surface along the occluding contour
direction t (which is, of course, different from the actual curvature of the occluding
contour). To complete the proof of the theorem, we use another general property
of surfaces: the apparent curvature of any surface curve with tangent t is

κa =
κt

cos2 α
, (13.5)



Section 13.3 Visual Events: More Differential Geometry 407

where α denotes as before the angle between t and the image plane. As shown
in the exercises, this property easily follows from Equation (13.3) and Meusnier’s
theorem.

In other words, the apparent curvature of any surface curve is obtained by
dividing the associated normal curvature by the square of the cosine of the angle
between its tangent and the image plane. Noting that κc is just the apparent
curvature of the occluding contour now allows us to write

κc =
κt

sin2 θ
(13.6)

because α = θ− π/2. Substituting Equation (13.6) into Equation (13.4) concludes
the proof of the theorem.

13.3 VISUAL EVENTS: MORE DIFFERENTIAL GEOMETRY

Let us continue to assume orthographic projection, but consider this time a moving
observer instead of a static one. Inflections, cusps, and T-junctions are stable
features of the image contour that generally survive small eye movements: let us
consider, for example, a contour inflection; as shown earlier in this chapter, it is
the projection of a point where the occluding contour and a parabolic curve of the
associated surface intersect (normally at a nonzero angle). Any small change in
viewpoint deforms the occluding contour a bit, but the two curves still intersect
transversally at a close-by point projecting onto a contour inflection.

It is natural to ask: what are the (peculiar) eye motions that make a stable
contour feature appear or disappear? To answer this question, we take another
look at the Gauss map and introduce the asymptotic spherical map, showing in
the process that the boundaries of the images of a surface through these mappings
determine the appearance and disappearance of inflections and cusps of its contour.
This provides us with a characterization of local visual events (i.e., the changes in
contour structure associated with the differential geometry of the surface at these
boundaries). We also consider multiple contacts between visual rays and a surface.
This leads us to the concept of bitangent ray manifold, and the characterization of its
boundaries allows us to understand the genesis and annihilation of T-junctions and
introduce the associated multilocal visual events. Together, the local and multilocal
events capture the totality of the structural contour changes that determine the
aspect graph, a data structure that records all qualitatively distinct appearances
(different contour structures) an object may assume.

13.3.1 The Geometry of the Gauss Map

The Gauss map provides a natural setting for the study of the image contour and
its inflections. Indeed, under orthographic projection, we saw in Section 13.2 that
the occluding contour maps onto a great circle of the unit sphere, and that the
intersections of this circle with the spherical image of the parabolic curves yield
inflections of the contour. Therefore, it is clear that the contour gains (or loses)
two inflections when a camera movement causes the corresponding great circle to
cross the image of the parabolic curve (Figure 13.16).

A finer understanding of the creation of inflection pairs may be gained by



Section 13.3 Visual Events: More Differential Geometry 408

Moving
great
circle

Image of
parabolic
curve

Gauss
sphere

FIGURE 13.16: As the viewpoint changes, the great circle of the Gauss sphere associated
with the (orthographic) occluding contour may become tangent to the spherical image
of the parabolic curve. Afterward, the circle intersects this curve in two close-by points
corresponding to two contour inflections.

taking a closer look at the geometry of the Gauss map. As shown in Section 13.1,
the image of a surface on the Gauss sphere folds along the image of its parabolic
curves. Figure 13.17 shows an example, with a single covering of the sphere on one
side of the parabolic curve and a triple covering on the other side. The easiest way
to think about the creation of such a fold is to grab (in your mind) a bit of the
rubber skin of a deflated balloon, pinch it, and fold it over. As illustrated by the
figure, this process generally introduces not only a fold of the spherical image, but
two cusps as well (whose preimages are aptly named cusps of Gauss in differential
geometry). Cusps and inflections of the image of the parabolic curve always come
in pairs (two inflection pairs and one cusp pair here, but of course there may be no
cusp or inflection at all). The inflections split the fold of the Gauss map into convex
and concave parts, and their preimages are called gutterpoints (Figure 13.17).

What happens to the occluding contour as the associated great circle crosses
the spherical image of the parabolic curve depends on where the crossing happens.
As shown by Figure 13.17, there are several cases: When the crossing occurs along
a convex fold of the Gauss map, an isolated point appears on the spherical image of
the occluding contour before exploding into a small closed loop on the unit sphere
(Figure 13.17, bottom right). In contrast, if the crossing occurs along a concave fold,
two separate loops merge and then separate with a different connectivity (Figure
13.17, top right). These changes are, of course, reflected on the image contour in a
way that is detailed in the next couple of sections.

The great circle associated with the occluding contour may also cross the
image of the parabolic curve at a cusp. Unlike crossings that occur at regular fold
points, this one is in general transversal and does not impose a tangency condition
on the orientation of the great circle. There is no change in the topology of the
intersection, but two inflections appear or disappear on the image contour. Finally,
the great circle may cross the Gaussian image of a parabolic curve at one of its
inflections. The change in topology in this case is too complicated to be described



Section 13.3 Visual Events: More Differential Geometry 409

Concave
fold

Cusp of
Gauss

Gutterpoint

Convex
fold

FIGURE 13.17: Folds and cusps of the Gauss map. The gutterpoints are the preimages of
the inflections of the spherical image of the parabolic curve. To clarify the structure of
the fold, it is drawn in the left and right sides of the figure as a surface folding in space.
The changes in topology of the intersection between a great circle and the Gaussian image
of the surface as the circle crosses the fold are illustrated in the far right portion of
the figure. Reprinted from “On Computing Structural Changes in Evolving Surfaces and
their Appearance,” by S. Pae and J. Ponce, International Journal of Computer Vision,
43(2):113–131, (2001). c© 2001 Kluwer Academic Publishers.

here. The good news is that there is only a finite number of viewpoints for which
this situation can occur (since there is only a finite number of gutterpoints on a
generic surface). In contrast, the other types of fold crossings occur for infinite one-
parameter families of viewpoints: this is because the tangential crossings associated
with convex or concave portions of the fold may occur anywhere along an extended
curve arc drawn on the unit sphere, whereas the transversal crossings associated
with cusps occur at isolated points, but for arbitrary orientations of the great circle.
We identify the associated families of singular viewpoints in the next section.

13.3.2 Asymptotic Curves

We saw in Section 13.1 that ordinary hyperbolic points admit two distinct asymp-
totic tangents. More generally, the set of all asymptotic tangents on a hyperbolic
patch can be divided neatly into two families such that each family admits a smooth
field of integral curves, called asymptotic curves. Following Koenderink (1990), we
give a color to each family and talk about the associated red and blue asymptotic
curves. These curves cover only the hyperbolic part of a surface and must therefore
be singular in the neighborhood of its parabolic boundary: indeed, a red asymptotic
curve merges with a blue one at an ordinary parabolic point, forming a cusp and
intersecting the parabolic curve at a nonzero angle (Figure 13.18a).4

Let us now study the behavior of the asymptotic curves under the Gauss map.

4The situation is different at cusps of Gauss, where the asymptotic curves meet the parabolic
curve tangentially. This unusual behavior also occurs for planar parabolic curves of nongeneric
objects (e.g., the two circular parabolic curves at the top and bottom of a torus lying on its side or,
more generally, the parabolic lines of a solid of revolution that are associated with local extrema
of the cross-section height along its axis).



Section 13.3 Visual Events: More Differential Geometry 410

Blue CurvesRed Curves

Parabolic Curve

Blue CurvesRed Curves

Parabolic Curve

(a) (b)

FIGURE 13.18: Contact of asymptotic and parabolic curves on (a) the surface, and (b)
the Gauss sphere.

Remember from Section 13.1 that asymptotic directions are self-conjugate. This
(literally) means that the derivative of the surface normal along an asymptotic curve
is orthogonal to the tangent to this curve: the asymptotic curve and its spherical
image have perpendicular tangents. On the other hand, all the directions of the
tangent plane are conjugate to the asymptotic direction at a parabolic point, so
the Gaussian image of any surface curve passing through a parabolic point is per-
pendicular to the corresponding asymptotic direction. In particular, the Gaussian
image of a parabolic curve is the envelope of the images of the asymptotic curves
intersecting it (i.e., it is tangent to these curves everywhere; see Figure 13.18b).

We can now characterize the viewpoints for which a pair of inflections appears
(or disappears). Because the great circle associated with the occluding contour
becomes tangent to the image of the parabolic curve on the Gauss sphere as they
cross, the viewing direction normal to this great circle is along the corresponding
asymptotic direction of the parabolic curve. A pair of inflections may of course also
appear when the great circle crosses the image of a cusp of Gauss or, equivalently,
when the line of sight crosses the tangent plane at such a point. As noted earlier,
the topology of the image contour does not change in this case; it simply gains
(or loses) an undulation (i.e., a small concave dent in one of its convex parts or a
convex bump in one of its concave ones). The next section shows how the contour
structure changes at the other types of singularities.

13.3.3 The Asymptotic Spherical Map

The Gauss map associates with every surface point the place where the tip of
the corresponding normal pierces the unit sphere. We now define the asymptotic
spherical map, which associates with every (hyperbolic) point the corresponding
asymptotic directions. Let us make a few remarks before proceeding. First, there
is really one asymptotic spherical image for each family of asymptotic curves, and
the two images may or may not overlap on the sphere. Second, elliptic points
obviously have no asymptotic spherical image at all, and the unit sphere may not
be fully covered by the images of the hyperbolic points. However, it may also be
fully covered, and, at least locally, it may be covered several times by members of



Section 13.3 Visual Events: More Differential Geometry 411

Red Asymptotic Curves

Red Flecnodal Curve

Red Asymptotic Curves

Red Flecnodal Curve

(a) (b)

FIGURE 13.19: Contact of asymptotic and flecnodal curves on (a) the surface, and (b) the
asymptotic spherical image.

a single family of asymptotic directions.
Because an image contour cusps when the line of sight is along an asymptotic

direction, a cusp pair appears (or disappears) when the line of sight crosses a fold
of the asymptotic spherical map (note the close analogy with contour inflections
and folds of the Gauss map). As could be expected, the asymptotic spherical image
of an asymptotic curve is singular at the fold boundary. There are again two pos-
sibilities (the image may join the boundary tangentially or cusp there), and they
occur at two types of fold points: those associated with asymptotic directions along
parabolic curves (because there is no asymptotic direction at all on their elliptic
side), and those associated with asymptotic directions at flecnodal points. These
points are inflections of the asymptotic curves’ projections into their tangent plane
(Figure 13.19a), and they form curves intersecting transversally the correspond-
ing asymptotic curves. Like those, they come in two colors, depending on which
asymptotic family has an inflection. The asymptotic spherical image of an asymp-
totic curve cusps at a flecnodal point (Figure 13.19b). It should also be noted that
flecnodal curves intersect parabolic ones tangentially at cusps of Gauss.

It is clear that the contour structure changes when the line of sight crosses
the parabolic or flecnodal boundaries of the asymptotic spherical image. Such a
change is called a visual event, and the associated boundaries are called visual
event curves. Before examining in more detail the various visual events, let us note
a different but equivalent way of thinking of the associated boundaries. If we draw
the singular asymptotic tangent line at each point along a parabolic or flecnodal
surface, we obtain ruled surfaces swept by the tangents. A visual event occurs
whenever the line of sight crosses one of these ruled surfaces, whose intersections
with the sphere at infinity are exactly the visual event curves when this sphere is
identified with the unit sphere. Thinking of contour evolution in terms of these ruled
surfaces has the advantages of pointing toward a generalization of visual events to
perspective projection (the view changes whenever the optical center crosses them)
and allowing a clear visualization of the relationship between singular viewpoints
and surface shape.



Section 13.3 Visual Events: More Differential Geometry 412

13.3.4 Local Visual Events

We are now in a position to understand how the contour structure changes at visual
event boundaries. There are three local visual events that are completely charac-
terized by the local differential surface geometry: lip, beak-to-beak, and swallowtail.
Their colorful names are due to Thom (1972) and are related to the shape of the
contour near the associated events.

Let us first examine the lip event, which occurs when the line of sight crosses
the asymptotic spherical image of a convex parabolic point or, equivalently, the
ruled surface defined by the associated asymptotic tangents (Figure 13.20, top).
We have shown earlier that the intersection between the great circle associated with
the occluding contour and the Gaussian image of the surface acquires a loop during
the event (Figure 13.17, bottom right) with the creation of two inflections and two
cusps on the contour. More precisely, there is no image contour before the event,
with an isolated contour point appearing out of nowhere at the singularity before
exploding into a closed contour loop consisting of a pair of branches meeting at two
cusps (Figure 13.20, bottom). One of the branches is formed by the projection of
both elliptic and hyperbolic points, with two inflections, whereas the other one is
formed by the projection of hyperbolic points only. For opaque objects, one of the
branches is always occluded by the object.

The beak-to-beak event occurs when the line of sight crosses the asymptotic
spherical image of a concave parabolic point or, once again, the ruled surface defined
by the associated asymptotic tangents (Figure 13.21, top). As shown earlier, the
topology of the intersection between the great circle associated with the occluding
contour and the Gaussian image of the surface changes during this event, with two
loops merging and then splitting again with a different connectivity (Figure 13.17,
top right). In the image, two distinct portions of the contour, each having a cusp
and an inflection, meet at a point in the image. Before the event, each of the
branches is divided by the associated cusp into a purely hyperbolic portion and a
mixed elliptic-hyperbolic arc, one of which is always occluded. After the event, two
contour cusps and two inflections disappear as the contour splits into two smooth
arcs with a different connectivity. One of these is purely elliptic, whereas the other
is purely hyperbolic, with one of the two always being occluded for opaque objects
(Figure 13.21, bottom). The reverse transition is, of course, also possible, as for all
other visual events.

Finally, the swallowtail event occurs when the eye crosses the surface ruled by
the asymptotic tangents along a flecnodal curve of the same color. We know that
two cusps appear (or disappear) in this event. As shown in Figure 13.22(a)–(b),
the intersection of the surface and its tangent plane at a flecnodal point consists of
two curves, one of which has an inflection. The corresponding asymptotic tangent
is, of course, associated with the family of asymptotic curves having an inflection
there, too. Unlike ordinary asymptotic rays (Figure 13.22c), which are blocked by
the observed solid, this one grazes the solid’s surface (Koenderink, 1990), causing
a sharp V on the image contour at the singularity. The contour is smooth before
the transition, but it acquires two cusps and a T-junction after it (Figure 13.22,
bottom). All surface points involved in the event are hyperbolic. For opaque
objects, one branch of the contour ends at the T-junction and the other one ends



Section 13.3 Visual Events: More Differential Geometry 413

ruled surface of
asymptotic tangents

A

B

A B C

C

FIGURE 13.20: A lip event. The name is related to the shape of the contour on the
right of the figure. Here, as in latter figures, the dashed part of the contour would be
invisible due to occlusion for an opaque object. In this example, the two inflections are
on the visible part of the contour, the hidden part being all hyperbolic, but the situation
would be reversed by taking a viewpoint along the opposite direction. Reprinted from
“On Computing Structural Changes in Evolving Surfaces and their Appearance,” by S.
Pae and J. Ponce, International Journal of Computer Vision, 43(2):113–131, (2001). c©
2001 Kluwer Academic Publishers.

at a cusp.

13.3.5 The Bitangent Ray Manifold

Now remember from Section 13.1 that cusps and inflections are not the only kinds of
stable contour features: T-junctions also occur over open sets of viewpoints. They
form when two distinct pieces of the occluding contour project onto the same image
location. The corresponding surface normals must be orthogonal to the bitangent
line of sight joining the two points, but they are not (in general) parallel. That
T-junctions are stable over small eye movements is intuitively clear: Consider a
convex point P and its tangent plane (Figure 13.23, left). This plane intersects
(in general) the surface along a closed (but possibly empty) curve, and there is an
even number of points (P ′ and P ′′ in the figure) such that the rays drawn from
P through these points are tangent to the curve. Each such tangency yields a
bitangent ray and an associated T-junction. A small motion of the eye induces a
small deformation of the intersection curve, but does not change (in general) the



Section 13.3 Visual Events: More Differential Geometry 414

A B C

ruled surface of
asymptotic tangents

A

B

C

FIGURE 13.21: A beak-to-beak event (the name is related to the shape of the contour
on the left of the figure). Reprinted from “On Computing Structural Changes in Evolv-
ing Surfaces and their Appearance,” by S. Pae and J. Ponce, International Journal of
Computer Vision, 43(2):113–131, (2001). c© 2001 Kluwer Academic Publishers.

number of tangent points. Thus, T-junctions are indeed stable.
The bitangent rays form a two-dimensional bitangent ray manifold5 in the

four-dimensional space formed by all straight lines. Because bitangents map onto
T-junctions in the projection process, it is clear that these contour features are
created or destroyed at boundaries of the manifold. Because a T-junction appears
or disappears during a swallowtail transition, it is also obvious that the singular
asymptotic tangents along a flecnodal curve form one of these boundaries. What
is not as clear is what the remaining boundaries are made of. This is the topic of
the next section.

13.3.6 Multilocal Visual Events

A pair of T-junctions appear or disappear when the line of sight crosses the bound-
ary of the bitangent ray manifold. The corresponding change in contour structure
is called a multilocal visual event. This section shows that there are three types

5A manifold is a topological concept generalizing surfaces defined in Euclidean space to more
abstract settings; its formal definition is omitted here. It is intuitively clear that the bitangent
ray manifold is two-dimensional because there is a finite number of bitangent rays for each point
of the (two-dimensional) surface being observed.



Section 13.3 Visual Events: More Differential Geometry 415

B CA

FIGURE 13.22: A swallowtail event. Top: Surface shape in the neighborhood of a flecnodal
point (a), and comparison of the intersection of the associated solid and its tangent plane
near such a point (b) and an ordinary hyperbolic point (c). Bottom: The event itself.
Reprinted from “On Computing Structural Changes in Evolving Surfaces and their Appear-
ance,” by S. Pae and J. Ponce, International Journal of Computer Vision, 43(2):113-131,
(2001). c© 2001 Kluwer Academic Publishers.

of multilocal events—namely, the tangent crossing, cusp crossing, and triple point,
besides the singularity associated with the crossing of a flecnodal curve that was
mentioned in the previous section.

Let us first have a look at the tangent crossing event. An obvious boundary
of the bitangent ray manifold is formed by the limiting bitangents (Figure 13.23,
right), that occur when the curve formed by the intersection between the tangent
plane at some point and the rest of the surface shrinks to a single point, and the
plane becomes bitangent to the surface. The limiting bitangents sweep a ruled
surface called the limiting bitangent developable. A tangent crossing occurs when
the line of sight crosses this surface (Figure 13.24, top), with two separate pieces of
contour becoming tangent to each other at the event before crossing transversally
at two T-junctions (Figure 13.24, bottom). For opaque objects, either a previously
hidden part of the contour becomes visible after the transition or, (as in the figure)
another contour arc disappears due to occlusion.

The bitangent ray manifold is bounded by two more types of bitangents that
touch the surface along a set of curves and sweep developable surfaces: the asymp-
totic bitangents, which intersect the surface along an asymptotic direction at one
of their endpoints (Figure 13.25a), and the tritangents, which graze the surface in
three distinct points (Figure 13.25b). The corresponding visual events occur when
the line of sight crosses one of the associated developable surfaces, and they also



Section 13.3 Visual Events: More Differential Geometry 416

P’

P �

P

unode

limiting bitangent line

FIGURE 13.23: Bitangent rays. Left: The tangent plane to the surface in P intersects
it along a closed curve with two bitangent rays PP ′ and PP ′′ grazing the surface along
this curve. Right: The limiting bitangent developable surface ruled by the lines where a
plane bitangent to a surface grazes it. Here the two curves where it touches the observed
surface merge tangentially at a unode, a type of cusp of Gauss. Reprinted from “Toward
a Scale-Space Aspect Graph: Solids of Revolution,” by S. Pae and J. Ponce, Proc. IEEE
Conference on Computer Vision and Pattern Recognition, (1999). c© 1999 IEEE.

involve the appearance or disappearance of a pair of T-junctions: a cusp crossing
occurs when a smooth piece of the image contour crosses another part of the con-
tour at a cusp (or end point for an opaque object) of the latter (Figure 13.25c).
Two T-junctions are created (or destroyed) in the process, only one of which is
visible for opaque objects. A triple point is formed when three separate pieces of
the contour momentarily join at nonzero angles (Figure 13.25d). For transparent
objects, three T-junctions merge at the singularity before separating again. For
opaque objects, a contour branch and two T-junctions disappear (or appear), while
another T-junction appears (or disappears).

13.3.7 The Aspect Graph

Under orthographic projection, choosing a viewing direction determines the aspect
of an object—that is, a graphical representation of its image contour, with nodes
corresponding to T-junctions and cusps, and arcs to the smooth contour pieces
between them. The range of possible viewpoints in this case is a viewing sphere,
and it is partitioned by visual event boundaries into maximal cells where the aspect
does not change. These cells, labeled by representative aspects, form the nodes
of an aspect graph, with arcs attached to the visual event boundaries separating
adjacent cells. The aspect graph was first introduced by Koenderink and Van
Doorn (1976b, 1979) under the name of visual potential. Without entering into
details that are outside the scope of this book, it is possible to determine the
aspect graph of a solid bounded by a smooth polynomial surface by tracing the
curves associated with visual events on this surface, and tracing the corresponding
asymptotic directions and bitangents on the viewing sphere, thus revealing the
corresponding cell structure.

Figure 13.26 (top) shows two line drawings of a squash-shaped solid whose
surface is defined as the zero set of a polynomial density function. The two curves



Section 13.4 Notes 417

A

B

C

A B C

FIGURE 13.24: A tangent crossing event. The occlusion relationship between spatially
distinct parts of the occluding contour changes when the viewpoint crosses the limiting
bitangent developable surface in B. Reprinted from “On Computing Structural Changes in
Evolving Surfaces and their Appearance,” by S. Pae and J. Ponce, International Journal
of Computer Vision, 43(2):113–131, (2001). c© 2001 Kluwer Academic Publishers.

running roughly parallel to each other in Figure 13.26 (top left) are the parabolic
curves of the squash, and they split its surface into two convex blobs separated by
a saddle-shaped region. The self-intersecting curve also shown in the figure is the
flecnodal curve. Figure 13.26 (top right) shows the limiting bitangent developable
surface associated with the squash, whose rulings are the lines joining pairs of
points on the squash surface that admit the same bitangent plane. The parabolic
and flecnodal curves and the limiting bitangent developable have been found using
curve tracing. There are no asymptotic bitangents or tritangents in this case.
Figure 13.26 (bottom) shows the orthographic aspect graph of the opaque squash,
computed using the cell-decomposition algorithm for algebraic surfaces of Petitjean,
Ponce, and Kriegman (1992).

13.4 NOTES

As noted in the introduction, this chapter is dedicated to a mostly theoretical study
of what can, or cannot be said of the world by visually observing it. In particular,
we believe that the basic facts about image contours illustrated in Figures 13.2
and 13.3, and presented in Section 13.2 should be part of the common knowledge
of all students of computer vision (the more advanced concepts related to visual
events and presented in Section 13.3 are mostly intended for those with a deeper
interest in geometry). Let us also note that the differential geometry of surfaces
and their outlines has practical applications: for example, it plays a key part in
recent algorithms for computing the visual hull of a solid bounded by a smooth
surface (Lazebnik, Boyer, & Ponce 2001; Lazebnik, Furukawa, & Ponce 2007). We



Section 13.4 Notes 418

(a) (b)

(c)

(d)

FIGURE 13.25: Multilocal events: (a) an asymptotic bitangent ray, (b) a tritangent ray,
(c) a cusp crossing, and (d) a triple point. After Petitjean et al. (1992, Figure 6).

will come back to visual hulls in Chapter 19.
There are many excellent textbooks on differential geometry, including the

accessible presentations found in do Carmo (1976) and Struik (1988). Our pre-
sentation is closer in spirit (if not in elegance) to the descriptive introduction to
differential geometry found in Hilbert and Cohn-Vossen’s (1952) wonderful book
Geometry and the Imagination.

The theorem linking the local shape of a solid to that of its contour and
proved in this chapter first appeared in Koenderink (1984). Our proof is different
from the original one, but it is close in spirit to the proof given by Koenderink
(1990) in his book Solid Shape (which, like Hilbert and Cohn-Vossen’s book, should
be required reading for anybody seriously interested in the geometric aspects of
computer vision). Our choice here was motivated by our reluctance to use any
formulas that require setting a particular coordinate system. Alternate proofs for
various kinds of projection geometries can be found in Brady et al. (1985), Arbogast
and Mohr (1991), Cipolla and Blake (1992), Vaillant and Faugeras (1992), and
Boyer (1996).

The material of Section 13.3 is largely based on the work of Koenderink and



Section 13.4 Notes 419

5

6
7

8

9

10
11

12

13

FIGURE 13.26: Top: A squash-shaped solid with the corresponding parabolic and flec-
nodal curves (left) and limiting bitangent developable (right). Bottom: Its (opaque)
orthographic aspect graph with (left) the view sphere cells and (right) the corresponding
aspects. Note that only 9 of the 14 cells are visible on the hemisphere shown here, and
that some of these (e.g., region 7) are quite small.

Van Doorn, including the seminal papers that introduced the idea of an aspect
graph, albeit under a different name (Koenderink and Van Doorn 1976b, 1979),
the article that presents in a very accessible manner the geometric foundations of
this shape representation (Koenderink 1986), and, of course, the somewhat more
demanding (but so rewarding for the patient student) book by Koenderink (1990).
See also Platonova (1981), Kergosien (1981), and Callahan and Weiss (1985). Sin-
gularity and catastrophe theories are discussed in many books, including Whitney
(1955), Arnol’d (1984), and Demazure (1989). See also Koenderink (1990) for a
discussion of why chairs wobble and Thom (1972) for an in-depth discussion of this
argument.

An algorithm for computing the aspect graph of a solid bounded by an alge-
braic surface can be found in Petitjean et al. (1992). It heavily relies on the ability
to solve systems of polynomial equations, and in particular on the numerical homo-
topy continuation method proposed by Morgan (1987) for finding all the roots of
a square system of multivariate polynomial equations. Symbolic methods such as
multivariate resultants (Macaulay 1916; Collins 1971; Canny 1988; Manocha 1992)
and cylindrical algebraic decomposition (Collins 1975; Arnon et al. 1984) are also
available, and they have been used by Rieger (1987, 1990, 1992) in a different al-
gorithm for constructing the aspect graph of an algebraic surface. It is probably
fair to say that real-life applications of aspect graphs have been limited, to say the



Section 13.4 Notes 420

least. Yet, approximate aspect graphs of polyhedra have been successfully used in
object localization tasks (Ikeuchi 1987; Ikeuchi and Kanade 1988). Variants include
Chakravarty (1982) and Hebert and Kanade (1985).

PROBLEMS

13.1. What is (in general) the shape of the silhouette of a sphere observed by a
perspective camera?

13.2. What is (in general) the shape of the silhouette of a sphere observed by an
orthographic camera?

13.3. Prove that the curvature κ of a planar curve in a point P is the inverse of the
radius of curvature r at this point.
Hint: Use the fact that sin u ≈ u for small angles.

13.4. Given a fixed coordinate system, let us identify points of E3 with their coordi-
nate vectors and consider a parametric curve x : I ⊂ R → R

3 not necessarily
parameterized by arc length. Show that its curvature is given by

κ =
||x′ × x

′′||

||x′||3
, (13.7)

where x′ and x′′ denote, respectively, the first and second derivatives of x

with respect to the parameter t defining it.
Hint: Reparameterize x by its arc length, and reflect the change of parameters
in the differentiation.

13.5. Prove that, unless the normal curvature is constant over all possible directions,
the principal directions are orthogonal to each other.

13.6. Let us denote by α the angle between the plane Π and the tangent to a curve
Γ and by β the angle between the normal to Π and the binormal to Γ, and by
κ the curvature at some point on Γ (Figure 13.13). Prove that if κa denotes
the apparent curvature of the image of Γ at the corresponding point, then

κa = κ
cos β

cos3 α
.

(Note: This result can be found in Koenderink [1990, p. 191].)
Hint: Use the fact that t × n = b, and write the coordinates of the vectors t,
n, and b in a coordinate system whose z-axis is orthogonal to the image plane,
and use Equation (13.7) to compute κa.

13.7. Let κu and κv denote the normal curvatures in conjugate directions u and v

at a point P , and let K denote the Gaussian curvature; prove that

K sin2 θ = κuκv ,

where θ is the angle between the u and v.
Hint: Relate the expressions obtained for the second fundamental form in the
bases of the tangent plane respectively formed by the conjugate directions and
the principal directions.

13.8. Show that the occluding contour is a smooth curve that does not intersect
itself.
Hint: Use the Gauss map.



Section 13.4 Notes 421

13.9. Show that the apparent curvature of any surface curve with tangent t is

κa =
κt

cos2 α
,

where α is the angle between the image plane and t.
Hint: Write the coordinates of the vectors t, n, and b in a coordinate system
whose z-axis is orthogonal to the image plane, and use Equation (13.3) and
Meusnier’s theorem.

13.10. Is it possible for an object with a single parabolic curve (such as a banana)
to have no cusp of Gauss at all? Why (or why not)?

13.11. Use an equation-counting argument to justify the fact that contact of order
six or greater between lines and surfaces does not occur for generic surfaces.
Hint: Count the parameters that define contact.

13.12. We saw that an asymptotic curve and its spherical image have perpendicular
tangents. Lines of curvature are the integral curves of the field of principal
directions. Show that these curves and their Gaussian image have parallel
tangents.

13.13. Use the fact that the Gaussian image of a parabolic curve is the envelope of
the asymptotic curves intersecting it to give an alternate proof that a pair of
cusps is created (or destroyed) in a lip or beak-to-beak event.

13.14. Draw the aspect graph of a torus and the corresponding visual events.
Hint: The parabolic curves of a torus are the two circles at its top and bottom
when it lies on its side. The flecnodal lines are two parallel circles in the central
hyperbolic part of the surface.



C H A P T E R 14

Range Data

This chapter discusses range images (or depth maps) that store, instead of brightness
or color information, the depth at which the ray associated with each pixel first
intersects the scene observed by a camera. In a sense, a range image is exactly
the desired output of stereo, motion, or other shape-from vision modules. In this
chapter, however, we will focus our attention on range images acquired by active
sensors that project some sort of light pattern on the scene, using it to avoid the
difficult and costly problem of establishing correspondences and construct dense
and accurate depth pictures. After a brief review of range-sensing technology,
this chapter will discuss image segmentation, multiple-image registration, three-
dimensional model construction, and object recognition, focusing on the aspects of
these problems that are specific to the range data domain. It will conclude with
a presentation of the pose estimation algorithm behind Kinect, the technology for
controlling video games with natural body motions introduced by Microsoft in 2010.

14.1 ACTIVE RANGE SENSORS

Triangulation-based range finders date back to the early seventies (Agin 1972; Shi-
rai 1972). They function along the same principles as passive stereo vision systems,
with one of the cameras being replaced by a source of controlled illumination (struc-
tured light) that avoids the correspondence problem mentioned in Chapter 7. For
example, a laser and a pair of rotating mirrors may be used to sequentially scan a
surface. In this case, as in conventional stereo, the position of the bright spot where
the laser beam strikes the surface of interest is found as the intersection of the beam
with the projection ray joining the spot to its image. Contrary to the stereo case,
however, the laser spot normally can be identified without difficulty because it is in
general much brighter than the other scene points (especially when a filter tuned
to the laser wavelength is placed in front of the camera), altogether avoiding the
correspondence problem. Alternatively, the laser beam can be transformed by a
cylindrical lens into a plane of light (Figure 14.1). This simplifies the mechanical
design of the range finder because it requires only one rotating mirror. More im-
portantly, perhaps, it shortens the time required to acquire a range image because
a laser stripe—the equivalent of a whole image column—can be acquired at each
frame. It should be noted that this setup does not introduce matching ambiguities
since the laser spot associated with an image pixel can be retrieved as the (unique)
intersection of the corresponding projection ray with the plane of light.

Variants of these two techniques include using multiple cameras to improve
measurement accuracy and exploiting (possibly time-coded) two-dimensional light
patterns to improve data acquisition speed. The main drawbacks of the active tri-
angulation technology are a relatively low acquisition speed, missing data at points
where the laser spot is hidden from the camera by the object itself, and missing
or erroneous data due to specularities. The latter difficulty is actually common to

422



Section 14.1 Active Range Sensors 423

Surface

Camera

Laser
p

P

FIGURE 14.1: A range sensor using a plane of light to scan the surface of an object.

all active ranging techniques: a purely specular surface will not reflect any light
in the direction of the camera unless it happens to lie in the corresponding mir-
ror direction. Worse, the reflected beam may induce secondary reflections, giving
false depth measurements. Additional difficulties include keeping the laser stripe
in focus during the entire scanning procedure, and the loss of accuracy inherent
in all triangulation techniques as depth increases (see the problems in Chapter 7;
intuitively this is due to the fact that depth is inversely proportional to disparity).
Several triangulation-based scanners are commercially available today. Figure 14.2
shows an example obtained using the Minolta VIVID range finder, which can ac-
quire a 200× 200 range image together with a registered 400× 400 color image in
0.6s, within an operating range of 0.6 to 2.5m.

FIGURE 14.2: Range data captured by the Minolta VIVID scanner. As in several other
figures in this chapter, the range image is displayed as a shaded mesh of (x, y, z(x, y))
points viewed in perspective. Courtesy of D. Huber and M. Hebert.

The second main approach to active ranging involves a signal transmitter, a
receiver, and electronics for measuring the time of flight of the signal during its
round trip from the range sensor to the surface of interest. Time-of-flight range
finders are normally equipped with a scanning mechanism, and the transmitter



Section 14.2 Range Data Segmentation 424

and receiver are often coaxial, eliminating the problem of missing data common
in triangulation approaches. There are three main classes of time-of-flight laser
range sensors: pulse time delay technology directly measures the time of flight of a
laser pulse; AM phase-shift range finders measure the phase difference between the
beam emitted by an amplitude-modulated laser and the reflected beam, a quantity
proportional to the time of flight; and finally, FM beat sensors measure the fre-
quency shift (or beat frequency) between a frequency-modulated laser beam and its
reflection, another quantity proportional to the round-trip flight time. Compared
to triangulation-based systems, time-of-flight sensors have the advantage of offering
a greater operating range (up to tens of meters), which is very valuable in outdoor
robotic navigation tasks.

New technologies continue to emerge, including range sensors equipped with
acoustico-optical scanning systems and capable of extremely high image acquisi-
tion rates, and range cameras that eliminate scanning altogether, using instead a
large array of receivers to analyze a laser pulse covering the entire field of view.
Two-dimensional light patterns are also making a very successful comeback with
the emergence of the cheap, real-time Kinect sensor developed by Primesense, for
example (Section 14.5).

14.2 RANGE DATA SEGMENTATION

This section adapts some of the edge detection and segmentation methods intro-
duced in Chapters 5 and 9 to the specific case of range images. As will be shown in
the rest of this section, the fact that surface geometry is readily available greatly
simplifies the segmentation process, mainly because this provides objective, physi-
cally meaningful criteria for finding surface discontinuities and merging contiguous
patches with a similar shape. But let us start by introducing some elementary
notions of analytical differential geometry, which will turn out to form the basis for
the approach to edge detection in range images discussed in this section.

14.2.1 Elements of Analytical Differential Geometry

Here we revisit the notions of differential geometry introduced in Chapter 13 in
an analytical setting. Specifically, we will assume that E3 has been equipped with
a fixed coordinate system and identify this space with R

3 and each point with
its coordinate vector, and consider a parametric surface defined as the smooth
(i.e., indefinitely differentiable) mapping x : U ⊂ R

2 → R
3 that associates with

any couple (u, v) in the open subset U of R2 the point x(u, v) in R
3. To ensure

that the tangent plane is well defined everywhere, we will assume that the partial

derivatives xu
def
= ∂x/∂u and xv

def
= ∂x/∂v are linearly independent. Indeed, let

α : I ⊂ R → U denote a smooth planar curve, with α(t) = (u(t), v(t)), then

β
def
= x ◦ α is a parameterized space curve lying on the surface. According to

the chain rule, a tangent vector to β at the point β(t) is u′(t)xu + v′(t)xv, and
it follows that the plane tangent to the surface in x(u, v) is parallel to the vector
plane spanned by the vectors xu and xv. The (unit) surface normal is thus

N =
1

||xu × xv||
(xu × xv).



Section 14.2 Range Data Segmentation 425

Let us consider a vector t = u′xu + v′xv in the tangent plane at the point x.
It is easy to show that the second fundamental form is given by1

II(t, t) = t · dN (t) = eu′2 + 2fu′v′ + gv′
2
, where

⎧⎨
⎩

e = −N · xuu,
f = −N · xuv,
g = −N · xvv.

Note that the vector t does not (in general) have unit norm. Let us define
the first fundamental form as the bilinear form that associates with two vectors in

the tangent plane their dot product, i.e., I(u,v)
def
= u · v. We can write

I(t, t) = ||t||2 = Eu′2 + 2Du′v′ +Gv′
2
, where

⎧⎨
⎩

E = xu · xu,
F = xu · xv,
G = xv · xv,

and it follows immediately that the normal curvature in the direction t is given by

κt =
II(t, t)

I(t, t)
=

eu′2 + 2fu′v′ + gv′
2

Eu′2 + 2Du′v′ +Gv′
2 .

Likewise, it is easily shown that the matrix associated with the differential of
the Gauss map in the basis (xu,xv) of the tangent plane is

dN(t) =

(
e f
f g

)(
E F
F G

)−1

;

thus, since the Gaussian curvature is equal to the determinant of the operator dN ,
it is given by

K =
eg − f2

EG− F 2 .

Asymptotic and principal directions are also easily found by using this param-
eterization: since an asymptotic direction verifies II(t, t) = 0, the corresponding

values of u′ and v′ are the (homogeneous) solutions of eu′2 + 2fu′v′ + gv′2 = 0.
The principal directions, on the other hand, can be shown to verify

v′2 −u′v′ u′2

E F G
e f g

= 0. (14.1)

Example 1. An important example of parametric surface is provided by Monge
patches: consider the surface x(u, v) = (u, v, h(u, v)). In this case we have⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
N =

1

(1 + h2
u + h2

v)
1/2 (−hu,−hv, 1)

T ,

E = 1 + h2
u, F = huhv, G = 1 + h2

v,

e = − huu

(1 + h2
u + h2

v)
1/2 , f = − huv

(1 + h2
u + h2

v)
1/2 , g = − hvv

(1 + h2
u + h2

v)
1/2 ,

1This definition is in keeping with the orientation conventions defined in Chapter 13. The
coefficients e, f, g are often defined with opposite signs (do Carmo 1976; Struik 1988).



Section 14.2 Range Data Segmentation 426

and the Gaussian curvature has a simple form:

K =
huuhvv − h2

uv

(1 + h2
u + h2

v)
2 .

Example 2. Another fundamental example is provided by the local parameter-
ization of a surface in the coordinate system formed by its principal directions.
This is of course a special case of a Monge patch. Writing that the origin of the
coordinate system lies in the tangent plane immediately yields h(0, 0) = hu(0, 0) =
hv(0, 0) = 0. As expected, the normal is simply N = (0, 0, 1)T at the origin, and
the first fundamental form is the identity there. As shown in the problems, it fol-
lows easily from (14.1) that a necessary and sufficient condition for the coordinate
curves of a parameterized surface to be principal directions is that f = F = 0 (this
implies, for example, that the lines of curvature of a surface of revolution are its
meridians and parallels). In our context we already know that F = 0 and this
condition reduces to huv(0, 0) = 0. The principal curvatures in this case are simply
κ1 = e/E = −huu(0, 0) and κ2 = g/G = −hvv(0, 0). In particular, we can write a
Taylor expansion of the height function in the neighborhood of (0, 0) as

h(u, v) = h(0, 0) + (u, v)

(
hu

hv

)
+

1

2
(u, v)

(
huu huv

huv hvv

)(
u
v

)
+ ε(u2 + v2)3/2,

where the argument (0, 0) for the derivatives of h has been omitted for concise-
ness. This shows that the best second-order approximation to the surface in this
neighborhood is the paraboloid defined by

h(u, v) = −1

2
(κ1u

2 + κ2v
2),

i.e., the expression already encountered in Chapter 13.

14.2.2 Finding Step and Roof Edges in Range Images

This section presents a method for finding various types of edges in range images
(Ponce and Brady 1987). This technique combines tools from analytical differential
geometry and scale-space image analysis to detect and locate depth and orientation
discontinuities in range data. Figure 14.3 shows a range image of a bottle of motor
oil that will serve to illustrate the concepts introduced in this section.

The surface of the oil bottle can be modeled as a parametric surface z(x, y)
in the coordinate system attached to the sensor, and it presents two types of dis-
continuities: steps, where the actual depth is discontinuous, and roofs, where the
depth is continuous but the orientation changes abruptly. As shown in the next
section, it is possible to characterize the behavior of analytical models of step and
roof edges under Gaussian smoothing and to show that they respectively give rise
to parabolic points and extrema of the dominant principal curvature in the corre-
sponding principal direction. This is the basis for the multi-scale edge detection
scheme outlined in Algorithm 14.1.



Section 14.2 Range Data Segmentation 427

(a) (b)

roof

step

step

step

roof

FIGURE 14.3: An oil bottle: (a) a range image of the bottle (the background has been
thresholded away) and (b) a sketch of its depth and orientation discontinuities. This 128×
128 picture was acquired using the INRIA range finder (Boissonnat and Germain 1981),
with a depth accuracy of about 0.5mm.

1. Smooth the range image with Gaussian distributions at a set of scales σi

(i = 1, . . . , 4). Compute the principal directions and curvatures at each point
of the smoothed images zσi(x, y).

2. Mark in each smoothed image zσi(x, y) the zero-crossings of the Gaussian
curvature and the extrema of the dominant principal curvature in the corre-
sponding principal direction.

3. Use the analytical step and roof models to match the features found across
scales and output the points lying on these surface discontinuities.

Algorithm 14.1: The Model-Based Edge-Detection Algorithm of Ponce and
Brady (1987).

Edge models. In the neighborhood of a discontinuity, the shape of a surface
changes much faster in the direction of the discontinuity than in the orthogonal
direction. Accordingly, we will assume in the rest of this section that the direc-
tion of the discontinuity is one of the principal directions, with the corresponding
(dominant) principal curvature changing rapidly in this direction, while the other
one remains roughly equal to zero. This will allow us to limit our attention to
cylindrical models of surface discontinuities, i.e., models of the form z(x, y) = h(x).
These models are of course only intended to be valid in the neighborhood of an
edge, with the direction of the x − z plane being aligned with the corresponding
dominant principal direction.

In particular, a step edge can be modeled by two sloped half-planes separated
by a vertical gap, with normals in the x− z plane. This model is cylindrical, and it
is sufficient to study its univariate formulation (Figure 14.4, left), whose equation
is

z =

{
k1x+ c when x < 0,
k2x+ c+ h when x > 0.

(14.2)



Section 14.2 Range Data Segmentation 428

k1
k1

k2

k2

x

z

x

z

c

h

Step Model Roof Model

FIGURE 14.4: Edge models: a step consists of two half-planes separated by a distance h
at the origin, and a roof consists of two half-planes meeting at the origin with different
slopes.

In this expression, c and h are constants, with h measuring the size of the
gap and k1 and k2 the slopes of the two half-planes. Introducing the new constants
k = (k1 + k2)/2 and δ = k2 − k1, it is easy to show (see problems) that convolving
the z function with the second derivative of a Gaussian yields

z′′σ
def
=

∂2

∂σ2Gσ ∗ z =
1

σ
√
2π

(δ − hx

σ2 ) exp(−
x2

2σ2 ). (14.3)

As shown in the problems of Chapter 13, the curvature of a twisted parametric
curve is κ = ||x′ × x′′||/||x′||3. In the case of plane curves, the curvature can be
given a meaningful sign, and this formula becomes κ = (x′×x′′)/||x′||3, where “×”
this time denotes the operator associating with two vectors in R

2 the determinant
of their coordinates. It follows that the corresponding curvature κσ vanishes in
xσ = σ2δ/h. This point is at the origin only when k1 = k2, and its position
is a quadratic function of σ otherwise. This suggests identifying step edges with
zero-crossings of one of the principal curvatures (or equivalently of the Gaussian
curvature), whose position changes with scale. To characterize qualitatively the
behavior of these features as a function of σ, let us also note that because z′′σ = 0
in xσ, we have

κ′′
σ

κ′
σ

(xσ) =
z′′′′σ

z′′σ
(xσ) = −2

δ

σ
;

in other words, the ratio of the second and first derivatives of the curvature is
independent of σ.

An analytical model for roof edges is obtained by taking h = 0 and δ �= 0 in
the step model (Figure 14.4, right). In this case, it is easy to show (see problems)
that

κσ =
1

σ
√
2π

δ exp(− x2

2σ2
)⎡

⎣1 +
(
k +

δ√
2π

∫ x/σ

0

exp(−u2

2
)du

)2
⎤
⎦3/2

. (14.4)

It follows that, when x2 = λx1 and σ2 = λσ1, we must have κσ2(x2) =
κσ1(x1)/λ. In turn, the maximum value of |κσ| must be inversely proportional to



Section 14.2 Range Data Segmentation 429

σ, and it is reached at a point whose distance from the origin is proportional to σ.
This maximum tends toward infinity as σ tends toward zero, indicating that roofs
can be found as local curvature extrema. In actual range images, these extrema
should be sought in the direction of the dominant principal direction, in keeping
with our assumptions about local shape changes in the vicinity of surface edges.

Computing the principal curvatures and directions. According to the mod-
els derived in the previous section, instances of step and roof edges can be found
as zero crossings of the Gaussian curvature and extrema of the dominant principal
curvature in the corresponding direction. Computing these differential quantities
requires estimating the first and second partial derivatives of the depth function
at each point of a range image. This can be done, as in Chapter 5, by convolv-
ing the images with the derivatives of a Gaussian distribution. However, range
images are different from usual pictures. For example, the pixel values in a pho-
tograph are usually assumed to be piecewise constant in the neighborhood of step
edges,2 which is justified for Lambertian objects because the shape of a surface is,
to first order, piecewise-constant near an edge, with a piecewise-planar intensity in
that case. On the other hand, piecewise-constant (local) models of range images
are of course unsatisfactory. Likewise, the maximum values of contrast along the
significant edges of a photograph usually are assumed to have roughly the same
magnitude. In range images, however, there are two different types of step edges:
the large depth discontinuities that separate solid objects from each other and from
their background, and the much smaller gaps that usually separate patches of the
same surface. The edge detection scheme discussed in this section is aimed at the
latter class of discontinuities. Blindly applying Gaussian smoothing across object
boundaries will introduce radical shape changes that might overwhelm the surface
details we are interested in (Figure 14.5, left and middle).

FIGURE 14.5: A schematic illustration of range data smoothing. Left: noisy range
data near a (large) depth discontinuity. Middle: result of Gaussian smoothing. Right:
smoothing using computational molecules removes the noise but preserves the essential
shape features.

This suggests finding the major depth discontinuities first (thresholding will
suffice in many cases), then somehow restricting the smoothing process to the sur-
face patches enclosed by these boundaries. This can be achieved by convolving the
range image with computational molecules (Terzopoulos 1984), i.e., linear templates

2This corresponds to taking k1 = k2 = 0 in the model given in the previous section; note that
in that case, zero crossings do not move as scale changes.



Section 14.2 Range Data Segmentation 430

that, added together, form a 3× 3 averaging mask, e.g.,

1
2

1
+ 2 4 2 +

2
4
2

+
1

2
1

=

1 2 1
2 12 2
1 2 1

.

Repeatedly convolving the image with the 3 × 3 mask (normalized so its
weights add to one) yields, according to the central limit theorem, a very good
approximation of Gaussian smoothing with a mask whose σ value is proportional
to

√
n after n iterations. To avoid smoothing across discontinuities, the molecules

crossing these discontinuities are not used, while the remaining ones are once again
normalized so the total sum of the weights is equal to one. The (idealized) effect is
shown in Figure 14.5 (right).

After the surface has been smoothed, the derivatives of the height function can
be computed via finite differences. The gradient of the height function is computed
by convolving the smoothed image with the masks:

∂

∂x
=

1

6

−1 0 1
−1 0 1
−1 0 1

and
∂

∂y
=

1

6

1 1 1
0 0 0

−1 −1 −1
,

and the Hessian is computed by convolving the smoothed image with the masks

∂2

∂x2
=

1

3

1 −2 1
1 −2 1
1 −2 1

,
∂2

∂x∂y
=

1

4

−1 0 1
0 0 0
1 0 −1

, and
∂2

∂y2
=

1

3

1 1 1
−2 −2 −2
1 1 1

.

Once the derivatives are known, the principal directions and curvatures are
easily computed. In practice, using this method with 20 to 80 iterations of compu-
tational molecule smoothing gives satisfactory results for moderately noisy range
images. For example, using 20 iterations on the oil bottle yields principal directions
which are, as expected, aligned with the meridians and parallels of this surface of
revolution.

Matching features across scales. Given the principal curvatures and direc-
tions, parabolic points can be detected as (non-directional) zero-crossings of the
Gaussian curvature, whereas local extrema of the dominant curvature along the
corresponding principal direction can be found using the non-maximum suppression
techniques discussed in Chapter 5. Although there may be a considerable amount of
noise at fine resolutions (i.e., after a few iterations only), the situation improves as
smoothing proceeds. Features due to noise can also be eliminated, at least in part,
via thresholding of the zero-crossing slope for parabolic points, and of the curvature
magnitude for extrema of principal curvatures. Nonetheless, experiments show that
smoothing and thresholding are not sufficient to eliminate all irrelevant features.
In particular, as illustrated by Figure 14.6 (left), curvature extrema parallel to the
axis of the oil bottle show up more and more clearly as smoothing proceeds. These
are due to the fact that points near the occluding boundary of the bottle do not get
smoothed as much by the computational molecules as points closer to its center.



Section 14.2 Range Data Segmentation 431

FIGURE 14.6: Finding step and roof edges on the oil bottle. Left: The features found
after 20, 40, 60, and 80 smoothing iterations and thresholding. The thresholds have been
chosen empirically to eliminate most false features while retaining those corresponding to
true surface discontinuities. Still, artifacts such as the extrema of curvature parallel to the
axis of the bottle subsist. Right: the output of model-based edge detection. The three
step edges and two roof discontinuities of the oil bottle have been correctly identified.
Reprinted from “Towards a Surface Primal Sketch,” by J. Ponce and J.M. Brady, in
THREE-DIMENSIONAL MACHINE VISION, T. Kanade (ed.), pp. 195–240, Kluwer
Academic Publishers, (1987). c©1987 Kluwer Academic Publishers.

A multi-scale approach to edge detection solves this problem. Features are
tracked from coarse to fine scales, with all features at a given scale not having
an ancestor at a coarser one being eliminated. The evolution of the principal
curvatures and their derivatives is also monitored. Surviving parabolic features
such that the ratio κ′′

σ/κ
′
σ remains (roughly) constant across scales are output as

step edge points, whereas directional extrema of the dominant curvature such that
σκσ remains (roughly) constant are output as roof points. Finally, because, for both
our models, the distance between the true discontinuity and the corresponding
zero-crossing or extremum increases with scale, the finest scale is used for edge
localization. Figure 14.6 (right) shows the results of applying this strategy to the
oil bottle.

14.2.3 Segmenting Range Images into Planar Regions

We saw in the last section that edge detection is implemented by quite different
processes in photographs and depth maps. The situation is similar for image seg-
mentation into regions. In particular, meaningful segmentation criteria are elusive
in the intensity domain because pixel brightness is only a cue to physical properties
such as shape or reflectance. In the range domain, however, geometric information
is directly available, making it possible to use, say, the average distance between
a set of surface points and the plane best fitting them as an effective segmenta-
tion criterion. The region-growing technique of Faugeras and Hebert (1986) is a
good example of this approach. This algorithm iteratively merges planar patches
by maintaining a graph whose nodes are the patches and whose arcs link adjacent
patches. Each arc is assigned a cost corresponding to the average error between the



Section 14.3 Range Image Registration and Model Acquisition 432

points of the two patches and the plane best fitting these points. The best arc is al-
ways selected, and the corresponding patches are merged. Note that the remaining
arcs associated with these patches must be deleted while new arcs linking the new
patch to its neighbors are introduced. The situation is illustrated by Figure 14.7.

d

f

g

bd

c

e

a d

g

f

a b

c

d

ear
c

co
st

FIGURE 14.7: This diagram illustrates one iteration of the region-growing process during
which the two patches incident to the minimum-cost arc labeled a are merged. The heap
shown in the bottom part of the figure is updated as well: the arcs a, b, c, and e are
deleted, and two new arcs f and g are created and inserted in the heap.

The graph structure is initialized by using a triangulation of the range data,
and it is updated efficiently by maintaining a heap of active arcs. The triangulation
can be constructed either directly from a range image (by splitting the quadrilaterals
associated with the pixels along one of their diagonals) or from a global surface
model constructed from multiple images, as described in the next section. The
heap storing the active arcs can be represented, for example, by an array of buckets
indexed by increasing costs, which supports fast insertion and deletion (Figure 14.7,
bottom). Figure 14.8 shows an example, where the complex shape of an automobile
part is approximated by 60 planar patches.

14.3 RANGE IMAGE REGISTRATION AND MODEL ACQUISITION

Geometric models of real objects are useful in manufacturing, e.g., for process
and assembly planning or inspection. Closer to the theme of this book, they are
also key components of many object recognition systems, and are more and more
in demand in the entertainment industry, as synthetic pictures of real objects now
routinely appear in feature films and video games (we will come back to this issue in
much greater detail in Chapter 19). Range images are an excellent source of data
for constructing accurate geometric models of real objects, but a single picture
will, at best, show half of the surface of a given solid, and the construction of
complete object models requires the integration of multiple range images. This
section addresses the dual problems of registering multiple images in the same
coordinate system and fusing the three-dimensional data provided by these pictures
into a single integrated surface model. Before attacking these two problems, let



Section 14.3 Range Image Registration and Model Acquisition 433

(a) (b)

FIGURE 14.8: The Renault part: (a) photo of the part and (b) its model. Reprinted from
“The Representation, Recognition, and Locating of 3D Objects,” by O.D. Faugeras and
M. Hebert, International Journal of Robotics Research, 5(3):27–52, (1986). c© 1986 Sage
Publications. Reprinted by permission of Sage Publications.

us introduce quaternions, which will provide us with linear methods for estimating
rigid transformations from point and plane correspondences in both the registration
context of this section and the recognition context of the next one. We will assume
in the rest of this chapter that E3 has been equipped with a fixed coordinate system
and identify this space with R

3 and each point with its coordinate vector.

14.3.1 Quaternions

Quaternions were invented by Hamilton (1844). Like complex numbers in the plane,
they can be used to represent rotations in space in a very convenient manner. A
quaternion q is defined by its real part, a scalar a, and its imaginary part, a vector
α in R

3, and it is usually denoted by q = a + α. This is justified by the fact
that real numbers can be identified with quaternions with a zero imaginary part,
and vectors can be identified with quaternions with a zero real part, while addition
between quaternions is defined by

(a+α) + (b+ β)
def
= (a+ b) + (α+ β).

The multiplication of a quaternion by a scalar is defined naturally by λ(a +

α)
def
= λa+ λα, and these two operations give quaternions the structure of a four-

dimensional vector space.
It is also possible to define a multiplication operation that associates with two

quaternions the quaternion

(a+α)(b+ β)
def
= (ab−α · β) + (aβ + bα+α× β).

Quaternions, equipped with the operations of addition and multiplication as
defined above, form a non-commutative field, whose zero and unit elements are
respectively the scalars 0 and 1.

The conjugate of the quaternion q = a+α is the quaternion q̄
def
= a−α with

opposite imaginary part. The squared norm of a quaternion is defined by

||q||2 def
= qq̄ = q̄q = a2 + ||α||2,



Section 14.3 Range Image Registration and Model Acquisition 434

and it is easily verified that ||qq′|| = ||q|| ||q′|| for any pair of quaternions q and q′.
Now, it can be shown that the quaternion

q = cos
θ

2
+ sin

θ

2
u

represents the rotation R of angle θ about the unit vector u in the following sense:
if α is some vector in R

3, then
Rα = qαq̄. (14.5)

Note that ||q|| = 1 and that −q also represents the rotation R. Reciprocally,
the rotation matrix R associated with a given unit quaternion q = a + α with
α = (b, c, d)T is

R =

⎛
⎝a2 + b2 − c2 − d2 2(bc− ad) 2(bd+ ac)

2(bc+ ad) a2 − b2 + c2 − d2 2(cd− ab)
2(bd− ac) 2(cd+ ab) a2 − b2 − c2 + d2

⎞
⎠, (14.6)

a fact easily deduced from Equation (14.5). (Note that the four parameters a, b, c, d
are not independent since they satisfy the constraint a2 + b2 + c2 + d2 = 1.)

Finally, if q1 and q2 are unit quaternions, and R1 and R2 are the correspond-
ing rotation matrices, the quaternions q1q2 and −q1q2 are both representations of
the rotation matrix R1R2.

14.3.2 Registering Range Images Using the Iterative Closest-Point Method

Besl and McKay (1992) have proposed an algorithm capable of registering two sets
of three-dimensional points, i.e., of computing the rigid transformation that maps
the first point set onto the second one. Their algorithm simply minimizes the aver-
age distance between the two point sets by iterating over the following steps: first
establish correspondences between scene and model features by matching every
scene point to the model point closest to it, then estimate the rigid transforma-
tion mapping the scene points onto their matches, and finally apply the computed
displacement to the scene. The iterations stop when the change in mean distance
between the matched points falls below some preset threshold. Pseudocode for this
iterated closest-point (or ICP) algorithm is given below.

It is easy to show that Algorithm 14.2 forces the error E to decrease monotoni-
cally with each iteration; indeed, the average error decreases during the registration
stage, and the individual errors decrease as well during the determination of the
closest point pairs. By itself, this does not guarantee convergence to a global (or
even local) minimum, and a reasonable guess for the rigid transformation sought by
the algorithm must be provided. A variety of methods are available for that pur-
pose, including roughly sampling the set of all possible transformations, and using
the moments of both the scene and model point sets to estimate the transformation.

Finding the closest point pairs. At every iteration of the algorithm, finding
the closest pointM in the model to a given (registered) scene point S takes (naively)
O(n) time, where n is the number of model points. In fact, various algorithms can
be used to answer such a nearest-neighbor query in R

3 in sublinear time at the cost



Section 14.3 Range Image Registration and Model Acquisition 435

The auxiliary function Initialize-Registration uses some global registration method,
based on moments, for example, to compute a rough initial estimate of the rigid
transformation mapping the scene onto the model.
The function Return-Closest-Pairs returns the indices (i, j) of the points in the
registered scene and the model such that point number j is the closest to point
number i.
The function Update-Registration estimates the rigid transformation between se-
lected pairs of points in the scene and the model.
The function Apply-Registration applies a rigid transformation to all the points in
the scene.

Function ICP(Model, Scene);
begin
E’ ← +∞;
(Rot, Trans) ← Initialize-Registration(Scene, Model);
repeat

E ← E’;
Registered-Scene ← Apply-Registration(Scene, Rot, Trans);
Pairs ← Return-Closest-Pairs(Registered-Scene, Model);
(Rot, Trans, E’) ← Update-Registration(Scene, Model, Pairs, Rot, Trans);
until |E’ − E| < τ ;

return (Rot, Trans);
end.

Algorithm 14.2: The Iterative Closest-Point Algorithm of Besl and McKay (1992).

of additional preprocessing of the model, using k-d trees (Friedman et al. 1977), or
more complex data structures. For example, the general randomized algorithm of
Clarkson (1988) takes preprocessing time O(n2+ε), where ε is an arbitrarily small
positive number, and query time O(log n). The efficiency of repeated queries can
also be improved by caching the results of previous computations. For example,
Simon et al. (1994) store at each iteration of the ICP algorithm the k closest model
points to each scene point (a typical value for k is 5). Since the incremental update
of the rigid transformation normally is small, it is likely that the closest neighbor
of a point after an iteration will be among its k closest neighbors from the previous
one. It is in fact possible to determine efficiently and conclusively whether the
closest point is in the cached set; see Simon, Hebert, and Kanade (1994) for details.

Estimating the rigid transformation. Under the rigid transformation defined
by the rotation matrixR and the translation vector t, a point xmaps onto the point
x′ = Rx+ t. Thus, given n pairs of matching points xi and x′

i, with i = 1, . . . , n,
we seek the rotation matrix R and translation vector t minimizing the error

E =

n∑
i=1

||x′
i −Rxi − t||2.



Section 14.3 Range Image Registration and Model Acquisition 436

Let us first note that the value of t minimizing E must satisfy

0 =
∂E

∂t
= −2

n∑
i=1

(x′
i −Rxi − t),

or

t = x̄′ −Rx̄, where x̄
def
=

1

n

n∑
i=1

xi and x̄′ def
=

1

n

n∑
i=1

x′
i (14.7)

denote respectively the centroids of the two sets of points xi and x′
i.

Introducing the centered points yi = xi − x̄ and y′
i = x′

i − x̄ (i = 1, . . . , n)
yields

E =

n∑
i=1

||y′
i −Ryi||2.

Quaternions now can be used to minimize E as follows: let q denote the
quaternion associated with the matrix R. Using the fact that ||q||2 = 1 and the
multiplicativity properties of the quaternion norm allows us to write

E =

n∑
i=1

||y′
i − qyiq̄||2||q||2 =

n∑
i=1

||y′
iq − qyi||2.

As shown in the problems, this allows us to rewrite the rotational error as
E = qTBq, where B =

∑n
i=1 AT

i Ai, and

Ai =

(
0 yT

i − y′
i
T

y′
i − yi [yi + y′

i]×

)
.

Note that the matrix Ai is antisymmetric with (in general) rank 3, but that
the matrix B will have, in the presence of noise, rank 4. As shown in Chapter
22, minimizing E under the constraint ||q||2 = 1 is a (homogeneous) linear least-
squares problem whose solution is the eigenvector of B associated with the smallest
eigenvalue of this matrix. Once R is known, t is obtained from Equation (14.7).

Results. Figure 14.9 shows an example, where two range images of an African
mask are matched by the algorithm. The average distance between matches is
0.59mm for this 9cm object.

14.3.3 Fusing Multiple Range Images

Given a set of registered range images of a solid object, it is possible to construct an
integrated surface model of this object. In the approach proposed by Curless and
Levoy (1996), this model is constructed as the zero set S of a volumetric density
function D : R3 → R, i.e., as the set of points (x, y, z) such that D(x, y, z) = 0.
Like any other level set of a continuous density function, S is by construction guar-
anteed to be a closed, “watertight” surface, although it may have several connected
components (Figure 14.10).

The difficulty, of course, is to construct an appropriate density function from
registered range measurements. Curless and Levoy embed the corresponding surface



Section 14.3 Range Image Registration and Model Acquisition 437

(a) (b) (c)

FIGURE 14.9: Registration results: (a) a range image serving as model for an African
mask; (b) a (decimated) view of the model, serving as scene data; (c) a view of the two
datasets after registration. Reprinted from “A Method for Registration of 3D Shapes,”
by P.J. Besl and N.D. McKay, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 14(2):238–256, (1992). c© 1992 IEEE.

z

y

x

Plane z=a

D=aLevel curve

FIGURE 14.10: A 2D illustration of volumetric density functions and their level sets. In
this case, the “volume” is of course the (x, y) plane, and the “surface” is a curve in this
plane, with two connected components in the example shown here.

fragments into a cubic grid, and assign to each cell of this grid, or voxel, a weighted
sum of the signed distances between its center and the closest point on the surface
intersecting it (Figure 14.11, left). This averaged signed distance is the desired
density function, and its zero set can be found using classical techniques, such as
the marching cubes algorithm developed by Lorensen and Cline (1987) to extract
isodensity surfaces from volumetric medical data.

Missing surface fragments corresponding to unobserved parts of the scene are
handled by initially marking all voxels as unseen, or equivalently assigning them
a depth equal to some large positive value (standing for +∞), then assigning as
before to all voxels close to the measured surface patches the corresponding signed
distance, and finally carving out (i.e., marking as empty, or having a large negative
depth standing for −∞) the voxels that lie between the observed surface patches
and the sensor (Figure 14.11, right).

Figure 14.12 shows an example of model built from multiple range images
of a Buddha statuette acquired with a Cyberware 3030 MS optical triangulation



Section 14.4 Object Recognition 438

OO

A

B

Cb
ca

observations of the same scene

Merging different Filling

the gaps

FIGURE 14.11: A 2D illustration of the Curless-Levoy method for fusing multiple range
images. In the left part of the figure, three views observed by the same sensor located
at the point O are merged by computing the zero set of a weighted average of the signed
distances between voxel centers (e.g., points A, B, and C) and surface points (e.g., a, b,
and c) along viewing rays. In general, distances to different sensors would be used instead.
The light-gray area in the right part of the figure is the set of voxels marked as empty in
the gap-filling part of the procedure.

scanner, as well as a physical model constructed from the geometric one via stereo-
lithography (Curless and Levoy 1996).

14.4 OBJECT RECOGNITION

We now turn to actual object recognition from range images. The registration
techniques introduced in the previous section will play a crucial role in the two
algorithms discussed in this one.

14.4.1 Matching Piecewise-Planar Surfaces Using Interpretation Trees

The recognition algorithm proposed by Faugeras and Hebert (1986) is a recursive
procedure exploiting rigidity constraints to efficiently search an interpretation tree
for the path(s) corresponding to the best sequence(s) of matches. The basic pro-
cedure is given in pseudocode in Algorithm 14.3. To correctly handle occlusions
(and the fact that, as noted earlier, a range finder will “see,” at best, one half of
the object facing it), at every stage of the search, the algorithm must consider the
possibility that a model plane might not match any scene plane. This is done by
always incorporating in the list of potential matches of a given plane a token “null”
plane.

Selecting potential matches. The selection of potential matches for a given
model plane is based on various criteria depending on the number of correspon-
dences already established, with each new correspondence providing new geometric
constraints and more stringent criteria. At the beginning of the search, we know
only that a model plane with area A should be matched to scene planes with a com-



Section 14.4 Object Recognition 439

FIGURE 14.12: 3D Fax of a statuette of a Buddha. From left to right: photograph
of the statuette; range image; integrated 3D model; model after hole filling; and
physical model obtained via stereolithography. Courtesy of Marc Levoy. Reprinted
from “A Volumetric Method for Building Complex Models from Range Images,”
by B. Curless and M. Levoy, Proc. SIGGRAPH, (1996). c© 1996 ACM, Inc.
http:// doi.acm. org/ 10. 1145/237170.237269 Reprinted by permission..

patible area, i.e., in the range [αA, βA]. Reasonable values for the two thresholds
might be 0.5 and 1.1, which allows for some discrepancy between the unoccluded
areas, and also affords a degree of occlusion up to 50%.

After the first correspondence has been established, it is still too early to
try and estimate the rigid transformation mapping the model onto the scene, but
it is clear that the angle between the normals to any matching planes should be
(roughly) equal to the angle θ between the normals to the first pair of planes,
say those that lie in the interval [θ − ε, θ + ε]. The normals to the corresponding
planes lie in a band of the Gauss sphere, and they can be retrieved efficiently by
discretizing this sphere and associating to each cell a bucket that stores the scene
planes whose normal falls into it (Figure 14.13).

A second pairing is sufficient to completely determine the rotation separating
the model from its instance in the scene: this is geometrically clear (and will be con-
firmed analytically in the next section) since a pair of matching vectors constrains
the rotation axis to lie in the plane bisecting these vectors. Two pairs of matching
planes determine the axis of rotation as the intersection of the corresponding bisect-
ing planes, and the rotation angle is readily computed from either of the matches.
Given the rotation and a third model plane, one can predict the orientation of the
normal to its possible matches in the scene, which can be recovered efficiently using
once again the discrete Gauss sphere mentioned before. After three pairings have
been found, the translation can also be estimated and used to predict the distance
between the origin and any scene plane matching a fourth scene plane. The same
is true for any further pairing.

http://doi.acm.org/10.1145/237170.237269


Section 14.4 Object Recognition 440

The recursive function Match returns the best set of matching plane pairs found by
recursively visiting the interpretation tree. It is initially called with an empty list
of pairs and null values for the rotation and translation arguments rot and trans.
The auxiliary function Potential-Matches returns the subset of the planes in the
scene that are compatible with the model plane Π and the current estimate of the
rigid transformation mapping the model planes onto their scene matches (see text
for details).
The auxiliary function Update-Registration-2 uses the matched plane pairs to up-
date the current estimate of the rigid transformation.

Function Match(model, scene, pairs, rot, trans);
begin
bestpairs ← nil; bestscore ← 0;
for Π in model do

for Π′ in Potential-Matches(scene, pairs, Π, rot, trans) do
rot ← Update-Registration-2(pairs, Π, Π′, rot, trans);
(score, newpairs) ← Match(model−Π, scene−Π′, pairs+(Π,Π′), rot, trans);
if score>bestscore then bestscore ← score; bestpairs ← newpairs endif;
endfor;

endfor;
return bestpairs;
end.

Algorithm 14.3: The Plane-Matching Algorithm of Faugeras and Hebert (1986).

Estimating the rigid transformation. Let us consider a plane Π defined by
the equation n · x − d = 0 in some fixed coordinate system. Here, n denotes the
unit normal to the plane and d its (signed) distance from the origin. Under the
rigid transformation defined by the rotation matrix R and the translation vector t,
a point x maps onto the point x′ = Rx+ t, and Π maps onto the plane Π′ whose
equation is n′ · x′ − d′ = 0, with{

n′ = Rn,
d′ = n′ · t+ d.

Thus, estimating the rigid transformation that maps n planes Πi onto the
matching planes Π′

i (i = 1, . . . , n) amounts to finding the rotation matrix R that
minimizes the error

Er =
n∑

i=1

||n′
i −Rni||2

and the translation vector t that minimizes

Et =

n∑
i=1

(d′i − di − n′
i · t)2.

The rotation R minimizing Er can be computed, exactly as in Section 14.4.1, by
using the quaternion representation of matrices and solving an eigenvector problem.



Section 14.4 Object Recognition 441

θ

θ+ε

θ−ε

u

v

FIGURE 14.13: Finding all vectors v that make an angle in the [θ − ε, θ + ε] range with a
given vector u. It should be noted that the unit sphere does not admit tesselations with
an arbitrary level of detail by regular (spherical) polygons. The tesselation shown in the
diagram is made of hexagons with unequal edge lengths. See, for example, (Horn 1986,
Chap. 16) for a discussion of this problem and various tesselation schemes.

The translation vector tminimizing Et is the solution of a (non-homogeneous) linear
least-squares problem, whose solution can be found using the techniques presented
in Chapter 22.

Results. Figure 14.14 shows recognition results obtained using a bin of Renault
parts such as the one shown in Figure 14.8. The range image of the bin has been
segmented into planar patches using the technique presented in Section 14.2.3. The
matching algorithm is run three times on the scene, with patches matched during
each run removed from the scene before the next iteration. As shown by the figure,
the three instances of the part present in the bin are correctly identified, and the
accuracy of the pose estimation process is attested by the reprojection into the
range image of the model in the computed pose.

14.4.2 Matching Free-Form Surfaces Using Spin Images

As demonstrated in Section 14.2.2, differential geometry provides a powerful lan-
guage for describing the shape of a surface locally, i.e., in a small neighborhood of
each one of its points. On the other hand, the region-growing algorithm discussed
in Section 14.2.3 is aimed at constructing a globally consistent surface description in
terms of planar patches. We introduce in this section a semi-local surface represen-
tation, the spin image of Johnson and Hebert (1998, 1999), that captures the shape
of a surface in a relatively large neighborhood of each one of its points. As will be
shown in the rest of this section, the spin image is invariant under rigid transfor-
mations, and it affords an efficient algorithm for pointwise surface matching, thus
completely bypassing segmentation in the recognition process.

Spin image definition. Let us assume as in Section 14.2.3 that the surface Σ of
interest is given in the form of a triangular mesh. The (outward-pointing) surface
normal at each vertex can be estimated by fitting a plane to this vertex and its
neighbors, turning the triangulation into a net of oriented points. Given an oriented



Section 14.4 Object Recognition 442

(a) (b)

(c) (d)

FIGURE 14.14: Recognition results: (a) a bin of parts, and (b)–(d) the three instances of
the Renault part found in that bin. In each case, the model is shown both by itself in
the position and orientation estimated by the algorithm, as well as superimposed (dotted
lines) in this pose over the corresponding planes of the range image. Reprinted from
“The Representation, Recognition, and Locating of 3D Objects,” by O.D. Faugeras and
M. Hebert, International Journal of Robotics Research, 5(3):27–52, (1986). c© 1986 Sage
Publications. Reprinted by permission of Sage Publications.

point P , the spin coordinates of any other point Q can now be defined as the (non-
negative) distance α separating Q from the (oriented) normal line in P and the
(signed) distance β from the tangent plane to Q (Figure 14.15). Accordingly, the
spin map sP : Σ → R

2 associated with P is defined for any point Q on Σ as

sP (Q)
def
= (||−−→PQ × n||︸ ︷︷ ︸

α

,
−−→
PQ · n︸ ︷︷ ︸

β

).

As shown by Figure 14.15, this mapping is not injective. This is not surprising
because the spin map provides only a partial specification of a cylindrical coordinate
system: the third coordinate that would normally record the angle between some

reference vector in the tangent plane and the projection of
−−→
PQ into this plane is

missing. The principal directions are obvious choices for such a reference vector,
but focusing on the spin coordinates avoids their computation, a process that is
susceptible to noise since it involves second derivatives and may be ambiguous for
(almost) planar or spherical patches.

The spin image associated with an oriented point is a histogram of the α, β
coordinates in a neighborhood of this point. Concretely, the α, β plane is divided
into a rectangular array of δα × δβ bins that accumulate the total surface area
spanned by points with α, β values in that range.3 As shown in Carmichael, Hubert,

3The corresponding point sets may actually be divided into several connected components.



Section 14.4 Object Recognition 443

β
α

Σ

Spin map

P

n

Q

FIGURE 14.15: Definition of the spin map associated with a surface point P : the spin
coordinates (α, β) of the point Q are respectively defined by the lengths of the projections

of
−−→
PQ onto the tangent plane and its surface normal. Note that there are three other

points with the same (α, β) coordinates as Q in this example.

and Hebert (1999) and the problems, each triangle in the surface mesh maps onto
a region of the α, β plane whose boundaries are hyperbola arcs. Its contribution
to the spin image can thus be computed by assigning to each bin that this region
traverses the area of the patch where the triangle intersects the annular region of
R

3 associated with the bin (Figure 14.16). The bins can be found efficiently using
scan conversion (Foley et al. 1990), a process routinely used in computer graphics
to find in optimal time the pixels traversed by a generalized polygon with straight
or curved edges.

δβ

δα

A
α

β

A

FIGURE 14.16: Spin image construction: the triangle shown in the left of the diagram
maps onto a region with hyperbolic boundaries in the spin image; the value of each bin
intersected by this region is incremented by the area of the portion of the triangle that
intersects the annulus associated with the bin. After Carmichael et al. (1999, Figure 3).

Spin images are defined by several key parameters (Johnson and Hebert 1999).
The first one is the support distance d that limits to a sphere of radius d centered
in P the range of the support points used to construct the image. This sphere must
be large enough to provide good descriptive power but small enough to support

For example, for small enough values of δα and δβ, there are four connected components in the
example shown in Figure 14.15, corresponding to small patches centered at the points having the
same α, β coordinates as Q.



Section 14.4 Object Recognition 444

recognition in the presence of clutter and occlusion. In practice, an appropriate
choice for d might be a tenth of the object’s diameter; thus, as noted earlier,
the spin image is indeed a semi-local description of the shape of a surface in an
extended neighborhood of one of its points. Robustness to clutter can be improved
by limiting the range of surface normals at the support points to a cone of half-angle
θ centered in n. As in the support distance case, choosing the right value for θ
involves a trade-off between descriptive power and insensitivity to clutter; a value
of 60◦ has empirically been shown to be satisfactory. The last parameter defining a
spin image is its size (in pixels), or equivalently, given the support distance, its bin
size (in meters), and it can be shown that an appropriate choice for the bin size is
the average distance between mesh vertices in the model. Figure 14.17 shows the
spin images associated with three oriented points on the surface of a rubber duck.

FIGURE 14.17: Three oriented points on the surface of a rubber duck and the corre-
sponding spin images. The α, β coordinates of the mesh vertices are shown besides the
actual spin images. Reprinted from “Using Spin Images for Efficient Object Recognition
in Cluttered 3D Scenes,” by A.E. Johnson and M. Hebert, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433–449, (1999). c© 1999 IEEE.

Matching spin images. One of the most important features of spin images
is that they are (obviously) invariant under rigid transformations. Thus an image
comparison technique such as correlation can in principle be used to match the spin
images associated with oriented points in the scene and the object model. Things
are not that simple, however: we already noted that the spin map is not injective;
in general, it is not surjective either, and empty bins (or equivalently zero-valued
pixels) may occur for values of α and β that do not correspond to physical surface



Section 14.4 Object Recognition 445

points (see the blank areas in Figure 14.17, for example). Occlusion may cause
the appearance of zero pixels in the scene image, whereas clutter may introduce
irrelevant non-empty bins. It is therefore reasonable to restrict the comparison of
two spin images to their common nonzero pixels. In this context, Johnson and
Hebert (1998) have shown that

S(I,J)
def
= [Arctanh(C(I ,J))]2 − 3

N − 3

is an appropriate similarity measure for two spin images whose overlap regions
contain N pixels and are represented by the vectors I and J of R

N . In this
formula, C(I,J) denotes the normalized correlation of the vectors I and J , and
Arctanh denotes the hyperbolic arc tangent function. Armed with this similarity
measure, we can now outline a recognition algorithm that uses spin images to
establish pointwise correspondences.

Off-line:

Compute the spin images associated with the oriented points of a surface
model and store them into a table.

On-line:

1. Form correspondences between a set of spin images randomly selected in the
scene and their best matches in the model table using the similarity measure
S to rank-order the matches.

2. Filter and group correspondences using geometric consistency constraints, and
compute the rigid transformations best aligning the matched scene and model
features.

3. Verify the matches using the ICP algorithm.

Algorithm 14.4: Pointwise Matching of Free-Form Surfaces Using Spin Images, after
Johnson and Hebert (1998, 1999).

The various stages of this algorithm are mostly straightforward. Let us note,
however, that the filtering/grouping step relies on comparing the spin coordinates
of model points relative to the other mesh vertices in their group with the spin
coordinates of the corresponding scene points relative to their own group. Once
consistent groups have been identified, an initial estimate of the rigid transformation
aligning the scene and the model is computed from (oriented) point matches using
the quaternion-based registration technique described in Section 14.3.2. Finally,
consistent sets of correspondences are verified by iteratively spreading the matching
process to their neighbors, updating along the way the rigid transformation that
aligns the scene and the model.

Results. The matching algorithm presented in the previous section has been
extensively tested in recognition tasks with cluttered indoor scenes that contain



Section 14.5 Kinect 446

both industrial parts and various toys (Johnson & Hebert 1998, 1999). It has also
been used in outdoor navigation/mapping tasks with very large datasets covering
thousands of squared meters of terrain (Carmichael et al. 1999). Figure 14.18 shows
sample recognition results in the toy domain.

(a)

(b)

FIGURE 14.18: Spin-image recognition results: (a) a cluttered image of toys and the mesh
constructed from the corresponding range image; (b) recognized objects overlaid on the
original pictures. Reprinted from “Using Spin Images for Efficient Object Recognition in
Cluttered 3D Scenes,” by A.E. Johnson and M. Hebert, IEEE Transactions on Pattern
Analysis and Machine Intelligence, 21(5):433–449, (1999). c© 1999 IEEE.

14.5 KINECT

Kinect is a video game technology developed by Microsoft for its Xbox 360 platform
that allows its users to control games using natural body motions. It has three
main components: a sensor that delivers accurate depth maps and color images at
frame rate, an effective algorithm for estimating the pose (joint positions) of the
players in every frame, and a tracking algorithm using this information to smoothly
recover the parameters (joint angles) of a 3D kinematic model (skeleton) over time.
This section discusses the pose estimation algorithm used by Kinect (Shotton et
al. 2011), which relies on random forests to classify individual pixels from a single
range image into one of a few predefined body parts, then uses a voting/averaging
procedure to compute these parts’ locations (joint positions) in 3D.

Kinect is a success story for computer vision, with several million units shipped
as of 2011. Before getting into the details of its presentation, it may be worth
examining some key elements that might explain (at least in part, and marketing
and user-interface issues aside) some of this success:



Section 14.5 Kinect 447

1. The sensor, developed by Primesense,4 delivers at 30Hz a depth map with
VGA resolution (480× 640 pixels) and a registered RGB image with UXGA
resolution (1200×1600 pixels). The corresponding Light CodingTM technology
uses a projected infrared pattern observed by a black-and-white camera and
decoded on a dedicated chip. The two main features of this sensor is that it is
fast, much faster than conventional range finders using mechanical scanning,
and cheap—cheap enough, in fact, to ship as part of a mass-market video
game package.

2. Range images are a lot easier to simulate realistically than ordinary pho-
tographs (no color, texture, or illumination variations). In turn, this means
that it is easy to generate synthetic data for training accurate classifiers with-
out overfitting.

3. Voting procedures are relatively robust to errors among individual voters. As
shown later in this section, this explains that excellent pose estimation results
can be achieved despite relatively large error rates (40%) at the individual
pixel level.

4. Kinect’s overall effectiveness and robustness are doubtless due in part to its
tracking component, whose details are proprietary but, like any other ap-
proach to tracking (see Chapter 11), has temporal information at its disposal
for smoothing the recovered skeleton parameters and recovering from joint
detection errors.

One may also argue that depth map features are more robust, or invariant to
viewpoint changes, than those found in photographs. This is certainly true to some
extent (see the spin images of Section 14.4.2). On the other hand, one may also
argue that, in the context of video games, where the viewpoint does not vary much,
the key advantage of these images might be that they readily provide occlusion
boundary/silhouette information. Indeed, it is relatively easy to separate objects
from background in range images, and all the data processed by the approach to
pose estimation presented in the rest of this section is presegmented by a separate
and effective background subtraction module.

14.5.1 Features

For efficiency reasons, Kinect uses very simple features that are related to spin
images, but without the corresponding tangent plane computations. Instead, they
simply measure depth differences in the neighborhood of each pixel. Concretely,
let us denote by z(p) the depth at pixel p in some range image. Given image
displacements λ and μ, a very simple scalar feature can be computed as

fλ,μ(p) = z

[
p+

1

z(p)
λ

]
− z

[
p+

1

z(p)
μ

]
.

In turn, given some allowed range of displacements, one can associate with
each pixel p the feature vector x(p) whose components are the D values of fμ,μ(p)
for all distinct unordered pairs (λ,μ) in that range.

4http://en.wikipedia.org/wiki/PrimeSense.

http://en.wikipedia.org/wiki/PrimeSense


Section 14.5 Kinect 448

FIGURE 14.19: Random forests. See text for details. Reprinted from “Real-Time Human
Pose Recognition in Parts from Single Depth Images,” by J. Shotton et al., Proc. IEEE
Conference on Computer Vision and Pattern Recognition, (2011). c© 2011 IEEE.

As detailed in Section 14.5.3, these features are used to train an ensemble of
simple decision tree classifiers, in the form of a random forest. After training, the
feature x associated with each pixel of a new depth map is passed to every tree in
the forest, where it is recursively redirected to the left or right descendants of the
root according to simple binary tests until it reaches a leaf and is assigned some
tree-dependent posterior probability of belonging to each body part (Figure 14.19).
The overall class probability of the pixel is finally computed as an average of the tree
probabilities. Before detailing this process, let us now present a bit more formally
decision trees and random forests.

14.5.2 Technique: Decision Trees and Random Forests

Decision trees. Decision trees have long been used in machine learning and pat-
tern recognition as efficient multi-label classifiers. Let us consider a classification
problem with features x = (x1, . . . , xD)T in R

D and K different classes. A decision
tree is a binary tree where every non-terminal node is associated with some coor-
dinate xd, with d in {1, . . . , D}, and a threshold τ . A feature vector x is assigned
to the node’s left child if xd < τ , and to its right child otherwise. This recursive
process eventually assigns any feature to some leaf in the tree.

Decision trees split the feature space into hyper-rectangular regions associated
with their leaves. Given some labeled training data

D = {(xi, yi), xi ∈ R
D yi ∈ {1, . . . ,K}, i = 1, . . . , N},

they also classify any unlabeled feature by taking a majority vote among the labeled
examples in D that have reached the same leaf.

Given some fixed tree structure—say, a balanced tree with depth L—training
a decision tree amounts to selecting the feature space coordinates and the thresholds
associated with its non-leaf nodes. This can be achieved by maximizing at every
node the information gain associated with the corresponding coordinate xd and
threshold τ .

Intuitively, a decision tree should split any labeled data into subsets that
are as homogeneous as possible, and ideally, all data reaching a leaf should have
the same label. This can be formalized using the concept of cross-entropy. If the



Section 14.5 Kinect 449

number of points in D that belong to class k is Nk, its cross-entropy is defined as

E(D) = −
K∑

k=1

pk(D) log pk(D),

where pk(D) = Nk/N is just the proportion of the points in class k. The cross-
entropy reaches its maximum (positive) value of logK when the data is spread
equally into all classes, and reaches its minimum value of zero when all the points
belong to the same class. The goal is thus to decrease the cross-entropy as much
as possible each time the data is split by a non-terminal node.

The information gain associated with some partition of the data D into left
and right subsets L and R is the difference between the original cross-entropy and
a weighted sum of the entropies associated with the partition, namely

G(D,L,R) = E(D)− |L|
|D|E(L)− |R|

|D|E(R).

Now, given some feature space coordinate xd and threshold τ , let us define the
corresponding left and right subsets of D as

Ld,τ (D) = {(x, y) ∈ D, xd < τ} and Rd,τ (D) = {(x, y) ∈ D, xd ≥ τ}.

The information gain associated with d and τ can thus be defined as

Gd,τ (D) = G(D,Ld,τ (D),Rd,τ (D)),

and training a decision tree amounts to picking, for each of its non-terminal nodes,
the values of d and τ that maximize Gd,τ for the corresponding subset of the labeled
data. This procedure is described in Algorithm 14.5.

The arguments of the recursive procedure TrainDT for its first call are the tree
root, 0, and the full dataset. Here, Node.L and Node.R respectively denote the
left and right children of Node. The tree structure is assumed to be fixed, e.g., a
balanced tree.

Procedure TrainDT(Node,l,D);

1. Find the pair (d, τ) maximizing Gd,τ (D);

2. If l < L then

(a) TrainDT(Node.L,Ld,τ (D),l + 1);

(b) TrainDT(Node.R,Rd,τ (D),l + 1).

Algorithm 14.5: Training a Decision Tree.

For small feature space dimensions and labeled datasets, decision trees can
be trained efficiently by exhaustively trying all splitting coordinates, and for each
one of these, sorting all features. It is normally wise to grow a rather large decision



Section 14.5 Kinect 450

tree, and then prune it to balance its size with classification accuracy and avoid
overfitting (CART procedure; see Breiman, Friedman, Ohlsen, and Stone [1984] for
details).

As noted earlier, a decision tree classifies a feature vector x by taking a
majority vote among the labeled training examples that have reached the same
leaf. Alternatively, it is also possible to estimate the posterior probability P (k|x)
that x belongs to class k as the proportion of labeled samples with class k associated
with that leaf.

A typical choice for D∗ is
√
D. Adapted from Hastie et al. (2009).

1. For b = 1 to B do

(a) Draw a bootstrap sample D∗ from D.

(b) Grow a decision tree Tb for D∗ using TrainDT modified such that, at
each recursive step, D∗ ≤ D out of the original D coordinates are picked
randomly as splitting candidates;

2. Output the trees {Tb, b = 1, . . . , B}.

Algorithm 14.6: Training a Random Forest.

Random forests. A simple method for improving the classification accuracy of
decision trees is bagging (or bootstrap aggregation): Given a dataset D consisting
of N points, a bootstrap sample D∗ is formed by randomly drawing N points with
replacement from D (the same point can be drawn several times, and some points
present in D might not appear in D∗). Bagging consists of constructing B bootstrap
samples, growing a decision tree for each one of them, and using a majority vote
among the trees for classification. This process can be shown to reduce the variance
of the prediction when the errors associated with the individual trees are uncor-
related. Random forests improve upon bagging by randomly selecting a subset of
the input variables at each recursive step of the training process (Algorithm 14.6).
The intended effect is to reduce the correlation between the constructed trees, thus
reducing the variance of their mean prediction. In practice, as shown in Hastie,
Tibshirani, and Friedman (2009) for example, random forests typically do not re-
quire pruning, and are easier to train and tune than boosting techniques, with very
similar performance for many problems.

After training, a new feature is classified using a majority vote among the
trees in the forest. As before, it is also possible to estimate the posterior probability
P (k|x) that x belongs to class k as the mean of the corresponding probabilities for
each tree.

14.5.3 Labeling Pixels

The objective is to construct a classifier that assigns to every pixel in a range image
one out of a few body parts, such as a person’s face, left arm, etc. There are 10



Section 14.5 Kinect 451

FIGURE 14.20: Effect of the number of (left) training images and (center and right)
tree depth on classification accuracy on 5,000 synthetic depth images and 8,808 real hand-
labeled ones. Figure courtesy of Jamie Shotton. Reprinted from “Real-Time Human
Pose Recognition in Parts from Single Depth Images,” by J. Shotton et al., Proc. IEEE
Conference on Computer Vision and Pattern Recognition, (2011). c© 2011 IEEE.

main body parts in Kinect (head, torso, two arms, two legs, two hands, and two
feet), some of which are further divided into sub-parts, such as the upper/lower
and left/right sides of a face, for a total of 31 parts. The classifier is trained as a
random forest, using the features described in Section 14.5.1 and Algorithm 14.6,
but replacing the bootstrap sample used for each tree by a random subset of the
training data (2,000 random pixels from each one of hundreds of thousands of
training images).

One of the main features of the training process is in fact this data: Its pri-
mary source is a set of several hundred motion capture sequences featuring actors
engaged in typical video game activities such as driving, dancing, kicking, etc. Af-
ter clustering close-by pictures and retaining one sample per cluster, a set of about
100K poses is obtained. The measured articulation parameters are transferred (re-
targeted) to 15 parametric mesh models of human beings with a variety of body
shapes and sizes. Body parts defined manually in texture maps are also transferred
to these models (Figure 14.21, top), which are then skinned by adding different
types of clothing and hairstyle (Figure 14.21, center), and rendered from differ-
ent viewpoints as both depth and label maps using classical computer graphics
techniques (Figure 14.21, bottom).

Hundreds of thousands of labeled images can easily be created in this way.
The experiments described in Shotton et al. (2011) typically use 2,000 pixels per
image and per tree to train random forests made of three trees of depth 20, with
2,000 splitting coordinates and 50 thresholds per node. This takes about one day
on a 1,000-core cluster for up to one million training images. Experiments with
synthetic and real data show that increasing the size of the training sample improves
the classification rate, and suggest that increasing tree depth also helps, at least
for large datasets (Figure 14.20): The overfitting observed starting at depth 17 for
small datasets of 15K images disappears for the largest datasets with 900K images.
The best results are observed with 900K training images and trees of depth 20,
with a pixelwise classification rate of about 60%.



Section 14.5 Kinect 452

FIGURE 14.21: Data generation process with, from top to bottom: sample models gener-
ated by retargeting the motion capture data on meshes corresponding to different body
types; models after skinning using different types of clothing and hairstyle; and rendered
depth maps together with their labels. Reprinted from “Real-Time Human Pose Recogni-
tion in Parts from Single Depth Images: Supplementary Material,” by J. Shotton et al.,
Proc. IEEE Conference on Computer Vision and Pattern Recognition, (2011). c© 2011
IEEE.



Section 14.6 Notes 453

14.5.4 Computing Joint Positions

The classifier described in the previous section assigns to each pixel some body
part, but this process does not directly provide the joint positions because there
is no underlying kinematic model. Instead, the position of each body part k could
(for example) be estimated as some weighted average of the positions of the 3D
points corresponding to pixels labeled k, or using some voting scheme. To improve
robustness, it is also possible to use mean shifts to estimate the mode of the following
3D density distribution:

fk(X) ∝
N∑
i=1

P (k|xi)A(pi) exp[−
1

σ2
k

||X −Xi||2],

where “∝” stands for “is proportional to,” Xi denotes the position of the 3D point
associated with pixel pi, and A(pi) is the area in world units of a pixel at depth
z(pi), proportional to z(pi)

2, so as to make the contribution of each pixel invariant
to the distance between the sensor and the user. Each mode of this distribution is
assigned the weighted sum of the probability scores of all pixels reaching it during
the mean shift optimization process, and the joint is considered to be detected when
the confidence of the highest mode is above some threshold. Since modes tend to
lie on the front surface of the body, the final joint estimate is obtained by pushing
back the maximal mode by a learned depth amount.

Figure 14.22 shows several results obtained on real data. Quantitative results
can be obtained by measuring the per-joint precision, measured by counting the
proportion of proposals within 0.1m of the true joint positions in hand-labeled
depth maps. Experiments using the same synthetic and real data as before shows
that the average per-joint precision over all joints and all test images is 0.914 for
the real data, and 0.731 for the synthetic one, which is much more challenging
due to a great variability in pose and body shape. In realistic game scenarios,
the precision of the recovered joint parameters is good enough to drive a tracking
system that smoothly and very robustly recovers the parameters of a 3D kinematic
model (skeleton) over time, which can in turn be used to effectively control a video
game with natural body motions.

14.6 NOTES

Excellent surveys of active range finding techniques can be found in Jarvis (1983),
Nitzan (1988), Besl (1989), and Hebert (2000). The model-based approach to edge
detection presented in Section 14.2.2 is only one of the many techniques that have
been proposed for segmenting range pictures using notions from differential geom-
etry (Fan, Medioni, & Nevatia 1987; Besl & Jain 1988). An alternative to the
computational molecules used to smooth a range image in that section is provided
by anisotropic diffusion, where the amount of smoothing at each point depends on
the value of the gradient (Perona and Malik 1990c). The method for segmenting
surfaces into (almost) planar patches presented in Section 14.2.3 is easily extended
to quadric patches (see Faugeras and Hebert [1986] and the problems). Extensions
to higher-order surface primitives is more problematic, in part because surface
fitting is more difficult in that case. There is a vast amount of literature on the



Section 14.6 Notes 454

FIGURE 14.22: Sample results with, from left to right, the input depth map, the color-
coded classification of pixel into body parts, and renderings of the recovered joint positions
from three different viewpoints. Reprinted from “Real-Time Human Pose Recognition in
Parts from Single Depth Images: Supplementary Material,” by J. Shotton et al., Proc.
IEEE Conference on Computer Vision and Pattern Recognition, (2011). c© 2011 IEEE.

latter problem, using superquadrics (Pentland 1986; Bajcsy & Solina 1987; Gross &
Boult 1988) and algebraic surfaces (Taubin, Cukierman, Sullivan, Ponce, & Krieg-
man 1994; Keren, Cooper, & Subrahmonia 1994; Sullivan, Sandford, & Ponce 1994)
for example.

Different variants of the ICP algorithm presented in Section 14.3.2 and Besl
and McKay (1992) have been developed over the years, including robust ones capa-
ble of handling missing data and/or outliers (Zhang 1994; Wheeler & Ikeuchi 1995),
and they have been applied to a number of global registration problems (Shum,
Ikeuchi, & Reddy 1995; Curless & Levoy 1996).

Alternatives to the Curless and Levoy (1996) approach to the fusion of multi-
ple range images include the Delaunay triangulation algorithm of Boissonnat (1984),
the zippered polygonal meshes of Turk and Levoy (1994), and the crust technique
of Amenta et al. (1998). The quaternion-based approach to the estimation of rigid
transformations described in this chapter was developed independently by Faugeras
and Hebert (1986) and Horn (1987a). The recognition technique discussed in Sec-
tion 14.4.1 is closely related to other algorithms using interpretation trees to con-
trol the combinatorial cost of feature matching in the two- and three-dimensional
cases (Gaston & Lozano-Pérez 1984; Ayache & Faugeras 1986; Grimson & Lozano-
Pérez 1987; Huttenlocher & Ullman 1987).

The spin images discussed in Section 14.4.2 have been used to establish
pointwise correspondences between range images and surface models. Related
approaches to this problem include the structural indexing method of Stein and
Medioni (1992) and the point signatures proposed by Chua and Jarvis (1996). The
original algorithm described in Section 14.4.2 has been extended in various direc-
tions: a scene can now be matched simultaneously to several models using principal
component analysis (Johnson and Hebert 1999), and learning techniques are used



Section 14.6 Notes 455

to prune false matches in cluttered scenes (Carmichael et al. 1999).
Kinect’s pose estimation algorithm is detailed in Shotton et al. (2011). Deci-

sion trees date back to the 1960s, and classical treatments can be found in (Breiman
et al. 1984; Quinlan 1993). The bootstrap was introduced in Efron (1979), bagging
was proposed in Breiman (1996), and random forests in (Amit & Geman 1997;
Breiman 2001). See Hastie et al. (2009) for a synthesis of these techniques.

PROBLEMS

14.1. Use Equation (14.1) to show that a necessary and sufficient condition for the
coordinate curves of a parameterized surface to be principal directions is that
f = F = 0.

14.2. Show that the lines of curvature of a surface of revolution are its meridians
and parallels.

14.3. Step model: compute zσ(x) = Gσ ∗ z(x), where z(x) is given by (14.2). Show
that z′′σ is given by Equation (14.3). Conclude that κ′′σ/κ

′
σ = −2δ/h in the

point xσ where z′′σ and κσ vanish.
14.4. Roof model: show that κσ is given by Equation (14.4).
14.5. The Rodrigues formula. Consider a rotation R of angle θ about the axis u (a

unit vector). Show that Rx = cos θx+ sin θu× x+ (1− cos θ)(u · x)u.
Hint: A rotation does not change the projection of a vector x onto the direction
u of its axis and applies a planar rotation of angle θ to the projection of x into
the plane orthogonal to u.

14.6. Use the Rodrigues formula to show that the quaternion q = cos θ
2 + sin θ

2u

represents the rotation R of angle θ about the unit vector u in the sense of
Equation (14.5).

14.7. Show that the rotation matrix R associated with a given unit quaternion
q = a+α with α = (b, c, d)T is given by Equation (14.6).

14.8. Show that the matrix Ai constructed in Section 14.3.2 is equal to

Ai =

(
0 yT

i − y′
i
T

y′
i − yi [yi + y′

i]×

)
.

14.9. As mentioned earlier, the ICP method can be extended to various types of ge-
ometric models. We consider here the case of polyhedral models and piecewise
parametric patches.
(a) Sketch a method for computing the point Q in a polygon that is closest

to some point P .
(b) Sketch a method for computing the point Q in the parametric patch x :

I × J → R
3 that is closest to some point P . Hint: use Newton iterations.

14.10. Develop a linear least-squares method for fitting a quadric surface to a set of
points under the constraint that the quadratic form has unit Frobenius form.

14.11. Show that a surface triangle maps onto a patch with hyperbolic edges in α, β
space.

PROGRAMMING EXERCISES

14.12. Implement molecule-based smoothing and the computation of principal di-
rections and curvatures.

14.13. Implement the region-growing approach to plane segmentation described in
this chapter.



Section 14.6 Notes 456

14.14. Implement an algorithm for computing the lines of curvature of a surface
from its range image. Hint: use a curve-growing algorithm analogous to the
region-growing algorithm for plane segmentation.

14.15. Implement the Besl-McKay ICP registration algorithm.
14.16. Marching squares in the plane: develop and implement an algorithm for find-

ing the zero set of a planar density function. Hint: work out the possible ways
a curve may intersect the edges of a pixel, and use linear interpolation along
these edges to identify the zero set.

14.17. Implement the registration part of the Faugeras-Hebert algorithm.



C H A P T E R 15

Learning to Classify

A classifier is a procedure that accepts a set of features and produces a class label
for them. There could be two, or many, classes, though it is usual to produce
multi-class classifiers out of two-class classifiers. Classifiers are built by taking a
set of labeled examples and using them to come up with a rule that assigns a label
to any new example. In the general problem, we have a training dataset (xi, yi);
each of the feature vectors xi consists of measurements of the properties of different
types of object, and the yi are labels giving the type of the object that generated
the example.

Classifiers are a crucial tool in high-level vision, because many problems can
be abstracted in a form that looks like classification. In this chapter, we describe the
basic ideas and methods of classification, abstracted away from any vision problem
(Chapter 16 applies classifiers to vision problems). Section 15.1 describes basic
notions. In Section 15.2, we describe different ways to build classifiers. Finally,
Section 15.3 gives some important practical tricks.

15.1 CLASSIFICATION, ERROR, AND LOSS

You should think of a classifier as a rule, though it might not be implemented that
way. We pass in a feature vector, and the rule returns a class label. We know the
relative costs of mislabeling each class and must come up with a rule that can take
any plausible x and assign a class to it, in such a way that the expected mislabeling
cost is as small as possible, or at least tolerable. For most of this chapter, we will
assume that there are two classes, labeled 1 and −1. Section 15.3.2 shows methods
for building multi-class classifiers from two-class classifiers.

15.1.1 Using Loss to Determine Decisions

The choice of classification rule must depend on the cost of making a mistake. A
two-class classifier can make two kinds of mistake. A false positive occurs when
a negative example is classified positive; a false negative occurs when a positive
example is classified negative. For example, pretend there is only one disease;
then doctors would be classifiers, deciding whether a patient had it or not. If
this disease is dangerous, but is safely and easily treated, then false negatives are
expensive errors, but false positives are cheap. Similarly, if it is not dangerous, but
the treatment is difficult and unpleasant, then false positives are expensive errors
and false negatives are cheap.

Generally, we write outcomes as (i → j), meaning that an item of type i is
classified as an item of type j. There are four outcomes for the two-class case. Each
outcome has its own cost, which is known as a loss. Hence, we have a loss function
that we write as L(i → j), meaning the loss incurred when an object of type i is
classified as having type j. Since losses associated with correct classification should

457



Section 15.1 Classification, Error, and Loss 458

not affect the design of the classifier, L(i → i) must be zero, but the other losses
could be any positive numbers.

The risk function of a particular classification strategy is the expected loss
when using that strategy, as a function of the kind of item. The total risk is the
total expected loss when using the classifier. The total risk depends on the strategy,
but not on the examples. Write p(−1 → 1|using s) for the probability that class
−1 is labeled class 1 (and so on). Then, if there were two classes, the total risk of
using strategy s would be

R(s) = p(−1 → 1|using s)L(−1 → 1) + p(1 → −1|using s)L(−1 → 1).

The desirable strategy is one that minimizes this total risk.

A Two-class Classifier that Minimizes Total Risk
Assume that the classifier can choose between two classes and we have a

known loss function. There is some boundary in the feature space, which we call
the decision boundary, such that points on one side belong to class one and points
on the other side to class two.

We can resort to a trick to determine where the decision boundary is. If
the decision boundary is optimal, then for points on the decision boundary, either
choice of class has the same expected loss; if this weren’t so, we could obtain a
better classifier by always choosing one class (and so moving the boundary). This
means that, for measurements on the decision boundary, choosing label −1 yields
the same expected loss as choosing label 1.

Now write p(−1|x) for the posterior probability of label −1 given feature
vector x (and so on). Although this might be very hard to know in practice, we
can manipulate the abstraction and gain some insight. A choice of label y = 1 for
a point x at the decision boundary yields an expected loss

p(−1|x)L(−1 → 1) + p(1|x)L(1 → 1) = p(−1|x)L(−1 → 1),

and if we choose the other label, the expected loss is

p(1|x)L(1 → −1),

and these two terms must be equal. This means our decision boundary consists of
the points x, where

p(−1|x)L(−1 → 1) = p(1|x)L(1 → −1).

At points off the boundary, we must choose the class with the lowest expected loss.
Recall that if we choose label 1 for a point x, the expected loss is

p(−1|x)L(−1 → 1),

and so on. This means that we should choose label −1 if

p(−1|x)L(−1 → 1) > p(1|x)L(1 → −1)

and label 1 if the inequality is reversed. Notice it does not matter which label we
choose at the decision boundary.



Section 15.1 Classification, Error, and Loss 459

A Multi-class Classifier that Minimizes Total Risk
Analyzing expected loss gives a strategy for choosing from any number of

classes. We allow the option of refusing to decide which class an object belongs to,
which is useful in some problems. Refusing to decide costs d. Conveniently, if d is
larger than any misclassification loss, we will never refuse to decide. This means
our analysis covers the case when we are forced to decide. The same reasoning
applies as above, but there are more boundaries to consider. The simplest case,
which is widely dominant in vision, is when loss is 0-1 loss; here the correct answer
has zero loss, and any error costs one.

In this case, the best strategy, known as the Bayes classifier, is given in
Algorithm 15.1. The total risk associated with this rule is known as the Bayes risk;
this is the smallest possible risk that we can have using a classifier for this problem.
It is usually rather difficult to know what the Bayes classifier—and hence the Bayes
risk—is because the probabilities involved are not known exactly. In a few cases,
it is possible to write the rule out explicitly. One way to tell the effectiveness of a
technique for building classifiers is to study the behavior of the risk as the number
of examples increases (e.g., one might want the risk to converge to the Bayes risk
in probability if the number of examples is large). The Bayes risk is seldom zero,
as Figure 15.1 illustrates.

For a loss function

L(i → j) =

⎧⎨
⎩

1 i �= j
0 i = j
d no decision

the best strategy is

• if p(k|x) > p(i|x) for all i not equal to k, and if this probability is
greater than 1− d, choose type k;

• if there are several classes k1 . . . kj for which p(k1|x) = p(k2|x) =
. . . = p(kj |x) = p > p(i|x) for all i not in k1, . . . kj, and if p > 1−d,
choose uniformly and at random between k1, . . . kj ;

• if for all i we have 1− d ≥ q = p(k|x) ≥ p(i|x), refuse to decide.

Algorithm 15.1: The Bayes Classifier.

15.1.2 Training Error, Test Error, and Overfitting

It can be quite difficult to know a good loss function, but one can usually come up
with a plausible model. If we knew the posterior probabilities, building a classifier
would be straightforward. Usually we don’t, and must build a model from data.
This model could be a model of the posterior probabilities, or an estimate of the
decision boundaries. In either case, we have only the training data to build it with.
Training error is the error a model makes on the training data set.

Generally, we will try to make this training error small. However, what we
really want to minimize is the test error, the error the classifier makes on test data.
We cannot minimize this error directly, because we don’t know the test set (if we



Section 15.1 Classification, Error, and Loss 460

FIGURE 15.1: This figure shows typical elements of a two-class classification problem. We
have plotted p(class|x) as a function of the feature x. Assuming that L(−1 → 1) = L(1 →
−1), we have marked the classifier boundaries. In this case, the Bayes risk is the sum of
the amount of the posterior for class one in the class two region and the amount of the
posterior for class two in the class one region (the hatched area in the figures). For the
case on the left, the classes are well separated, which means that the Bayes risk is small;
for the case on the right, the Bayes risk is rather large.

did, special procedures in training apply Joachims (1999)). However, classifiers
that have small training error might not have small test error. One example of
this problem is the (silly) classifier that takes any data point and, if it is the same
as a point in the training set, emits the class of that point and otherwise chooses
randomly between the classes. This classifier has been learned from data, and has
a zero error rate on the training dataset; it is likely to be unhelpful on any other
dataset, however.

The phenomenon that causes test error to be worse than training error is
sometimes called overfitting (other names include selection bias, because the train-
ing data has been selected and so isn’t exactly like the test data, and generalizing
badly, because the classifier fails to generalize). It occurs because the classifier has
been trained to perform well on the training dataset. The training dataset is not the
same as the test dataset. First, it is quite likely smaller. Second, it might be biased
through a variety of accidents. This means that small training error may have to
do with quirks of the training dataset that don’t occur in other sets of examples.
It is quite possible that, in this case, the test error will be larger than the training
error. Generally, we expect classifiers to perform somewhat better on the training
set than on the test set. Overfitting can result in a substantial difference between
performance on the training set and performance on the test set. One consequence
of overfitting is that classifiers should always be evaluated on test data. Doing this
creates other problems, which we discuss in Section 15.1.4.

15.1.3 Regularization

The idea of regularization is to attach a penalty term to the training error to get a
better estimate of the test error. This penalty term could take a variety of different



Section 15.1 Classification, Error, and Loss 461

forms, depending on the requirements of the application. Often, but not always,
the penalty term looks like a norm of the classifier parameters.

Logistic regression is a classifier that gives a good, simple example of why reg-
ularization should be helpful. In logistic regression, we model the class-conditional
densities by requiring that

log
p(1|x)
p(−1|x) = aTx

where a is a vector of parameters. The decision boundary here will be a hyperplane
passing through the origin of the feature space. Notice that we can turn this into
a general hyperplane in the original feature space by extending each example’s
feature vector by attaching a 1 as the last component. This trick simplifies notation,
which is why we adopt it here. It is straightforward to estimate a using maximum
likelihood. Note that

p(1|x) = expaTx

1 + expaTx

and

p(−1|x) = 1

1 + expaTx
,

so that we can estimate the correct set of parameters â by solving for the minimum
of the negative log-likelihood, i.e.,

â =
argmin

a

⎡
⎣− ∑

i∈examples

(
1 + yi

2
)aTx− log

(
1 + aTx

)⎤⎦ .

It turns out that this problem is convex, and is easily solved by Newton’s method
(e.g., Hastie et al. (2009)).

In fact, when we use maximum likelihood, we are choosing a classifier bound-
ary that minimizes a loss function, and this is a better way to think about the
problem. For example i, we write γi = aTxi. Our classifier will be:

choose

⎧⎨
⎩

1 if γi > 0
−1 if γi < 0
randomly if γi = 0.

Now write the loss for the ith example

L(yi, γi) = −
[
1

2
(1 + yi)γi − log (1 + exp γi)

]
= log (1 + exp (−yiγi))

(where the step follows from simple manipulations; see the exercises). This is
plotted in Figure 15.2. This loss is sometimes known as the logistic loss. Notice
that this loss very strongly penalizes a large positive γi if yi is negative (and vice
versa). However, there is no significant advantage to having a large positive γi if yi
is positive. This means that the significant components of the loss function will be
due to examples that the classifier gets wrong, but also due to examples that have



Section 15.1 Classification, Error, and Loss 462

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

Hinge Loss

Logistic Loss

FIGURE 15.2: The logistic loss and the hinge loss, plotted for the case yi = 1. In the case
of the logistic loss, the horizontal variable is the γi = a · xi of the text. In the case of
the hinge loss, the horizontal variable is the w · xi + b of the text. Notice that in each
case, giving a strong negative response to this positive example causes a loss, that grows
linearly as the magnitude of the response grows (if it grew faster, we might fear robustness
problems). Notice also that giving an insufficiently positive response also causes a loss.
The hinge loss isn’t differentiable, and the logistic loss is.

γi near zero (i.e., the example is close to the decision boundary). Now the total
risk of applying this classifier to our set of examples is

∑
i∈examples

−
[
1

2
(1 + yi)γi − log (1 + exp γi)

]
,

and it is natural to minimize this risk as a function of a using Newton’s method
(see Hastie et al. (2009)). The Hessian will be

H =
∑

i∈examples

exp γi
(1 + exp γi)2

xix
T
i .

Notice that data points where γi has a large absolute value make little contribution
to the Hessian—it is affected mainly by points where γi is small, that is, points



Section 15.1 Classification, Error, and Loss 463

near the boundary. For these points, the Hessian looks like a weighted covariance
matrix. Now if we have features that are strongly correlated, we can expect that
the Hessian is poorly conditioned, because the covariance matrix will have some
small eigenvalues. These will be caused by the high covariance of the features.
We would typically maximize using Newton’s method, which involves updating an
estimate a(n) by computing a(n+1) = a(n)+δa, where we get the step δa by solving
H(δa) = −∇f . When this linear system is very poorly conditioned, it means that
a wide range of different a(n+1) have essentially the same value of loss. In turn,
many choices of a will give about the same loss on the training data. The training
data offers no reason to choose between these a.

However, a with very large norm may behave badly on future test data,
because they will tend to produce large values of aTx for test data items x. In
turn, these can produce large losses, particularly if the sign is wrong. This suggests
that we should use a value of a that gives small training loss, and also has a small
norm. In turn, this suggests we change the objective function by adding a term that
discourages a with large norm. This term is referred to as a regularizer, because
it tends to discourage solutions that are large (and so have possible high loss on
future test data) but are not strongly supported by the training data. The objective
function becomes

Training Loss + Regularizer

which is
Training Loss + λ (Norm of a)

which is ∑
i∈examples

(
1

2
(1 + yi)γi − log (1 + exp γi)

)
+ λaTa

where λ > 0 is a constant chosen for good performance. Too large a value of λ, and
the classifier will behave poorly on training and test data; too small a value, and
the classifier will behave poorly on test data.

Usually, the value of λ is set with a validation dataset. We train classifiers
with different values of λ on a test dataset, then evaluate them on a validation
set—data whose labels are known, but which is not used for training—and finally
choose the λ that gets the best validation error.

Regularizing training loss using the norm is a general recipe, and can be
applied to most of the classifiers we describe. For some classifiers, the reasons this
approach works are more recondite than those sketched here, but the model here is
informative. Norms other than L2—that is, ||x ||22 = xTx—can be used successfully.
The most commonly used alternative is L1—that is, ||x ||1 =

∑
i |xi |—which leads

to much more intricate minimization problems but strongly encourages zeros in the
coefficients of the classifier, which is sometimes desirable.

15.1.4 Error Rate and Cross-Validation

There are a variety of methods to describe the performance of a classifier. Natural,
straightforward choices are to report the error rate, the percentage of classification
attempts on a test set that result in the wrong answer. This presents an important
difficulty. We cannot estimate the error rate of the classifier using training data,



Section 15.1 Classification, Error, and Loss 464

because the classifier has been trained to do well on that data, which will mean
our error rate estimate will be an underestimate. An alternative is to split some
training data to form a validation set, then train the classifier on the rest of the
data, and evaluate on the validation set. This has the difficulty that the classifier
will not be the best estimate possible, because we have left out some training data
when we trained it. This issue can become a significant nuisance when we are
trying to tell which of a set of classifiers to use—did the classifier perform poorly
on validation data because it is not suited to the problem representation or because
it was trained on too little data?

We can resolve this problem with cross-validation, which involves repeatedly:
splitting data into training and validation sets uniformly and at random, training a
classifier on the training set, evaluating it on the validation set, and then averaging
the error over all splits. This allows an estimate of the likely future performance of
a classifier, at the expense of substantial computation.

Choose some class of subsets of the training set,
for example, singletons.

For each element of that class, construct a classifier by
omitting that element in training, and compute the
classification errors (or risk) on the omitted subset.

Average these errors over the class of subsets to estimate
the risk of using the classifier trained on the entire training
dataset.

Algorithm 15.2: Cross-Validation

The most usual form of this algorithm involves omitting single items from the
dataset and is known as leave-one-out cross-validation. Errors are usually estimated
by simply averaging over the class, but more sophisticated estimates are available
(see, e.g., Ripley (1996)). We do not justify this tool mathematically; however, it
is worth noticing that leave-one-out cross-validation, in some sense, looks at the
sensitivity of the classifier to a small change in the training set. If a classifier
performs well under this test, then large subsets of the dataset look similar to one
another, which suggests that a representation of the relevant probabilities derived
from the dataset might be quite good.

For a multi-class classifier, it is often helpful to know which classes were
misclassified. We can compute a class-confusion matrix, a table whose i, jth entry
is the number of times an item of true class i was labeled j by the classifier (notice
that this definition is not symmetric). If there are many classes, this matrix can
be rendered as an image (Figure 15.3), where the intensity values correspond to
counts; typically, larger values are lighter. Such images are quite easy to assess at
a glance. One looks for a light diagonal (because the diagonal elements are the
counts of correct classifications), for any row that seems dark (which means that
there were few elements in that class), and for bright off-diagonal elements (which



Section 15.1 Classification, Error, and Loss 465

FIGURE 15.3: An example of a class confusion matrix from a recent image classification
system, due to Zhang et al. (2006a). The vertical bar shows the mapping of color to
number (warmer colors are larger numbers). Note the redness of the diagonal; this is
good, because it means the diagonal values are large. There are spots of large off-diagonal
values, and these are informative, too. For example, this system confuses: schooners and
ketches (understandable); waterlily and lotus (again, understandable); and platypus and
mayfly (which might suggest some feature engineering would be a good idea). This fig-
ure was originally published as Figure 5 of “SVM-KNN: Discriminative Nearest Neighbor
Classification for Visual Category Recognition,” by H. Zhang, A. Berg, M. Maire, and J.
Malik, Proc. IEEE CVPR, 2006, c© IEEE, 2006.

are high-frequency misclassifications).

15.1.5 Receiver Operating Curves

For a two-class classifier, we can make a more comprehensive report of the error
behavior than just giving the error rate. In this case, the ratio of losses,

h = L(1 → −1)/L(−1 → 1+),

rather than the losses is what determines the decision. Because p(1|x) = 1 −
P (−1|x), we can rearrange terms to indicate that we should choose label 1 if

p(1|x) > 1

1 + h

and label −1 otherwise. In most two-class classification problems we do not know
p(1|x) and may not know h either. Nonetheless, we have a general recipe for
building a classifier: build a model of p(1|x) from data, and test that model against a
threshold, which could range from zero to one. Plotting the behavior of the classifier



Section 15.1 Classification, Error, and Loss 466

as a function of this threshold tells us a great deal about the performance of the
model. As we increase the threshold from zero to one, the classifier will classify
more examples as class two. If we think of class two as the positive class, then, as
the threshold goes up, we will detect more positive cases, and also incorrectly mark
more negative examples as positive.

A receiver operating characteristic curve, or ROC, is a plot of the detection
rate or true positive rate as a function of the false positive rate for a particular
model as the threshold changes (Figure 15.4). An ideal model would detect all
positive cases and produce no false positives, for any threshold value; in this case,
the curve would be a single point. A model that has no information about whether
an example is a positive or a negative will produce the line from (0, 0) to (1, 1). If
the ROC lies below this line, then we can produce a better classifier by inverting
the decision of the original classifier, so this line is the worst possible classifier. The
detection rate never goes down as the false positive rate goes up, so the ROC is the
graph of a non-decreasing function.

FIGURE 15.4: The receiver operating curve for a classifier, used to build a skin detector
by Jones and Rehg. This curve plots the detection rate against the false-negative rate for
a variety of values of the parameter θ. A perfect classifier has an ROC that, on these axes,
is a horizontal line at 100% detection. There are three different versions of this classifier,
depending on the detailed feature construction; each has a slightly different ROC. This
figure was originally published as Figure 7 of “Statistical color models with application to
skin detection,” by M.J. Jones and J. Rehg, Proc. IEEE CVPR, 1999 c© IEEE, 1999.

Models of a classification problem can be compared by comparing their ROC’s.
Alternatively, we can build a summary of the ROC. Most commonly used in com-
puter vision is the area under the ROC (the AUC), which is 1 for a perfect classifier,
and 0.5 for a classifier that has no information about the problem. The area under
the ROC has the following interpretation: assume we select one positive example
and one negative example uniformly at random, and display them to the classifier;
the AUC is the probability that the classifier tells correctly which of these two is
positive.



Section 15.2 Major Classification Strategies 467

15.2 MAJOR CLASSIFICATION STRATEGIES

Usually, we do not know p(1|x), or p(1), or p(x|1) exactly, and we must determine
a classifier from an example dataset. There are two rather general strategies:

• Explicit probability models: We can use the example data set to build
a probability model (of either the likelihood or the posterior, depending on
taste and circumstance). There is a wide variety of ways of doing this, some
of which we see in the following sections.

• Determining decision boundaries directly: Quite bad probability mod-
els can produce good classifiers, as Figure 15.5 indicates. This is because
the decision boundaries, rather than the details of the probability model, are
what determine the performance of a classifier (the main role of the prob-
ability model in the Bayes classifier is to identify the decision boundaries).
This suggests that we could ignore the probability model and attempt to con-
struct good decision boundaries directly. This approach is often extremely
successful; it is particularly attractive when there is no reasonable prospect
of modeling the data source.

x

P(1|x)

P(2|x)

FIGURE 15.5: The figure shows posterior densities for two classes. The optimal decision
boundary is shown as a dashed line. Notice that although a normal density may provide
rather a poor fit to the posteriors, the quality of the classifier it provides depends only
on how well it predicts the position of the boundaries. In this case, assuming that the
posteriors are normal may provide a fairly good classifier because P (2|x) looks normal,
and the mean and covariance of P (1|x) look as if they would predict the boundary in the
right place.

15.2.1 Example: Using Mahalanobis Distance with Normal Class-Conditional Densities

Assume that p(x|k) for each class k are known to be normal. We can either assume
that the priors are known or estimate the priors by counting the number of data
items from each class. We can use the data items and the usual procedures to obtain
the mean μk and covariance Σk for each class. Now because log a > log b implies



Section 15.2 Major Classification Strategies 468

a > b, we can work with the logarithm of the posterior. This yields a classifier of
the form in Algorithm 15.3.

Assume we have N classes, and the kth class contains Nk examples, of which the
ith is written as xk,i.
For each class k, estimate the prior, the mean and standard deviation for that
class-conditional density.

p(k) =
Nk∑
iNi

μk =
1

Nk

Nk∑
i=1

xk,i;

Σk =
1

Nk − 1

Nk∑
i=1

(xk,i − μk)(xk,i − μk)
T ;

To classify an example x,

Choose the class k with the smallest value of δ(x;μk,Σk)
2 − p(k)

where

δ(x;μk,Σk) =
1

2

(
(x − μk)

TΣ−1
k (x− μk)

)(1/2)
.

Algorithm 15.3: Multi-class Classification Assuming Class-Conditional Densities are

Normal

The term δ(x;μk,Σk) in this algorithm is known as the Mahalanobis distance
(e.g., see Ripley (1996)). The algorithm can be interpreted geometrically as saying
that the correct class is the one whose mean is closest to the data item taking
into account the variance. In particular, distance from a mean along a direction
where there is little variance has a large weight, and distance from the mean along
a direction where there is a large variance has little weight. This classifier can be
simplified by assuming that each class has the same covariance (with the advantage
that we have fewer parameters to estimate). In this case, because the term xTΣ−1x

is common to all expressions, the classifier actually involves comparing expressions
that are linear in x. If there are only two classes, the process boils down to
determining whether a linear expression in x is greater than or less than zero (see
the exercises).

15.2.2 Example: Class-Conditional Histograms and Naive Bayes

If we have enough labeled data, we could model the class-conditional densities
with histograms. This really is practical only in low dimensions, but is sometimes
useful. We obtain p(x|y = 1) by producing a histogram of the features of the
positive examples, p(x|y = −1) from a histogram of the features of the negative



Section 15.2 Major Classification Strategies 469

examples, and p(y = 1) by counting positive versus negative examples. Then,

p(y = 1|x) = p(x|y = 1)p(y = 1)

p(x|y = 1)p(y = 1) + p(x|y = −1)(1− p(y = 1))
,

and we can plot an ROC.
Models like this become impractical in high dimensions because the number of

boxes required goes up as a power of the dimension. We can dodge this phenomenon
by assuming that features are independent conditioned on the class. Although this
appears to be an aggressive oversimplification—it is known by the pejorative name
naive Bayes—it is often very well-behaved, and is competitive for many problems.
In particular, we assume that

p(x|y = 1) = p([x0, x1, . . . , xn]|y = 1) = p(x0|y = 1)p(x1|y = 1) . . . p(xn|y = 1).

Now each of these conditional distributions is low-dimensional, and so easy to model
(either a normal distribution or a histogram are good candidates).

15.2.3 Example: A Nonparametric Classifier Using Nearest Neighbors

It is reasonable to assume that example points near an unclassified point should
indicate the class of that point. Nearest neighbors methods build classifiers using
this heuristic. We could classify a point by using the class of the nearest example
whose class is known, or use several example points and make them vote. It is
reasonable to require that some minimum number of points vote for the class we
choose.

A (k, l) nearest neighbor classifier finds the k example points closest to the
point being considered, and classifies this point with the class that has the highest
number of votes, as long as this class has more than l votes (otherwise, the point
is classified as unknown). A (k, 0)-nearest neighbor classifier is usually known as a
k-nearest neighbor classifier, and a (1, 0)-nearest neighbor classifier is usually known
as a nearest neighbor classifier.

Nearest neighbor classifiers are known to be good, in the sense that the risk of
using a nearest neighbor classifier with a sufficiently large number of examples lies
within quite good bounds of the Bayes risk. As k grows, the difference between the
Bayes risk and the risk of using a k-nearest neighbor classifier goes down as 1/

√
k.

In practice, one seldom uses more than three nearest neighbors. Furthermore, if
the Bayes risk is zero, the expected risk of using a k-nearest neighbor classifier is
also zero (see Devroye et al. (1996) for more detail on all these points). Finding the
k nearest points for a particular query can be difficult, and Section 21.2.3 reviews
this point.

A second difficulty in building such classifiers is the choice of distance. For
features that are obviously of the same type, such as lengths, the usual metric may
be good enough. But what if one feature is a length, one is a color, and one is an
angle? One possibility is to use a covariance estimate to compute a Mahalanobis-
like distance. It is almost always a good idea to scale each feature independently
so that the variance of each feature is the same, or at least consistent; this prevents
features with very large scales dominating those with very small scales.



Section 15.2 Major Classification Strategies 470

Ensure that all feature vectors are appropriately scaled.
Given a feature vector x

1. determine the k training examples that are nearest, x1, . . . ,xk;

2. determine the class c that has the largest number of representatives n in this
set;

3. if n > l, classify x as c, otherwise refuse to classify it.

Algorithm 15.4: (k, l) Nearest Neighbor Classification

15.2.4 Example: The Linear Support Vector Machine

Assume we have a set of N example points xi that belong to two classes, which we
indicate by 1 and −1. These points come with their class labels, which we write as
yi; thus, our dataset can be written as

{(x1, y1), . . . , (xN , yN )} .

We seek a rule that predicts the sign of y for any point x; this rule is our classifier.
At this point, we distinguish between two cases: either the data is linearly

separable or it isn’t. The linearly separable case is much easier, and we deal with
it first.

Support Vector Machines for Linearly Separable Datasets In a lin-
early separable dataset, there is some choice of w and b (which represent a hyper-
plane) such that

yi (w · xi + b) > 0

for every example point (notice the devious use of the sign of yi). There is one of
these expressions for each data point, and the set of expressions represents a set
of constraints on the choice of w and b. These constraints express the constraint
that all examples with a negative yi should be on one side of the hyperplane and
all with a positive yi should be on the other side.

In fact, because the set of examples is finite, there is a family of separating
hyperplanes. Each of these hyperplanes must separate the convex hull of one set of
examples from the convex hull of the other set of examples. The most conservative
choice of hyperplane is the one that is farthest from both hulls. This is obtained by
joining the closest points on the two hulls, and constructing a hyperplane perpen-
dicular to this line and through its midpoint. This hyperplane is as far as possible
from each set, in the sense that it maximizes the minimum distance from example
points to the hyperplane (Figure 15.6).

Now we can choose the scale of w and b because scaling the two together by
a positive number doesn’t affect the validity of the constraints yi(w · xi + b) > 0.
This means that we can choose w and b such that for every data point we have

yi (w · xi + b) ≥ 1

and such that equality is achieved on at least one point on each side of the hyper-
plane. Now assume that xk achieves equality and yk = 1, and xl achieves equality



Section 15.2 Major Classification Strategies 471

x

x l

k

FIGURE 15.6: The hyperplane constructed by a support vector classifier for a plane
dataset. The filled circles are data points corresponding to one class, and the empty
circles are data points corresponding to the other. We have drawn in the convex hull
of each dataset. The most conservative choice of hyperplane is one that maximizes the
minimum distance from each hull to the hyperplane. A hyperplane with this property is
obtained by constructing the shortest line segment between the hulls and then obtaining
a hyperplane perpendicular to this line segment and through its midpoint. Only a subset
of the data determines the hyperplane. Of particular interest are points on each convex
hull that are associated with a minimum distance between the hulls. We use these points
to find the hyperplane in the text.

and yl = −1. This means that xk is on one side of the hyperplane and xl is on
the other. Furthermore, the distance from xl to the hyperplane is minimal (among
the points on the same side as xl), as is the distance from xk to the hyperplane.
Notice that there might be several points with these properties.

This means that w · (x1 − x2) = 2, so that

dist(xk, hyperplane) + dist(xl, hyperplane)

which is

(
w

|w | · xk +
b

|w | )− (
w

|w | · x1 +
b

|w | ),

becomes
w

|w | · (x1 − x2) =
2

|w | .

This means that maximizing the distance is the same as minimizing (1/2)w · w.
We now have the constrained minimization problem:

minimize (1/2)w ·w

subject to yi (w · xi + b) ≥ 1,



Section 15.2 Major Classification Strategies 472

where there is one constraint for each data point.

Support Vector Machines for Non-separable Data
In many cases, a separating hyperplane does not exist. To allow for this case,

we introduce a set of slack variables, ξi ≥ 0, which represent the amount by which
the constraint is violated. We can now write our new constraints as

yi (w · x1 + b) ≥ 1− ξi,

and we modify the objective function to take account of the extent of the constraint
violations to get the problem

minimize 1
2w ·w + C

∑N
i=1 ξi

subject to yi (w · x1 + b) ≥ 1− ξi
and ξi ≥ 0.

Here C gives the significance of the constraint violations with respect to the distance
between the points and the hyperplane.

The Hinge Loss Support vector machines fit into the recipe, given in Sec-
tion 15.1.3, of minimizing regularized test loss. The hinge loss compares the known

value at an example with the response of the SVM at that example. Write y
(k)
i for

the known value and y
(p)
i for the response; then, the hinge loss for that example is

Lh(y
(k)
i , y

(p)
i ) = max(0, 1− y

(k)
i y

(p)
i ).

This loss is always non-negative (Figure 15.2). For the moment, assume y
(k)
i = 1;

then, any prediction by the classifier with value greater than one will incur no loss,
and any smaller prediction will incur a cost that is linear in the prediction value
(Figure 15.2). This means that minimizing the loss will encourage the classifier to
(a) make strong positive (or negative) predictions for positive (or negative) examples
and (b) for examples it gets wrong, make the most positive (negative) prediction
that it can.

Support vector machines minimize the regularized hinge loss. We can see this
by rewriting the constraints, to get ξi ≥ 1 − yi (w · x1 + b). Now ξi will take the
smallest value that it can, and ξi ≥ 0, so

ξi = max (0, 1− yi (w · x1 + b)) = Lh(yi,w · xi + b).

In turn, solving the SVM above is equivalent to solving the unconstrained problem

minimize Loss + Regularizer =

N∑
i=1

Lh(yi,w · xi + b) +
1

2C
w ·w.

Solving this problem requires care because it is not differentiable (the max term in
the hinge loss is the problem). However, rewriting an SVM in this way is helpful,
because it exposes what the SVM does.



Section 15.2 Major Classification Strategies 473

15.2.5 Example: Kernel Machines

Using the notation of Section 15.2.4, we write a separable linear support vector
machine as:

minimize 1
2w ·w

subject to yi (w · x1 + b) ≥ 1.

We can solve this problem by introducing Lagrange multipliers αi to obtain the
Lagrangian

(1/2)w ·w −
N∑
1

αi (yi (w · x1 + b)− 1) .

This Lagrangian needs to be minimized with respect to w and b and maximized
with respect to αi: these are the Karush-Kuhn-Tucker conditions, described in
optimization textbooks (see, for example, Gill et al. (1981)). A little manipulation
leads to the requirements that

N∑
1

αiyi = 0

and

w =

N∑
1

αiyixi.

Now by substituting these expressions into the original problem and manipulating,
we obtain the dual problem given by

maximize
∑N

i αi − 1
2

∑N
i,j=1 αi(yiyjxi · xj)αj

subject to αi ≥ 0

and
∑N

i=1 αiyi = 0.

For many datasets, it is unlikely that a hyperplane will yield a good classifier.
Instead, we want a decision boundary with a more complex geometry. One way
to achieve this is to map the feature vector into some new space and look for a
hyperplane in that new space. For example, if we had a plane dataset that we were
convinced could be separated by plane conics, we might apply the map

(x, y) → (x2, xy, y2, x, y)

to the dataset. A classifier boundary that is a hyperplane in this new feature space
is a conic in the original feature space. In this form, this idea is not particularly
useful, because we might need to map the data into a high-dimensional space (e.g.,
assume that we know the classifier boundary has degree two, and the data is 10
dimensional; we would need to map the data into a 65-dimensional space).

Write the map as x′ = φ(x). Write out the dual optimization problem for
the new points x′

i; you will notice that the only form in which x′
i appears is in the

terms
x′
i · x′

j ,



Section 15.2 Major Classification Strategies 474

which we could write as φ(xi) · φ(xj). Apart from always being positive, this term
doesn’t give us much information about φ. In particular, the map doesn’t appear
explicitly in the optimization problem. If we did solve the optimization problem,
the final classifier would be

f(x) = sign

(
N∑
1

(αiyix
′ · x′

i + b)

)

= sign

(
N∑
1

(αiyiφ(x) · φ(xi) + b)

)
.

Assume that we have a function k(x,y) that is positive for all pairs of x, y. This
function is known as a kernel. It can be shown that, under various technical con-
ditions of no interest to us, there is some φ such that k(x,y) = φ(x) · φ(y). All
this allows us to adopt a clever trick. Instead of constructing φ explicitly, we ob-
tain some appropriate k(x,y) and use it in place of φ. In particular, the dual
optimization problem becomes

maximize
∑N

i αi − 1
2

∑N
i,j=1 αi(yiyjk(xi,xj))αj

subject to αi ≥ 0

and
∑N

i=1 αiyi = 0,

and the classifier becomes

f(x) = sign

(
N∑
1

(αiyik(x,xi) + b)

)
.

Of course, these equations assume that the dataset is separable in the new feature
space represented by k. This might not be the case, in which case the problem
becomes

maximize
∑N

i αi − 1
2

∑N
i,j=1 αi(yiyjk(xi,xj))αj

subject to C ≥ αi ≥ 0

and
∑N

i=1 αiyi = 0,

and the classifier becomes

f(x) = sign

(
N∑
1

(αiyik(x,xi) + b)

)
.

There are a variety of possible choices for k(x,y). The main issue is that it
must be positive for all values of x and y. An important kernel is the Gaussian
kernel, where

k(x,y;σ) = exp

(
−||x− y ||2

2σ2

)

and σ is a scale parameter, selected using (say) cross-validation. The Gaussian
kernel can exploit any feature representation that can be coerced into the form of



Section 15.3 Practical Methods for Building Classifiers 475

a vector. There are two other widely used and effective kernels: the histogram
intersection kernel (Section 16.1.3) and the pyramid kernel (Section 16.1.4).

There is no evidence one kernel is always better than another, so we could
use many kernels and weight them with respect to one another. For example, we
could construct different Gaussian kernels with different scale parameters for color,
texture, and shape features, and then use optimization techniques to weight the
kernels relative to one another. This strategy applies to kernels of a much more
complex form, too. The strategy is known as multiple kernel learning.

15.2.6 Example: Boosting and Adaboost

One strategy to get a better classifier is to combine multiple classifiers. A natural
approach is as follows: train a classifier on some dataset; now train a new classifier,
weight each example to push the new classifier to get examples right if the previous
classifier got them wrong; repeat this a number of times. The final result is a
weighted combination of the outputs of all these classifiers. This general process is
called boosting. There are a variety of ways to choose the weights for the examples
and the combination of classifiers. We introduce the notation 1 [condition] for a
function that takes the value 1 when the condition is true and 0 otherwise.

Typically, one boosts classifiers that are not by themselves expected to be
particularly effective; all that is required is a weak learner, which is capable of an
error rate slightly better than a random choice. A particularly popular weak learner
in vision is a decision stump (named by gross analogy with a truncated decision
tree), where one tests a single feature against a threshold. It is straightforward to
train a decision stump to produce a minimum weighted error on a training set of
N examples. One checks each of the N + 1 possible thresholds, and takes the one
with the smallest error (Algorithm 15.5). Usually, the feature to be tested is chosen
uniformly at random, but a useful alternative is to compute a random projection
of the feature vector.

Assuming a weak learner, Algorithm 15.6 gives discrete Adaboost, after Fried-
man et al. (1998). An alternative is RealAdaboost, given in Algorithm 15.7, after
Schapire (2002).

In practice, boosting provides quite successful classifiers. Boosting can con-
tinue after the training error rate falls to zero, and the number of rounds of boosting
usually is chosen with a validation set (one continues to boost until the error on
the validation set rises).

15.3 PRACTICAL METHODS FOR BUILDING CLASSIFIERS

We have described several apparently very different classifiers here. But which
classifier should one use for a particular application? Generally, this should be
dealt with as a practical rather than a conceptual question: that is, one tries
several, and uses the one that works best. With all that said, experience suggests
that the first thing to try for most problems is a linear SVM (or logistic regression,
which tends to be much the same thing). If that doesn’t work, either a kernel SVM
or a boosting method (according to taste) are next.

The Mahalanobis distance is appropriate for relatively few applications, be-
cause (a) the model usually doesn’t apply and (b) it is hard to estimate the covari-



Section 15.3 Practical Methods for Building Classifiers 476

Given a set of N training examples (xi, yi), where yi ∈ {1,−1} and a set of weights,
one per example, wi such that

∑
i wi = 1

1. Determine a variable to test.

• Either choose a single feature index r uniformly and at random, and
construct a new training set by projecting onto the rth feature to get
(ui = Πr(xi), yi)

• Or choose a random unit vector v and construct a new training set
(ui = v · xi, yi)

2. Sort the new training set so that u1 ≤ u2 ≤ ui ≤ uN .

3. There are now at most 2(N +1) possible error values. For each of the thresh-
olds t0 = u1−ε, t1 = (1/2)(u1+u2), . . . , ti = (1/2)(ui+ui+1), . . . , tN = uN+ε,
there are two possible decision stumps:

φ1(u, tk) =

{
1 if u > tk
−1 otherwise

and

φ2(u, tk) =

{
1 if u ≤ tk
−1 otherwise

.

Each of these has an error value. Compute the error values E1(tk) =∑
iwi1[yi �= φ1(ui, tk)] and E2(tk) =

∑
iwi1[yi �= φ2(ui, tk)] = 1− E1(tk).

4. Choose the decision stump that has the smallest error value.

Algorithm 15.5: Training a Two-Class Decision Stump

ance matrices accurately when the feature vectors are high-dimensional, and there
are some cases where it is useful. It can be a good thing to try for low-dimensional
problems with lots of training data and multiple classes. Nearest neighbor strate-
gies are always useful, and are consistently competitive with other approaches when
there is lots of training data and one has some idea of appropriate relative scaling
of the features. The main difficulty with nearest neighbors is actually finding the
nearest neighbors of a query. Approximate methods are now very good, and are
reviewed in Section 21.2.3. The attraction of these methods is that it is relatively
easy to build multi-class classifiers, and to add new classes to a system of classifiers.

The loss function one uses is supposed to be dictated by the natural logic
of the underlying problem. This is all very well, but in practice we often do not
know what a good loss function is, particularly in multi-class cases. The 0-1 loss is
almost universally used, but this loss can impose severe (and, worse, uninformative)
penalties in multi-class cases. For example, is labeling a cat with the label “dog”
really as bad as labeling it with the label “motorcycle”? The difficulty here is we
do not have a good, ready-made loss function that encodes what we really want to
do for some classification problems. We explore this point further in Section 16.2.4.



Section 15.3 Practical Methods for Building Classifiers 477

Given a set of N training examples (xi, yi), where yi ∈ {1,−1}

1. Give the ith example the initial weight w
(0)
i = 1/N .

2. For each m = 1, 2, . . . ,M

(a) Compute a weak learner φm(x) using the current set of weights on the
training data.

(b) Compute Em =
∑

iw
(m−1)
i 1[yi �= φm(xi)], cm = log((1− Em)/Em).

(c) Recompute the weights for each example using

w
(m)
i = w

(m−1)
i exp(cm1[yi �= φm(xi)]).

3. The classifier is now sign
[∑M

m=1 cmφm(x)
]
.

Algorithm 15.6: Discrete Adaboost

15.3.1 Manipulating Training Data to Improve Performance

Generally, more training data leads to a better classifier. However, training classi-
fiers with large datasets can be difficult, and it can be hard to get enough training
data. Typically, only a relatively small number of example items are really impor-
tant in determining the behavior of a classifier (we see this phenomenon in greater
detail in Section 15.2.4). The really important examples tend to be rare cases that
are quite hard to discriminate. This is because these cases affect the position of the
decision boundary most significantly. We need a large dataset to ensure that these
cases are present.

There are two useful tricks that help. First, for many or most cases in
computer vision, we can expand the set of training examples with quite simple
tricks. For concreteness, imagine we are training a classifier to recognize pictures of
kitchens. The first step is to collect many pictures of kitchens. But we aren’t guar-
anteed that an image of a kitchen will appear at a fixed size, or at a fixed rotation,
or with a fixed crop. Usually we would resize the images to a fixed size using a
uniform scaling, cropping as necessary. However, we could vary the scaling slightly,
vary the cropping slightly, or vary the rotation of the image slightly (Figure 15.7).
This means that each picture of a kitchen can generate a large number of positive
examples. It is usually less helpful to do this with negative examples, because it
is usually easy to get a large number of negative examples. A second useful trick
can avoid much redundant work. We train on a subset of the examples, run the
resulting classifier on the rest of the examples, and then insert the false positives
and false negatives into the training set to retrain the classifier. This is because the
false positives and false negatives are the cases that give the most information about
errors in the configuration of the decision boundaries. We may repeat this several
times, and in the final stages, we may use the classifier to seek false positives. For
example, we might collect pictures from the Web, classify them, and then look at
the positives for errors. This strategy is sometimes called bootstrapping (the name



Section 15.3 Practical Methods for Building Classifiers 478

Given a set of N training examples (xi, yi), where yi ∈ {1,−1}

1. Give the ith example the initial weight w
(0)
i = 1/N .

2. For each m = 1, 2, . . . ,M

(a) Compute a weak learner φm(x) using the current set of weights on the
training data.

(b) Compute

α∗
m =

argmin
α

∑
i

w
(m−1)
i exp (−αyiφm(xi)) .

(c) Recompute the weights for each example using

u
(m)
i = w

(m−1)
i exp(−α∗

myiφm(xi))

w
(m)
i =

u
(m)
i∑
i u

(m)
i

.

3. The classifier is now sign
[∑M

m=1 α
∗
mφm(x)

]
.

Algorithm 15.7: Real Adaboost

is potentially confusing because there is an unrelated statistical procedure known
as bootstrapping; nonetheless, we’re stuck with it at this point).

There is an extremely important variant of this approach called hard negative
mining. This applies to situations where we have a moderate supply of positive
examples, but an immense number of negative examples. Such situations occur
commonly when we use classifiers to detect objects (Section 17.1). The general

Original Rescale and Crop Rotate and Crop Flip

FIGURE 15.7: A single positive example can be used to generate numerous positive ex-
amples by slight rescaling and cropping, small rotations and crops, or flipping. These
transformations can be combined, too. For most applications, these positive examples are
informative, because objects usually are not framed and scaled precisely in images. In
effect, these examples inform the classifier that, for example, the stove could be slightly
more or slightly less to the right of the image or even to the left. Jake Fitzjones c© Dorling
Kindersley, used with permission.



Section 15.3 Practical Methods for Building Classifiers 479

procedure is to test every image window to tell whether it contains, say, a face.
There are a lot of image windows, and it is quite easy to obtain a lot of images
that are certain not to contain a face. In this case we can’t use all the negative
examples in training, but we need to search for negative examples that are most
likely to improve the classifier’s performance. We can do so by selecting a set of
negative examples, training with these, and then searching the rest of the negative
examples to find ones that generate false positives—these are hard negatives. We
can iterate the procedure of training and searching for hard negatives; typically, we
expand the pool of negative examples at each iteration.

15.3.2 Building Multi-Class Classifiers Out of Binary Classifiers

There are two standard methods to build multi-class classifiers out of binary classi-
fiers. In the all-vs-all approach, we train a binary classifier for each pair of classes.
To classify an example, we present it to each of these classifiers. Each classifier
decides which of two classes the example belongs to, then records a vote for that
class. The example gets the class label with the most votes. This approach is
simple, but scales very badly with the number of classes.

In the one-vs-all approach, we build a binary classifier for each class. This
classifier must distinguish its class from all the other classes. We then take the
class with the largest classifier score. One possible concern with this method is
that training algorithms usually do not compel classifiers to be good at ranking
examples. We train classifiers so that they give positive scores for positive examples,
and negative scores for negative examples, but we do nothing explicit to ensure that
a more positive score means the example is more like the positive class. Another
important concern is that the classifier scores must be calibrated to one another,
so that when one classifier gives a larger positive score than another, we can be
sure that the first classifier is more certain than the second. Some classifiers, such
as logistic regression, report posterior probabilities, which require no calibration.
Others, such as the SVM, report numbers with no obvious semantics and need to
be calibrated. The usual method to calibrate these numbers is an algorithm due to
Platt (1999), which uses logistic regression to fit a simple probability model to SVM
outputs. One-vs-all methods tend to be reliable and effective even when applied to
uncalibrated classifier outputs, most likely because training algorithms do tend to
encourage classifiers to rank examples correctly.

Neither strategy is particularly attractive when the number of classes is large,
because the number of classifiers we must train scales poorly (linearly in one case,
quadratically in the other) with the number of classes. If we were to allocate each
class a distinct binary vector, we would need only logN bits in the vector for N
classes. We could then train one classifier for each bit, and we should be able to
classify into N classes with only logN classifiers. This strategy tends to founder
on questions of which class should get which bit string, because this choice has
significant effects on the ease of training the classifiers. Nonetheless, it gives an
argument that suggests that we should not need as many as N classifiers to tell N
classes apart. This question is becoming important because the number of object
categories that modern methods can deal with is growing quickly. For example,
one now sees methods that do 10,000-class classification for vision objects (Deng



Section 15.3 Practical Methods for Building Classifiers 480

et al. 2010). The difference between training 10,000 SVMs and training 14 is very
significant, and we can expect considerable research on this matter.

15.3.3 Solving for SVMS and Kernel Machines

We obtain a support vector machine by solving one of the constrained optimization
problems given above. Although these problems are quadratic programs, it is not
a good idea to simply dump them into a general-purpose optimization package,
because they have quite special structure. One would usually use one of the many
packages available on the web for SVMs.

There are two general threads in solving for SVMs. One can either solve the
primal problems (the ones shown here), or write out the Lagrangian, eliminate the
primal variables w and b, and solve the dual problem in the Lagrange multipliers.
This dual problem has a large number of variables because there is one Lagrange
multiplier for each active constraint. However, our original argument about convex
hulls suggests that most of these must be zero at the solution. Equivalently, most
constraints are not active, because relatively few points are enough to determine a
separating hyperplane. Dual solvers typically exploit this property, and are built
around an efficient search for nonzero Lagrange multipliers.

The alternative to solving the dual problem is to solve the primal problem.
This approach is particularly useful when the dataset is very large, and is unlikely
to be linearly separable. In this case, the objective function is an estimate of the
loss incurred in applying the classifier, regularized by the norm of the hyperplane.
For many applications, it is sufficient to get the error rate below a threshold (as
opposed to exactly minimizing it). This means that the value of the objective
function is a guide to when training can stop, as long as one trains in primal.
Modern primal training algorithms visit single examples at random, updating the
estimated classifier slightly on each visit. These algorithms can be very efficient for
extremely large datasets.

LIBSVM (which can be found using Google, or at http://www.csie.ntu.

edu.tw/~cjlin/libsvm/) is a dual solver that is now widely used; it searches for
nonzero Lagrange multipliers using a clever procedure known as SMO (sequential
minimal optimization). A good primal solver is PEGASOS; source code can be
found using Google, or at http://www.cs.huji.ac.il/~shais/code/index.html.
SVMLight (Google, or http://svmlight.joachims.org/) is a comprehensive

SVM package with numerous features. It can produce sophisticated estimates of
the error rate, learn to rank as well as to classify, and copes with hundreds of thou-
sands of examples. Andrea Vedaldi, Manik Varma, Varun Gulshan, and Andrew
Zisserman publish code for a multiple kernel learning-based image classifier at http:
//www.robots.ox.ac.uk/~vgg/software/MKL/. Manik Varma publishes code for
general multiple-kernel learning at http://research.microsoft.com/en-us/um/
people/manik/code/GMKL/download.html, and for multiple-kernel learning us-
ing SMO at http://research.microsoft.com/en-us/um/people/manik/code/

SMO-MKL/download.html. Peter Gehler and Sebastian Nowozin publish code for
their recent multiple-kernel learning method at http://www.vision.ee.ethz.ch/

~pgehler/projects/iccv09/index.html.

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.cs.huji.ac.il/~shais/code/index.html
http://svmlight.joachims.org/
http://www.robots.ox.ac.uk/~vgg/software/MKL/
http://www.robots.ox.ac.uk/~vgg/software/MKL/
http://research.microsoft.com/en-us/um/people/manik/code/GMKL/download.html
http://research.microsoft.com/en-us/um/people/manik/code/GMKL/download.html
http://research.microsoft.com/en-us/um/people/manik/code/SMO-MKL/download.html
http://research.microsoft.com/en-us/um/people/manik/code/SMO-MKL/download.html
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html
http://www.vision.ee.ethz.ch/~pgehler/projects/iccv09/index.html


Section 15.4 Notes 481

15.4 NOTES

We warn readers that a search over classifiers is not a particularly effective way to
solve problems; instead, look to improved feature constructions. However, many
application problems have special properties, and so there is an enormous number
of different methods to build classifiers. We have described methods that reliably
give good results. Classification is now a standard topic, with a variety of important
textbooks. Accounts of most mainstream classifiers can be found in major recent
texts. We recommend Bishop (2007), Hastie et al. (2009), Devroye et al. (1996), and
MacKay (2003). An important theoretical account of when classification methods
can be expected to work or to fail is in Vapnik (1998).

PROBLEMS

15.1. Assume we have two classes, where p(x|k) is known to be normal. Assume
that the loss is 0-1, and that the priors are the same for each class. Show that
classifying the data using the Mahalanobis distance is equivalent to checking
the sign of an expression that is linear in x.

15.2. Wewish to build a two-class classifier with logistic regression (see Section 15.1.3).

(a) Show that the log-likelihood of the data is

L(a) =
∑

i∈examples

(
1 + yi

2
)aT

x− log
(
1 + a

T
x

)
.

(b) Compute expressions for the gradient and Hessian of −L(a).
(c) Show that either −L(a) is convex, or the feature vectors �xi lie on an affine

subspace of the feature space.
15.3. Check that

L(yi, γi) = −
[
1

2
(1 + yi)γi − log (1 + exp γi)

]
= log (1 + exp (−yiγi)) .

It is helpful to recall that x− log(1+exp(x)) = − log(1+exp(−x)), which you
can prove by division.

15.4. Describe how to use Naive Bayes to build a multi-class classifier (without using
one-vs-all or one-vs-one strategies).



C H A P T E R 16

Classifying Images

Many modern computer vision problems can be solved by using a classifier. Here
we will survey a set of applications where one passes a whole image into a classifier,
and in the next chapter show an extremely important extension where one applies
the classifier to windows in the image. The recipe is straightforward: one finds a
labelled dataset, builds features, and then trains a classifier. Even better, there is
a set of reliable feature building tricks that apply in many important cases. This
recipe is so powerful and has proven so effective that it is worth a considerable effort
to rephrase a problem into a form in which it applies; and whenever it does apply,
it is essential to check how well it works before doing anything more elaborate.

Each application needs a set of features that can represent the image appear-
ance usefully. Section 16.1 describes general tricks for building appearance features
in the context of some particular applications. We then look at the general problem
of image classification, where one takes a test image and must classify it into one of
a set of categories (Section 16.2). There are two important threads in the current
state of the art: Building methods that perform better on a fixed set of categories
(Section 16.2.3); and building methods that apply to increasingly large numbers
of categories (Section 16.2.4). Finally, Section 16.3 gives pointers to software and
datasets that are useful for research in this area.

16.1 BUILDING GOOD IMAGE FEATURES

The core difficulty in applying our recipe is choosing good image features. Differ-
ent feature constructions are good for different applications. The key is to build
features that expose between-class variation, which is the tendency for classes to
look different from one another, and suppress within-class variation, the tendency
for instances within a class to look different. Some feature constructions seem to be
quite good at this for many problems, but most problems have special properties.

16.1.1 Example Applications

Detecting explicit images: There are numerous reasons to try and detect images
that depict nudity or sexual content. In some jurisdictions, possession or distribu-
tion of such pictures might be illegal. Many employers want to ensure that work
computers are not used to collect or view such images; in fact, vendors of image
filtering software have tried to persuade employers that they might face litigation
if they don’t do so. Advertisers want to be careful that their ads appear only next
to images that will not distress their customers. Web search companies would like
to allow users to avoid seeing images they find distressing.

It is difficult for jurists to be clear about what images are acceptable and what
are not. In the United States, images that are not obscene have first amendment
protections, but the test for whether an image is obscene is far too vague to be useful

482



Section 16.1 Building Good Image Features 483

FIGURE 16.1: Material is not the same as object category (the three cars on the top are
each made of different materials), and is not the same as texture (the three checkered
objects on the bottom are made of different materials). Knowing the material that
makes up an object gives us a useful description, somewhat distinct from its identity and
its texture. This figure was originally published as Figures 2 and 3 of “Exploring Features
in a Bayesian Framework for Material Recognition,” by C. Liu, L. Sharan, E. Adelson,
and R. Rosenholtz Proc. CVPR 2010, 2010 c© IEEE, 2010.

to the technical community (even the legal community finds it tricky; see histories
in, for example, O’Brien (2010) or de Grazia (1993)). For most applications, it
is enough to filter pictures that likely show nakedness or sexual content, and that
could be done with a classifier. Much of the research on this topic is done at large
industrial laboratories, behind a wall of secrecy. All published methods rely on
finding skin in the image; some then reason about the layout of the skin. For us,
there are two classification steps: we need classify pixels into skin and not-skin; and
we need to classify images into explicit vs. not-explicit based on the layout of skin.

Material classification: Imagine we have an image window. What material
(e.g., “wood,” “glass,” “rubber,” and “leather”) does the window cover? If we could
answer this question, we could decide whether an image patch was cloth—and so
might be part of a person, or of furniture—or grass, or trees, or sky. Generally,
different materials produce different image textures, so natural features to use for
this multiclass classification problem will be texture features. However, materials
tend to have some surface relief (for example, the little pores on the surface of an
orange; the bumps on stucco; the grooves in tree bark), and these generate quite
complex shading behavior. Changes in the illumination direction can cause the
shadows attached to the relief to change quite sharply, and so the overall texture
changes. Furthermore, as Figure 16.1 illustrates, texture features might indicate
the material an object is made of, but objects can have the same texture and be
made of quite different materials.

Scene classification: Pictures of a bedroom, of a kitchen, or of a beach
show different scenes. Scenes provide an important source of context to use in



Section 16.1 Building Good Image Features 484

FIGURE 16.2: Some scenes are easily identified by humans. These are examples from
the SUN dataset (Xiao et al. 2010) of scene categories that people identify accurately
from images; the label above each image gives its scene type. This figure was originally
published as Figure 2 of “SUN database: Large-scale Scene Recognition from Abbey to
Zoo,” by J. Xiao, J. Hays, K. Ehinger, A. Oliva, and A. Torralba, Proc. IEEE CVPR
2010, c© IEEE, 2010.

interpreting images. You could reasonably expect to see a pillow, but not a toaster
or a beachball, in a bedroom; a toaster, but not a pillow or a beachball, in a kitchen;
or a beachball and perhaps a pillow, but not a toaster, on a beach. We should like
to be able to tell what scene is depicted in an image. This is difficult, because scenes
vary quite widely in appearance, and this variation has a strong spatial component.
For example, the toaster could be in many different locations in the kitchen. In
scene classification, one must identify the scene depicted in the image. Scene labels
are more arbitrary than object labels, because there is no clear consensus on what
the different labels should be. Some labels seem fairly clear and are easy to assign
accurately (Figure 16.2), for example, “kitchen,” “bedroom,” and other names of
rooms in a house. Other labels are uncertain: should one distinguish between
“woodland paths” and “meadows”, or just label them all “outdoors”? Humans
seem to have a problem here, too (Figure 16.18). However, there are several scene
datasets, each with its own set of labels, so methods can be compared and evaluated.

There are some important general points about these and most other appli-
cations, that can guide feature construction. Any representation should be robust
to rotation, translation, or scaling of the image, because these transformations will
not affect the label of the image (an explicit image is an explicit image, even when
it is upside down). The driving observations behind the SIFT and HOG feature
constructions are (a) exact intensity values are not important, because we
might encounter versions of the image taken under brighter or darker illumination;
and (b) image curves are important, because they might be object outlines. As
we saw in Section 5.4, these observations justified working with gradient orienta-
tions and normalizing the resulting features in various ways. There are two more



Section 16.1 Building Good Image Features 485

Place Recognition

Scene Recognition

FIGURE 16.3: GIST features can be used to identify scenes, particularly the place where
the image was taken. Torralba et al. (2003) demonstrated a vision system that moves
through a known environment, and can tell where it is from what it sees using scene
recognition ideas. Images (examples on the top left) are represented with GIST features.
These are used to compute a posterior probability of place conditioned on observations
and the place of the last image, which is shown on the right. The shaded blobs corre-
spond to posterior probability, with darker blobs having higher probability. The thin line
superimposed on the figure gives the correct answer; notice that almost all probability lies
on the right answer. For places that are not known, the type of place can be estimated
(bottom left); again, the shaded blobs give posterior probability, darker blobs having
higher probability, and the thin line gives the right answer. This figure was originally
published as Figures 2 and 3 of “Context-based vision system for place and object recogni-
tion,” by A. Torralba, K. Murphy, W.T. Freeman, and M.A. Rubin, Proc. IEEE ICCV
2003, c© IEEE 2003.

important observations. First, image texture is important, and is usually highly
diagnostic. Although this isn’t at all obvious, it turns out to be an essential part of
building good features. This suggests looking at summary statistics of orientation
(for example, horizontal stripes give lots of vertically oriented gradients, spotty
regions should have uniformly distributed orientations, and so on). Second, exact
feature locations are not important, because small changes in the layout of
the image would not change its class. For example, moving the toaster on a shelf
doesn’t stop the kitchen from being a kitchen. We have seen a version of this issue
before, at a finer spatial scale. The histogramming step in SIFT and HOG features
tries to account for small shifts in the location of orientation components, local to
a particular neighborhood, by summarizing that neighborhood. We will use similar
summarization mechanisms to deal with larger scale shifts of larger structures.

16.1.2 Encoding Layout with GIST Features

One natural cue to the scene is the overall layout of a picture. If there are large,
smooth regions on either side, many vertical straight lines, and relatively little sky
visible, then you might be in an urban canyon; if there is a lot of sky visible,
and rough brown stuff at the bottom of the picture, then you might be outdoors;
and so on. There is a lot of evidence that people can make very fast, accurate



Section 16.1 Building Good Image Features 486

FIGURE 16.4: Scenes are important, because knowing the type of scene shown in an image
gives us some information about the objects that are present. For example, street’s are
typically at the bottom center of street scenes. These maps show probabilities of object
locations (top row, for each image) extracted from scene information for the image to
the left; brighter values are higher probabilities. Compare these with the true support of
the object (bottom row, for each image); notice that, while knowing the scene doesn’t
guarantee that an object is present, it does suggest where it is likely to be. This could
be used to cue object detection processes. This figure was originally published as Figure
10 of “Context-based vision system for place and object recognition,” by A. Torralba, K.
Murphy, W.T. Freeman, and M.A. Rubin, Proc. IEEE ICCV 2003, c© IEEE 2003.

judgments about pictures, which appear to be based on the overall layout of the
picture (Henderson and Hollingworth 1999).

GIST features attempt to capture this layout. Oliva and Torralba (2001)
constructed these features by reasoning about a set of perceptual dimensions that
might encode the layout of a scene. The dimensions include whether the scene is
natural or man-made; whether there is wide-open space or just a narrow enclosure;
whether it is rugged or not. They then build features that tend to be good at
predicting these dimensions. These features typically result from a spectral analysis
of all or part of the scene. For example, images that show urban canyons have lots
of strong vertical edges, which will mean high energy at high spatial frequencies at
particular (vertical) phases; similarly, ruggedness will translate into strong energy
at high spatial frequencies.

A natural feature will be comparable to the texture representations of Chap-
ter 6, but summarized to represent the whole image. Oliva and Torralba apply
a bank of oriented filters at a range of scales (eight orientations and four scales).
They then average the magnitude of the filter output over a four by four grid of
non-overlapping windows. The result is a 512 (= 4× 4× 8× 4) dimensional vector.
This is then projected onto a set of principal components computed on a large
dataset of natural images. The result is a set of features that (a) give a sense of
the strength of texture activity at various scales and orientations in various blocks
of the image and (b) tend to differ between natural scenes. These features are now



Section 16.1 Building Good Image Features 487

FIGURE 16.5: The original application of visual word representations was to search video
sequences for particular patterns. On the left, a user has drawn a box around a pattern
of interest in a frame of video; the center shows a close-up of the box. On the right,
we see neighborhoods computed from this box. These neighborhoods are ellipses, rather
than circles; this means that they are covariant under affine transforms. Equivalently,
the neighborhood constructed for an affine transformed patch image will be the affine
transform of the neighborhood constructed for the original patch (definition in Section
5.3.2). This figure was originally published as Figure 11 of J. Sivic and A. Zisserman
“Efficient Visual Search for Objects in Videos,” Proc. IEEE, Vol. 96, No. 4, April 2008
c© IEEE 2008.

very widely used. There is strong evidence that they do encode scene layout (for
example Oliva and Torralba (2007); Oliva and Torralba (2001); or Torralba et al.
(2003)), and they are widely used in applications where scene context is likely to
help performance.

16.1.3 Summarizing Images with Visual Words

Features that represent scenes should summarize. It is generally more important
to know that something is present (the toaster in our example), than to know
where it is. This suggests using a representation that has the form of a histogram.
Such histograms are useful for other cases, too. Imagine we would like to classify
images containing large, relatively isolated objects. The objects might deform, the
viewpoint might move, and the image might have been rotated or scaled. Apart
from these effects, we expect the object appearance to be fairly stable (that is,
we’re not trying to match a striped object with a spotted object). This means that
the absolute location of structures in the image is probably not very informative,
but the presence of these structures is very important. Again, this suggests a
representation that is like a histogram. The big question is what to record in the
histogram.

An extremely successful answer is to record characteristic local image patches.
When we discussed texture, we called these textons (Section 6.2), but in recognition
applications they tend to be called visual words. The construction follows the same
lines. We detect interest points and build neighborhoods around them (Section 5.3).
We then describe those neighborhoods with SIFT features (Section 5.4). We vector
quantize these descriptions, then build a representation of the overall pattern of
vector-quantized neighborhoods.

There are many plausible strategies to vector quantize SIFT descriptors. For
concreteness, assume we obtain a large training set of SIFT descriptors from rele-
vant images and cluster them with k-means. We now vector quantize a new SIFT



Section 16.1 Building Good Image Features 488

FIGURE 16.6: Visual words are obtained by vector quantizing neighborhoods like those
shown in Figure 16.5. This figure shows 30 examples each of instances of four different
visual words. Notice that the words represent a moderate-scale local structure in the
image (an eye, one and a half letters, and so on). Typical vocabularies are now very large,
which means that the instances of each separate word tend to look a lot like one another.
This figure was originally published as Figure 3 of “Efficient Visual Search for Objects in
Videos,” by J. Sivic and A. Zisserman, Proc. IEEE, Vol. 96, No. 4, April 2008 c© IEEE
2008.

descriptor by replacing it with the number of the closest cluster center. The result-
ing numbers are very like words (for example, you can count the number of times a
particular type of interest point occurs in an image, and images with similar counts
are likely to be similar). Sivic and Zisserman (2003), who pioneered the approach,
call these numbers visual words. Perhaps the most important difference between
visual words and the textons of Section 6.2.1 is that a visual word could describe a
larger image domain than a texton might.

Although individual visual words should be somewhat noisy, the overall pic-
ture of local patches should be the same in comparable images (or regions). For
example, Figure 16.7 is relatively typical of visual word representations. Not all
the neighborhoods in the query were matched in each response. Noise could be
caused by the neighborhood procedure not finding the correct neighborhood, or by
the vector quantization sending the neighborhood to the wrong visual word. As
a result, we need to summarize the set of visual words in a way that is robust to
errors. In practice, histograms are an excellent summary. If most of the words in
one image match most of the words in the other image, then the histograms should
be similar. Furthermore, the histograms should not be significantly affected by
change of image intensity, rotations, scaling, and deformations.

In the histogram representation, two images that are similar should have sim-
ilar histograms, and two images that are different will have different histograms.
This means that it is somewhat unnatural (and, in practice, not particularly effec-
tive) to simply apply a linear classifier to a histogram represented as a vector. We
expect positive (resp. negative) examples to lie on a fairly complex structure in
this feature space, and the classification procedure should compare test examples
to multiple training examples. This means that kernel methods (Section 15.2.5) are
particularly well adapted to histogram features. One can use the χ-squared kernel,



Section 16.1 Building Good Image Features 489

FIGURE 16.7: This figure shows results from the query of Figure 16.5, obtained by looking
for image regions that have a set of visual words strongly similar to those found in the
query region. The first row shows the whole frame from the video sequence; the second
row shows a close-up of the box that is the result (indicated in the first row); and the
third row shows the neighborhoods in that box that generated visual words that match
those in the query. Notice that some, but not all, of the neighborhoods in the query were
matched. This figure was originally published as Figure 11 of J. Sivic and A. Zisserman
“Efficient Visual Search for Objects in Videos,” Proc. IEEE, Vol. 96, No. 4, April 2008
c© IEEE 2008.

where

K(h, g) =
1

2

∑
i

(hi − gi)
2

hi + gi

is the χ-square distance between the histograms. A widely adopted alternative is
the histogram intersection kernel, where

K(h, g) =
∑
i

min(hi, gi)

which will be large if h and g have many boxes of similar weight, and small oth-
erwise. You can see this as an estimate of the number of elements of the ith type
that can be matched. Notice that this applies to normalized histograms, which
means that if one image has many elements of the ith kind and the other has few,
then not only will the ith term in the sum be small, but others must be small, too.
The histogram intersection kernel can be evaluated very quickly, with appropriate
tricks (Maji et al. 2008).

16.1.4 The Spatial Pyramid Kernel

Histograms of visual words are a very powerful representation, as we shall see
in Section 16.2. However, they suppress all spatial information, which creates
problems in scene recognition. Imagine we are building a kernel to compare scene
images. We should like the kernel value to be large for similar scenes, and small for



Section 16.1 Building Good Image Features 490

Image layer

Histograms

Pyramid level

FIGURE 16.8: A simplified example of constructing a spatial pyramid kernel, with three
levels. There are three feature types, too (circles, diamonds, and crosses). The image is
subdivided into one-, four-, and sixteen-grid boxes. For each level, we compute a histogram
of how many features occur in each box for each feature type. We then compare two images
by constructing an approximate score of the matches from these histograms. This figure
was originally published as Figure 1 of “Beyond bags of features: Spatial pyramid matching
for recognizing natural scene categories,” by S. Lazebnik, C. Schmid, and J. Ponce, Proc.
IEEE CVPR 2006, c© IEEE 2006.

different ones. We expect two images of the same scene to have many objects in
common, but these objects will move around somewhat. For example, two kitchen
pictures should have a high similarity score. Since the ceilings, windows, counters,
and floors are at about the same height in different kitchens, we need a score that
respects rough spatial structure. The score should not be affected by fine spatial
details (for example, moving the toaster from the counter on the left to that on the
right).

Lazebnik et al. (2006) show how to build an important variant of a histogram
of visual words that yields a kernel that has a very effective rough encoding of
spatial layout. If you think of each image as a pattern, made up of elements, which
could be visual words, then two images should be similar if about the same elements
were present in comparable places. In particular, if the elements of one image can
be matched to elements of the same kind that lie nearby in another image, then the
two images should have high similarity. We cannot compute similarity by matching
elements exactly between two images, because there are too many elements and
computing an exact matching would be too expensive.

A rough estimate of the number of elements that can be matched is easy
to get. If there are Ni,1 elements of type i in image 1 and Ni,2 elements of type
i in image 2, then min(Ni,1, Ni,2) elements of type i could match. This is the
reasoning underlying the histogram intersection kernel (Section 16.1.3). However,
this is a relatively poor estimate of the number of matching elements, because some
of these elements may have to match others that are very far away. We can get
an improved estimate by breaking each image into four quarters, and applying the
same reasoning to each quarter to come up with the score for matching that quarter



Section 16.1 Building Good Image Features 491

FIGURE 16.9: Measurements of similarity using a spatial pyramid kernel offer natural
methods for scene classification, because similar scenes should have about the right features
in about the right place. This figure shows results obtained by querying a set of scene
images with the query shown on the left. On the right, images from a test collection
ranked by the value of the similarity score, with the most similar image on the left. The
responses on the first row are mainly wrong (the name of the room is below the image
when the response is wrong), perhaps because the kitchen in the query image has an
eccentric layout. Other responses are mostly right. This figure was originally published
as Figure 4 of “Beyond bags of features: Spatial pyramid matching for recognizing natural
scene categories,” by S. Lazebnik, C. Schmid, and J. Ponce, Proc. IEEE CVPR 2006, c©
IEEE 2006.

to the corresponding quarter of the other image. We now have five estimates (one
for the whole image, and one for each quarter) and must combine them. We do
so using weights that depend on the size of the image partitions for which the
estimates were computed. We could subdivide the quarters again to create even
smaller boxes and weight the local estimates appropriately, but boxes that are too
small are not terribly informative.

We can now give a formal expression for the similarity score between two
images, which is the kernel value. For simplicity, assume the patterns we work
with are all the same size. We wish to compare I and J . To get an estimate
of the number of features that would match, we break each image into a grid of
squares. We will use several different grids, indexed by l (Figure 16.8). We write
H l

I,t(i) for the number of features of type t in the ith box in grid l on image I.
We assume that elements in a particular box in a particular grid over I can match
only to elements in the corresponding box and grid over J . We also assume that
all elements that can be matched within a box, are matched. This means that the
number of elements of type t in box i in grid l that match is

min(H l
I,t(i), H

l
J ,t(i)),

and the similarity between I and J , as measured at grid level l, is∑
i∈grid boxes

min(H l
I,t(i), H

l
J ,t(i)).



Section 16.1 Building Good Image Features 492

FIGURE 16.10: The spatial pyramid kernel is capable of complex image classification tasks.
Here we show some examples of categories from the Caltech 101 collection on which the
method does well (top row) and poorly (bottom row). The number is the percentage
of images of that class classified correctly. Caltech 101 is a set of images of 101 categories
of objects; one must classify test images into this set of categories (Section 16.3.2). This
figure was originally published as Figure 5 of “Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories,” by S. Lazebnik, C. Schmid, and J.
Ponce, Proc. IEEE CVPR 2006, c© IEEE 2006.

Each grid gives us an estimate of how well the features match, but generally we
would like to place more weight on matches in fine grids and less weight on matches
in coarse grids. We can do this by weighting matches by the inverse of the cell width
at each level; write this weight as wl. We will assume that matches between features
of different types have the same weight, and obtain a total similarity score∑

t∈feature types

∑
l∈levels

∑
i∈grid boxes

wl min(H l
I,t(i), H

l
I,t(i)).

The resulting similarity estimates can be used either to rank image similarity (as
in Figure 16.9), or as a kernel for a kernel-based classifier.

The spatial pyramid kernel does very well at classifying images by scene,
and can outperform histogram intersection kernels on standard image classification
tasks, even on datasets where the background on which objects appear varies very
widely (Lazebnik et al. 2006). It can work well with very rich pools of features.
In the work of Lazebnik et al. (2006), visual words are not constructed at interest
points alone, but on a grid across the whole image; this means that there is a much
richer—and much larger—set of visual words available to represent the image. It is
notable that spatial pyramid kernels seem to represent relatively isolated objects or



Section 16.1 Building Good Image Features 493

natural scenes well, but have trouble with textureless objects or objects that blend
well into their backgrounds (Figure 16.10).

16.1.5 Dimension Reduction with Principal Components

Our constructions tend to produce high-dimensional feature vectors. This will tend
to make it more difficult to estimate a classifier accurately, because it will tend to
increase the variance of the estimate. It can be useful to reduce the dimension of
a feature vector. We can do so by projecting onto a low-dimensional basis. One
way to choose this basis is to insist that the new set of features should capture as
much of the old set’s variance as possible. As an extreme example, if the value
of one feature can be predicted precisely from the value of the others, it is clearly
redundant and can be dropped. By this argument, if we are going to drop a feature,
the best one to drop is the one whose value is most accurately predicted by the
others, that is, features that have relatively little variance.

In principal component analysis, the new features are linear functions of the
old features. We take a set of data points and construct a lower dimensional linear
subspace that best explains the variation of these data points from their mean. This
method (also known as the Karhunen–Loéve transform) is a classical technique from
statistical pattern recognition (see, for example Duda and Hart (1973), Oja (1983),
or Fukunaga (1990)).

Assume we have a set of n feature vectors xi (i = 1, . . . , n) in R
d. The mean

of this set of feature vectors is μ (you should think of the mean as the center of
gravity in this case), and their covariance is Σ (you can think of the variance as a
matrix of second moments). We use the mean as an origin and study the offsets
from the mean (xi − μ).

Our features are linear combinations of the original features; this means it is
natural to consider the projection of these offsets onto various different directions.
A unit vector v represents a direction in the original feature space; we can interpret
this direction as a new feature v(x). The value of u on the ith data point is given
by v(xi) = vT (xi − μ). A good feature captures as much of the variance of the
original dataset as possible. Notice that v has zero mean; then the variance of v is

var(v) =
1

n− 1

n∑
i=1

v(xi)v(xi)
T

=
1

n

n−1∑
i=1

vT (xi − μ)(vT (xi − μ))T

= vT

{
n−1∑
i=1

(xi − μ)(xi − μ)T

}
v

= vTΣv.

Now we should like to maximize vTΣv subject to the constraint that vTv = 1.
This is an eigenvalue problem; the eigenvector of Σ corresponding to the largest
eigenvalue is the solution. Now if we were to project the data onto a space per-
pendicular to this eigenvector, we would obtain a collection of d − 1 dimensional
vectors. The highest variance feature for this collection would be the eigenvector



Section 16.1 Building Good Image Features 494

of Σ with second largest eigenvalue, and so on.

-8 -6 -4 -2 0 2 4 6 8

-6

-4

-2

0

2

4

6

FIGURE 16.11: A dataset that is well represented by a principal component analysis. The
axes represent the directions obtained using PCA; the vertical axis is the first principal
component, and is the direction in which the variance is highest.

This means that the eigenvectors of Σ—which we write as v1,v2, . . . ,vd,
where the order is given by the size of the eigenvalue and v1 has the largest
eigenvalue—give a set of features with the following properties:

• They are independent (because the eigenvectors are orthogonal).

• Projection onto the basis {v1, . . . ,vk} gives the k-dimensional set of linear
features that preserves the most variance.

You should notice that, depending on the data source, principal components can
give a good or a bad representation of a data set (see Figures 16.11, 16.12, and 16.13).

16.1.6 Dimension Reduction with Canonical Variates

Principal component analysis yields a set of linear features of a particular dimen-
sion that best represents the variance in a high-dimensional dataset. There is no
guarantee that this set of features is good for classification. For example, Fig-
ure 16.13 shows a dataset where the first principal component would yield a bad
classifier, and the second principal component would yield quite a good one, despite
not capturing the variance of the dataset.



Section 16.1 Building Good Image Features 495

Assume we have a set of n feature vectors xi (i = 1, . . . , n) in R
d. Write

μ =
1

n

∑
i

xi

Σ =
1

n− 1

∑
i

(xi − μ)(xi − μ)T

The unit eigenvectors of Σ—which we write as v1,v2, . . . ,vd, where the order is
given by the size of the eigenvalue and v1 has the largest eigenvalue—give a set of
features with the following properties:

• They are independent.

• Projection onto the basis {v1, . . . ,vk} gives the k-dimensional set of linear
features that preserves the most variance.

Algorithm 16.1: Principal Components Analysis

Linear features that emphasize the distinction between classes are known as
canonical variates. To construct canonical variates, assume that we have a set of
data items xi, for i ∈ {1, . . . , n}. We assume that there are p features (i.e., that
the xi are p-dimensional vectors). We have g different classes, and the jth class
has mean μj . Write μ for the mean of the class means, that is,

μ =
1

g

g∑
j=1

μj .

Write

B =
1

g − 1

g∑
j=1

(μj − μ)(μj − μ)T .

Note that B gives the variance of the class means. In the simplest case, we assume
that each class has the same covariance Σ, and that this has full rank. We would
like to obtain a set of axes where the clusters of data points belonging to a partic-
ular class group together tightly, whereas the distinct classes are widely separated.
This involves finding a set of features that maximizes the ratio of the separation
(variance) between the class means to the variance within each class. The separa-
tion between the class means is typically referred to as the between-class variance,
and the variance within a class is typically referred to as the within-class variance.

Now we are interested in linear functions of the features, so we concentrate
on

v(x) = vTx.

We should like to maximize the ratio of the between-class variances to the within-
class variances for v1.



Section 16.1 Building Good Image Features 496

-10 -5 0 5 10

-10

-8

-6

-4

-2

0

2

4

6

8

10

FIGURE 16.12: Not every dataset is well represented by PCA. The principal components
of this dataset are relatively unstable, because the variance in each direction is the same
for the source. This means that we may well report significantly different principal compo-
nents for different datasets from this source. This is a secondary issue; the main difficulty
is that projecting the dataset onto some axis suppresses the main feature, its circular
structure.

Using the same argument as for principal components, we can achieve this by
choosing v to maximize

vT
1 Bv1

vT
1 Σv1

.

This problem is the same as maximizing vT
1 Bv1 subject to the constraint that

vT
1 Σv1 = 1. In turn, a solution has the property that

Bv1 + λΣv1 = 0

for some constant λ. This is known as a generalized eigenvalue problem; if Σ has
full rank, one solution is to find the eigenvector of Σ−1B with largest eigenvalue. It
is usually better to use specialized routines within the relevant numerical software
environment, which can deal with the case Σ does not have full rank.

Now for each vl, for 2 ≤ l ≤ p, we would like to find features that extremize the
criterion and are independent of the previous vl. These are provided by the other
eigenvectors of Σ−1B. The eigenvalues give the variance along the features (which
are independent). By choosing the m < p eigenvectors with the largest eigenvalues,



Section 16.1 Building Good Image Features 497

-6 -4 -2 0 2 4 6 8

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-8 -6 -4 -2 0 2 4 6
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 16.13: Principal component analysis doesn’t take into account the fact that there
may be more than one class of item in a dataset. This can lead to significant problems. For
a classifier, we would like to obtain a set of features that reduces the number of features
and makes the difference between classes most obvious. For the dataset on the top, one
class is indicated by circles and the other by stars. PCA would suggest projection onto a
vertical axis, which captures the variance in the dataset but cannot be used to discriminate
between the classes, as we can see from the axes obtained by PCA, which are overlaid on
the dataset. The bottom row shows the projections onto those axes. On the bottom
left, we show the projection onto the first principal component, which has higher variance
but separates the classes poorly, and on the bottom right, we show the projection onto
the second principal component, which has significantly lower variance (look at the axes)
and gives better separation.

we obtain a set of features that reduces the dimension of the feature space while
best preserving the separation between classes. This doesn’t guarantee the best
error rate for a classifier on a reduced number of features, but it offers a good
place to start by reducing the number of features while respecting the category
structure. Details and examples appear in McLachlan and Krishnan (1996) and
in Ripley (1996).

If the classes don’t have the same covariance, it is still possible to construct
canonical variates. In this case, we estimate a Σ as the covariance of all the offsets
of each data item from its own class mean and proceed as before. Again, this is an



Section 16.1 Building Good Image Features 498

-6 -4 -2 0 2 4 6 8

-6

-5

-4

-3

-2

-1

0

1

2

3

4

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

FIGURE 16.14: Canonical variates use the class of each data item as well as the features in
estimating a good set of linear features. In particular, the approach constructs axes that
separate different classes as well as possible. The dataset used in Figure 16.13 is shown
on the left, with the axis given by the first canonical variate overlaid. On the bottom
right, we show the projection onto that axis, where the classes are rather well separated.

approach without a guarantee of optimality, but one that can work quite well in
practice.

16.1.7 Example Application: Identifying Explicit Images

All published explicit image classifiers start by detecting skin. Skin detection is
an important problem in its own right. Skin detectors are very useful system
components, because they can be used to focus searches. If one is searching for
explicit images, then skin will likely be involved. But if one is looking for faces,
skin is a good place to start, too (Section 17.1.1). If one is trying to interpret sign
language, hands are important, and hands usually show skin (for example, systems
in Buehler et al. (2009), Buehler et al. (2008), Farhadi and Forsyth (2006), Farhadi
et al. (2007), and Bowden et al. (2004)). Skin detection is also a natural example of
a very general recipe for detection: apply a classifier at each location likely to be of
interest. For example, we can detect skin by (a) building a skin classifier, then (b)
applying it to each pixel in an image independently. Formally, this involves (the
clearly false) assumption that pixels are independent; in practice, pretending that
pixels are independent is quite satisfactory for skin detection.

Skin is quite easy to identify by color. This does not depend on how dark the
skin is. The color of human skin is caused by a combination of light reflected from
the surface of the skin (which will have a white hue), from blood under the surface
(which gives skin a red tinge), and from melanin under the surface (which absorbs
light and darkens the apparent color). The intensity of light reflected from skin can
vary quite a lot, because the intensity of illumination can change, specular reflection
from oils and grease on the surface can be very bright, and skin with more melanin
in it absorbs more light (and so looks darker under fixed illumination). But the hue
and saturation of skin do not vary much; the hue will tend to be in the red-orange



Section 16.1 Building Good Image Features 499

Assume that we have a set of data items of g different classes. There are nk

items in each class, and a data item from the kth class is xk,i, for i ∈ {1, . . . , nk}.
The jth class has mean μj . We assume that there are p features (i.e., that the xi

are p-dimensional vectors).
Write μ for the mean of the class means, that is,

μ =
1

g

g∑
j=1

μj ,

Write

B =
1

g − 1

g∑
j=1

(μj − μ)(μj − μ)T .

Assume that each class has the same covariance Σ, which is either known or esti-
mated as

Σ =
1

N − 1

g∑
c=1

{
nc∑
i=1

(xc,i − μc)(xc,i − μc)
T

}
.

The unit eigenvectors of Σ−1B, which we write as v1,v2, . . . ,vd, where the order
is given by the size of the eigenvalue and v1 has the largest eigenvalue, give a set
of features with the following property:

• Projection onto the basis {v1, . . . ,vk} gives the k-dimensional set of linear
features that best separates the class means.

Algorithm 16.2: Canonical Variates

range (blue or green skin look very unnatural), and the color will not be strongly
saturated. This means that a large number of image pixels can be quite reliably
rejected as non-skin pixels by inspecting their color alone.

The simplest learned skin detector, which is very effective, uses a class-
conditional histogram classifier (as in Section 15.2.2), and is due to Jones and
Rehg (Jones and Rehg 2002). Each pixel is classified as skin or not skin based on

Create an output image O, and fill it with zeros.

For each pixel Iij in the input (binary) image
If Iij is 1 and all neighbors are 1

Oij = 1
End

End

Algorithm 16.3: Dilation



Section 16.1 Building Good Image Features 500

FIGURE 16.15: The figure shows a variety of images together with the output of the skin
detector of Jones and Rehg applied to the image. Pixels marked black are skin pixels and
white are background. Notice that this process is relatively effective and could certainly
be used to focus attention on, say, faces and hands. This figure was originally published
as Figure 6 of “Statistical color models with application to skin detection,” by M.J. Jones
and J. Rehg, Proc. IEEE CVPR, 1999 c© IEEE, 1999.

its R, G, and B coordinates. The quantization of these color values seems not to
affect the accuracy of the detector all that much; this should be read as experimen-
tal evidence that the range of skin colors is fairly tightly clustered. One important
source of errors are specular reflections on skin, which tend to be bright and white.
If the skin detector marks such pixels as positives, huge areas of some images will
become false positives; but if it marks them as negatives, most faces will have miss-
ing chunks of skin around the nose and forehead. Pixels neighboring skin pixels are
probably themselves skin pixels, and the same applies to non-skin pixels. We can
exploit this with a simple trick. Regard the output of the skin detector as a binary
image, with skin pixels labeled 1. We apply several steps of erosion, a binary image
operator (Algorithm 16.3). This will tend to remove isolated skin pixels, and make
holes in skin bigger. We then apply several steps of dilation, another binary image
operator (Algorithm 16.4). This will tend to fill holes in the skin mask. More com-



Section 16.1 Building Good Image Features 501

Create an output image O, and fill it with zeros.

For each pixel Iij in the input (binary) image
If any of its neighbors are 1

Oij = 1
End

End

Algorithm 16.4: Erosion

FIGURE 16.16: The receiver operating curve for the skin detector of Jones and Rehg.
This plots the detection rate against the false-negative rate for a variety of values of the
parameter θ. A perfect classifier has an ROC that, on these axes, is a horizontal line at
100% detection. Notice that the ROC varies slightly with the number of boxes in the
histogram. This figure was originally published as Figure 7 of “Statistical color models
with application to skin detection,” by M.J. Jones and J. Rehg, Proc. IEEE CVPR, 1999
c© IEEE, 1999.

plex skin detectors rely on the fact that skin has relatively little texture, so quite
simple texture features can be discriminative (Forsyth and Fleck 1999). This skin
detector suggests a recipe for detecting other things: search image windows using a
detector. This recipe is immensely useful, and is explored in detail in Section 17.1.

Building an explicit image detector is now quite straightforward. We detect
skin, then compute features from the skin regions, then pass these features to a
classifier. All these methods work tolerably well on experimental datasets. Bosson
et al. (2002) started the tradition of building simple region layout features from
the skin regions. They use, among other features, number of skin regions, frac-
tional area of the largest skin region, fraction of skin that is accounted for by a
face (see Section 17.1.1 for face detection), and classify with a support vector ma-
chine. Forsyth and Fleck (1999) find groups of skin regions that appear to be body



Section 16.1 Building Good Image Features 502

segments (arms, legs, etc.), then decide a naked person is present when a large
enough group is found. Deselaers et al. (2008) use a histogram of visual words,
followed by either an SVM or logistic regression. We know of no system that uses
a spatial pyramid kernel for this problem, but expect that that would work rather
well. Easy experiments—think of a phrase likely to produce alarming pictures, then
search with the search filter turned on—with commercial image search programs
suggest that these have low-false positive rates, though the false-negative rate is
extremely hard to assess (and may not be known even to the manufacturers). Com-
mercial methods may use text on pages and link topology information as well as
image features to classify pictures, too.

16.1.8 Example Application: Classifying Materials

Leung and Malik (2001) show that a texton representation (see Section 6.2, and keep
in mind the similarities between textons and visual words) can be used to classify
materials. Assuming simple textures (where there is no relief, and so no illumination
effect), they represent image patches with a vector of 48 filter responses evaluated
at the center of the patch. Their textons are constructed by vector quantizing
these vectors, using k-means. A single patch of texture is then represented by (a)
computing the texton for each pixel in the patch, then (b) computing the overall
histogram of these textons. Textures are classified by nearest neighbors, using the
ξ-squared distance between histograms. Now assume that the texture is really a
material. In this case, we need to have multiple images of the same patch to train,
because the appearance of the patch changes widely. In their experiment, the test
sample consisted of multiple images as well. The texton labels could be unreliable,
because some accident of lighting might have caused a patch to look like some other
patch. However, because we can record how textons change under the lighting
changes, we have an estimate of what the right labels could be for each texton. To
compare a test sample with a training example, we search the different available
labellings of textons for the test sample, computing the ξ-squared distance between
the resulting histograms and the training example’s histogram. The distances will
tend to be big when the two do not match, even though we can relabel textons
to bring them closer. A variety of alternative constructions are available, varying
mainly in how the textons are built. Varma and Zisserman (2005) show improved
classification using a small set of rotationally invariant filters; in a later paper, they
show even better classification results produced by vector quantizing small image
patches (Varma and Zisserman 2009).

All this work uses images of isolated patches of material. When one is pre-
sented with an image of an object, Liu et al. (2010) show that determining its
material remains very hard. They collected a new dataset of images of objects
made of a single predominant material, then applied visual words and other meth-
ods to classify it. As Figure 16.17 shows, this problem remains extremely difficult.

16.1.9 Example Application: Classifying Scenes

The original scene classification method, due to Oliva and Torralba (2001), used
k-nearest neighbors to classify scenes using GIST features. This classifies single
images into one of eight classes. Torralba et al. (2003) then showed that GIST



Section 16.1 Building Good Image Features 503

FIGURE 16.17: Liu et al. (2010) prepared a material classification dataset from flickr im-
ages, and used a combination of SIFT features and novel features to classify the materials.
This is a difficult task, as the class confusion matrix on the left shows; for example, it is
quite easy to mix up metal with most other materials, particularly glass. On the right,
examples of misclassified images (the italic label is the incorrect prediction). This figure
was originally published as Figure 12 of “Exploring Features in a Bayesian Framework for
Material Recognition,” by C. Liu, L. Sharan, E. Adelson, and R. Rosenholtz Proc. CVPR
2010, 2010 c© IEEE, 2010.

features could be used to identify place, that is, where an image was taken, chosen
from a fixed vocabulary of known places. For images taken in places that are not in
the vocabulary, their system could describe the type of place, for example, “kitchen”
or “lobby” (Figure 16.3). Their system assumed the camera was attached to a
moving observer, but did not explicitly use motion cues; instead, their system uses
a form of conditional random field so that prior probabilities of state transitions can
affect the classification of an image (Torralba et al. 2003). A scene is a context in
which some objects are likely to occur (for example, “toasters” are more common in
“kitchens” than “outdoors”). Furthermore, some objects are more likely to occur in
some locations in a scene (“toasters” are likely on “tables,” but not on “floors”), so
we expect that knowing the scene identity offers some cues to likely object location.
This turns out to be the case, as Torralba et al demonstrate (Figure 16.4). As we
have seen above, spatial pyramid kernels do well at scene classification, too.

Xiao et al. (2010) report scene classification results on a recent, very large,
dataset (SUN; 397 categories with at least 100 images each; see Section 16.3.2).
They compare a variety of methods, the best getting a recognition rate of approx-
imately 38% (i.e., approximately 38% of classification attempts on test data are
correct). As Figures 16.2 and 16.18 suggest, we might not expect a classification
performance of 100%.



Section 16.2 Classifying Images of Single Objects 504

FIGURE 16.18: Not all scene categories are easily distinguished by humans. These are
examples from the SUN dataset (Xiao et al. 2010). On the top of each column is an ex-
ample of a difficult category; below are examples from three categories that are commonly
confused with it by people. Such confusions might result from difficulties in knowing the
category boundaries (which aren’t canonical), or the terms (or categories) are unfamiliar,
or because the images are ambiguous. This figure was originally published as Figure 3 of
“SUN database: Large-scale Scene Recognition from Abbey to Zoo,” by J. Xiao, J. Hays,
K. Ehinger, A. Oliva, and A. Torralba, Proc. IEEE CVPR 2010, c© IEEE, 2010.

16.2 CLASSIFYING IMAGES OF SINGLE OBJECTS

Many interesting images contain essentially a single object on a simple background.
Some images, such as catalogue pictures, are composed this way. Others just hap-
pen to be this way. Images like this are important in image search, because searchers
typically compose quite simple queries (e.g., “elephant” rather than “long shot
showing mopani bush near a waterhole with an elephant in the bottom left and
baboons frolicking”) and so might not object to quite simple responses. Another
reason that they’re important is that it might be easier to learn models of object
category from such images, rather than from general images. A core challenge in
computer vision is to learn to classify such images.

A bewildering variety of features and classifiers has been tried on this problem;
Section 16.2.1 makes some general remarks about approaches that seem successful.
The classification process is rather naturally linked to image search, and so image
search metrics are the usual way to evaluate classifiers (Section 16.2.2). Large-scale
experimental work in image classification is difficult (one must collect and label



Section 16.2 Classifying Images of Single Objects 505

images; and one must train and evaluate methods on very large datasets), and
as a result there are unavoidable flaws in all experimental paradigms at present.
However, trends suggest significant improvements in the understanding of image
classification over the last decade. There are two general threads in current work.
One can try to increase the accuracy of methods using a fixed set of classes (Sec-
tion 16.2.3), and so gain some insight into feature constructions. Alternatively, one
might try to handle very large numbers of classes (Section 16.2.4), and so gain some
insight into what is discriminative in general.

16.2.1 Image Classification Strategies

The general strategy is to compute features, and then present feature vectors to
a multi-class classifier. A very great variety of methods can be produced using
this strategy, depending on what features and what classifier one uses. However,
there are some general statements one can make. The features we described earlier
predominate (which is why we described them). Methods typically use variants of
HOG and SIFT features, combined with color features. Methods commonly use
dictionaries of visual words, though there is great variation in the precise way these
dictionaries are built. Spatial pyramid and pyramid match kernels seem to give
very strong performance in representing images. A wide variety of classifiers are
then applied to the resulting features; different reasonable choices of classifier give
slightly different results, but no single classifier appears to have an overwhelming
advantage.

Most research in this area is experimental in nature, and building datasets is a
major topic. Fortunately, datasets are freely shared, and there is much competition
to get the best performance on a particular dataset. Furthermore, much feature and
classifier code is also freely shared. In turn, this means that it is usually relatively
straightforward to try and reproduce cutting-edge experiments. Section 16.3 gives
a detailed survey of datasets and code available as of the time of writing.

There are so many methods, each with slight advantages, that it is difficult
to give a crisp statement of best practice. The first thing we would do when
presented with a novel image classification problem would be to compute visual
words for feature locations on an image grid. These visual words would be vector
quantized with a large number of types (104 or 105, if enough data is available).
We would then represent images with a histogram of the visual words and classify
them using a histogram intersection kernel. If we were unhappy with the results, we
would first vary the number of types of visual word, then apply a spatial pyramid
kernel. After that, we would start searching through the different packages for
feature computation described in Section 16.3.1, and perhaps search different types
of classifier.

16.2.2 Evaluating Image Classification Systems

Image retrieval is related to image classification. In image retrieval, one queries
a very large collection of images with a query—which could be keywords, or an
image—and wishes to get matching images back (Chapter 21 surveys this area). If
the query is a set of keywords and we expect keyword matches, then there must
be some form of image classification engine operating in the background to attach



Section 16.2 Classifying Images of Single Objects 506

keywords to images. For this reason, it is quite usual to use metrics from image
retrieval to evaluate image classification methods.

Information retrieval systems take a query, and produce a response from a
collection of data items. The most important case for our purposes is a system
that takes a set of keywords and produces a set of images taken from a collection.
These images are supposed to be relevant to the keyword query. Typically, two
terms are used to describe the performance of information retrieval systems. The
percentage of relevant items that are actually recovered is known as the recall. The
percentage of recovered items that are actually relevant is known as the precision. It
is natural to use these measures to evaluate an image classification system, because
this system is attaching a label — which is rather like a keyword—to a set of test
images.

It is tempting to believe that good systems should have high recall and high
precision, but this is not the case. Instead, what is required for a system to be good
depends on the application, as the following examples illustrate.

Patent searches: Patents can be invalidated by finding “prior art” (material
that predates the patent and contains similar ideas). A lot of money can depend on
the result of a prior art search. This means that it is usually much cheaper to pay
someone to wade through irrelevant material than it is to miss relevant material,
so very high recall is essential, even at the cost of low precision.

Web and email filtering: US companies worry that internal email contain-
ing sexually explicit pictures might create legal or public relations problems. One
could have a program that searched email traffic for problem pictures and warned
a manager if it found anything. Low recall is fine in an application like this; even
if the program has only 10% recall, it will still be difficult to get more than a small
number of pictures past it. High precision is very important, because people tend
to ignore systems that generate large numbers of false alarms.

Looking for an illustration: There are various services that provide stock
photographs or video footage to news organizations. These collections tend to have
many photographs of celebrities; one would expect a good stock photo service to
have many thousands of photographs of Nelson Mandela, for example. This means
that a high recall search can be a serious nuisance, as no picture editor really wants
to wade through thousands of pictures. Typically, staff at stock photo organizations
use their expertise and interviews with customers to provide only a very small subset
of relevant pictures.

There are a variety of ways of summarizing recall and precision data to make
it more informative. F -measures are weighted harmonic means of precision and
recall. Write P for precision and R for recall. The F1-measure weights precision
and recall evenly, and is given by

F1 = 2
PR

P +R
.

The Fβ-measure weights recall β times as strongly as recall, and is given by

Fβ = (1 + β2)
PR

β2P +R
.

Usually, it is possible to adjust the number of items that a system returns in re-



Section 16.2 Classifying Images of Single Objects 507

AP=0.70

AP=0.55

AP=0.81

AP=0.49

FIGURE 16.19: Plots of precision as a function of recall for six object queries. Notice
how precision generally declines as recall goes up (the occasional jumps have to do with
finding a small group of relevant images; such jumps would become arbitrarily narrow
and disappear in the limit of an arbitrarily large dataset). Each query is made using the
system sketched in Figure 16.5. Each graph shows a different query, for two different
configurations of that system. On top of each graph, we have indicated the average
precision for each of the configurations. Notice how the average precision is larger for
systems where the precision is higher for each recall value. This figure was originally
published as Figure 9 of J. Sivic and A. Zisserman “Efficient Visual Search for Objects in
Videos,” Proc. IEEE, Vol. 96, No. 4, April 2008 c© IEEE 2008.

sponse to a query. As this pool gets bigger, the recall will go up (because we are
recovering more items) and the precision will go down. This means we can plot
precision against recall for a given query. Such a plot gives a fairly detailed pic-
ture of the system’s behavior, and particular profiles are important for particular
applications (Figure 16.19). For example, for web search applications, we would
typically like high precision at low recall, and are not concerned about how quickly
the precision dies off as the recall increases. This is because people typically don’t
look at more than one or two pages of query results before rephrasing their request.
For patent search applications, on the other hand, the faster the precision dies off,
the more stuff we might have to look at, so the rate at which precision falls off
becomes important.

An important way to summarize a precision-recall curve is the average preci-
sion, which is computed for a ranking of the entire collection. This statistic averages
the precision at which each new relevant document appears as we move down the
list. Write rel(r) for the binary function that is one when the rth document is
relevant, and otherwise zero; P (r) for the precision of the first r documents in the
ranked list; N for the number of documents in the collection; and Nr for the total
number of relevant documents. Then, average precision is given by

A =
1

Nr

N∑
r=1

(P (r)rel(r))

Notice that average precision is highest (100%) when the top Nr documents are
the relevant documents. Averaging over all the relevant documents means the



Section 16.2 Classifying Images of Single Objects 508

statistic incorporates information about recall; if we were to average over the top
10 relevant documents, say, we would not know how poor the precision was for the
lowest-ranked relevant document. The difficulty for vision applications is that many
relevant documents will tend to be ranked low, and so average precision statistics
tend to be low for image searches. This doesn’t mean image searches are useless,
however.

All of these statistics are computed for a single query, but most systems are
used for multiple queries. Each statistic can be averaged over multiple queries.
The choice of queries to incorporate in the average usually comes from application
logic. Mean average precision, the average precision averaged over a set of queries,
is widely used in object recognition circles. In this case, the set of possible queries
is typically relatively small, and the average is taken over all queries.

16.2.3 Fixed Sets of Classes

The Pascal Challenge is a series of challenge problems set to the vision commu-
nity by members of the Pascal network. From 2005–2010, the Pascal Challenge
has included image classification problems. From 2007–2010, these problems in-
volved 20 standard classes (including aeroplane, bicycle, car and person). Ex-
amples of these images can be found at http://pascallin.ecs.soton.ac.uk/

challenges/VOC/voc2010/examples/index.html. Table 16.1 shows average pre-
cisions obtained by the best method per class (meaning that the method that did
best on aeroplanes might not be the same as the method that did best at bicycles)
from 2007–2010. Note the tendency for results to improve, though there is by no
means monotonic improvement. For these datasets, the question of selection bias
does not arise, as a new dataset is published each year. As a result, it is likely
that improvements probably do reflect improved features or improved classification
methodologies. However, it is still difficult to conclude that methods that do well
on this challenge are good, because the methods might be adapted to the set of
categories. There are many methods that participate in this competition, and dif-
ferences between methods are often a matter of quite fine detail. The main website
(http://pascallin.ecs.soton.ac.uk/challenges/VOC/) is a rich mine of infor-
mation, and has a telegraphic description of each method as well as some pointers
to feature software.

Error rates are still fairly high, even with relatively small datasets. Some of
this is most likely caused by problematic object labels. These result from the occa-
sional use of obscure terms (for example, few people know the difference between
a “yawl” and a “ketch” or what either is, but each is represented in the Caltech
101 dataset). Another difficulty is a natural and genuine confusion about what
term applies to what instance. Another important source of error is that current
methods cannot accurately estimate the spatial support of the object (respectively,
background), and so image representations conflate the two somewhat. This is
not necessarily harmful—for example, if objects are strongly correlated with their
backgrounds, then the background is a cue to object identity—but can cause errors.
Most likely, the main reason that error rates are high is that we still do not fully un-
derstand how to represent objects, and the features that we use do not encapsulate
all that is important, nor do they suppress enough irrelevant information.

http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/examples/index.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/voc2010/examples/index.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/


Section 16.2 Classifying Images of Single Objects 509

Category 2007 2008 2009 2010

aeroplane 0.775 0.811 0.881 0.933
bicycle 0.636 0.543 0.686 0.790
bird 0.561 0.616 0.681 0.716
boat 0.719 0.678 0.729 0.778
bottle 0.331 0.300 0.442 0.543
bus 0.606 0.521 0.795 0.859
car 0.780 0.595 0.725 0.804
cat 0.588 0.599 0.708 0.794
chair 0.535 0.489 0.595 0.645
cow 0.426 0.336 0.536 0.662

diningtable 0.549 0.408 0.575 0.629
dog 0.458 0.479 0.593 0.711
horse 0.775 0.673 0.731 0.820

motorbike 0.640 0.652 0.723 0.844
person 0.859 0.871 0.853 0.916

pottedplant 0.363 0.318 0.408 0.533
sheep 0.447 0.423 0.569 0.663
sofa 0.509 0.454 0.579 0.596
train 0.792 0.778 0.860 0.894

tvmonitor 0.532 0.647 0.686 0.772

# methods 2 5 4 6
# comp 17 18 48 32

TABLE 16.1: Average precision of the best classification method for each category for
the Pascal image classification challenge by year (per category; the method that was best
at “person” might not be best at “pottedplant”), summarized from http://pascallin.

ecs.soton.ac.uk/challenges/VOC/. The bottom rows show the number of methods in
each column and the total number of methods competing (so, for example, in 2007, only
2 of 17 total methods were best in category; each of the other 15 methods was beaten by
something for each category). Notice that the average precision grows, but not necessarily
monotonically (this is because the test set changes). Most categories now work rather
well.

16.2.4 Large Numbers of Classes

The number of categories has grown quite quickly. A now little-used dataset had
five classes in it; in turn, this was replaced with a now obsolete ten class dataset;
a 101-class dataset; a 256-class dataset; and a 1,000-class dataset (details in Sec-
tion 16.3.2). Figure 16.20 compares results of recent systems on Caltech 101 (the
101-class dataset described in Section 16.3.2) and on Caltech 256 (256-classes; Sec-
tion 16.3.2). For these datasets, some care is required when one computes error
statistics. Two statistics are natural. The first is the percent of classification at-
tempts that are successful over all test examples. This measure is not widely used,
for the following reason: imagine that one class is numerous, and easy to classify;
then the error statistic will be dominated by this class, and improvements may
just mean that one is getting better at classifying this class. However, for some
applications, this might be the right thing. For example, if one is confident that
the dataset represents the relative frequency of classes well, then this error rate is

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/


Section 16.2 Classifying Images of Single Objects 510

FIGURE 16.20: Graphs illustrating typical performance on Caltech 101 for single descriptor
types (left) and on Caltech 256 for various types of descriptor (right; notice the vertical
scale is different), plotted against the number of training examples. Although these figures
are taken from a paper advocating nearest neighbor methods, they illustrate performance
for a variety of methods. Notice that Caltech 101 results, while not perfect, are now quite
strong; the cost of going to 256 categories is quite high. Methods compared are due to:
Zhang et al. (2006b), Lazebnik et al. (2006), Wang et al. (2006), Grauman and Darrell
(2005), Mutch and Lowe (2006), Griffin et al. (2007), and Pinto et al. (2008); the graph
is from Gehler and Nowozin (2009), which describes multiple methods (anything without
a named citation on the graph). This figure was originally published as Figure 2 of “On
Feature Combination for Multiclass Object Classification,” by P. Gehler and S. Nowozin
Proc. ICCV 2009, 2009 c© IEEE 2009.

a good estimate of the problems that will be encountered when using the classifier.
The other statistic that is natural is the average of per-class error rates. This

weights down the impact of frequent classes in the test dataset; to do well at this
error measure, one must do well at all classes, rather than at frequent classes. This
statistic is now much more widely used, because there is little evidence that classes
occur in datasets with the same frequency they occur in the world.

It is usual to report performance as the number of training examples goes
up, because this gives an estimate of how well features (a) suppress within class
variations and (b) expose between class variations. Notice how the performance of
all methods seems to stop growing with the number of training examples (though it
is hard to confirm what happens with very large numbers, as some categories have
relatively few examples).

Generally, strong modern methods do somewhat better on Caltech 101 than
on Caltech 256, and better on Caltech 256 than on datasets with more categories,
though it is difficult to be sure why. One possibility is that classification becomes
a lot harder when the number of categories grows, most likely because of feature
effects. Deng et al. (2010) show that the performance of good modern methods
declines as the number of categories increases, where the set of categories is se-
lected at random from a very large set. This suggests that increasing the number
of categories exposes problems in feature representations that might otherwise go
unnoticed, because it increases the chances that two of the categories are quite sim-



Section 16.2 Classifying Images of Single Objects 511

ilar (or at least look similar to the feature representation). As a result, performance
tends to go down as the number of categories is increased. Another possibility is
that Caltech 101 is a more familiar dataset, and so feature design practices have
had more time to adapt to its vagaries. If this is the case, then methods that do
well on this dataset are not necessarily good methods; instead, they are methods
that have been found by the community to do well on a particular dataset, which
is a form of selection bias. Yet another, equally disturbing possibility is that no
current methods do well on large collections of categories because it is so hard to
search for a method that does so. The pragmatics of dealing with large numbers
of categories is very demanding. Simply training a single method may take CPU
years and a variety of clever tricks; classifying a single image also could be very
slow (Deng et al. 2010).

Working with large numbers of categories presents other problems, too. Not
all errors have the same significance, and the semantic status of the categories is
unclear (Section 18.1.3). For example, classifying a cat as a dog is probably not
as offensive as classifying it as a motorcycle. This is a matter of loss functions. In
practice, it is usual to use the so-called 0-1 loss, where any classification error incurs
a loss of one (equivalently, to count errors). This is almost certainly misleading,
and is adopted mainly because it is demanding and because there is no consensus
on an appropriate replacement. One possibility, advocated by (Deng et al. 2010), is
to use semantic resources to shape a loss function. For example, Wordnet is a large
collection of information about the semantic relations between classes (Fellbaum
(1998); Miller et al. (1990)). Words are organized into a hierarchy. For exam-
ple, “dog” (in the sense of an animal commonly encountered as a domestic pet)
has child nodes (hyponyms), such as “puppy,” and ancestors (hypernyms) “canid,”
“carnivore,” and, eventually, “entity.” A reasonable choice of loss function could
be the hop distance in this tree between terms. In this case, “dog” and “cat” would
be fairly close, because each has “carnivore” as a grandparent node, but “dog” and
“motorcycle” are quite different, because their first common ancestor is many levels
removed (“whole”). One difficulty with this approach is that some objects that are
visually quite similar and appear in quite similar contexts might be very different
in semantics (bird and aircraft, for example). Deng et al. (2010) advocate using the
height above the correct label of the nearest ancestor, common between the correct
and predicted label.

16.2.5 Flowers, Leaves, and Birds: Some Specialized Problems

Image classification techniques are valuable in all sorts of specialized domains. For
example, there has been considerable recent progress in classifying flowers automat-
ically from pictures. A natural system architecture is to query a collection of labeled
flower images with a query image. If a short list of similar images contains the right
flower, that might be sufficient, because geographic distribution cues might rule out
all other flowers on the list. The problem is tricky because within-class variation
could be high, as a result of pictures taken from different viewing directions, and
between-class variation can be low (Figure 16.21). Nilsback and Zisserman (2010)
describe a system for matching flower images that computes color, texture, and
shape features, then learns a combination of distances in each feature that gives



Section 16.3 Image Classification in Practice 512

Pansy
Fritillary Tiger Lily

Dandelion - A Colts’ foot Dandelion -B

FIGURE 16.21: Identifying a flower from an image is one useful specialized application for
image classification techniques. This is a challenging problem. Although some flowers have
quite distinctive features (for example, the colors and textures of the pansy, the fritillary,
and the tiger lily), others are easy to confuse. Notice that dandelion-A (bottom) looks
much more like the colts’ foot than like dandelion-B. Here the within-class variation is
high because of changes of aspect, and the between-class variation is small. This figure was
originally published as Figures 1 and 8 of “A Visual Vocabulary for Flower Classification,”
by M.E. Nilsback and A. Zisserman, Proc. IEEE CVPR 2006, c© IEEE 2006.

the best performance for this short list; the best results on this dataset to date are
due to a complex multiple-kernel learning procedure (Gehler and Nowozin 2009).

Belhumeur et al. (2008) describe a system for automatic matching of leaf
images to identify plants; they have released a dataset at http://herbarium.cs.
columbia.edu/data.php. This work has recently resulted in an iPad app, named
Leafsnap, that can identify trees from photographs of their leaves (see http://

leafsnap.com).
Often, although one cannot exactly classify every image, one can reduce the

load on human operators in important ways with computer vision methods. For
example, Branson et al. (2010) describe methods to classify images of birds to
species level that use humans in the loop, but can reduce the load on the human
operator. Such methods are likely to lead to apps that will be used by the very
large number of amateur birdwatchers.

16.3 IMAGE CLASSIFICATION IN PRACTICE

Numerous codes and datasets have been published for image classification; the next
two sections give some pointers to materials available at the time of writing. Image
classification is a subject in flux, so methods change quickly. However, one can still
make some general statements. Section 16.3.3 summarizes the difficulties that result
because datasets cannot be as rich as the world they represent, and Section 16.3.4
describes methods for collecting data relatively cheaply using crowdsourcing.

http://herbarium.cs.columbia.edu/data.php
http://herbarium.cs.columbia.edu/data.php
http://leafsnap.com
http://leafsnap.com


Section 16.3 Image Classification in Practice 513

16.3.1 Codes for Image Features

Oliva and Torralba provide GIST feature code at http://people.csail.mit.edu/
torralba/code/spatialenvelope/, together with a substantial dataset of outdoor
scenes.

Color descriptor code, which computes visual words based on various color
SIFT features, is published by van de Sande et al at http://koen.me/research/
colordescriptors/.

The pyramid match kernel is an earlier variant of the spatial pyramid kernel
described in Section 16.1.4; John Lee provides a library, libpmk, that supports this
kernel at http://people.csail.mit.edu/jjl/libpmk/. There are a variety of
extension libraries written for libpmk, including implementations of the pyramid
kernel, at this URL.

Li Fei-Fei, Rob Fergus, and Antonio Torralba publish example codes for
core object recognition methods at http://people.csail.mit.edu/torralba/

shortCourseRLOC/. This URL is the online repository associated with their very
successful short course on recognizing and learning object categories.

VLFeat is an open-source library that implements a variety of popular com-
puter vision algorithms, initiated by Andrea Vedaldi and Brian Fulkerson; it can
be found at http://www.vlfeat.org. VLFeat comes with a set of tutorials that
show how to use the library, and there is example code showing how to use VLFeat
to classify Caltech-101.

There is a repository of code links at http://featurespace.org.
At the time of writing, multiple-kernel learning methods produce the strongest

results on standard problems, at the cost of quite substantial learning times. Sec-
tion 15.3.3 gives pointers to codes for different multiple-kernel learning methods.

16.3.2 Image Classification Datasets

There is now a rich range of image classification datasets, covering several applica-
tion topics. Object category datasets have images organized by category (e.g.,
one is distinguishing between “bird”s and “motorcycle”s, rather than between
particular species of bird). Five classes (motorbikes, airplanes, faces, cars, spot-
ted cats, together with background, which isn’t really a class) were introduced
by Fergus et al. (2003) in 2003; they are sometimes called Caltech-5. Caltech-
101 has 101 classes, was introduced in Perona et al. (2004) and by Fei-Fei et al.
(2006), and can be found at http://www.vision.caltech.edu/Image_Datasets/
Caltech101/. This dataset is now quite well understood, but as Figure 16.20
suggests, it is not yet exhausted. Caltech-256 has 256 classes, was introduced
by (Griffin et al. 2007), and can be found at http://www.vision.caltech.edu/
Image_Datasets/Caltech256/. This dataset is still regarded as challenging.

LabelMe is an image annotation environment that has been used by many
users to mark out and label objects in images; the result is a dataset that is changing
and increasing in size as time goes on. LabelMe was introduced by Russell et al.
(2008), and can be found at http://labelme.csail.mit.edu/.

The Graz-02 dataset contains difficult images of cars, bicycles, and people in
natural scenes; it is originally due to Opelt et al. (2006), but has been recently
reannotated Marszalek and Schmid (2007). The reannotated edition can be found

http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://people.csail.mit.edu/torralba/code/spatialenvelope/
http://koen.me/research/colordescriptors/
http://koen.me/research/colordescriptors/
http://people.csail.mit.edu/jjl/libpmk/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://people.csail.mit.edu/torralba/shortCourseRLOC/
http://www.vlfeat.org
http://featurespace.org
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech101/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://www.vision.caltech.edu/Image_Datasets/Caltech256/
http://labelme.csail.mit.edu/


Section 16.3 Image Classification in Practice 514

FIGURE 16.22: Torralba and Efros (2011) show one disturbing feature of modern classi-
fication datasets; that it is quite easy for skilled insiders to “name that dataset.” Here
we show a sample of images from current datasets (those not described in the text can be
found by a search); you should try and match the image to the dataset. It is surprisingly
easy to do. This figure was originally published as Figures 1 of “Unbiased look at dataset
bias,” by A. Torralba and A. Efros, Proc. IEEE CVPR 2011, c© IEEE 2011.

at http://lear.inrialpes.fr/people/marszalek/data/ig02/.
Imagenet contains tens of millions of examples, organized according to the

Wordnet hierarchy of nouns; currently, there are examples for approximately 17,000
nouns. Imagenet was originally described in Deng et al. (2009), and can be found
at http://www.image-net.org/.

The Lotus Hill Research Institute publishes a dataset of images annoted in
detail at http://www.imageparsing.com; the institute is also available to prepare
datasets on a paid basis.

Each year since 2005 has seen a new Pascal image classification dataset; these
are available at http://pascallin.ecs.soton.ac.uk/challenges/VOC/.

There are numerous specialist datasets. The Oxford visual geometry group
publishes two flower datasets, one with 17 categories and one with 102 categories;
each can be found at http://www.robots.ox.ac.uk/~vgg/data/flowers/. Other
datasets include a “things” dataset, a “bottle” dataset, and a “camel” dataset, all
from Oxford (http://www.robots.ox.ac.uk/~vgg/data3.html).

There is a bird dataset published by Caltech and UCSD jointly at http:

http://lear.inrialpes.fr/people/marszalek/data/ig02/
http://www.image-net.org/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://www.robots.ox.ac.uk/~vgg/data/flowers/
http://www.robots.ox.ac.uk/~vgg/data3.html
http://www.imageparsing.com
http://www.vision.caltech.edu/visipedia/CUB-200.html


Section 16.3 Image Classification in Practice 515

//www.vision.caltech.edu/visipedia/CUB-200.html.
Classifying materials has become a standard task, with a standard dataset.

The Columbia-Utrecht (or CURET) material dataset can be found at http://

www.cs.columbia.edu/CAVE/software/curet/; it contains image textures from
over 60 different material samples observed with over 200 combinations of view and
light direction. Details on the procedures used to obtain this dataset can be found
in Dana et al. (1999). More recently, Liu et al. (2010) offer an alternative and
very difficult material dataset of materials on real objects, which can be found at
http://people.csail.mit.edu/celiu/CVPR2010/FMD/.

We are not aware of collections of explicit images published for use as research
datasets, though such a dataset would be easy to collect.

There are several scene datasets now. The largest is the SUN dataset (from
MIT; http://groups.csail.mit.edu/vision/SUN/; Xiao et al. (2010)) contains
130,519 images of 899 types of scene; 397 categories have at least 100 examples per
category. There is a 15-category scene dataset used in the original spatial pyramid
kernel work at http://www-cvr.ai.uiuc.edu/ponce_grp/data/.

It isn’t possible (at least for us!) to list all currently available datasets.
Repositories that contain datasets, and so are worth searching for a specialist
dataset, include: the pilot European Image Processing Archive, currently at http:
//peipa.essex.ac.uk/index.html; Keith Price’s comprehensive computer vision
bibliography, whose root is http://visionbib.com/index.php, and with dataset
pages at http://datasets.visionbib.com/index.html; the Featurespace dataset
pages, at http://www.featurespace.org/; and the Oxford repository, at http:

//www.robots.ox.ac.uk/~vgg/data.html.

16.3.3 Dataset Bias

Datasets can suffer from bias, where properties of the dataset misrepresent prop-
erties of the real world. This is not due to mischief in the collecting process; it
occurs because the dataset must be much smaller than the set of all images of an
object. Some bias phenomena can be quite substantial. For example, Figure 16.22
shows that people can get quite good at telling which dataset a picture was taken
from, as can computers (Figure 16.23, whose caption gives the right answers for
Figure 16.22). As another example, Figure 16.24 shows the mean image of a set
of Caltech 101 images. Clearly, in this case, each image in the dataset looks quite
a lot like every other image in its class and not much like images in other classes.
This doesn’t mean that it is easy to get very strong recognition results; compare
Figure 16.20. The best current strategies for avoiding bias are (a) to collect large
datasets from a variety of different sources; (b) to evaluate datasets carefully using
baseline methods before using them to evaluate complex methods; and (c) to try
and quantify the effects of bias by evaluating on data collected using a different
strategy than that used to collect the training data. Each is fairly crude. Improved
procedures would be most valuable.

16.3.4 Crowdsourcing Dataset Collection

Recently, dataset builders have made extensive use of crowdsourcing, where one
pays people to label data. One such service is Amazon’s Mechanical Turk. Crowd-

http://www.vision.caltech.edu/visipedia/CUB-200.html
http://www.cs.columbia.edu/CAVE/software/curet/
http://www.cs.columbia.edu/CAVE/software/curet/
http://people.csail.mit.edu/celiu/CVPR2010/FMD/
http://groups.csail.mit.edu/vision/SUN/
http://www-cvr.ai.uiuc.edu/ponce_grp/data/
http://peipa.essex.ac.uk/index.html
http://peipa.essex.ac.uk/index.html
http://visionbib.com/index.php
http://datasets.visionbib.com/index.html
http://www.robots.ox.ac.uk/~vgg/data.html
http://www.robots.ox.ac.uk/~vgg/data.html
http://www.featurespace.org/


Section 16.3 Image Classification in Practice 516

FIGURE 16.23: Computers do very well at “name that dataset.” On the left, classification
accuracy as a function of training size for some different features; notice that classifiers
are really quite good at telling which dataset a picture came from. On the right, the class
confusion matrix, which suggests that these datasets are well-separated. The answers
to the question in Figure 16.22 are: (1) Caltech-101, (2) UIUC, (3) MSRC, (4) Tiny
Images, (5) ImageNet, (6) PASCAL VOC, (7) LabelMe, (8) SUNS-09, (9) 15 Scenes, (10)
Corel, (11) Caltech-256, (12) COIL-100. This figure was originally published as Figure 2
of “Unbiased look at dataset bias,” by A. Torralba and A. Efros, Proc. IEEE CVPR 2011,
c© IEEE 2011.

sourcing services connect people on the Internet willing to do tasks for money with
people who have tasks and money. Generally, one builds an interface to support the
task (for example, your interface might display an image and some radio buttons to
identify the class), then registers the task and a price. Workers then do the task, you
pay the service, and they transmit money to the workers. Important issues here are
quality control—are people doing what you want them to do?—and pricing—how
much should you pay for a task? Quality control strategies include: prequalifying
workers; sampling tasks and excluding workers who do the task poorly; and using
another set of workers to evaluate the results of the first set. We are not aware
of good principled pricing strategies right now. However, some guidelines can be
helpful. Workers seem to move quickly from task to task, looking for ones that are
congenial and well-paid. This means that all tasks seem to experience a rush of
workers, which quickly tails off if the price is wrong. Paying more money always
seems to help get tasks completed faster. There seems to be a pool of workers who
are good at identifying overpaid tasks with poor quality control, but most workers
are quite conscientious. Finally, interface design can have a huge impact on the
final accuracy of labeled data. These ideas are now quite pervasive. Examples of
recent datasets built with some input from Mechanical Turk include Deng et al.
(2009), Endres et al. (2010), Parikh and Grauman (2011), and Xiao et al. (2010).
Sorokin and Forsyth (2008) give a variety of strategies and methods to use the
service. Vijayanarasimhan and Grauman (2011) supply good evidence that active



Section 16.4 Notes 517

FIGURE 16.24: The average image for each of 100 categories from the Caltech 101 image
classification dataset. Fairly obviously, these pictures consist of isolated objects, and the
mean of each class is far away from the mean of other classes. This does not mean that
these images are easy to classify (compare Figure 16.20); instead, it is an illustration of
the fact that all datasets must contain statistical regularities that are not present in the
world. This figure created by A. Torralba, and used with his permission.

learning can improve costs and quality; see also Vijayanarasimhan and Grauman
(2009). Vondrick et al. (2010) show methods to balance human labor (which is
expensive and slow, but more accurate) with automatic methods (which can prop-
agate existing labels to expose what is already known, and can be fast and cheap)
for video annotation. Crowdflower, which is a service that helps build APIs and
organize crowdsourcing, can be found at http://crowdflower.com/.

16.4 NOTES

Generally, successful work in image classification involves constructing features that
expose important properties of the classes to the classifier. The classifier itself can
make some difference, but seems not to matter all that much. We have described
the dominant feature constructions, but there is a particularly rich literature on
feature constructions; there are pointers to this in the main text.

We suspect that the best methods for explicit image detection are not pub-
lished now, but instead just used, because good methods appear to have real fi-
nancial value. All follow the lines sketched out in our section, but using a range of
different features and of classifiers. Experiments are now on a relatively large scale.

One application we like, but didn’t review in this chapter, is sign language
understanding. Here an automated method watches a signer, and tries to transcribe
the sign language into text. Good start points to this very interesting literature

http://crowdflower.com/


Section 16.4 Notes 518

include Starner et al. (1998), Buehler et al. (2009), Cooper and Bowden (2009),
Farhadi et al. (2007), Erdem and Sclaroff (2002), Bowden et al. (2004), Buehler et
al. (2008), and Kadir et al. (2004). Athitsos et al. (2008) describe a dataset.

Visual words are a representation of important local image patches. While the
construction we described is fairly natural, it is not the only possible construction.
It is not essential to describe only interest points; one could use a grid of sample
points, perhaps as fine as every pixel. The description does not have to be in
terms of SIFT features. For example, one might extend it by using some or all
of the color sift features described briefly in Section 5.4.1. Many authors instead
compute a vector of filter responses (section 6.1 for this as a texture representation;
section 16.1.8 for applications to texture material classification). An important
alternative is to work directly with small local image patches, say 5 × 5 pixels in
size. The vocabulary of such visual words could be very big indeed, and special
clustering techniques are required to vector quantize. In each case, however, the
main recipe remains the same: decide on a way of identifying local patches (interest
points, sampling, etc.); decide on a local patch representation; vector quantize this
representation to form visual words; then represent the image or the region with a
histogram of the important visual words.

PROGRAMMING EXERCISES

16.1. Build a classifier that classifies materials using the dataset of Liu et al. (2010).
Compare the performance of your system using the main feature constructions
described here (GIST features; visual words; spatial pyramid kernel). Investi-
gate the effect of varying the feature construction; for example, is it helpful to
use C-SIFT descriptors?

16.2. Build a classifier that classifies scenes using the dataset of Xiao et al. (2010).
Compare the performance of your system using the main feature constructions
described here (GIST features; visual words; spatial pyramid kernel). Investi-
gate the effect of varying the feature construction; for example, is it helpful to
use C-SIFT descriptors?

16.3. Search online for classification and feature construction codes, and replicate
an image classification experiment on a standard dataset (we recommend a
Caltech dataset or a PASCAL dataset; your instructor may have an opinion,
too). Do you get exactly the same performance that the authors claim? Why?



C H A P T E R 17

Detecting Objects in Images

Chapter 16 described methods to classify images. When we assumed that the image
contained a single, dominating object, these methods were capable of identifying
that object. In this chapter, we describe methods that can detect objects. These
methods all follow a surprisingly simple recipe—essentially, apply a classifier to
subwindows of the image—which we describe with examples in Section 17.1. We
then describe a more complex version of this recipe that applies to objects that can
deform, or that have complex appearance (Section 17.2). Finally, we sketch the
state of the art of object detection, giving pointers to available software and data
(Section 17.3).

17.1 THE SLIDING WINDOW METHOD

Assume we are dealing with objects that have a relatively well-behaved appearance,
and do not deform much. Then we can detect them with a very simple recipe. We
build a dataset of labeled image windows of fixed size (say, n×m). The examples
labeled positive should contain large, centered instances of the object, and those
labeled negative should not. We then train a classifier to tell these windows apart.
We now pass every n×m window in the image to the classifier. Windows that the
classifier labels positive contain the object, and those labeled negative do not. This
is a search over location, which we could represent with the top left-hand corner of
the window.

There are two subtleties to be careful about when applying this recipe. First,
not all instances of an object will be the same size in the image. This means we
need to search over scale as well. The easy way to do this is to prepare a Gaussian
pyramid of the image (Section 4.7), and then search n×m windows in each layer
of the pyramid. Searching an image whose edge lengths have been scaled by s for
n×m windows is rather like searching the original image for (sn)× (sm) windows
(the differences are in resolution, in ease of training, and in computation time).

The second subtlety is that some image windows overlap quite strongly. Each
of a set of overlapping windows could contain all (or a substantial fraction of) the
object. This means that each might be labeled positive by the classifier, meaning
we would count the same object multiple times. This effect cannot be cured by
passing to a bigger training set and producing a classifier that is so tightly tuned
that it responds only when the object is exactly centered in the window. This is
because it is hard to produce tightly tuned classifiers, and because we will never be
able to place a window exactly around an object, so that a tightly tuned classifier
will tend to behave badly. The usual strategy for managing this problem is non-
maximum suppression. In this strategy, windows with a local maximum of the
classifier response suppress nearby windows. We summarize the whole approach in
Algorithm 17.1.

519



Section 17.1 The Sliding Window Method 520

Train a classifier on n×m image windows. Positive examples contain
the object and negative examples do not.
Choose a threshold t and steps Δx and Δy in the x and y directions

Construct an image pyramid.

For each level of the pyramid
Apply the classifier to each n×m window, stepping by
Δx and Δy, in this level to get a response strength c.
If c > t
Insert a pointer to the window into a ranked list L, ranked by c.

For each window W in L, starting with the strongest response
Remove all windows U �= W that overlap W significantly,
where the overlap is computed in the original image by expanding windows
in coarser scales.

L is now the list of detected objects.

Algorithm 17.1: Sliding Window Detection.

The sliding window detection recipe is wholly generic and behaves very well in
practice. Different applications require different choices of feature and sometimes
benefit from different choices of feature. Notice that there is a subtle interaction
between the size of the window, the steps Δx and Δy, and the classifier. For
example, if we work with windows that tightly surround the object, then we might
be able to use a classifier that is more tightly tuned, but we will have to use smaller
steps and so look at more windows. If we use windows that are rather larger than
the object, then we can look at fewer windows, but our ability to detect objects
next to one another might be affected, as might our ability to localize the objects.
Cross-validation is one way to make appropriate choices here. As a result, there is
some variation in the appearance of the window caused by the fact our search is
quantized in translation and scale; the training tricks in Section 15.3.1 are extremely
useful for controlling this difficulty.

17.1.1 Face Detection

In frontal views at a fairly coarse scale, all faces look basically the same. There
are bright regions on the forehead, the cheeks, and the nose, and dark regions
around the eyes, the eyebrows, the base of the nose, and the mouth. This suggests
approaching face finding as a search over all image windows of a fixed size for
windows that look like a face. Larger or smaller faces can be found by searching
coarser- or finer-scale images.

A face illuminated from the left looks different than a face illuminated from



Section 17.1 The Sliding Window Method 521

the right, which might create difficulties for the classifier. There are two options:
we could use HOG features, as in Section 5.4; or we could correct the image window
to reduce illumination effects. The pedestrian detector of Section 17.1.2 uses HOG
features, so we will describe methods to correct image windows here.

Generally, illumination effects look enough like a linear ramp (one side is
bright, the other side is dark, and there is a smooth transition between them) that
we can simply fit a linear ramp to the intensity values and subtract that from
the image window. Another way to do this would be to log-transform the image
and then subtract a linear ramp fitted to the logs. This has the advantage that
(using a rather rough model) illumination effects are additive in the log transform.
There doesn’t appear to be any evidence in the literature that the log transform
makes much difference in practice. Another approach is to histogram equalize the
window to ensure that its histogram is the same as that of a set of reference images
(histogram equalization is described in Figure 17.1).

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Input Value Output Value

Pe
rc

en
ta

ge
of

pi
xe

ls

FIGURE 17.1: Histogram equalization uses cumulative histograms to map the gray levels
of one image so that it has the same histogram as another image. The figure at the
top shows two cumulative histograms with the relevant images inset in the graphs. To
transform the left image so that it has the same histogram as the right image, we take a
value from the left image, read off the percentage from the cumulative histogram of that
image, and obtain a new value for that gray level from the inverse cumulative histogram
of the right image. The image on the left is a linear ramp (it looks nonlinear because the
relationship between brightness and lightness is not linear); the image on the right is a
cube root ramp. The result—the linear ramp, with gray levels remapped so that it has
the same histogram as the cube root ramp—is shown on the bottom row.

Once the windows have been corrected for illumination, we need to determine
whether there is a face present. The orientation isn’t known, and so we must either



Section 17.1 The Sliding Window Method 522

FIGURE 17.2: The architecture of Rowley, Baluja, and Kanade’s system for finding faces.
Image windows of a fixed size are corrected to a standard illumination using histogram
equalization; they are then passed to a neural net that estimates the orientation of the
window. The windows are reoriented and passed to a second net that determines whether
a face is present. This figure was originally published as Figure 2 from “Rotation invariant
neural-network based face detection,” H.A. Rowley, S. Baluja, and T. Kanade, Proc. IEEE
CVPR, 1998, c© IEEE, 1998.

determine it or produce a classifier that is insensitive to orientation. A neural net
is a procedure for parametric regression that produces an output that is a function
of input and parameters. Neural nets are typically trained by gradient descent on
an error function that compares computed output to labels for numerous labeled
examples. Rowley et al. (1998b) produced a face finder that finds faces very suc-
cessfully by first estimating the orientation of the window using one neural net then
reorienting the window so that it is frontal, and then passing the frontal window
onto another neural net (see Figure 17.2; the paper is a development of Rowley et
al. (1996) and (1998a)). The orientation finder has 36 output units, each coding
for a 10◦ range of orientations; the window is reoriented to the orientation given by
the largest output. Examples of the output of this system are given in Figure 17.3.

There is now an extremely rich face detection literature based on the sliding
window recipe. The most important variant is due to Viola and Jones (2001), who
point out that a clever choice of classifier and of features results in an extremely
fast system. The key is to use features that are easy to evaluate to reject most
windows early. Viola and Jones (2001) use features that are composed of sums of
the image within boxes; these sums are weighted by 1 or −1, then added together.
This yields the form ∑

k

δkBk(I),

where δi ∈ {1,−1} and

Bk(I) =
u2(k)∑

i=u1(k)

v2(k)∑
j=v1(k)

Iij .

Such features are extremely fast to evaluate with a device called an integral image.
Write Î for the integral image formed from the image I. Then

Îij =
i∑

u=1

j∑
v=1

Iuv.



Section 17.1 The Sliding Window Method 523

FIGURE 17.3: Typical responses for the Rowley, Baluja, and Kanade system for face
finding; a mask icon is superimposed on each window that is determined to contain a face.
The orientation of the face is indicated by the configuration of the eye holes in the mask.
This figure was originally published as Figure 7 from “Rotation invariant neural-network
based face detection,” H.A. Rowley, S. Baluja, and T. Kanade, Proc. IEEE CVPR, 1998,
c© IEEE, 1998.

This means that any sum within a box can be evaluated with four queries to the
integral image. It is easy to check that

u2∑
i=u1

v2∑
j=v1

Iij = Îu2v2 − Îu1v2 − Îu2v1 + Îu1v1 ,

which means that any of the features can be evaluated by a set of integral image
queries. Now imagine we build a boosted classifier, using decision stumps based
around these features. The resulting score will be a weighted sum of binary terms,



Section 17.1 The Sliding Window Method 524

FIGURE 17.4: Face detection can be made extremely fast using features that are easy to
evaluate, and that can reject most windows early. On the left, features can be built up out
of sums of the image within boxes, weighted by 1 or −1. The drawings show two two-box
features (some readers might spot a relationship to Haar wavelets). On the right, the
features used for the first two tests (equivalently, the first two classifiers in the cascade)
by Viola and Jones (2001). Notice how they check for the distinctive dark bar at the eyes
with the lighter bar at the cheekbones, then the equally distinctive vertical specularity
along the nose and forehead. This figure was originally published as Figures 1 and 3 from
“Rapid Object Detection using a Boosted Cascade of Simple Features,” by P. Viola and
M. Jones, Proc. IEEE CVPR 2001 c© IEEE 2001.

FIGURE 17.5: Examples of pedestrian windows from the INRIA pedestrian dataset, col-
lected and published by Dalal and Triggs (2005). Notice the relatively strong and dis-
tinctive curve around the head and shoulders; the general “lollipop” shape, caused by the
upper body being wider than the legs; the characteristic “scissors” appearance of sepa-
rated legs; and the strong vertical boundaries around the sides. These seem to be the cues
used by classifiers. This figure was originally published as Figure 2 of “Histograms of
Oriented Gradients for Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR
2005, c© IEEE, 2005.

one for each feature. Now we can order the features by complexity of evaluation (for
example, two box features will be much faster to evaluate than ten box features).
For the simplest feature, we can then adjust the threshold of the weak learner such
that there are few or no false negatives. Now any window that returns a feature
value below that threshold can be rejected without looking at the other features;
this means that many or most image windows can be rejected at the first test
(Figure 17.4). If the window passes the first test, we can test the next feature with
a threshold adjusted so it produces few or no false negatives on the output of the
first test. Again, we expect to be able to reject many or most windows. We apply
this strategy repeatedly to get an architecture of repeated classifiers referred to as
a cascade. Classifiers in the cascade do not need to use only a single feature. Viola
and Jones (2001) train the cascade by requiring that each stage meet or exceed
targets for the reduction in false positives (which should be big) and the decrease



Section 17.1 The Sliding Window Method 525

FIGURE 17.6: The performance of the pedestrian detector of Dalal and Triggs (2005),
for various choices of features and two different datasets. On the left, results using
the MIT pedestrian dataset, and on the right, results using the INRIA dataset. The
results are reported as the miss rate (so smaller is better) against the false positive per
window (FPPW) rate, and so evaluate the classifier rather than the system. Overall
system performance will depend on how many windows are presented to the detector in
an average image (details in the text; see Figure 17.8). Notice that different datasets
result in quite different performance levels. The best performance on the INRIA dataset
(which is quite obviously the harder dataset) is obtained with a kernel SVM (circles, Ker.
R-HOG), but there is very little difference between this and a linear SVM (squares, Lin.
R2-HOG). This figure was originally published as Figure 3 of “Histograms of Oriented
Gradients for Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR 2005, c©
IEEE, 2005.

in detection rate (which should be small); they add features to the stage until the
targets are met.

Generally, frontal face detection is now a reliable part of vision systems (e.g.,
Section 21.4.4); usually other components of a system cause more problems than
face detection does. It is much more difficult to detect faces in lateral views; there
seem to be two major reasons. First, the profile of the face is quite important,
and variable between subjects. This means that classifier windows must take an
awkward shape, and some pixels in the window do not lie on the face and so
contribute noise. Second, lateral views of faces seem to have a less constrained
appearance than frontal views, so that classifiers must be more flexible to find
them.

17.1.2 Detecting Humans

Being a pedestrian is dangerous, and even more so if one is intoxicated. Counting
pedestrian deaths is hard, but reasonable estimates give nearly 900,000 pedestrians
killed worldwide in 1990 (Jacobs and Aeron-Thomas 2000). If a car could tell
whether it were heading for a pedestrian, it might be able to prevent an accident.
As a result, there is much interest in building pedestrian detectors.

The sliding window recipe applies naturally to pedestrian detection because
pedestrians tend to take characteristic configurations. Standing pedestrians look



Section 17.1 The Sliding Window Method 526

FIGURE 17.7: As Figure 17.6 indicates, a linear SVM works about as well as the best
detector for a pedestrian detector. Linear SVMs can be used to visualize what aspects of
the feature representation are distinctive. On the left, a typical pedestrian window, with
the HOG features visualized on the center left, using the scheme of Figure 5.15. Each
of the orientation buckets in each window is a feature, and so has a corresponding weight
in the linear SVM. On the center right, the HOG features weighted by positive weights,
then visualized (so that an important feature is light). Notice how the head and shoulders
curve and the lollipop shape gets strong positive weights. On the right, the HOG features
weighted by the absolute value of negative weights, which means a feature that strongly
suggests a person is not present is light. Notice how a strong vertical line in the center of
the window is deprecated (because it suggests the window is not centered on a person).
This figure was originally published as Figure 6 of “Histograms of Oriented Gradients for
Human Detection,” N. Dalal and W. Triggs, Proc. IEEE CVPR 2005, c© IEEE, 2005.

like lollipops (wider upper body and narrower legs), and walking pedestrians have
a quite characteristic scissors appearance (Figure 17.5). Dalal and Triggs (2005)
invented HOG features for this purpose, and used a linear SVM to classify windows,
because it is as good as the best classifier, but simpler (Figure 17.6). Another
advantage of a linear SVM is that one can get some insight into what features are
distinctive (Figure 17.7).

Evaluating sliding window methods can be difficult. Dalal and Triggs (2005)
advocate plotting the detection rate (percentage of true positives detected) against
the false positives per window (FPPW). Figure 17.6 shows performance for various
configurations of their system plotted on these axes. When evaluating these plots,
it is important to keep in mind that they characterize the behavior of the classifier,
rather than the whole system. This is attractive if you are interested in features and
classifiers, but perhaps less so if you are interested in systems. A higher FPPW
rate may be tolerable if you have to look at fewer windows, though looking at
fewer windows might affect the detect rate. Dollar et al. (2009) have conducted
a systematic evaluation of pedestrian detectors on a large dataset built for that
purpose. As Figure 17.8 shows, the ranking of methods changes depending on
whether one plots FPPW or false positive per image (FPPI); generally, we expect
that FPPI is more predictive of performance in applications.

Our sliding window recipe has one important fault: it assumes that windows
are independent. In pedestrian detection applications, windows aren’t really in-
dependent, because pedestrians are all about the same size, have their feet on or
close to the ground, and are usually seen outdoors, where the ground is a plane. If



Section 17.1 The Sliding Window Method 527

FIGURE 17.8: The FPPW statistic is useful for evaluating classifiers, but less so for
evaluating systems. On the left, results on the INRIA pedestrian dataset for a variety
of systems, plotted using miss rate against FPPW by Dollar et al. (2009). In this plot,
curves that lie lower on the figure represent better performance (because they have a lower
miss rate for a given FPPW rate). On the right, results plotted using miss rate against
false positive per image (FPPI), a measure that takes into account the number of windows
presented to the classifier. Again, curves that lie lower are better. Notice how different the
ranking of the systems is. This figure was originally published as Figure 8 of “Pedestrian
Detection: A Benchmark” P. Dollár, C. Wojek, B. Schiele, and P. Perona, Proc. IEEE
CVPR 2009 c© IEEE 2009.

we knew the horizon of the ground plane and the height of the camera above that
ground plane, then many windows could not be legitimate pedestrians. Windows
whose base is above the horizon would be suspect because they would imply pedes-
trians in the air; windows whose base is closer to the horizon should be smaller
(otherwise, we would be dealing with gigantic pedestrians). The height of the cam-
era above the ground plane matters because in this problem there is an absolute
scale, given by the average height of a pedestrian. Assume the horizon is in the
center of the image. Then, for cameras that are higher above the ground plane,
legitimate pedestrian windows get smaller more quickly as their base approaches
the horizon. There are two strong sources of information about the horizon and
the camera height. First, the textures of the ground, buildings, and sky are all
different, and these can be used to make a rough decomposition of the image that
suggests the horizon. Second, observing some reliable detection responses should
give us clues to where the horizon lies, and how high the focal point is above the
ground plane. Hoiem et al. (2008) show that these global geometric cues can be
used to improve the behavior of pedestrian and car detectors (Figure 17.9; see also
Hoiem et al. (2006)).

17.1.3 Detecting Boundaries

Edges are not the same as occluding contours, as we said in Chapter 5, because many
effects—changes in albedo, shadow boundaries, fast changes in surface normal—
can create edges. Rather than relying on the output of an edge detector, we could
explicitly build an occluding contour detector, using the sliding window recipe. At



Section 17.1 The Sliding Window Method 528

View

Prior

Ho
riz
on
he
igh
t

in
im
ag
e

Camera heightoff the ground

Image Ground plane

SkyVerticalsLocal car detections Local pedestrian

detections

View Posterior

Global car detections Global pedestrian

detections

FIGURE 17.9: Hoiem et al. (2008) show geometric consistency can be used to improve de-
tector performance. The main parameters are the height of the camera above the ground,
and the positition of the image horizon. The texture of the ground plane, the sky, and
vertical walls tend to be different, so that discriminative methods can classify pixels into
these classes; with this information, combined with detector responses (local detector
results), they obtain a significantly improved posterior estimate of the geometric param-
eters, and an improved detection rate for a given false positive rate (global detector
results). This figure was originally published as Figure 5 of “Putting Objects in Perspec-
tive,” by D. Hoiem, A. Efros, and M. Hebert, Proc. IEEE CVPR 2006 c© IEEE 2006.

each window, we would look at a set of relevant features within the window, then
use these to decide whether the pixel at the center of the window is an occluding
contour or not. In practice, it is sometimes more useful to produce the posterior
probability that each pixel lies on a boundary, at that pixel. Martin et al. (2004),
who pioneered the method, call these maps the Pb, for probability of boundary.

For this problem, it makes sense to work with circular windows. Boundaries
are oriented, so we will need to search over orientations. Each oriented window
can be visualized as a circle cut in half by a line through the center. If this line is
an object boundary, we expect substantial differences between the two sides, and
so features will compare these sides. Martin et al. (2004) build features for a set
of properties (raw image intensity, oriented energy, brightness gradient, color gra-
dient, raw texture gradient, and localized texture gradient) by taking a histogram



Section 17.1 The Sliding Window Method 529

FIGURE 17.10: Object boundaries marked by human informants for some images from the
Berkeley segmentation dataset, used by Martin et al. (2004) to train detectors that report
the probability of boundary. Maps produced by many informants have been averaged,
so that pixels are darker when many informants agree that they represent boundaries.
This figure was originally published as Figure 1 of “Learning to Detect Natural Image

Boundaries Using Local Brightness, Color, and Texture Cues,” by D.R. Martin, C.C.
Fowlkes, and J. Malik, IEEE Transactions on Pattern Analysis and Machine Intelligence,
2004 c© IEEE 2004.

representing that property for each side, then computing the χ2 distance between
the histograms. This means that each feature encodes the tendency of a particular
property to look different on the two sides of the circle. This set of features is then
supplied to logistic regression.

The boundary detector is trained using images whose boundaries have been
marked by humans (Figure 17.10). Human annotators don’t get boundaries per-
fectly right (or else they’d agree, which they certainly don’t; see also Figure 17.12).
This means that the training dataset might contain multiple copies of the same
window with different annotations—some humans marked the point a boundary
point, and others didn’t. However, the set of windows is very large, so that such in-
consistencies should be averaged out in training. The procedure we have described
can be used to build two methods. One reports Pb(x, y, θ), that is, the probability
the point is a boundary point as a function of position and orientation; the other
reports Pb(x, y) = maxθ Pb(x, y, θ). The second is most widely used (Figure 17.11).

Testing requires some care, because reporting a boundary point close to, but
not on, a boundary point marked by a human is not a failure. Martin et al.
(2004) cope with this issue by building a weighted matching between the boundary
points marked by a human and those predicted by the method. Weights depend on
distance, with larger distances being more unfavorable. A predicted boundary point
too far away from any human-marked point is a false positive. Similarly, if there
are no boundary points predicted close enough to a human-marked point, then that



Section 17.2 Detecting Deformable Objects 530

Image

Pb

Human

FIGURE 17.11: Some images from the dataset used by Martin et al. (2004). Boundaries
predicted by humans (averaged over multiple informants; darker pixels represent boundary
points on which more informants agree) compare well with boundaries predicted by the Pb

method. Some Pb errors are unavoidable (see the detailed windows in Figure 17.13); the
method has no-long scale information about the objects present in the image. This figure
was originally published as Figure 15 of “Learning to Detect Natural Image Boundaries
Using Local Brightness, Color, and Texture Cues,” by D.R. Martin, C.C. Fowlkes, and J.
Malik, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004 c© IEEE
2004.

point counts as a false negative. We can then threshold the Pb map at some value,
and compute recall and precision of the method; by varying the threshold, we get a
recall-precision curve (Figure 17.12). Although this method doesn’t perform as well
as humans, who can use context and object identity cues (and so predict illusory
contours, as in Figure 17.13), it significantly outperforms other methods for finding
boundaries. Pb is now widely used as a feature, and implementations are available
(Section 17.3.1). The most recent variant is globalPb, which gets improved results
by linking the Pb method to a segmenter, and so filling in pixels that are required
to ensure that object boundaries are closed curves. You can see this as a method
to force windows not to be independent. Precision-recall curves for this method
appear in Figure 9.25, which should be compared with Figure 17.11.

17.2 DETECTING DEFORMABLE OBJECTS

The basic sliding window detection recipe is extremely powerful. It does assume
(incorrectly) that windows are independent, but we have shown ways to manage
the cost of that assumption. However, the recipe must fail when the classifier fails.
There are two important effects that cause the classifier to fail: The object might



Section 17.2 Detecting Deformable Objects 531

FIGURE 17.12: Martin et al. (2004) evaluate Pb (or probability of boundary) detectors by
comparison to boundaries marked by humans. One plots the recall and precision of a set
of boundaries for a given detector threshold by placing predicted points in correspondence
with boundary points predicted by humans, weighting correspondences so that distant
pairings are discouraged. Some predicted points are then unmatched, and so are false
positives. Unmatched human boundary points give a count of false negatives. Varying the
threshold gives a recall-precision curve. On this plot, the + signs are human informants,
who differ from one another in where they place boundary points. The median F measure
for humans is 0.8, and the human curve is the F = 0.8 curve. Using different subsets
of the feature set gives slightly different performance statistics; using all the features we
have described gives the BG + CG + TG curve. This figure was originally published as
Figure 3 of “Learning to Detect Natural Image Boundaries Using Local Brightness, Color,
and Texture Cues,” by D.R. Martin, C.C. Fowlkes, and J. Malik, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2004 c© IEEE 2004.

change shape, usually referred to as deformation; and we might see the object from
different views, usually referred to as aspect. Recent work has shown that these
effects can be mitigated very significantly by natural changes to the classifier.

To deal with aspect, we could build more than one classifier for the same
object. Each classifier responds to different views of that object. The response of
this system of classifiers at a given window is obtained by taking the maximum
of each of the separate classifier responses. The learning procedure will need to
take this into account, to ensure that the classifiers are calibrated to one another.
In particular, training the learning procedure will be considerably simplified if it
knows which of the multiple classifiers should have the strongest response for each
positive training example. We do not expect this information to be part of the
training set, and so it forms a latent variable—a variable that simplifies modelling,
but is itself unknown. We will have to estimate it during training.

This notion of a latent variable yields extremely powerful methods to deal with
deformation, too. Deformation is a rather fluid concept at time of writing, because
it must cover such varied effects as people moving their arms and legs around, the
tendency of some motorcars to be longer than others, and the tendency of (say)



Section 17.2 Detecting Deformable Objects 532

Image Window Pb Human

FIGURE 17.13: Detailed local examination of Pb results can be informative. On the top, a
texture boundary that is difficult to identify with conventional edge-detection techniques
found by Pb. On the bottom, an illusory contour (a contour that must be present by
the nature of the object viewed, but where no contrast exists to identify it) defeats the
Pb method because it does not have global object derived features; people quite reliably
mark this boundary. This figure was originally published as Figure 17 of “Learning to
Detect Natural Image Boundaries Using Local Brightness, Color, and Texture Cues,” by
D.R. Martin, C.C. Fowlkes, and J. Malik, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2004 c© IEEE 2004.

amoebas or jellyfish to have little reliable shape at all. The most useful meaning
of the term to date is the observation that many objects have patches that look
like one another—the head of a person, or the bonnet of a motorcar—but can be
found in somewhat different places in different instances of the whole object. For
example, a station wagon and a sedan are like one another because each has doors,
wheels, and headlights—reliable patches that look like one another—but pictures
of station wagons might have headlights and wheels rather farther away from the
doors than pictures of sedans will. This suggests modelling an object as a root—
an approximate model that gives the overall location of the object— and a set of
parts—object components that have quite reliable appearance, but might appear at
somewhat different locations on the root for different instances. Parts are typically
considerably smaller than roots. Each part has an appearance model and a natural
location. Finding a window that looks a lot like the part close to that part’s natural
location with respect to the root yields evidence that the object is present.

We now build classifiers that use this model of an object, and apply them
in our sliding window recipe. The overall score for a window will be the sum of
several distinct scores. One compares the root to the window. Each part has its own
separate score, consisting of an appearance term and a location term (Figure 17.14).
The appearance term compares the appearance of the part to the image, and the
location term penalizes the part if it lies too far away from its natural location. The
appearance model for the root and for each part will be a linear function of HOG



Section 17.2 Detecting Deformable Objects 533

L
at
er
al
m
o
d
el

Root Parts Offset costs
F
ro
n
ta
l
m
o
d
el

Root Parts Offset costs

FIGURE 17.14: A model for a bicycle, built using the scheme of Felzenszwalb et al. (2010b).
There are two components, corresponding to a frontal and a lateral view. Each component
has a root and six parts. The root and the part appearance models are visualized with
the scheme of Figure 5.15. Notice how the root for each view corresponds to a rough
layout, but (for example) the wheels in the lateral view or the handlebar in the frontal
view are hard to spot. This is because bicycles will not be in exactly the same place, or
at exactly the same orientation, in each window. The parts can compensate for that, and
the part models show quite clear wheels and handlebars. The offset costs are registered to
the parts, and smaller values are darker. For example, the wheels in the lateral view can
move somewhat apart, but it becomes expensive to separate them by too much, or place
them too close together. The score for a particular image window is the maximum of the
component scores, which are described in the text. This figure was originally published
as Figure 2 of “Object Detection Using Discriminatively Trained Part-based Models,” by
P. Felzenszwalb, R. Girshick, D. McAllester, and D. Ramanan, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2010 c© IEEE 2010.

features, so the resulting model will have strong analogies with a linear SVM—in
fact, a linear SVM is a special case of the model we are building, in that it has a
root but no parts.

We can now introduce some notation to describe a single component model.
Each component has the same form, so there is no loss of generality in this; we are
just suppressing some notation that keeps track of the component under discussion.
The root model will consist of a set of linear weights, β(r), to be applied to the
feature vector describing the root window (which is a HOG feature vector in all
implementations we know of, but doesn’t have to be). The ith part model will
consist of a set of linear weights, β(pi), to be applied to the feature vector describing
the part window; a natural offset with respect to the root, v(pi) = (u(pi), v(pi)); and

a set of distance weights d(pi) = (d
(pi)
1 , d

(pi)
2 , d

(pi)
3 , d

(pi)
4 ). Now write φ(x, y) for the

feature vector describing the part window at location (x, y) with respect to the



Section 17.2 Detecting Deformable Objects 534

FIGURE 17.15: Examples of bicycles detected using the model of Figure 17.14. The large
boxes are bicycle instances; the smaller boxes inside are the locations of the detected
parts. The wheelie is not detected by rotating the box, but because the parts are allowed
to move within the box. This figure was originally published as Figure 2 of “Object Detec-
tion Using Discriminatively Trained Part-based Models,” by P. Felzenszwalb, R. Girshick,
D. McAllester, and D. Ramanan, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2010 c© IEEE 2010.

root coordinate system. Write (dx, dy) = (u(pi), v(pi)) − (x, y) for the offset from
the part’s ideal location in the root coordinate system. The score for the ith part
at this location (x, y) with respect to the root is given by

Part score at (x, y) = Appearance score− Offset cost

= S(pi)(x, y;β(pi),d(pi),v(pi))

= β(pi) · φ(x, y) − (d
(pi)
1 dx+ d

(pi)
2 dy + d

(pi)
3 dx2 + d

(pi)
4 dy2),

and we define the score for the ith part to be the best score obtained over all
possible offsets, that is

Part i score = max
(x,y)

S(pi)(x, y;β(pi),d(pi),v(pi)).

Now the score for the object model at a particular root window is

Model score = Root appearance score +
∑
i

Part i score.

Assume we have an object model. This could consist of several components
of the form described, one for each aspect. Then detection is straightforward: for
each window, we compute the model score for each component, take the maximum
over all components, and use this maximum in our sliding window recipe. To do so,
we will need to deal with maximizing the score for each part as a function of (x, y).
Blank search could do this, though Felzenszwalb et al. (2010b) and Felzenszwalb et
al. (2010a) offer much better strategies.

Learning a model takes care. We must deal with two kinds of latent variable.
First, we do not know which component should respond for each positive example;



Section 17.3 The State of the Art of Object Detection 535

negative examples are somewhat easier to deal with, because all components should
have a negative score. Second, we do not know the locations of the parts in the
training example. Notice that, if we knew the component and the part location for
each example, training would boil down to training a linear SVM. However, we can
apply a strategy of repeated re-estimation. We assume locations and components
are known, and then compute part appearance and offset models for each compo-
nent. Then, given part appearance and offset models for each component, we can
estimate locations and components again.

One feature of our sliding window recipe becomes apparent here. Sliding
window detectors must process immense numbers of image windows, most of which
are negative. As a result, apparently small false positive rates can become a major
problem. It is extremely important to train detection models with a very large
dataset, to expose them to as many negative examples as possible. This takes
care in the framework we have described, because enough negative examples may
become overwhelming. One valuable strategy, introduced by Felzenszwalb et al.
(2010b), is known as hard negative mining. As we train the classifier, we apply it
to negative examples, looking for ones that get a strong response; these are cached,
and used in the next round of training. If this is properly done, one can guarantee
that the classifier has the same support vectors it would have if it had seen every
negative example.

This method is now the standard, dominant detector. Most other successful
detectors are variants on this recipe. Code for training and testing this method is
available at http://people.cs.uchicago.edu/~pff/latent/. At time of writing,
any novel object detection method needs to be compared to this method because
there is a good chance it will outperform the novel method.

17.3 THE STATE OF THE ART OF OBJECT DETECTION

The main forum for competition between general object detection methods is now
the Pascal challenge (compare Section 16.2.3), which has a detection challenge
for the same set of objects used in the classification challenge. From 2007–2010,
these problems involved 20 standard classes (including aeroplane, bicycle, car, and
person). Bounding boxes for each instance of the relevant objects are available for
training images.

Evaluation is by average precision, computed using an overlap test. Assume
a detector predicts a bounding box Bp; this prediction is taken as a true positive if
it is the strongest prediction overlapping some marked-up box Bm and if

area of (Bp ∩ Bm)

area of (Bp ∪ Bm)
> 0.5.

All other predictions overlapping that marked-up box are false positives. We now
sort the predicted boxes by the strength of their prediction, and compute recall
and precision, where relevant items are true positives. It is usual to summarize
performance using average precision.

There are numerous reasonable critiques of this test. First, it is quite crude
as to localization. For example, if the predicted and true boxes happen to have
the same area, then the overlap area needs to be only about two-thirds of a box

http://people.cs.uchicago.edu/~pff/latent/


Section 17.3 The State of the Art of Object Detection 536

Category 2007 2008 2009 2010

aeroplane 0.262 0.365 0.478 0.584
bicycle 0.409 0.420 0.468 0.553
bird 0.098 0.113 0.174 0.192
boat 0.094 0.114 0.158 0.210
bottle 0.214 0.282 0.285 0.351
bus 0.393 0.238 0.438 0.555
car 0.432 0.366 0.372 0.491
cat 0.240 0.213 0.340 0.477
chair 0.128 0.146 0.150 0.200
cow 0.140 0.177 0.228 0.315

diningtable 0.098 0.229 0.575 0.277
dog 0.162 0.149 0.251 0.372
horse 0.335 0.361 0.380 0.519

motorbike 0.375 0.403 0.437 0.563
person 0.221 0.420 0.415 0.475

pottedplant 0.120 0.126 0.132 0.130
sheep 0.175 0.194 0.251 0.378
sofa 0.147 0.173 0.280 0.330
train 0.334 0.296 0.463 0.503

tvmonitor 0.289 0.371 0.376 0.419

# methods 5 3 6 6
# comp 9 7 17 19

TABLE 17.1: Average precision of the best classification method for each category for the
Pascal image classification challenge by year (per category; the method that was best at
“person” might not be best at “pottedplant”), summarized from http://pascallin.ecs.

soton.ac.uk/challenges/VOC/. On the bottom rows, the number of methods in each
column and the total number of methods competing (so, for example, in 2007, only 2
of 17 total methods were best in category; each of the other 15 methods was beaten by
something for each category). Notice that the average precision grows, but not necessarily
monotonically (this is because the test set changes). Most categories now work moderately
well.

to pass the test; this is a moderately big target, though in practice very hard to
hit. Methods tend to perform very badly with tighter thresholds on the overlap.
Second, detectors that chatter—i.e., produce multiple responses nearby—can be
severely penalized, because one of these responses will count as a true positive,
and each other response will count as a false positive. This can interact with the
difficulty in getting accurate mark up for, say, crowds of people, so that detectors
that appear to be performing quite well qualitatively perform poorly quantitatively.
Third, a box is an extremely crude representation of the support of an object, so
that predicting a box well might not actually be evidence of good detection. These
critiques notwithstanding, at time of writing there is no better scoring mechanism
that is available and widely used.

Table 17.1 shows average precisions obtained by the best method per class
(meaning that the method that did best on aeroplanes might not be the same as the
method that did best at bicycles) from 2007–2010. Some objects—pottedplants,
chairs, birds—appear to be very difficult to detect, or perhaps they have such

http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/


Section 17.3 The State of the Art of Object Detection 537

FIGURE 17.16: Performance of various pedestrian detectors for a test dataset (top left,
labeled “overall”) and for various special subsets of that test dataset, performed using the
testbed of Dollar et al. (2009). Detectors that do well for some cases (for example, near-
scale pedestrians) can do poorly for other cases (for example, medium-scale pedestrians).
Some cases are hard for all detectors. This figure was originally published as Figure 9 of
“Pedestrian Detection: A Benchmark” P. Dollár, C. Wojek, B. Schiele, and P. Perona,
Proc. IEEE CVPR 2009 c© IEEE 2009.

complex spatial support that using windows shaped like boxes is unwise. There is
clear evidence of progress for most objects, though. Note the tendency for results to
improve, though there is by no means monotonic improvement. For these datasets,
the question of selection bias does not arise, as a new dataset is published each year.
As a result, it is likely that improvements probably do reflect improved features or
improved classification methodologies. However, it is still difficult to conclude that
methods that do well on this challenge are good, because the methods might be
adapted to the set of categories. There are many methods that participate in this
competition, and differences between methods are often a matter of quite fine detail.
The main website (http://pascallin.ecs.soton.ac.uk/challenges/VOC/) is a
rich mine of information, and has a telegraphic description of each method as well as
some pointers to software. Detection seems to be much harder than classification,

http://pascallin.ecs.soton.ac.uk/challenges/VOC/


Section 17.3 The State of the Art of Object Detection 538

as a comparison between Tables 16.1 and 17.1 shows.
There is evidence that some detection problems are quite subtle. Figure 17.16

shows a comparison of various pedestrian detector systems, applied to particular
subsets of the test data by Dollar et al. (2009). In this figure, lower curves are
better. Notice how all the systems studied behave better for pedestrians who are at
a near scale, or are unoccluded, and suffer serious difficulties for far scale or heavily
occluded pedestrians. Notice also how a change from a typical to an atypical aspect
ratio of the pedestrian window—which is rough evidence the pedestrian is doing
something other than standing or walking—seems to affect system performance
quite strongly. Determining the relative frequency of these cases in the real world
is hard (Section 16.3.3), so accurate predictions of the performance of deployed
systems are extremely difficult to obtain.

17.3.1 Datasets and Resources

Pedestrian detection datasets: There are multiple pedestrian datasets. The
INRIA pedestrian dataset, used in Dalal and Triggs (2005), is published by Dalal
and Triggs at http://pascal.inrialpes.fr/data/human/. The MIT pedestrian
dataset, introduced in Papageorgiou and Poggio (2000), is published at http://

cbcl.mit.edu/software-datasets/PedestrianData.html.
There is a set of pointers to implementations of systems and to datasets at

http://www.pedestrian-detection.com/.
Dollár, Wojek, Schiele, and Perona publish several very large pedestrian

datasets (including the Caltech training dataset, test dataset, and Japan dataset) at
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/, and
describe them in Dollar et al. (2009). This location also contains pointers to other
pedestrian datasets.

Ess, Leibe, Schindler, and van Gool publish a dataset of tracked humans—who
are likely pedestrians—at http://www.vision.ee.ethz.ch/~aess/dataset/; this
dataset is described in detail in Ess et al. (2009).

Overett, Petersson, Brewer, Andersson, and Pettersson publish the NICTA
pedestrian dataset at http://nicta.com.au/research/projects/AutoMap/comp
uter_vision_datasets; this dataset is described in detail in Overett et al. (2008).

Wojek, Walk, and Schiele publish a dataset of pedestrians in motion at http:
//www.mis.tu-darmstadt.de/tud-brussels; this dataset is described in detail
in Wojek et al. (2009).

There are several datasets associated with Daimler Chrysler which can be
found at http://www.gavrila.net/Research/Pedestrian_Detection/Daimler_
Pedestrian_Benchmarks/daimler_pedestrian_benchmarks.html.

Enzweiler and Gavrila publish the Daimler pedestrian benchmark dataset at
this URL and it described in detail in Enzweiler and Gavrila (2009). Munder
and Gavrila publish the Daimler pedestrian classification dataset at this URL and
it is described in detail in Munder and Gavrila (2006). Enzweiler, Eigenstetter,
Schiele, and Gavrila publish the Daimler multi-cue occluded pedestrian detection
benchmark dataset at this URL and it is described in Enzweiler et al. (2010).

The computer vision center at the Universitat Autònoma de Barcelona pub-
lishes several pedestrian datasets at http://www.cvc.uab.es/adas/index.php?

http://pascal.inrialpes.fr/data/human/
http://cbcl.mit.edu/software-datasets/PedestrianData.html
http://cbcl.mit.edu/software-datasets/PedestrianData.html
http://www.pedestrian-detection.com/
http://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/
http://www.vision.ee.ethz.ch/~aess/dataset/
http://nicta.com.au/research/projects/AutoMap/computer_vision_datasets
http://nicta.com.au/research/projects/AutoMap/computer_vision_datasets
http://www.mis.tu-darmstadt.de/tud-brussels
http://www.mis.tu-darmstadt.de/tud-brussels
http://www.gavrila.net/Research/Pedestrian_Detection/Daimler_Pedestrian_Benchmarks/daimler_pedestrian_benchmarks.html
http://www.gavrila.net/Research/Pedestrian_Detection/Daimler_Pedestrian_Benchmarks/daimler_pedestrian_benchmarks.html
http://www.cvc.uab.es/adas/index.php?section=other_datasets


Section 17.4 Notes 539

section=other_datasets. There is a dataset of virtual pedestrians at this URL,
published by Maŕın, Vázquez, Gerónimo, and López; it is described in detail
in Marin et al. (2010). Gerónimo, Sappa, López, and Ponsa publish a dataset
of pedestrians captured around Barcelona at this URL; this dataset is described in
detail in Gerónimo et al. (2007).

Maji, Berg, and Malik publish pedestrian detector code that uses pyramid
HOG features and an intersection kernel SVM at http://www.cs.berkeley.edu/

~smaji/projects/ped-detector/. The code is described in Maji et al. (2008).
Face detection codes and datasets: The number of face detection datasets

is so great that we provide pointers to pages that collect datasets. These pages
provide pointers to codes as well. There is a collection of 12 datasets, includ-
ing several well-known face datasets, at http://robotics.csie.ncku.edu.tw/

Databases/FaceDetect_PoseEstimate.htm. Frischholz maintains a face detection
home page, containing demonstrations, publications, datsets, and links, at http:
//www.facedetection.com/; many more face datasets appear in the dataset com-
ponent at http://www.facedetection.com/facedetection/datasets.htm. Gr-
gic and Delac supply codes and datasets for face recognition at http://face-rec.
org/. Some sample codes, and further datasets can be found at http://vision.
ai.uiuc.edu/mhyang/face-detection-survey.html.

General object detection codes and datasets: All datasets from the
PASCAL challenge are published at http://pascallin.ecs.soton.ac.uk/chall
enges/VOC/, and described in detail by Everingham et al. (2010). Most of the
strongest methods on this challenge are based on the detector we described in
Section 17.2; code for training and testing this method is available at http://

people.cs.uchicago.edu/~pff/latent/.
Pb codes and data are published by Arbelaez, Maire, Fowlkes, and Malik

at http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/

resources.html; there is a description in Arbelaez et al. (2011).

17.4 NOTES

The sliding windowmethod is one of the mainstays of modern computer vision. This
is marginally embarrassing, because it suggests that grouping and segmentation
processes are so poor that it is better to just search all translations and scales to
find what you want (see the critiques in Maji and Malik (2009), in Gu et al. (2009),
and in Todorovic and Ahuja (2008b)). Early papers using the method include
Schneiderman and Kanade (2000), Rowley et al. (1998a), Sung and Poggio (1998),
and Osuna et al. (1997).

PROGRAMMING EXERCISES

17.1. Build a face detector using the sliding window method, HOG features, and a
linear SVM. How significantly can you improve its performance by applying
the trick of Figure 15.7 to your training data set?

17.2. Apply the code of http://people.cs.uchicago.edu/~pff/latent/ to build
a detector for the object of your choice. How well does it work? You should
be able to improve performance significantly by building a large dataset of
negatives. How helpful is iterative mining for examples?

http://www.cvc.uab.es/adas/index.php?section=other_datasets
http://www.cs.berkeley.edu/~smaji/projects/ped-detector/
http://www.cs.berkeley.edu/~smaji/projects/ped-detector/
http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.htm
http://robotics.csie.ncku.edu.tw/Databases/FaceDetect_PoseEstimate.htm
http://www.facedetection.com/
http://www.facedetection.com/
http://www.facedetection.com/facedetection/datasets.htm
http://face-rec.org/
http://face-rec.org/
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html
http://vision.ai.uiuc.edu/mhyang/face-detection-survey.html
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://pascallin.ecs.soton.ac.uk/challenges/VOC/
http://people.cs.uchicago.edu/~pff/latent/
http://people.cs.uchicago.edu/~pff/latent/
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/resources.html
http://people.cs.uchicago.edu/~pff/latent/


C H A P T E R 18

Topics in Object Recognition

Computer vision has come a very long way since its start in the 1960’s. Some of this
advance has to do with the astonishing drop in price of fast computers and imaging
systems; a lot more has to do with an increased understanding of the component
problems. The result is that right now there are many practical problems that
can usefully be solved using techniques from computer vision. This is a triumph.
However, there are core problems that are unsolved and very difficult to think about
in a productive fashion. These core problems have to do with the representation
and recognition of objects.

In Section 18.1, we discuss the considerable gap between what object recog-
nition systems should do and what they do now. In following sections, we sketch
some promising lines of research in feature representation that might help close
this gap. Section 18.2 focuses on feature constructions; Section 18.3 discusses how
geometric cues might help recognition; and Section 18.4 describes different ways of
thinking about what a recognition system might report.

18.1 WHAT SHOULD OBJECT RECOGNITION DO?

How should one think about recognition in general? People can name many thou-
sands of different kinds of object. This facility is not affected by superficial changes
in individual objects—for example, disrupting the spot pattern on a cheetah, or
changing the upholstery or the design of a chair. Furthermore, people need to see
only very few examples of a new object to “get it,” and be able to recognize other
instances of this object at some later date.

It would be very useful to have computer programs that, even partially, shared
these skills. People probably posess them because they have practical value (know-
ing what to eat, who owes you food, when to fight, when to flee, what is going
to eat you, etc.). Section 18.1.1 sketches some desirable features that a computer
object recognition system should have. No current strategy seems to meet these
needs (Section 18.1.2). Object categories are an important, and poorly understood,
idea in object recognition, which we describe in Section 18.1.3. Selection—choosing
which objects to describe and which to ignore—is another poorly understood idea,
which we discuss in Section 18.1.4.

18.1.1 What Should an Object Recognition System Do?

The ideal object recognition system would have several important properties. It
should recognize many different objects. This is much more difficult than it sounds:
to recognize very large numbers of objects, we need to know how to organize them
into a data structure that is easily searched given image data. In particular, we
need to know what measurements can be used to distinguish between objects as
opposed to distinguishing between instances (one cat might be tabby, the other

540



Section 18.1 What Should Object Recognition Do? 541

gray, but they are both cats).
An ideal system would recognize objects seen against many different back-

grounds. Again, this appears to be very difficult. Ideally, an appropriate object
representation would help by organizing the image into segments that might have
come from an object category (without reference to a particular instance) and those
that could not.

It would recognize objects at an appropriate level of abstraction. Humans can
tell a chair is a chair even if they have not seen that particular chair before. They
do not even need to have seen that model of chair before, either. Ideally, our
programs would be able to recognize both leopards and cheetahs as spotted cats,
before drawing a distinction. Precisely what is an appropriate level of abstraction
is mysterious. The word “category” is widely used to denote a class of objects at
the appropriate level of abstraction, though the term does not resolve the question
of what that level of abstraction is. In such a class, some objects will differ from
others in some ways, but categories are a useful way of thinking about generalizing
object properties. One reason I may wish to recognize any chair as a chair is that
I know I can sit on chairs.

It would make useful inferences about the special properties of particular in-
stances. Assume, for example, that all chairs are instances of a single category
(it is by no means obvious this is true). It would not be particularly helpful to
simply name every chair a chair; we may need to know something about the special
properties of this instance to sit in it. Is it large enough? Does it have a padded
seat? Does it have arms? And so on. These considerations suggest that, within a
given category, there are principled and important variations.

It would produce useful responses to unfamiliar objects. Humans often en-
counter objects that are, at least in detail, unfamiliar, and can usually cope with
this unfamiliarity. Few people can name most species of mammal, for example,
but most can tell whether an animal they cannot name is furry, is asleep, and so
on. For the foreseeable future, computer vision systems will encounter unfamiliar
objects regularly, and they cannot simply be ignored.

It would produce responses that help achieve goals. How we categorize an
object that we see might reasonably depend on what we want to do. If I wish
to sit, a large, flat rock might be a seat. If I wish to flatten something, the rock
might be an anvil. It might also be a weapon, or a good place to make a fire.
Furthermore, the same rock may occupy distinct categories (seat; good place to
make a fire; anvil) at the same time. This is not true of all rocks, so this collection
of possible uses cannot be obtained by inheritance.

It would produce responses of useful complexity. An object recognition system
that named every object in an image might be very difficult to use, because most
images have very many objects, most of which are not interesting. A picture of a
room might well have a chair in it, a floor, and some cushions. But it might also
contain a light fitting, which will have some associated screws; the chair might have
nails in it; and so on. We are surrounded by immense numbers of objects, most of
which should be ignored most of the time.

Current recognition strategies typically perform rather poorly when measured
against these requirements. This is not because they are bad; the problem is just
very difficult.



Section 18.1 What Should Object Recognition Do? 542

18.1.2 Current Strategies for Object Recognition

The dominant current object recognition strategy involves attaching a plausible set
of features to a multiclass classifier, and then training the classifier with a set of
examples for each class, as described in Chapters 15, 16 and 17. All such recognizers
can be described, rather broadly, as template matchers (where the template and
matching cost are implicit in the classifier). Their main virtue is that, unlike purely
geometric approaches, they exploit the great discriminatory power of image texture
information, and sometimes color information too. However, they normally require
an additional segmentation step that separates the objects of interest from the
image background (what Chapter 16’s assumption that objects are prominent in
images, and Chapter 17’s moving window are all about). Such methods require that
texture be discriminative, which isn’t always the case. These methods may not be
able to cope with complex shape variations, and they suppress internal structures
within object categories. Finally, current versions of these methods assume that
each instance belongs to just one category of objects.

An important alternative is to represent an object in terms of some spatial
relations between some templates. Examples include the detection model of Sec-
tion 17.2 and the human parsing method of Section 20.2. You should regard these
methods in their current form as richer template matchers, and so they inherit the
difficulties implicit in that class of method. Current versions of this approach can
cope only with relatively limited sets of relations; they might not be able to cope
with complex shape variation; and they suppress internal structures within object
categories.

The third alternative uses the registration techniques of Chapter 12. One has
a geometric model of an object, and then attempts to register it to the image; if
the registration score is good enough, the object is present. If there are multiple
types of object, then each has a geometric model, each model is registered, and
the scores are used to decide what is present. Such methods cope very poorly with
object classes that display complex geometric variations (like chairs, for example).
They handle multiple objects poorly, and they cannot make useful statements about
unfamiliar objects.

18.1.3 What Is Categorization?

A world in which every instance is distinct from every other instance presents serious
practical difficulties. We would like to tell how objects behave, how they will react,
how we can use them, and how other people will react to them. If each instance is
distinct, we must discover answers to these and other questions independently for
each instance. One way to generalize is to say that many instances can be grouped
together because they share some properties. The shared properties that are used
to collect instances are those for which we care to generalize; for example, all these
instances are collected together because we can sit on them. We can refer to such
groups as categories. Unfortunately, the word “category” is used in many different
and somewhat contradictory senses in the literature. This is because it is genuinely
hard to know which usage is most helpful.

One usage is the (very broad) sense we have given, of arbitrary but useful
groupings of instances. Notice that in this usage, the same instance might appear



Section 18.1 What Should Object Recognition Do? 543

in many different groupings (for example, a particular chair might simultaneously be
a chair, a weapon, a source of discomfort, and a source of firewood). The groupings
are made because they are useful. They depend on (a) what we are trying to do
and (b) on our need to communicate with others. This means that it is helpful
to have broad conventions about some groupings. For example, it is helpful when
most instances that I call chairs are instances that you call chairs, too (it is too
much to ask that we agree on all instances).

In the computer vision literature, the term is often used in a much more
restrictive sense. The usual meaning is that each instance belongs to a single
category (for example, this is a chair, and that is a table); that these categories are
commonly accepted (for example, you and I agree that this is a chair and that is
a table); and that they have some kind of canonical status. This usage probably
should be deprecated, because the notion omits some important properties.

It seems to be the rule, rather than the exception, that instances can belong
to multiple categories. This is most likely because useful categorizations depend
on circumstances—i.e., different groupings of instances meet different needs. For
example, if I need to sit down, one useful category is chairs; if I need a fire, things
that burn is a useful category. Some chairs can be burned and others can’t, so
I cannot simply inherit one grouping from another. Experiments with cups and
vases by Labov (1973) demonstrate that people do not necessarily agree on what
category an instance belongs to. Some cups look quite like some vases. If one shows
people a sequence of instances running from strongly cup-like to strongly vase-like,
then they will label an intermediate instance a cup; if one shows the sequence in the
other order, the same intermediate will be called a vase. This means that people
can be persuaded to allocate the same instance to distinct, and apparently mutually
exclusive, categories by context.

There are practical reasons to believe that instances can belong to multiple
categories, too. Imagine we wish to build a dog detector. We obtain many pictures
of dogs, and many pictures without dogs. During the hard-negative mining pro-
cess, we are likely to find pictures of cats that look a lot like dogs. Our training
process strongly encourages the classifier to produce negative responses to these,
and positive responses to dogs that look a lot like cats. This is most likely a source
of instability, because it will be hard to find reliable features to distinguish between
them; as a result, the performance of the dog detector might depend quite strongly
on which dog-like cats appear in the negative dataset. An alternative is to not
use the most dog-like cats in training; we will get false positives, but we will also
get a more reliable estimate of the detector. In particular, if we then build a cat
detector (now not using the most cat-like dogs as negatives), we might be able to
tell the ambiguous classes apart by looking at the relative, rather than absolute,
responses of the detectors. At this point, we have three types of example: clear
cats, clear dogs, and somewhat uncertain small, furry animals. This might result
in a much better-performing detection system than insisting that there are clear
category boundaries.



Section 18.2 Feature Questions 544

18.1.4 Selection: What Should Be Described?

The desired output of a recognition system remains puzzling, because most images
are very rich in objects. In turn, this means that preparing a list of everything
in the image is quite unmanageable. The fact that some objects might belong
to more than one category makes this list even more unattractive. Instead, we
need some principle by which objects—or image domains, perhaps—can be ignored
as irrelevant. Objects might be irrelevant because they are too small to be worth
mentioning; because they cannot affect the task at hand; because they are subsumed
by visual phrase or scene representations; or perhaps for other reasons. There
are some indications that people ignore—or at least, don’t report—many or most
objects in images.

For example, Rashtchian et al. (2010) produced a dataset by asking human
labelers to produce five different sentences describing each of 5,000 images. What is
remarkable about these descriptions is (a) how strongly the sentences agree and (b)
how few of the objects present in the image are actually described. This suggests
the presence of some mechanisms, most likely affected by what we are trying to do,
that can select what is worth noticing in an image. Another dataset that suggests
this was collected by Spain and Perona (2008), who asked people to produce short
lists of what was present in an image; these lists are remarkably consistent.

All this suggests that it is fruitful to study what output a recognition system
should produce. There is an apparently easy solution: an object recognition system
should produce a representation of the world that is small enough but is detailed and
accurate enough to be useful to the agent using it. To be less vague, we would need
to study recognition in the context of a variety of concrete tasks, so that we could
link the representations produced with the utility of the agent. This has not been
done to date, because there have not been recognition methods that are accurate
enough to make the question interesting. Recent methods are now good enough
that this topic could be studied usefully, and we hope that significant advances will
result.

18.2 FEATURE QUESTIONS

The feature constructions we have described in Chapters 5 and 16 are very power-
ful, and the underlying principles seem to have driven almost all of the advances
in modern object recognition. Nonetheless, it is reasonable to hope that they can
be improved. First, we could look for more effective versions of the current con-
structions (Section 18.2.1). Second, because current constructions largely describe
image textures, we could look for other types of feature (Section 18.2.2).

18.2.1 Improving Current Image Features

Current feature constructions rest on two important ideas. First, features such as
visual words try to encode the rich collection of image patches with a dictionary of
examples. By doing so, they can suppress small differences in appearance between
patches, and identify patches that are distinctive or discriminative. This is a general
strategy, which is usually called coding. Second, SIFT features, HOG features,
and histograms of visual words all summarize information over neighborhoods to



Section 18.2 Feature Questions 545

suppress the effects of small translations, scale errors, and the like. This is a general
strategy, which is usually called pooling. It is natural to try and produce sets of
features by applying and generalizing these ideas systematically.

Coding allows us to think of image patches as pattern elements. Strongly dif-
ferent image patches are coded differently, so that the overall tendency of a texture
in a domain can be represented by the statistics of the codes. We can generalize
the original coding procedure that produced visual words in a straightforward way.
Rather than encoding an image patch with a single dictionary entry, we allow the
patch to be a linear combination of dictionary entries, but require that relatively
few of these entries be used. We represent each image patch in a training set with
a vector; this could be a vector of filter outputs, but it also could just involve re-
shaping the array. Write Ii for the ith such vector. We now seek a matrix D and
a set of vectors zi such that∑

i∈training set

||Ii −Dzi ||2 + λ |zi |1

is minimized. We can think of D as the dictionary, because the 1-norm strongly
encourages each zi to have many zeros in it, and so each patch is encoded as a
combination of a small number of dictionary entries. We expect such an encoding
to be sparse, i.e., that there are few nonzero terms in each zi. A new patch In can
then be represented by finding the zn that minimizes

||In −Dzn ||2 + λ |zn |1 .

This zn will be sparse, too. Encoding test patches like this involves a complex
minimization, but there are now methods to learn functions that take In and predict
zn relatively cheaply (see Ranzato et al. (2007); Kavukcuoglu et al. (2009)).

Coding can create problems. For example, if we code by vector quantization,
two very similar image patches might get very different codes, because the cluster
center closest to each is different. This could be a rich source of noise. One way
to suppress this noise is to modify the coding process to take into account k of
the nearest neighbors. For example, the patch might be represented as a linear
combination of its k-nearest neighbors (see Yang et al. (2009a); Yang et al. (2010b)).
We could then expect that similar patches get more similar codes.

Pooling allows us to represent spatial trends in pattern elements within a
domain, without representing spatial information in too much detail. One example
of pooling is building a histogram of visual words; here the pool is the histogram.
This is often called average pooling. Alternative methods are to build a bit vector
with a one for each word that occurs in the domain, however often it occurs, and a
zero otherwise (called max pooling) or to produce a histogram with tf-idf or other
weights. Pooling has several merits. First, pooling can suppress noise created in
coding. For example, if we expect that two similar patches get different codes, then
a histogram taken over many different patches should still be informative. Second,
pooling can highlight overall distinctions between patterns—for example, spots and
stripes should involve very different families of patches—while suppressing spatial
detail. Finally, pooling can suppress the effects of small translations, rotations, and
deformations of the domain in which the representation is computed.



Section 18.2 Feature Questions 546

However, pooling can also create problems. Pooling loses spatial information.
There is a tension here: pooling over large domains might suppress noise more
effectively, but it also suppresses more spatial information. Pooling over small
domains produces representations with more spatial information at the cost of less
noise suppression. Pyramid constructions, like that of Section 16.1.4, are most
likely helpful because they manage this tension well.

A second difficulty is that averaging codes with quite different meanings might
create uninformative vectors. This issue is particularly uncomfortable with a sparse
coding representation. Two very different image patches might produce codes that
have some nonzero components in common. Averaging these terms is unlikely to
be helpful, and might suppress information. Instead, we might want to pool only
over coherent domains in both the image and feature space. One way to do so uses
preclustering. We build a k-means clustering of the feature space. Each of these
cluster centers is associated with a bin, and we pool only the codes of features that
(a) fall into the same bin and (b) are in some image-pooling domain. Proper uses
of pooling and coding strategies are key to competitive performance on current test
datasets. There is now a considerable body of experimental information dealing
with the effects of different choices of coding and pooling schemes (pointers to
sources in the notes).

18.2.2 Other Kinds of Image Feature

Modern image features strongly emphasize texture, both because it seems to be
discriminative and because we know how to build quite good texture features.
Other classes of feature remain more mysterious. Generally, we could expect that
contour features, shape features, and shading features might have some information
about the nature of an observed object, but little is known about how to exploit this
information. We discuss some of the technical problems encountered in building
shape features in Section 18.3, and the others here.

Some contours appear to be distinctive, at least to people. For example, one
doesn’t need much artistic competence to draw a curve that is highly suggestive
of a body segment (try it). One doesn’t even need to show all, or even most, of
the outline of the segment to get an effect. Building image features that exploit
contour remains complicated. It remains difficult to get whole contours reliably in
images, meaning that one must cope with noise created by the contour detection
process. This noise will tend to involve large sections of the contour going missing.
Worse, there will be other image contours that are not relevant but are difficult
to omit from representation. One strategy for representing contours is to try to
register an example contour template to the image; by doing so, we can potentially
pool information from multiple local curves in the image. The difficulty is that we
might need many templates, and worse, many registration attempts for each.

HOG features try to deal with these difficulties by (a) dealing with local im-
age orientations, so we never need to join up a whole contour; (b) using multiple
different normalizations, so that contour components with weak contrast might still
appear in the representation; and (c) pooling locally in small domains so that small
registration errors are suppressed. The classifier must then resolve the question
of what is distinctive contour information and what is mere texture. Figure 17.7



Section 18.3 Geometric Questions 547

suggests that classifiers can do this to some extent, and so that HOG features do
respond to contour. However, better methods for exposing contour information
and suppressing texture information would be a significant advance. Such meth-
ods might require integrating improved segmenters (Chapter 9) with measures of
contour such as Pb (Section 17.1.3).

Shading features remain largely mysterious, though there are some reasons
to believe that shading patterns can be distinctive for some objects (see Haddon
and Forsyth (1998c)). Current feature constructions suppress shading information
at the earliest stages by computing orientations. Most likely, shading information
is useful only at a relatively long image scale (i.e., the pattern of shading across a
whole object might be quite helpful), and only relative to a domain (i.e., you need
to know the support of the object in the image to compute this pattern of shading).
Finding the domain of support of an object remains very difficult indeed.

18.3 GEOMETRIC QUESTIONS

The object recognition methods we have described primarily have involved statis-
tical reasoning. We have shown some evidence that geometric reasoning improves
these methods (Section 17.1.2). How much geometric reasoning should be applied
in object recogntion, what it does, and where it applies, have become important
open questions.

Geometric information could help object recognition by supplying a form of
context for objects. Image appearance features for each of a set of objects sitting
on a ground plane are correlated by the facts that (a) they sit on the same ground
plane and (b) they are seen in the same camera. This is the core of the method
of Section 17.1.2. There is some evidence that there are other possible cases. For
example, several methods can now recover an approximate estimate of the shape
of a room from a picture of that room. The method described in Figure 18.1 (due
to Hedau et al. (2009)) models the room as a box, then uses vanishing points to
estimate the rotation of that box, and estimated appearance features to estimate its
translation and aspect ratio. Many alternative representations are available, from
local surface normals to more complex polyhedral models (see Hoiem et al. (2005);
Barinova et al. (2008); Delage et al. (2006); Lee et al. (2009); Nedovic et al. (2010);
Saxena et al. (2008); Saxena et al. (2009)). One reason to know a model of the
room is to estimate free space, as in Figure 18.1. Another is to improve furniture
detection; for example, Hedau et al. (2010) show that beds can be detected more
accurately if one knows the geometry of the room they are in. Yet another, due
to Gupta et al. (2011), is to make estimates of the affordances of surfaces in the
room—for example, where could a person sit? Where could one place objects? (see
Figure 18.2.)

Another important role for geometry is in representing shape. There seem to
be two important difficulties here. First, our methods for representing 2D shape do
not work satisfactorily with our methods for identifying objects. Second, the ap-
parent 2D shape of an object changes when one looks at it from different directions,
an effect known as aspect.

There are two main approaches in the literature for representing image shape.
In one approach, one decomposes the shape into a variety of primitive subshapes,



Section 18.3 Geometric Questions 548

FIGURE 18.1: On the top left, an image of a cluttered room. Hedau et al. (2009) use
vanishing points to estimate the rotation (i.e., the orientation of the edges) of the main
“box” of the room, and then they estimate the translation (i.e., the location of corners)
with a learned combination of features. In turn, this yields an estimate of the appearance
of each face of the box, so that clutter can be discounted, resulting in an improved box
estimate shown superimposed on the top right image. Once we have the “box” and
the clutter maps (bottom left), we can estimate free space, shown as the voxels on the
bottom right. This figure was originally published as Figures 1 and 8 of “Recovering
the spatial layout of cluttered rooms,” by V. Hedau, D. Hoiem, and D.A. Forsyth, Proc.
IEEE ICCV 2009 c© 2009 IEEE.

typically represented by their spines, and then works with the set of primitives.
However, changing the image shape slightly can generate quite large changes in the
shape representation. As a result, these methods currently seem to work only in
quite special cases (you should see the pictorial structure model of Section 20.2.1 as
one version of this class of model). The alternative is to represent potential shapes
by a collection of templates, and then describe new shapes by registering them to
the templates (using methods like those of Section 12.3). The problem here is that
the registration process is slow, so it is difficult to use these methods to describe
shapes for large-scale recognition.

These problems are made harder by the fact that the image shape of an object
changes as one looks at an object from different directions. Representing this effect
remains difficult. Chapter 13 describes a representation of the topological changes
undergone by the image contour as the view moves; there has been no success
in using this representation in practical applications. Savarese and Fei-Fei (2007)
describe a less detailed representation where they decompose objects into a set
of faces, each of which behaves simply, and then reason about which faces are in
view and so about the object (see also Savarese and Fei-Fei (2008)). Alternatively,



Section 18.4 Semantic Questions 549

a b c

d e f

FIGURE 18.2: Estimates of room geometry can be used to produce very rich semantic
representations. Gupta et al. (2011) describe a method to tag boxes and surfaces within a
room with affordances—properties related to the potential for human action. The rooms
in column (a) produce the geometric representation in column (b). In turn, places where a
person could sit against a backrest are indicated in column (c); without a backrest in (d);
lie down in (e); and different types of reachable domain are indicated in (f). This figure
was originally published as Figure 6 of “From 3D Scene Geometry to Human Workspace,”
by A. Gupta, S. Satkin, A. Efros, and M. Hebert, Proc. IEEE CVPR 2011 c© 2011 IEEE.

Farhadi et al. (2009b) describe feature constructions that suppress changes due to
aspect, then build a specialized classifier that is largely aspect-independent. No
current method can deal with a puzzling property of human recognition. People
seem to be able to infer the aspectual properties of an object from a single view of
that object; that is, they have a good estimate of what the new object will look like
from a new view, from only one image, presumably based on their experience of
other objects. Current methods require multiple views of the new object to build
representations that are robust to aspect. One possible architecture for generalizing
aspect behavior would be to have clusters of shapes that had similar behaviors; then,
when we see a new object, we infer which cluster it belongs to and so determine
how it will look for new views. The details of how one could do this remain obscure.

18.4 SEMANTIC QUESTIONS

Thinking about what the output of an object recognition system should be seems to
be fruitful. In Section 18.1.4, we pointed out that a simple list of all objects is not
plausible, because it mostly will be too long and too full of irrelevancies. Assume



Section 18.4 Semantic Questions 550

FIGURE 18.3: One way to deal with unfamiliar objects is to produce a description in
terms that are useful for describing familiar objects. These terms are commonly called
attributes. The figure shows attributes predicted for the rectangular window in each image,
using the method of Farhadi et al. (2009a), with the attributes listed below the image.
Predictions that are incorrect have a large X next to them. Each window circumscribes
an object of a category that is not present in data used to train the method. Notice that
these descriptions are moderately useful, and sometimes very helpful. This figure was
originally published as Figure 5 of “Describing objects by their attributes,” A. Farhadi, I.
Endres, D. Hoiem, and D. Forsyth, Proc. IEEE CVPR 2009, c© 2009 IEEE.

we know how to choose what to report. We must still deal with making useful
statements about unfamiliar objects (Section 18.4.1). Some objects might be made
of parts, which themselves are somewhat like objects; for example, a “wheel” could
be a part of a larger object, or an object itself. In Section 18.4.2, we discuss some
recent thinking about parts. This opens the question of exactly what we should try
to detect—parts, or objects, or groups of objects, or scenes—and we discuss this in
Section 18.4.3.

18.4.1 Attributes and the Unfamiliar

We regularly encounter objects that are somewhat unfamiliar; we may know some-
thing about them without knowing their name. A strong source of examples is
animals. It is quite usual to look at an animal species you haven’t seen before and
be able to make some inferences about its nature and behavior without knowing
its name. This suggests that part of recognition is being able to make some useful
statements about objects even when we cannot name them.

One way to do this is to describe objects by attributes, properties of the object
that are useful to know and are discernible from images. Some attributes might
refer to parts of the object. For example, it is useful to know when objects have
heads, have wheels, and so on. Other attributes might refer to appearance (is it
red, or stripey); to material (is it made of wood); or to shape (is it boxy). Farhadi



Section 18.4 Semantic Questions 551

FIGURE 18.4: One advantage of describing objects (rather than just naming them) is that
one can then identify special properties of objects whose name is known. On the top row,
examples of objects identified by the system of (Farhadi et al. 2009a), where the instance
in the image is special because it has an attribute that most examples of that object lack.
Notice that this system has a limited notion of object semantics, and so does not know
that birds never have extra leaves (the leaves must come from something else). On the
bottom row, examples of objects, where the instance in the image is special because it
lacks an attribute that most examples of that object have. Again, because the underlying
semantics are quite simple, the method does not distinguish between birds that do not
have tails, and birds whose tails just happen not to be visible. This figure was originally
published as Figures 6 and 7 of “Describing objects by their attributes,” A. Farhadi, I.
Endres, D. Hoiem, and D. Forsyth, Proc. IEEE CVPR 2009, c© 2009 IEEE.

et al. (2009a) describe one system for predicting attributes from images of objects.
In their approach, a list of attributes is chosen, and then example data is marked
up with these attributes. This is used to train classifiers that use appearance
features and then the attributes of test images are predicted with these classifiers.
Attributes can be predicted for images of objects that never appear in the training
set (Figure 18.3). Because the attributes were chosen to be discriminative, they can
be used to predict the name of the object present, if it is known. Furthermore, if
an object is present and has unusual attributes, their system can tell (Figure 18.4).
A wide range of attributes can be predicted with moderate accuracy (Figure 18.5).
There are a variety of ways to predict attributes from pictures, as Lampert et
al. (2008) point out. One is to identify the attributes independently and then
perhaps the object from the attributes. Another is to identify the object first, then
inherit the attributes. A third is to predict object and attributes simultaneously.
If attributes are spatially localized, Farhadi et al. (2010a) show that one can make
generalizations about objects that have never been seen before (Figure 18.6).

18.4.2 Parts, Poselets and Consistency

Some objects seem to be made of parts, structures that are shared across categories.
These parts are often somewhat homologous in appearance and function. For ex-
ample, cars, trucks, and buses have wheels and doors; people and animals have legs



Section 18.4 Semantic Questions 552

FIGURE 18.5: A wide range of attributes can be predicted with useful accuracy. The
figure shows the AUC for a series of attributes, predicted using the methods of Lampert
et al. (2008). Zeros correspond to cases where there was no test data for the test-training
split used (because the split was on object images, rather than per attribute). With
this accuracy, one could expect to produce a quite useful description of an unfamiliar
object from the domain to which the attributes apply (animals). This figure was originally
published as Figure 6 of “Learning to detect unseen object classes by between-class attribute
transfer,” C. Lampert, H. Nickisch, and S. Harmeling, Proc. IEEE CVPR 2009, c© 2009
IEEE.

and heads; birds and bats have wings. In some contexts, it may be reasonable to
think about parts as being objects themselves, though doing so opens some con-
fusing and difficult issues. For example, should we think about a face as an object,
or as an assembly of distinct objects (eyes, nose, and mouth)? It is difficult to tell
how parts and objects are distinct. For example, a screw that holds a chair to-
gether could quite reasonably be a part of that chair, but in an appropriate context
it is itself an object. The reason to put up with this confusion is that parts are
useful. When a part is shared across many categories, it presents opportunities to
tie models (i.e., one can learn only one wheel detector, rather than learning one for
each wheeled vehicle) and to generalize (as in Figure 18.6).

One important use of the idea of parts occurs in poselet methods. A poselet
is a local structure on an object that (a) has distinctive appearance and (b) can be
used to infer some of the configuration of an object (e.g., translation; translation
and rotation; translation, rotation, and scale; and so on; see Figure 18.7). Bourdev
and Malik (2009) offer a clustering algorithm for choosing a set of poselets to rep-
resent an object category. Finding an object becomes quite straightforward. One



Section 18.4 Semantic Questions 553

FIGURE 18.6: Most animals have heads, bodies, and legs; most vehicles are boxy and have
wheels; watercraft are boxy, with a pointed bow. This means that, if we can identify these
semantic parts and reason about their relationships, we could recognize an animal without
ever having seen examples of that kind of animal, as Farhadi et al. (2010a) demonstrate.
On the top two rows, examples showing animals, vehicles, and watercraft identified
in images by their system, despite its never having seen that kind of animal, vehicle,
or watercraft in training (though it did see the parts). They demonstrate that such
a system can make rich reports about the familiar objects it encounters (third row);
mistakes are shown on the fourth row. This figure was originally published as Figure 7
of “Attribute-centric recognition for cross-category generalization,” A. Farhadi, I. Endres,
and D. Hoiem, Proc. IEEE CVPR 2010, c© 2010 IEEE.

FIGURE 18.7: Poselets are image patches of characteristic, relatively constrained appear-
ance that suggest a restricted range of configurations. These are examples of image patches
corresponding to four distinct poselets (associated with face, arms, whole body, and head)
from Bourdev and Malik (2009). Notice how each could likely be found with current de-
tectors in a relatively straightforward way. This figure was originally published as Figure
1 of “Poselets: Body Part Detectors Trained Using 3D Human Pose Annotations,” L.
Bourdev and J. Malik, Proc. IEEE ICCV 2009, c© 2009 IEEE.



Section 18.4 Semantic Questions 554

FIGURE 18.8: Bourdev and Malik (2009) show that poselets can be used to find, say,
the torso of the body even though it might not be visible. Each detected poselet can
cast a vote, whose value is determined discriminatively, for the location of the torso. The
likely torso locations are then clustered, to identify groups of votes that agree. Finally,
the strongest cluster gives a torso location, if it is strong enough. Notice how some of
the marked torsos could not be identified by direct image information. This figure was
originally published as Figure 10 of “Poselets: Body Part Detectors Trained Using 3D
Human Pose Annotations,” L. Bourdev and J. Malik, Proc. IEEE ICCV 2009, c© 2009
IEEE.

builds a detector for each poselet (which is manageable, because the poselets are
chosen to have a distinctive appearance). Each strong poselet response votes for
the object configuration, and the object is either present or absent at that config-
uration depending on the strength of the vote (Figure 18.8). The great attraction
of poselets is that they can pool discriminative, but local evidence over long spatial
scales without having to segment the image accurately to compute pooling domains
(compare Section 18.2). In Section 20.5.2, we describe an application of poselets
that are chosen to be discriminative of human activities.

18.4.3 Chunks of Meaning: Parts, Poselets, Objects, Phrases, and Scenes

The detectors we described were focused on finding objects, but it is very hard to
be crisp about what an object is. Some object categories are extremely difficult to
detect, as Table 17.1 shows. Scenes are composites of objects that can be relatively
straightforward to classify (Section 16.1.9). It seems reasonable to look for a notion
that lies somewhere between an object and a scene. These are visual phrases,
composites of objects that have relatively simple appearance, and so are relatively
easy to detect. A good example is a person riding a bicycle; this turns out to
be much easier to detect with current methods than a person (because there isn’t
much one can do on a bicycle), and somewhat easier to detect with current methods
than a bicycle (because having a rider limits the possibilities for a bicycle, too).
We expect that there are fewer training examples for composites, because they are
more complicated. If they are also easier to detect, this does not matter. Recent
experimental work by Farhadi and Sadeghi (2011) suggests that there are some



Section 18.4 Semantic Questions 555

FIGURE 18.9: Visual phrases are composites of objects that are easier to detect than their
components. Farhadi and Sadeghi (2011) demonstrate that some visual phrases exist and
are useful. For example, it is much easier to detect a person drinking from a bottle than it
is to detect a person, because a person drinking from a bottle has a more limited and more
characteristic range of appearances. These figures show some examples of visual phrases,
detected using the methods of Section 17.2. This figure was originally published as Figure
1 of “Recognition using Visual Phrases,” A. Farhadi and A. Sadeghi, Proc. IEEE CVPR
2011, c© 2011 IEEE.

visual phrases that are much easier to detect than their components (Figure 18.9).
Notice that having a detector for a person on a horse doesn’t mean we don’t have a
detector for a person and another for a horse. Usually we think of a person riding
a horse as a composite of objects. The fact that some visual phrases are easy to
detect suggests that we might sometimes want to think about (say) a person as a
part of (say) a person riding a horse. This part is shared across many categories
(person riding a bicycle; and so on) and, like wheels, is sometimes easier thought of
as an object. To confuse things further, the person in turn might consist of parts
or poselets.

Now assume we build a set of detectors, some for detecting objects and others
for detecting visual phrases. We may have strong responses from different detec-
tors (for example, detectors for a person on a horse, a person, and a horse). These
responses are not necessarily mutually exclusive. Furthermore, crosstalk between
detectors means that the pattern of detector responses might be quite revealing.
We must look at the pattern of detector responses for a given image and draw con-
clusions about what is correct, a process Farhadi and Sadeghi (2011) call decoding.

Decoding can be phrased as a quite general problem: look at a pool of detector
responses, and draw conclusions. By this definition, the poselet-based activity
recognition method of Section 20.5.2 involves decoding. There are a variety of
possible mechanisms for decoding. One could use a greedy algorithm (as in Desai



Section 18.4 Semantic Questions 556

FIGURE 18.10: Detection systems that use visual phrases must be able to deal with am-
biguous and possibly mutually exclusive detector responses. For example, when there is a
person drinking from a bottle, there must also be a person and a bottle, and all three de-
tectors might respond. Resolving what to report given a set of detector responses is called
decoding by Farhadi and Sadeghi (2011). The top row shows some detector responses for
each image before decoding (there are too many to show all; these are the stronger ones);
the bottom row shows the detectors marked as correct by the decoding stage. This stage
is able to use the local context of detector responses. For example, a strong response from
a dog lying on sofa detector implies a sofa, and so the sofa can be believed; similarly, a
believable sofa implies that many of the person detector responses are unlikely. Farhadi
and Sadeghi (2011) demonstrate that decoding improves the performance of all detectors
in the system, and that having visual phrase detectors and a decoding stage improves the
performance of conventional object detectors, most likely by exposing contextual informa-
tion that strengthens or reduces the plausibility of the detector response. This figure was
originally published as Figure 6 of “Recognition using Visual Phrases,” A. Farhadi and A.
Sadeghi, Proc. IEEE CVPR 2011, c© 2011 IEEE.

et al. (2009)); one could use a discriminative method to tell which detector responses
one believes (as in Farhadi and Sadeghi (2011)); one could pool responses by voting
on location (as in Bourdev and Malik (2009)); or one could look at all responses then
draw a single conclusion (as in Maji et al. (2011)). Now if we admit poselets and
part detectors, we might have detectors for parts, poselets, objects, visual phrases,
and scenes. Furthermore, in an environment with multiple detectors, detector cross-
talk becomes a significant potential source of information, so the decoding problem
looks very rich. We believe that more detailed studies of decoding will be rewarding.



P A R T S I X

APPLICATIONS AND TOPICS



This page intentionally left blank 



C H A P T E R 19

Image-Based Modeling and
Rendering

The entertainment industry touches hundreds of millions of people every day, and
synthetic pictures of real scenes, often mixed with actual film footage, are now
common place in computer games, sports broadcasting, TV advertising, and fea-
ture films. Using prerecorded images of a scene to create a visual model supporting
the synthesis of novel images of this scene is what image-based modeling and ren-
dering is all about, and the topic of this chapter (this model must capture both
shape and color/texture information, but, as shown at the end of this chapter, it
is not necessarily three-dimensional). We present three representative approaches
to image-based modeling and rendering. The first one is purely geometric, and
given an object’s silhouettes recorded in a number of calibrated images, outputs
an approximation of its shape in the form of a visual hull (Section 19.1). Realistic
images can then be rendered by reprojecting the input images on the reconstructed
surface, a form of texture mapping. The second approach mixes geometric and
photometric constraints and generalizes the stereo fusion techniques introduced in
Chapter 7 to the multi-view, wide-baseline setting where several (possibly many)
views of a scene can be taken from very different viewpoints (Section 19.2). Finally,
we discuss the light field, an approach to image-based modeling and rendering that
entirely forsakes the construction of a three-dimensional object representation, and
models instead the set of all pictures of a scene by the space formed by light rays
equipped with the corresponding radiance values (Section 19.3).

19.1 VISUAL HULLS

We saw in Chapter 13 that the silhouette of an object constrains it to lie within a
viewing cone to which it is tangent. When several images and the corresponding
contours are available, it is rather natural to approximate the observed shape by the
intersection of the corresponding cones, called its visual hull (Figure 19.1, top). This
idea dates back to the mid-1970s (Baumgart 1974) and has been rediscovered several
times since then. Of course, as they are constructed from silhouette information
alone, visual hulls provide only an outer approximation of the solids they represent.
In particular, they do not reveal surface concavities because these do not show up
on the image contour. Nonetheless, given a sufficient number of images, visual
hulls provide a reasonable approximation of the convex and saddle-shape parts of
the observed surfaces (Figure 19.1, bottom), and over the years they have become a
popular and effective tool for image-based modeling and rendering. We thus present
in this section a simple algorithm for computing the visual hull from contours
observed by n calibrated perspective cameras.

559



Section 19.1 Visual Hulls 560

O
1

O
2

O
3

FIGURE 19.1: Top: Three cameras with pinholes O1, O2, and O3 observe an egg-shaped
object. The visual hull is the intersection of the three viewing cones. Its surface consists
of three cone strips, indicated by three different shades of gray. Bottom: Examples of
visual hulls. Left: A knotted solid is recovered from 42 synthetic views of the mesh,
shown as a small insert. The leftmost visual hull is recovered as the intersection of poly-
hedral viewing cones using the method of Franco and Boyer (2009), and the one on its
right is simply obtained as the intersection of voxel-based viewing cones. Right: One
of the 12 input images of a dinosaur figurine, and the corresponding visual hull model,
obtained using the algorithm described in this section. Top and bottom-right parts of
the figure reprinted from “Projective Visual Hulls,” by S. Lazebnik, Y. Furukawa, and
J. Ponce, International Journal of Computer Vision, 74(2):137–165, (2007). c© 2007
Springer. Bottom-left part of the figure reprinted from “Efficient polyhedral modeling from
silhouettes,” by J.-S. Franco and E. Boyer, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(3):414–427, (2009). c© 2009 IEEE.



Section 19.1 Visual Hulls 561

P

pi pj

Oi

lij lji

Oj
eij eji

FIGURE 19.2: A frontier point. The epipolar plane is tangent to the surface in P , and the
two occluding contours cross there. The corresponding epipolar lines lij and lji are tangent
to the two image contours at the points pi and pj . Reprinted from “Projective Visual
Hulls,” by S. Lazebnik, Y. Furukawa, and J. Ponce, International Journal of Computer
Vision, 74(2):137–165, (2007). c© 2007 Springer.

19.1.1 Main Elements of the Visual Hull Model

As illustrated by Figure 19.1 (bottom), several algorithms are available for com-
puting the visual hull, depending on the underlying object representation (e.g.,
a polyhedral mesh or a voxel-based volumetric model). This chapter focuses on
solid objects bounded by smooth surfaces. The boundary of the visual hull is in
this case a generalized polyhedron, whose faces are patches belonging to the bound-
aries of viewing cones, edges are segments of intersection curves between pairs of
these patches, and vertices are points where three or four faces intersect each other
(Figure 19.1, top). Equivalently, it can be described as the union of cone strips
belonging to the surfaces of individual cones.

In general, all vertices of a polyhedron (or generalized polyhedron, for that
matter) are formed by the transversal intersection of three faces—that is, two faces
meet at a nonzero angle along a line (or more generally, a curve), and the third
one cuts that line at a nonzero angle to form a vertex. This is not the case for
visual hulls, whose vertices come in two flavors: Triple points (the white discs in
Figure 19.1, top) are ordinary vertices where the surfaces of three viewing cones
intersect in a transversal manner, and the three corresponding intersection curves
meet each other at nonzero angles. Frontier points (the black diamonds in the same
figure) are more pecular. They are vertices where the surfaces of two viewing cones
intersect tangentially, two intersection curve branches cross each other, and the two
occluding contours cross as well. They occur for most pairs of images because they
are also the places where an epipolar plane is tangent to the surface, with both
projection rays in that plane, and the corresponding epipolar lines are tangent to
the two contours at the projections of these points (Figure 19.2).

Before giving an explicit algorithm for constructing the visual hull, let us
note that all the concepts introduced in the rest of this section are illustrated
throughout using the toy example of Figure 19.3: The two outlines γi and γj
shown in this diagram are intended as front and side views of a solid, rectified so
the epipolar lines are horizontal. The first outline is egg-shaped, and the second
one is U-shaped, the lower leg of the U giving rise to an isolated bump in the



Section 19.1 Visual Hulls 562

u0

u3

u6 v0v4

v1

v2

v3

u v’”v

Internal contour

External

contour

u1

u2u4
u5

FIGURE 19.3: Two rectified views γi (left) and γj (right) of a solid. The epipolar lines
associated with extremal points are shown as thin, horizontal straight lines. In the context
of visual hull construction, the internal part of a contour, as shown in the left part of the
diagram, typically is not observable, with the only available information coming from the
silhouette and thus the external part of the contour. Once extremal point parameters—
here, (u0, v0), (u1, v2), (u2, v1), (u3, v3), (u4, v1), and (u5, v2)— have been computed, and
sorted in ascending u order, the intersection curve φij can be identified by sampling the
[uk, uk+1] intervals at regular values, and marching from one sample to the next in these
intervals, computing the corresponding values of v—here, v′ and v′′—by intersecting γj
with the corresponding epipolar line. [Note that the parameter values u0 and u6 (resp. v0
and v4) are identified to emphasize the periodic nature of the contours’ parameterization.]

left contour (the dashed lines correspond to hidden parts of the outline, following
the conventions of Chapter 13). This bump lies inside the silhouette, and like all
internal contour structures, it is ignored during visual hull construction. This is,
in part, because, although it is relatively easy to find outer image boundaries in
controlled situations (using background subtraction for example), it is difficult in
practice to accurately delineate internal ones. But this is also because exploiting
the corresponding geometric information is difficult, and, as far as we know, still
an open problem. On the other hand, holes in the silhouette—as in the case of a
torus, for example—do not pose any particular problem during the construction of
visual hulls.

Without loss of generality, we will assume from now on that, as in Figure 19.3,
the outlines γi and γj observed in two images Ii and Ij are parameterized by
two variables u and v, and that Ii and Ij have been rectified so that matching
epipolar lines are represented by the same horizontal line. Under this assumption, a
necessary and sufficient condition for the visual rays associated with the parameters
u and v on γi and γj to intersect is that the corresponging contour points be in
epipolar correspondence—that is, lie on the same horizontal line. This constraint
implicitly defines three different curves: The first one, φij , is drawn in the (u, v)
plane and characterizes matching pairs of these parameters. For each point on
φij , there exists a point P (u, v) on a second curve, δij , drawn in R

3 and where
the two cone boundaries intersect. Finally, the depth z(u, v) of P (u, v) relative to
camera number i defines a third curve, ψij , drawn in the (u, z) plane (Figure 19.4).1

1As shown in Chapter 7, z(u, v) is a function of the horizontal disparity between the two



Section 19.1 Visual Hulls 563

u0 u1 u3 u5 u6

z3

z

u
u2 u4u- u+

FIGURE 19.4: The intersection curve ψij associated with the outlines of Figure 19.3 is
traced here in the (u, z) plane. The parameter values u1 and u4 correspond to opening
points, and the values u2 and u5 to closing ones. The parameter values u0 ≡ u6 and u3

correspond to frontier points. Although the lower (first in ascending z order) and upper
(second) branches of the curve in the interval [u0, u1] are constructed from left to right
by the curve-tracing algorithm, the orientation of the second branch is reversed during
post-processing. The same is done for all branches with an even index so as to construct
a consistent counterclockwise ordering of the edges and vertices of the curves.

The intersection curve of two viewing cones can be characterized by tracing any of
these three curves, but it turns out to be most convenient to trace ψij , from which
the other two curves can readily be recovered. Visual rays project onto horizontal
epipolar lines in the rectified image plane. They also correspond to vertical lines in
the (u, z) plane. We will go back and forth between the two representations in the
rest of this section, so the reader should always keep in mind that we talk about
the outlines γi and γj in the rectified image plane when we refer to horizontal lines,
and about the curve ψij in the (u, z) plane when we refer to vertical ones.

Let us now present a simple algorithm for computing the visual hull (Algo-
rithm 19.1): First, we construct the skeleton formed by its edges and vertices. We
then “fill in” the interior of the cone strips. Because the vertices of the visual hull
are frontier points and triple ones, computing the skeleton amounts to identifying
frontier points (as well as other extremal points that will be defined in the next
section) and tracing the intersection curve branches linking them for all pairs of
images (Section 19.1.2), then clipping these curves against each other and comput-
ing the corresponding triple points (Section 19.1.3). The last major component of
Algorithm 19.1 is the triangulation of the cone strips whose vertices and edges have
been identified, as described in Section 19.1.4.

19.1.2 Tracing Intersection Curves

Tracing ψij turns out to be easy for intervals of the u axis where any vertical line
in the (u, z) plane intersects this curve a constant number of times. (As will be

corresponding contour points. It is indeed inversely proportional to the disparity in the rectified
coordinate system attached to the camera.



Section 19.1 Visual Hulls 564

The algorithm takes as input the image contours γ1, . . . , γn extracted from n cali-
brated images, and outputs a combinatorial representation of the visual hull bound-
ary in terms of its faces, edges, and vertices.

% Find the skeleton.

1. For i = 1, . . . , n do

(a) Tracing (Section 19.1.2): For j = 1, . . . , n, j �= i, identify the ex-
tremal points associated with the contours γi and γj and trace the in-
tersection curve ψij .

(b) Clipping (Section 19.1.3): For j, k = 1, . . . , n, j �= i, k �= i, j �= k,
clip the intersection curves ψij and ψik against each other, and compute
the corresponding triple points.

% Find the visual hull faces (Section 19.1.4).

2. For i = 1, . . . , n do

(a) Triangulate the ith cone strip.

Algorithm 19.1: Visual Hull Construction.

explained shortly, this is because it is easy to link successive samples on ψij in
this case.) These intervals are delimited by extremal points with a vertical tangent
(Figure 19.4). This happens when γj is tangent to an epipolar line—in other words,
it has a horizontal tangent (see the problems; intuitively, the slope of the disparity
function is infinite there). In the usual case where γi is not also tangent to this
horizontal line, there are two types of extremal points, opening and closing ones.
When the epipolar lines are ordered in increasing u order, as in Figure 19.3, the
former correspond to minimal tangencies where both branches of γj are (locally)
above the horizontal tangent (e.g., (u1, v2) in Figure 19.3), and the latter tomaximal
ones where they are both below (e.g., (u2, v1) in the same figure). Both types of
points can indeed be identified using this characteristic property. Equivalently, the
two segments of ψij incident to an opening (resp. closing) point are on its right
(resp. left) in the (u, z) plane (Figure 19.4). When matching epipolar lines are
tangent to both γi and γj , the points where they graze these curves (e.g., (u0, v0)
and (u3, v3) in Figure 19.3) are the projections of frontier points where the occluding
contours cross on the surface, with both projection rays in the tangent plane there
(Figure 19.2). At the corresponding point of ψij , two of this curve’s branches have
a transversal intersection (Figure 19.4).

In practice, extremal points are found by searching γj for horizontal tangents,
and computing the intersections of the corresponding epipolar lines with γi. Their
type is then easily assessed from its defining properties (minimal, maximal, or
double tangency). Once the extremal points have been identified and sorted in
ascending u order, it is a simple matter to trace ψij by regularly sampling the



Section 19.1 Visual Hulls 565

intervals of the u axis delimited by the extremal points, and marching from one u
sample to the next one in each interval, computing at every step the corresponding
values of the parameter z for each branch of the intersection curve by intersecting γj
with the corresponding horizontal line (Figure 19.3), and linking the corresponding
(u, z) samples to those found at the previous iteration. This requires a consistent
ordering of the samples during curve tracing, which is one of the main reasons for
tracing ψij instead of φij : indeed, these points can be sorted in increasing z order,
and each one can be assigned a depth index according to whether it is the first,
second, ... point along the ray as seen from the optical center Oi. In particular,
the number of intersections between an epipolar line and the contour γj remains
constant for all values of u in the interior of the interval delimited by two consecutive
extremal points, which greatly simplifies the tracing process (Algorithm 19.2).

The algorithm takes as input two contours γi and γj and outputs a graphical
description of the curve ψij . The parameter q controlling the number of samples
per interval can be adapted easily to the interval size.

1. Compute the extremal points of the curve ψij . If there are K+1 of them, sort
them in increasing u order and denote by uk (k = 0, . . . ,K) the corresponding
parameter values.

2. Compute the sample points of ψij associated with u− = u0.

3. For k = 1 to K do

(a) δu ← (uk − uk−1)/q; u+ ← u− + δu.

(b) For p = 1 to q do

i. Compute the sample points corresponding to u+.

ii. Link these points with the points corresponding to u− that have
the same depth index.

iii. u− ← u+; u+ ← u+ + δu.

4. Reverse the orientation of all back edges.

5. Return the oriented graph whose vertices consist of extremal points and edges
are the polygonal chains linking them.

Algorithm 19.2: A Curve-Tracing Algorithm.

The main idea of this algorithm is to represent every curve branch on each
interval [uk−1, uk] by a polygonal chain, using the facts that the number of branches
remains the same on that interval, and that the depth indices of successive sample
points can be used to link them. Some care has to be taken at the endpoints of
each interval, where u− or u+ corresponds to an extremal point. When u− = uk−1,
there are two cases: when u− corresponds to a frontier point or an opening one, this
point must be duplicated in the corresponding list of intersections before linking;
otherwise, u− corresponds to a closing point, and it must be deleted from the list
before linking. When u+ = uk, there are also two cases: when u+ corresponds to



Section 19.1 Visual Hulls 566

z

u

FIGURE 19.5: Clipping the intersection curves. The white discs represent triple points.
The dashed parts of the two curves are clipped away.

a frontier point or a closing one, this point must be duplicated; otherwise, it is an
opening point, and it must be deleted.2

With these conventions, there is always an even number of curve branches
on each interval, and an even number of ordered pairs (u, z) associated with the
parameters u− and u+ at each iteration of the tracing procedure. The “solid” parts
of the strip that actually lie within the viewing cone associated with γj are delimited
by the first (front, as seen from the camera) branch and the second (back) one, the
third (front) and the fourth (back) ones, and so on. In particular, this ensures
that the output of the curve-tracing algorithm is easily transformed by reversing
the orientation of back edges into a graphical representation of the curve ψij , with
vertices corresponding to extremal points, and edges to polygonal branches between
these points, oriented counterclockwise so the solid part of the strip always lies on
the left of its boundary (Figure 19.4).3

19.1.3 Clipping Intersection Curves

Let us now move to the problem of computing the skeleton of the visual hull, and the
key step of that procedure—that is, clipping the intersection curves traced in the
previous section against the viewing cones associated with the remaining images
(Figure 19.5). Let us consider a third image Ik and the intersection curve ψik

defined by Ii and Ik. The intersections of ψij and ψik are easily found by searching
each curve for successive points that are on opposite sides of the other one, and
using linear interpolation to locate the intersection points of the corresponding line
segments. They are the projections of triple points, whose 3D position is easily
obtained using linear least squares,4 and they are inserted in the corresponding

2In this case the duplication or deletion is temporary, since the u+ parameter will be reused
as a u− parameter at the next iteration.

3Holes in the silhouette of an object—when the camera faces a donut or a person with her
hand on her hip, for example—are easily handled by maintaining consistent orientations for the
different connected components of the contour.

4Triple points show up in the (u, z) plane as the intersection of two curves, ψij and ψik . One
should, however, keep in mind that they also lie on the ψjk/ψji and ψki/ψkj intersections. They



Section 19.1 Visual Hulls 567

curve branches. The part of each curve that must be dismissed because it lies
outside the other one can then be identified by using orientation information. The
connectivity information needed to complete the skeleton is also easily obtained
from the different contours’ orientation once the triple points have been found.

19.1.4 Triangulating Cone Strips

The complete boundary of the visual hull consists of strips lying on the surfaces of
the original visual cones. The skeleton obtained at the end of the clipping stage gives
a complete combinatorial representation of all the strip boundaries, consisting of
vertices that correspond to extremal and triple points, and edges that represent the
smooth intersection curve branches between them as polygonal chains. However,
it does not provide an explicit description of the strip interiors. For this, we must
triangulate the cone strips (Algorithm 19.3).

This takes as input a cone strip and outputs its triangulation.

1. Create the event list by sorting the parameter values of the endpoints of all
edges on the boundary of the cone strip. Initialize the active list with all edges
that contain some starting position u0.

2. For each event uk do

% Fill in triangles from uk−1 to uk.

(a) For each pair (E,E′) of adjacent edges in the active list such that E is
a front edge and E′ is a back edge, do

i. Fill in triangles between E and E′ in the interval [uk−1, uk].

% Update the active edge list.

(b) If uk is an event where a pair of edges start, then insert this pair of edges
into the active list.

(c) if uk is an event where a pair of edges end, then delete this pairs of edges
from the active list.

Algorithm 19.3: The Strip Triangulation Algorithm.

As in our curve tracing procedure, the triangulation is essentially performed
as a line sweep of the (u, z) plane (Figure 19.6). The two key data structures
maintained by the triangulation algorithm are an event list and an active list. The
event list contains the u coordinates, sorted in increasing order, of the extremal
and triple points, corresponding to the endpoints of all the strip edges. The active
list, updated at each successive event value, is a list of edges that intersect the
sweeping ray at its current location. If the ray passes the first endpoint of an
edge, that edge is inserted into the active list, and if the ray passes the second
endpoint of an edge already in the list, that edge is deleted. The edges in the active

are indeed points where three curve branches intersect on the visual hull’s boundary.



Section 19.1 Visual Hulls 568

z

u
uk-1 uk

E1

E2

E3

E4

FIGURE 19.6: Triangulating a cone strip between two consecutive events uk−1 and uk.
The active edge list consists of edges E1 and E2 before the event, and of the edges E3 and
E4 afterwards.

list are kept sorted according to their depth index along the sweeping ray, and
successive pairs of edges bound pieces of the cone strip, or cells, in their interior.
For example, in Figure 19.6, the interior of the strip is bounded between edge pairs
(E1, E2), then (E3, E4). These cells are monotone, i.e., they intersect the sweeping
ray along at most a single interval. They are triangulated using a simple linear-time
algorithm for monotone polygons (O’Rourke 1998). In practice, a post-processing
stage (remeshing) is added to turn the elongated triangles found by this procedure
into more regular ones.

19.1.5 Results

The algorithm as presented implicitly assumes that there is always at least one
pair of frontier points per pair of images to initiate curve tracing. This is true
when the epipoles lie outside the object’s outline, which is the most common case.
On the other hand, there is no frontier point for a convex solid observed by two
cameras with a baseline passing through its interior, so the two epipoles are inside
the corresponding (convex) contours. In practice, this case is easily dealt with by
creating a “fake” extremal point at some random u value.

It should also be noted that, because of the measurement errors unavoidable in
real data, the epipolar match in Ii (resp. Ij) of an epipolar tangent to γj (resp. γi)
can never be exactly tangent to the image contour: locally, it either intersects this
curve twice, or not at all, turning frontier points into ordinary extremal points of
the intersection curves (Figure 19.7, left), with the effect that the strip may become
disconnected at these points (Figure 19.7, right). If the epipolar tangent to γj is a
minimal or maximal one—that is, it does not intersect γi at any other point—the
corresponding extremal point may be missed altogether. These degenerate extremal
frontier points are handled using the same “fake extremal point” trick as before.

Figure 19.8 illustrates the different steps of the construction of the visual
hull from nine photos of a gourd-shaped object. Its top part shows the epipolar
tangencies found in two views of the gourd taken from (essentially) opposite sides,



Section 19.1 Visual Hulls 569

u

v
u

v

z

u

FIGURE 19.7: Left: A degenerate frontier point. We assume as before that the images
have been rectified so that two matching epipolar lines are represented by the same hori-
zontal line. In the top part of the diagram, the epipolar tangent associated with γj (locally)
intersects γi in two separate points, and the epipolar tangent to γi completely misses γj
(locally). The situation is reversed in the bottom part of the diagram. In both cases,
the frontier point that would normally be detected by intersecting γi with the epipolar
tangent at γj is turned into an ordinary extremal point. Right: This phenomenon results
in disconnected strips.

and the corresponding curve φij reconstructed after tracing ψij . The central part of
the diagram shows how the intersection curves associated with two views of a gourd
are clipped against a third in its image plane, as well as the skeleton computed for
that object. Finally, the bottom of the figure shows the nine strips recovered in
the end. Note that the strips are not connected. This is due to the problem of
“noisy” frontier points mentioned earlier. However, because the successive steps of
the algorithm are geometrically consistent, so are the strips, and the surface of the
visual hull is watertight.

Figure 19.1 shows the visual hull of a dinosaur figurine constructed from 12
images each of resolution 2, 000 × 1, 500. Figure 19.9 shows two more examples,
with the visual hulls of a human skull and a Roman warrior action figure, computed
from 4, 8, and 12 pictures with resolutions 1, 900× 1, 800, and 3, 500× 2, 300 pixels
respectively. Note that the visual quality, although far from perfect, is already de-
cent for eight views of these complex objects. Concavities, such as the eye cavities
of the skull, are of course not recovered, but the overall shape is captured, in suf-
ficient detail for many applications. This is further demonstrated by Figure 19.10,
which shows texture-mapped visual hulls rendered by reprojecting the input images
on the corresponding surface meshes. As could have been expected, the reprojected
texture/color patterns hide much of the geometric imperfections of the underlying
models, making them quite realistic.



Section 19.1 Visual Hulls 570

FIGURE 19.8: Computing the visual hull of a gourd from nine views. Top: From left to
right, two images of the gourd, with tangential epipolar lines overlaid (the actual tangential
epipolar lines are solid, and the epipolar lines matching frontier points in the other image
are dashed), and the corresponding intersection curve traced in the (u, v) plane, with
opening and closing points depicted by � and � symbols. Center: From left to right,
the intersection curves associated with two views, reprojected into a third one; these
curves after clipping; and the complete skeleton computed from nine views. Bottom:
The visual hull of the gourd and its nine strips. Reprinted from “Projective Visual Hulls,”
by S. Lazebnik, Y. Furukawa, and J. Ponce, International Journal of Computer Vision,
74(2):137–165, (2007). c© 2007 Springer.



Section 19.1 Visual Hulls 571

FIGURE 19.9: Visual hull models. From left to right, the two rows show one input
image, and the visual hulls computed from 4, 8, and 12 images respectively. Reprinted
from “Projective Visual Hulls,” by S. Lazebnik, Y. Furukawa, and J. Ponce, International
Journal of Computer Vision, 74(2):137–165, (2007). c© 2007 Springer.

FIGURE 19.10: Texture-mapped visual hull examples. The three models have been con-
structed from 12 images. Reprinted from “Projective Visual Hulls,” by S. Lazebnik, Y. Fu-
rukawa, and J. Ponce, International Journal of Computer Vision, 74(2):137–165, (2007).
c© 2007 Springer.



Section 19.1 Visual Hulls 572

FIGURE 19.11: The carved visual hull approach to image-based modeling and rendering,
illustrated using the dinosaur data from Figure 19.1 (bottom right). From left to right:
the visual hull and the identified occluding contour segments (these may be difficult to
see in this black and white rendering); the carved visual hull after graph cuts; and the
final model after iterative refinement. Note that the undulations of the fin are recovered
correctly, even though the variations in surface height there are well below 1mm for this ob-
ject, about 20cm wide. Reprinted from “Carved Visual Hulls for Image-Based Modeling,”
by Y. Furukawa and J. Ponce, International Journal of Computer Vision, 81(1):53–67,
(2009a). c© 2009 Springer.

19.1.6 Going Further: Carved Visual Hulls

The visual hull provides only an outer approximation of the observed solid, ignor-
ing internal contours, hiding concavities, and perhaps more important forsaking all
photometric information in favor of purely geometric constraints. We briefly discuss
in this section a simple method for using photometric consistency (or photoconsis-
tency for short in the rest of this chapter) constraints to refine this initial and rather
coarse model while making sure that the corresponding geometric consistency (or
geoconsistency for short) constraints are still respected.

The details of this technique are beyond the scope of this book. Let us just
sketch its main ideas: First, only the points where the boundary of the visual hull
of a solid touches its surface belong to the occluding contours associated with the
images used to construct it (Figure 19.1, top). All others lie outside the solid. In
particular, this means that the occluding contour points give rise to true stereo
correspondences in the images in which they are visible, with consistent brightness
and/or color patterns there. In other words, they are the only photoconsistent
points in the cone strips. The occluding contour branches located within each
strip can thus be found as polygonal paths with maximal photoconsistency using
dynamic programming. With these fixed, the visual hull can now be carved to
recover the surface main features, including its concavities. This can be achieved
by deforming its surface inwards, creating a finite sequence of deeper and deeper
layers, easily structured as a (three-dimensional) graph structure. By linking the
top layer to a source node and the bottom one to a sink, it is then possible to find
the surface with maximal photoconsistency separating these two nodes using graph
cuts. This procedure yields the global optimum of the corresponding photocon-
sistency function, but recovers only a rough approximation of the observed shape
because the layers considered are discrete. Fine surface details are finally revealed
by (locally) optimizing a smooth energy function that incorporates both geo- and
photoconsistency constraints. The overall process is illustrated in Figure 19.11.



Section 19.2 Patch-Based Multi-View Stereopsis 573

FIGURE 19.12: Shaded and texture-mapped renderings of carved visual hulls, including
some close-ups. Reprinted from “Carved Visual Hulls for Image-Based Modeling,” by Y.
Furukawa and J. Ponce, International Journal of Computer Vision, 81(1):53–67, (2009a).
c© 2009 Springer.

Figure 19.12 shows some more 3D models obtained using this method. Note
that some of the surface details are not recovered accurately. In some cases, this
is simply due to the fact that the surface is not visible from any cameras; see
for example the bottom part of the skull stand. In other cases, missing details
correspond to failure modes of the algorithm: for example, the eye sockets of the
skull are simply too deep to be carved away by graph cuts or local refinement. The
person is a particularly challenging example, because of the extremely complicated
folds of the cloth, and its high-frequency stripe patterns. Nonetheless, the algorithm
performs rather well in general, correctly recovering minute details such as the fin
undulations for the toy dinosaur, with corresponding height variations well below
1mm, or the bone junctions for the skull.

19.2 PATCH-BASED MULTI-VIEW STEREOPSIS

The approach to image-based modeling and rendering presented in the previous
section is effective, but best suited for controlled situations where image silhou-
ettes can be delineated accurately, through background subtraction for instance.
For more general settings—for example, when using hand-held cameras in outdoor
environments—it is tempting to revisit the stereopsis techniques presented in Chap-
ter 7 in a context where thousands of images taken from very different viewpoints
may be available. Two key ingredients of several of the techniques presented in that
chapter are how they compare image brightness or color patterns in the neighbor-
hood of potential matches, and how they enforce spatial consistency among pairs
of these correspondences. As shown in Chapter 7, these are easily generalized to
multiple images for narrow-baseline scenarios, where the cameras are close to each
other, and can be assumed to share the same neighborhood structure—that is, if



Section 19.2 Patch-Based Multi-View Stereopsis 574

FIGURE 19.13: The PMVS approach to image-based modeling and rendering, illustrated
using 48 1, 800 × 1, 200 images of a Roman soldier action figure. From left to right: A
sample input image; detected features; reconstructed patches after the initial matching;
and final patches after expansion and filtering. Reprinted from “Accurate, Dense, and
Robust Multi-View Stereopsis,” by Y. Furukawa and J. Ponce, IEEE Transactions on
Pattern Analysis and Machine Intelligence, 32(8):1362–1376, (2010). c© 2010 IEEE.

pixels are adjacent in some reference picture, so are their matches in the others.
In the context of image-based modeling and rendering, the observed scene can in
this case be reconstructed as a depth map, where the grid structure (or some tri-
angulation) of the reference image provides a mesh whose vertices have coordinates
in the form (x, y, z(x, y)), then can be rendered with classical computer graphics
technology.

In the wide-baseline case, cameras may be positioned anywhere—all around
an object, for example, or perhaps scattered over a large area. This case is much
more challenging. Each image encodes part of the scene connectivity, but hides
some of it as well, due in part to occlusion phenomena. Although various heuristics
for stitching partial reconstructions obtained from a few views into a single mesh
structure are available (see Chapter 14 for the case of range data), optimizing both
the correspondences and the global mesh structure of the reconstructed points today
remains, as far as we know, an open problem. This section thus abandons a full mesh
model of the reconstructed scene in favor of small patches tangent to the surface,
using the image topology as a proxy for their connectivity. This information is not
used for rendering purposes, but instead to enforce spatial consistency and handle
the visibility constraints (is some patch visible in the input images given other patch
hypotheses?) that are crucial in wide-baseline stereopsis.

This technique, dubbed PMVS for Patch-Based Multi-View Stereo (Furukawa
and Ponce 2010), has proven quite effective in practice. After an initial feature-
matching step aimed at constructing a sparse set of photoconsistent patches, in
the sense of the previous section—that is, patches whose projections in the images
where they are visible have similar brightness or color patterns—it divides the input
images into small square cells a few pixels across, and attempts to reconstruct a
patch in each one of them, using the cell connectivity to propose new patches,
and visibility constraints to filter out incorrect ones (Algorithm 19.4). The overall



Section 19.2 Patch-Based Multi-View Stereopsis 575

process is illustrated in Figure 19.13.

In practice, the expansion and filtering steps are iterated K = 3 times.

1. Matching (Section 19.2.2): Use feature matching to construct an initial
set of patches, and optimize their parameters to make them maximally pho-
toconsistent.

2. Repeat K times:

(a) Expansion (Section 19.2.3): Iteratively construct new patches in
empty spots near existing ones, using image connectivity and depth
extrapolation to propose candidates, and optimizing their parameters
as before to make them maximally photoconsistent.

(b) Filtering (Section 19.2.4): Use again the image connectivity to re-
move patches identified as outliers because their depth is not consistent
with a sufficient number of other nearby patches.

Algorithm 19.4: The PMVS Algorithm.

19.2.1 Main Elements of the PMVS Model

As in the previous section, we assume throughout that n cameras with known intrin-
sic and extrinsic parameters observe a static scene, and respectively denote by Oi

and Ii (i = 1, . . . , n) the optical centers of these cameras and the images they have
recorded of the scene. The main elements of the PMVS model of multi-view stereo
fusion and scene reconstruction are small rectangular patches, intended to be tan-
gent to the observed surfaces, and a few of these patches’ key properties—namely,
their geometry, which images they are visible in and whether they are photocon-
sistent with those, and some notion of connectivity inherited from image topology.
Before detailing in Sections 19.2.2 to 19.2.4 the different stages of Algorithm 19.4,
let us give concrete definitions for these properties.

Patch Geometry. We associate with every rectangular patch p some reference
image R(p). We will see in the following sections how to determine this picture but,
intuitively, p should obviously be visible in R(p), and preferably nearly parallel to
its retinal plane. As illustrated by Figure 19.14 (left), p is defined geometrically by
its center c(p); its unit normal n(p), oriented towards the cameras observing it; its
orientation about n(p), chosen so one of the rectangle’s edges is aligned with the
rows of R(P ); and its extent, chosen so its projection into R(p) fits within a square
of size μ × μ pixels. As in the case of the correlation windows used in narrow-
baseline stereopsis, this size is chosen to capture a sufficiently rich description of
the local image pattern, yet remain small enough to be robust to occlusion. Taking
μ = 5 gives good results in practice.



Section 19.2 Patch-Based Multi-View Stereopsis 576

�

����

����

�

� ��

����� � �������
����� ��� �
������	
���
���	���

FIGURE 19.14: A patch p (left) and its projection into two images I and I ′ (right). The
photoconsistency of p, I , and I ′ is measured by the normalized correlation between the sets
q(p, I) and q(p, I ′) of interpolated pixel colors at the projections of the patch’s grid points.
Reprinted from “Accurate, Dense, and Robust Multi-View Stereopsis,” by Y. Furukawa and
J. Ponce, IEEE Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–
1376, (2010). c© 2010 IEEE.

Visibility. We say that a patch p is potentially visible in an image Ii when it lies
in the field of view of the corresponding camera and faces it—that is, the angle
between n(p) and the projection ray joining c(p) to Oi is below some threshold
α < π/2. Let us denote by V(p) the set of images where p is potentially visible. We
also say that the patch p is definitely visible in an image Ii of V(p) when its center
c(p) is the closest to Oi among all patches potentially visible in Ii.

Photoconsistency. In narrow-baseline stereo settings, photoconsistency is typ-
ically measured by the normalized correlation between fixed-sized image patches
whose brightness or color patterns are naturally sampled on the corresponding im-
age grids. As shown in Chapter 7, this might become problematic in the presence
of foreshortening, which can be quite severe in wide-baselines scenarios. In this
context, it is more natural to overlay a ν × ν grid on the rectangle associated with
a patch p, and measure its photoconsistency with two images I and I ′ as the nor-
malized cross-correlation h(p, I, I ′) between (bilinearly) interpolated pixel values
at the projections of the grid points in the two images (Figure 19.14, right). It is
also natural to take μ = ν because this ensures that cells on the patch grid roughly
correspond to pixels in the reference image. The photoconsistency of a patch p with
some image I in V(p) can now be defined as

g(p, I) =
1

|V(p) \ I|
∑

I′∈V(p)\I
h(p, I, I ′),

and we say that p is photoconsistent with I when g(p, I) is above some threshold
β. Note that the overall photoconsistency of a patch p can be measured as f(p) =
g(p,R(p)). This measure can be used to select potential matches between image
features. More interestingly, it can also be used to refine the parameters of a patch
p to make it maximally photoconsistent along the corresponding projection ray of
R(p): in practice, the simplex method (Nelder and Mead 1965) is used to (locally)
maximize f(p) with respect to the two orientation parameters of n(p) and the depth



Section 19.2 Patch-Based Multi-View Stereopsis 577

A1 B1 C1 D1

A2

B2

C2

a

b
c
d

e

f

g

I1

I2

FIGURE 19.15: A toy 2D example with seven patches a to g and two orthographic input
images I1 and I2. I1 is divided into four cells, A1 to D1, and serves as the reference image
for the patches a, b, c, g. I2 is divided into three cells A2, B2, C2 and serves as reference
image for d, e, f . Here we have, for example, C1(b) = B1 and C2(e) = B2. Also note that,
although the projections of the patches d and e into I1 fall inside the cell C1, these two
patches don’t belong to P(C1) = {c, f} because the angles between their normals and
the direction of projection into I1 is larger than α = π/3 (e actually faces away from I1).
Indeed, V(d) = V(e) = {I2}. On the other hand, we have, for example, V(f) = {I1, I2}.
Although the patches c and f are potentially visible in I1, only c can be said to be definitely
visible in this image. Likewise, d is definitely visible in I2, but c can only be ascertained
to be potentially visible in that image.

of c(p) along the ray, but any other nonlinear optimization technique could be used
instead.

Connectivity. As noted earlier, the image topology can be used as a proxy for
the connectivity of reconstructed surface patches. Concretely, one can overlay on
each picture a regular grid of small square cells a few pixels across (potentially up
to one cell per pixel, although 2 × 2 cells are used in all experiments presented in
this chapter), and associate with any patch p and image Ii in V(p) the cell Ci(p)
where it projects, and with any cell Ai of some image Ii the list P(Ai) of patches
p such that Ii belongs to V(p) and Ci(p) = Ai (Figure 19.15). This allows us to
define the potential neighbors of a patch p as the patches p′ that belong to P(A′

i)
for some image Ii and some cell A′

i adjacent to Ci(p). A potential neighbor p′ of
p is a definite neighbor of this patch when p and p′ are consistent with a smooth
surface—that is, on average, the center of each patch lies close enough to the plane
of the other one, or

1

2
(|[c(p′)− c(p)] · n(p)|+ |[c(p)− c(p′)] · n(p′)|) < γ

for some threshold γ.



Section 19.2 Patch-Based Multi-View Stereopsis 578

I1 I3

f F={ , , , }Epipolar line

I2

Detected features

(Harris/DoG)
/ / Features satisfying epipolar

consistency (Harris/DoG)

FIGURE 19.16: Feature-matching example showing the features f ′ in F satisfying the
epipolar constraint in images I2 and I3 as they are matched to feature f in image I1.
(This is an illustration only, not showing actual detected features.) Reprinted from “Ac-
curate, Dense, and Robust Multi-View Stereopsis,” by Y. Furukawa and J. Ponce, IEEE
Transactions on Pattern Analysis and Machine Intelligence, 32(8):1362–1376, (2010). c©
2010 IEEE.

The heuristic nature of the definitions given in this section is obvious, and
somewhat unsatisfactory, because they require hand-picking appropriate values for
the parameters α, β, and γ. In practice, however, default values give satisfactory
results for the vast majority of situations. In particular, Furukawa and Ponce (2010)
always use a value of π/3 for α, and use values of β = 0.4 before patch refinement
and β = 0.7 afterwards in the initial feature-matching stage of Algorithm 19.4, loos-
ening (decreasing) these thresholds by a factor of 0.8 after each expansion/filtering
iteration to gather more patches in challenging areas. Likewise, when deciding
whether two patches p and p′ are neighbors, γ is automatically set to the lateral
distance between the preimages of the corresponding cell centers at the depth of
the mid-point between c(p) and c(p′).

19.2.2 Initial Feature Matching

In the first stage of Algorithm 19.4, Harris and DoG interest points are matched to
construct an initial set of patches (Figure 19.16). The parameters of these patches
are then optimized to make them maximally photoconsistent. Consider some in-
put image Ii, and denote as before by Oi the optical center of the corresponding
camera. For each feature f detected in Ii, we collect in the other images the set
F of features f ′ of the same type (Harris or DoG) that lie within two pixels from
the corresponding epipolar lines. Each pair (f, f ′) defines a 3D point and an initial
patch hypothesis p centered at that point c(p) with a normal n(p) aligned with
the corresponding projection ray. These hypotheses are examined one by one in
increasing depth order from Oi until either one of them leads to the creation of a
photoconsistent patch or their list is exhausted. This simple heuristic gives good



Section 19.2 Patch-Based Multi-View Stereopsis 579

results in practice for a modest computational cost. Given some initial patch hy-
pothesis p with center c(p) and normal n(p), let us now define R(p) = Ii. The
extent and orientation of p are easily computed from these parameters, and V(p)
is then determined using the threshold β. The optimization procedure described
in the previous section can then be used to refine p’s parameters and update V(p).
When p is found to be visible in at least δ photographs (in practice, taking δ = 3
yields good results), the patch generation procedure is deemed a success, and p is
stored in the corresponding cells of the images in V(p). The overall procedure is
given in Algorithm 19.5.

This outputs an initial list P of patch candidates.
P ← ∅.
For each image Ii with optical center Oi and for each feature f detected in Ii do

1. F ← {Features satisfying the epipolar constraint}.
2. Sort F in increasing depth order from Oi.

3. For each feature f ′ in F do

(a) Initialize a patch p by computing c(p), n(p), and R(p).

(b) Initialize V(p) with β = 0.4.

(c) Refine c(p) and n(p).

(d) Update V(p) with β = 0.7.

(e) If |V(p)| ≥ δ, then

i. Add p to P(Ci(p)).
ii. Add p to P .

Algorithm 19.5: The Feature-Matching Algorithm of PMVS.

19.2.3 Expansion

Patch expansion is an iterative procedure that repeatedly tries to generate new
patches in “empty” cells E(p) adjacent to the projections of existing patches p in
the input images. The new patches are initialized by extrapolating the depth of
the old ones, and their parameters are then optimized as before to make them
maximally photoconsistent. Let us first define D(p) as the set of cells adjacent to
Ci(p) for all images Ii in V(p) (Figure 19.17). These are candidates for expansion,
but some of them must be pruned because they are already consistent with p—that
is, they contain one of its definite neighbors—or with Ii—that is, they contain a
patch p′ photoconsistent with this image. The latter case typically corresponds to
occlusion boundaries, where the observed surface folds away from camera j between
the patches p and p′. The set E(p) of empty cells adjacent to p thus consists of the
elements of D(p) that are neither consistent with p nor with Ii (Figure 19.17).

For each image cell Ai in E(p), a depth extrapolation procedure is performed
to generate a new patch p′, initializing c(p′) as the point where the viewing ray



Section 19.2 Patch-Based Multi-View Stereopsis 580

A1 B1 C1 D1

A2

B2

C2

a

b
c
d

e

f

g

I1

I2

b’

FIGURE 19.17: Candidate cells for expansion. In this example, D(c) = {B1, D1, B2} and
D(b) = {A1, C1}. Assume that all patches except a have been constructed, that they are
consistent with the two images, and that b and c are neighbors. In this case, E(c) is empty
because b is a neighbor of c, thus B1 must be eliminated, and g and e are respectively
consistent with I1 and I2, thus D1 and B2 must be eliminated as well. On the other hand,
E(b) = {A1} because A1 is (so far) empty. During the expansion procedure, the patch b′

is generated in the unique cell A1 of E(b), and it is then refined into the patch a.

passing through the center of Ai intersects the plane containing p. The parameters
n(p′),R(p′), and V(p′) are then initialized with the corresponding values for p, and
V(p′) is pruned using the threshold β to eliminate extraneous pictures. After this
step, c(p′) and n(p′) are refined as before (Figure 19.17). After the optimization, we
add to V(p′) additional images where p is deemed definitely visible. A visibility test
with a tighter threshold (β = 0.7) is then applied as before to filter out extraneous
images. Finally, p′ is accepted as a new patch when V(p′) contains at least δ images,
and P(Ck(p′)) is updated for all images Ik in V(p′). The procedure is detailed in
Algorithm 19.6.

19.2.4 Filtering

This stage of the algorithm again exploits image connectivity information to remove
patches identified as outliers because their depth is not consistent with a sufficient
number of other nearby patches. Three filters are used for this task. The first one
is based on visibility consistency constraints: two patches p and p′ are said to be
inconsistent when they are not definite neighbors in the sense of Section 19.2.1,
yet are stored in the same cell for one of the images (Figure 19.18). For each
reconstructed patch p, if U denotes the set of patches inconsistent with p, p is
discarded as an outlier when

|V(p)|g(p) <
∑
p′∈U

g(p′).



Section 19.2 Patch-Based Multi-View Stereopsis 581

It takes as input the candidate patches P from Algorithm 19.5 and outputs an
expanded set of patches P ′.
P ′ ← P .
While P �= ∅ do

1. Pick and remove a patch p from P .

2. For each cell Ai in E(p) do

(a) Create a new patch candidate p′, with c(p′) defined as the intersection
of the plane containing p and the ray joining Oi to the center of Ai.

(b) n(p′) ← n(p), R(p′) ← R(p), V(p′) ← V(p).
(c) Update V(p′) with β = 0.4.

(d) Refine c(p′) and n(p′).

(e) Add images where p′ is definitely visible to V(p′).
(f) Update V(p′) with β = 0.7.

(g) If |V(p′)| ≥ δ then

i. Add p′ to P and P ′.

ii. Add p′ to P(Ck(p′)) for all Ik in V(p).

Algorithm 19.6: The Patch-Expansion Algorithm of PMVS.

Intuitively, when p is an outlier, both g(p) and |V(p)| are expected to be small, and
p is likely to be removed.

The second filter also enforces visibility constraints by simply rejecting all
patches that are not definitely visible, in the sense of Section 19.2.1, in at least δ
images. Finally, the third filter enforces a weak form of smoothness: For each patch
p, we collect the patches lying in its own and adjacent cells in all images of V(p).
If the proportion of patches that are neighbors of p in this set is lower than 25%, p
is removed as an outlier.

19.2.5 Results

Figure 19.19 shows some results using four datasets, with 48 input images for the
Roman soldier figurine, 16 for the dinosaur, 24 for the skull, and 4 for the face.
Like the number of these photographs, their resolution varies with the dataset,
from 1, 800× 1, 200 pixels for the Roman soldier to 640× 480 for the dinosaur. The
top part of the figure shows one image per dataset, and its central part shows two
views of each reconstructed model. Although the models might look like texture-
mapped meshes, they are just—rather dense, to be sure—sets of floating patches,
each rectangle being painted with the mean of the interpolated pixel values used
to reconstruct it. Finally, the bottom part of the figure shows shaded views of
meshes fitted to the patch models using the method presented in Furukawa and
Ponce (2010). This procedure takes as input an outer approximation of the model,
such as a visual hull of the observed scene if silhouette information is available, or



Section 19.2 Patch-Based Multi-View Stereopsis 582

A1 B1 C1 D1

A2

B2

C2

a

b
c
d

e

f

g

I1

I2

p

q

FIGURE 19.18: Filtering outliers. The patch p is rejected as an outlier by the first filter,
granted that the photoconsistency scores of e and g are high enough because these two
patches project into the same cells (respectively B2 and D1) and are inconsistent with
p—that is, U = {e, g}. The patch q is eliminated by the second filter because it is not
definitely visible in any image.

the convex hull of the reconstructed patches otherwise, and iteratively deforms the
corresponding mesh to fit it to these patches under both smoothness and photo-
consistency constraints. The reader is refered to Furukawa and Ponce (2010) for
the details of this algorithm, which are beyond the scope of this book.



Section 19.2 Patch-Based Multi-View Stereopsis 583

FIGURE 19.19: From top to bottom: Sample input images, reconstructed patches, and
final mesh models. Reprinted from “Accurate, Dense, and Robust Multi-View Stereopsis,”
by Y. Furukawa and J. Ponce, IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(8):1362–1376, (2010). c© 2010 IEEE.



Section 19.3 The Light Field 584

Synthetic Images

Mosaics
Cylindrical

Mosaics
Panoramic
Cameras

FIGURE 19.20: Constructing synthetic views of a scene from a fixed viewpoint.

19.3 THE LIGHT FIELD

This section discusses a totally different approach to image-based modeling and
rendering, that entirely forsakes the construction of a three-dimensional object
model, yet is capable of synthesizing realistic new views of scenes with arbitrarily
complex geometries. To show that this is possible, let us consider, for example, a
panoramic camera that optically records the radiance along rays passing through
a single point and covering a full hemisphere (Peri and Nayar 1997). It is possible
to create any image observed by a virtual camera whose pinhole is located at this
point by mapping the original image rays onto virtual ones. This allows a user
to arbitrarily pan and tilt the virtual camera and interactively explore his or her
visual environment. Similar effects can be obtained by stitching together close-by
images taken by a hand-held camcorder into a mosaic (see Shum and Szeliski [1998]
and Figure 19.20, middle), or by combining the pictures taken by a camera panning
(and possibly tilting) about its optical center into a cylindrical mosaic (see Chen
[1995] and Figure 19.20, right).

These techniques have the drawback of limiting the viewer motions to pure
rotations about the optical center of the camera. A more powerful approach can
be devised by considering the plenoptic function (Adelson and Bergen 1991) that
associates with each point in space the (wavelength-dependent) radiant energy along
a ray passing through this point at a given time (Figure 19.21, left). The light field
(Levoy and Hanrahan 1996) is a snapshot of the plenoptic function for light traveling
in a vacuum in the absence of obstacles. This relaxes the dependence of the radiance
on time and on the position of the point of interest along the corresponding ray
(since radiance is constant along straight lines in a nonabsorbing medium) and



Section 19.3 The Light Field 585

P

v

view
u

v

s

t

L (u,v,s,t)

Field of

FIGURE 19.21: The plenoptic function and the light field. Left: The plenoptic function
can be parameterized by the position P of the observer and the viewing direction v.
Right: The light field can be parameterized by the four parameters u, v, s, t defining a
light slab. In practice, several light slabs are necessary to model a whole object and obtain
full spherical coverage.

yields a representation of the plenoptic function by the radiance along the four-
dimensional set of light rays. In the image-based rendering context, a convenient
parameterization of these rays is the light slab, where each ray is specified by the
coordinates of its intersections with two arbitrary planes (Figure 19.21, right).

The light slab is the basis for a two-stage approach to image-based render-
ing. During the learning stage, many views of a scene are used to create a dis-
crete version of the slab that can be thought of as a four-dimensional lookup ta-
ble. At synthesis time, a virtual camera is defined, and the corresponding view
is interpolated from the lookup table. The quality of the synthesized images de-
pends on the number of reference images. The closer the virtual view is to the
reference images, the better the quality of the synthesized image. Note that con-
structing the light slab model of the light field does not require establishing cor-
respondences between images. It should be noted that, unlike most methods for
image-based rendering that rely on texture mapping and thus assume (implicitly)
that the observed surfaces are Lambertian, light-field techniques can be used to
render (under a fixed illumination) pictures of objects with arbitrary reflectance
functions.

In practice, a sample of the light field is acquired by taking a large number
of images and mapping pixel coordinates onto slab coordinates. Figure 19.22 illus-
trates the general case: the mapping between any pixel in the (x, y) image plane and
the corresponding areas of the (u, v) and (s, t) plane defining a light slab is a planar
projective transformation. Hardware- or software-based texture mapping can thus
be used to populate the light field on a four-dimensional rectangular grid. In the
experiments described in Levoy and Hanrahan (1996), light slabs are acquired in
the simple setting of a camera mounted on a planar gantry and equipped with a
pan-tilt head so it can rotate about its optical center and always point toward the
center of the object of interest. In this context, all calculations can be simplified
by taking the (u, v) plane to be the plane in which the camera’s optical center is



Section 19.3 The Light Field 586

O

x

y

tv

su

FIGURE 19.22: The acquisition of a light slab from images and the synthesis of new images
from a light slab can be modeled via projective transformations between the (x, y) image
plane and the (u, v) and (s, t) planes defining the slab.

constrained to remain.
At rendering time, the projective mapping between the (virtual) image plane

and the two planes defining the light slab can once again be used to efficiently
synthesize new images. Figure 19.23 shows sample pictures generated using the
light-field approach. The top three image pairs were generated using synthetic
pictures of various objects to populate the light field. The last pair of images was
constructed by using the planar gantry mentioned earlier to acquire 2,048 256×256
images of a toy lion, grouped into four slabs consisting of 32× 16 images each.

An important issue is the size of the light slab representation; for example,
the raw input images of the lion take 402MB of disk space. There is, of course,
much redundancy in these pictures, as in the case of successive frames in a motion
sequence. A simple but effective two-level approach to image (de)compression is
proposed in Levoy and Hanrahan (1996): the light slab is first decomposed into four-
dimensional tiles of color values. These tiles are encoded using vector quantization
(Gersho and Gray 1992), a lossy compression technique where the 48-dimensional
vectors representing the RGB values at the 16 corners of the original tiles are
replaced by a relatively small set of reproduction vectors, called codewords, that
best approximate in the mean-squared-error sense the input vectors. The light slab
is thus represented by a set of indexes in the codebook formed by all codewords. In
the case of the lion, the codebook is relatively small (0.8MB) and the size of the
set of indexes is 16.8MB. The second compression stage consists of applying the
gzip implementation of entropy coding (Ziv and Lempel 1977) to the codebook and
the indexes. The final size of the representation is only 3.4MB, corresponding to
a compression rate of 118:1. At rendering time, entropy decoding is performed as
the file is loaded in main memory. Dequantization is performed on demand during
display, and it allows interactive refresh rates.



Section 19.4 Notes 587

FIGURE 19.23: Images of three scenes synthesized with the light field approach. Reprinted
from “Light Field Rendering,” by M. Levoy and P. Hanrahan, Proc. SIGGRAPH,
(1996). c© 1996 ACM, Inc. http: // doi. acm. org/ 10. 1145/ 10. 1145/ 237170. 237199

Reprinted by permission.

19.4 NOTES

Visual hulls date back to Baumgart’s PhD thesis (1974), and their geometric proper-
ties have been studied in Laurentini (1995) and Petitjean (1998). Voxel- and octree-
based volumetric methods for computing the visual hull include Martin and Aggar-
wal (1983) and Srivastava and Ahuja (1990); see also Kutulakos and Seitz (1999)
for a related approach, called space carving, where empty voxels are iteratively
removed using photoconsistency constraints. Visual hull algorithms based on poly-
hedral models include Baumgart (1974), Connolly and Stenstrom (1989), Niem and
Buschmann (1994), Matusik, Buehler, Raskar, Gortler, and McMillan (2001), and,
more recently, Franco and Boyer (2009). The problem of computing the visual
hull of a solid bounded by a smooth surface is addressed in Lazebnik, Boyer, and
Ponce (2001) and Lazebnik, Furukawa, and Ponce (2007). The algorithm described
in Section 19.1 in the context of cameras with known intrinsic and extrinsic pa-
rameters actually also applies to weakly calibrated images. Not suprisingly, its
output is defined only up to a projective transformation. Combining photometric
information with the geometric constraints associated with visual hulls was first
proposed in Sullivan and Ponce (1998). Variants of the carved visual hulls pro-
posed in Furukawa and Ponce (2009a) and described in Section 19.1 include, for
example, Hernandez Esteban and Schmitt (2004) and Sinha and Pollefeys (2005).
The fact that a viewing cone is tangent to the surface observed by the correspond-
ing camera, used in Furukawa and Ponce (2009a) to carve a visual hull, is also the

http://doi.acm.org/10.1145/10.1145/237170.237199


Section 19.4 Notes 588

basis for various methods that reconstruct a surface from a continuous sequence of
outlines under known or unknown camera motions (Arbogast & Mohr 1991; Cipolla
& Blake 1992; Vaillant & Faugeras 1992; Cipolla, Åström & Giblin 1995; Boyer &
Berger 1996; Cheng, Fu & Zhang 1999; Joshi, Ahuja, & Ponce 1999).

Many different approaches to multi-view stereopsis have been developed over
the past 10 years or so, and several of them, including the PMVS algorithm de-
scribed in Section 19.2 and Furukawa and Ponce (2010), achieve a relative accuracy
better than 1/200 (1mm for a 20cm wide object) on the low-resolution (640× 480)
images from the benchmark of Seitz, Curless, Scharstein and Szeliski (2006). Vol-
umetric, voxel-based methods include Faugeras and Keriven (1998), Paris, Sillion,
and Quan (2004), Pons, Keriven, and Faugeras (2005), Vogiatzis, Torr, and Cipolla
(2005), Hornung and Kobelt (2006), Tran and Davis (2006), and Sinha, Mordo-
hai, and Pollefeys (2007). They often use level sets of graph cuts techniques to
obtain photoconsistent reconstructions, but must be provided with a bounding box
containing the scene to construct the corresponding voxels. Other approaches to
multi-view stereo iteratively deform polygonal surface meshes to minimize some
energy function (Hernandez Esteban, & Schmitt 2004; Zaharescu, Boyer, & Ho-
raud 2007; Hiep, Keriven, Labatut, & Pons 2009). This typically requires a good
initialization, for example in the form of a visual hull. Several other algorithms
reconstruct the scene by merging multiple depth maps (Goesele, Curless, & Seitz
2006; Strecha, Fransens, & van Gool 2006; Bradley, Boubekeur, & Heidrich 2008a).
Finally, like the method presented in Section 19.2 and Furukawa and Ponce (2010),
other approaches model objects by small surface patches (Lhuillier & Quan 2005;
Habbecke & Kobbelt 2006), but require a separate algorithm (Kazhdan et al. 2006)
to construct a mesh if one is desired.

Some of this technology is now widely available. For example, the PMVS
software developed by Y. Furukawa is available at http://grail.cs.washington.
edu/software/pmvs/. Multi-view stereo systems require the camera parameters as
input, but fortunately structure-from-motion (SFM) software suites are now also
available. For example, Bundler is an SFM/bundle adjustment package developed
by N. Snavely as part of the Photo-Tourism project (Snavely et al. 2008), and
it is available at http://phototour.cs.washington.edu/bundler/. PMVS and
Bundler are also both integrated in CMVS (Furukawa et al. 2010), which is avail-
able at http://grail.cs.washington.edu/software/cmvs/. An alternative to
the mesh-fitting procedure outlined at the end of Section 19.2 is Poisson surface re-
construction (Kazhdan et al. 2006), a method that is applicable to any collection of
small oriented patches, and gives very good results in practice. Its implementation
is also publicly available at http://www.cs.jhu.edu/~misha/.

A number of techniques have been developed for interactively exploring a
user’s visual environment from a fixed viewpoint, as we mentioned in Section 19.3.
These include QuickTime VR, developed at Apple by S. Chen (1995), and algo-
rithms that reconstruct pinhole perspective images from panoramic pictures ac-
quired by special-purpose cameras (Peri and Nayar 1997). Similar effects can be
obtained in a less controlled setting by stitching together close-by images taken
with a handheld camcorder into a mosaic (Irani et al. 1996; Shum & Szeliski 1998;
Brown & Lowe 2007). For images of distant terrains or cameras rotating about
their optical center, the mosaic can be constructed by registering successive pic-

http://grail.cs.washington.edu/software/pmvs/
http://grail.cs.washington.edu/software/pmvs/
http://phototour.cs.washington.edu/bundler/
http://grail.cs.washington.edu/software/cmvs/
http://www.cs.jhu.edu/~misha/


Section 19.4 Notes 589

tures via planar homographies. In this context, estimating the optical flow (i.e., the
vector field of apparent image velocities at every image point, a notion that has,
admittedly, largely been ignored in this book), may also prove important for fine
registration and deghosting (Shum & Szeliski 1998). Variants of the light field ap-
proach discussed in Section 19.3 include McMillan and Bishop (1995) and Gortler
et al. (1996).

Let us conclude by noting that in this chapter we have focused on the acqui-
sition and rendering of static models of rigid objects observed in photographs. The
dynamic case where nonrigid surfaces deform over time in video sequences is beyond
the scope of this book, but of course at least as important, for example, in the movie
industry. As of this printing, Avatar comes to mind in this context. The details of
the technology used in this film are not publicly available, but it is likely that the
level of realism achieved required some manual intervention by a team of animators.
See, for example, Carceroni and Kutulakos (2002), Zhang, Snavely, Curless, and
Seitz (2004), Vedula, Baker, and Kanade (2005), Hernandez Esteban, Vogiatzis,
Brostow, Stenger, and Cipolla (2007), Pons, Keriven, and Faugeras (2007), White,
Crane, and Forsyth (2007), and Furukawa and Ponce (2008, 2009b) for efforts to
automate this markerless motion capture process in the academic community.

PROBLEMS

19.1. Using the rectified image setting of Section 19.1, show that the extremal points
of the curve ψij defined in that section correspond to epipolar tangents of γi.

19.2. Show the same result without assuming that the images have been rectified.

PROGRAMMING EXERCISES

19.3. Implement a voxel-based approach to visual hull construction.
19.4. Write a program for constructing a cylindrical mosaic from images taken from

the same viewpoint (or rather close-by ones), and rendering new views seen
from that vantage point.



C H A P T E R 20

Looking at People

Numerous applications of computer vision must deal with people. One reason is that
people are a common theme of pictures and videos. Another is that many applica-
tions need some information about what people are doing. Many security systems
require components that can tell whether people are in places they shouldn’t be, or
are doing things they shouldn’t be doing. These are not only policing or military
applications; for example, frail people might be able to live at home longer if they
had a security system that could call for help when they had an accident. A system
that could tell what people were doing could be useful in healthcare applications,
too; for example, stroke patients seem to recover better when they keep up with
daily activities, but this is difficult to do, and they benefit from being reminded to
do things. There are tremendous applications in entertainment. Several consumer
systems (e.g., Sony’s Eyetoy and Eyetoy II, and Microsoft’s Kinect) allow people to
control computer games by moving their bodies. A long-term goal of much research
in this area is building systems that can understand sign language, which requires
watching the body movements of a signer.

There are several core problems. We discussed detecting people in Sec-
tion 17.1.2. The other problems are best discussed in the context of models that
can manage temporal and spatial relations, which we introduce in Section 20.1. We
use these models to describe methods that determine how the body is laid out in
the image (Section 20.2). In turn, these methods can be used to build trackers that
can follow arms and legs (Section 20.3). Knowing the 2D layout of a body gives
a surprising amount of information about the 3D configuration, though there are
ambiguities (Section 20.4). Section 20.5 summarizes the very large field of activity
recognition, and Section 20.6 gives a guide to the experimental datasets and code
published as of time of writing.

20.1 HMM’S, DYNAMIC PROGRAMMING, AND TREE-STRUCTURED MODELS

We will need models that can represent time sequences with a fair amount of struc-
ture, and that are relatively easy to work with. Hidden Markov models (HMM’s;
Section 20.1.1) are a useful choice of probabilistic model, with straightforward pro-
cedures for inference (Section 20.1.2) and learning (Section 20.1.3). It turns out
that inference methods appropriate to hidden Markov models apply to a broader
class of model, which doesn’t have to be probabilistic and isn’t purely temporal.
This class of model, which we call a tree-structured model (Section 20.1.4), is the
mainstay of the parsing community.

20.1.1 Hidden Markov Models

A program that reads American Sign Language from a video sequence of someone
signing must infer a state, internal to the user, for each sign. The program will

590



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 591

infer state from measurements of hand position that are unlikely to be accurate,
but will depend—hopefully quite strongly—on the state. The signs change state in
a random (but quite orderly) fashion. In particular, some sequences of states occur
very seldom (e.g., a sequence of letter signs for the sequence “wkwk” is extremely
unlikely). This means that both the measurements and the relative probabilities of
different sequences of signs can be used to determine what actually happened.

The elements of this kind of problem are:

• there is a sequence of random variables (in our example, the signs), each of
which is conditionally independent of all others given its predecessor and

• each random variable generates a measurement (the measurements of hand
position) whose probability distribution depends on the state.

Similar elements are to be found in examples such as interpreting the movement of
dancers or of martial artists. An extremely useful formal model, known as a hidden
Markov model, corresponds to these elements.

A sequence of random variables Xn is said to be a Markov chain if

P (Xn = a|Xn−1 = b,Xn−2 = c, . . . ,X0 = x) = P (Xn = a|Xn−1 = b)

and a homogeneous Markov chain if this probability does not depend on n. Markov
chains can be thought of as sequences with very little memory; the new state de-
pends on the previous state, but not on the whole history. It turns out that this
property is surprisingly useful in modeling, both because many physical variables
appear to have it and because it enables a variety of simple inference algorithms.
There are very slightly different notations for Markov chains on discrete and con-
tinuous state spaces; we shall discuss only the discrete case.

Assume that we have a finite discrete state space. Write the elements of the
space as si and assume that there are k elements. Assume that we have a sequence
of random variables taking values in that state space that forms a homogeneous
Markov chain. Now we write

P (Xn = sj |Xn−1 = si) = pij ,

and because the chain is independent of n, so is pij . We can write a matrix P
with i, jth element pij which describes the behavior of the chain; this matrix is
called the state transition matrix. Assume that X0 has probability distribution
P (X0 = si) = πi, and we will write π as a vector with ith element πi. This means
that

P (X1 = sj) =

k∑
i=1

P (X1 = sj |X0 = si)P (X0 = si)

=

k∑
i=1

P (X1 = sj |X0 = si)πi

=

k∑
i=1

pijπi.



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 592

1 2

p1-p

q

1-q

FIGURE 20.1: A simple, two-state Markov chain. In this chain, the probability of going
from state one to state two is p; from state one to state one is 1 − p; etc. Its stationary
distribution is (q/(p+ q), p/(p+ q)). This makes sense; for example, if p is very small and
q is close to one, the chain will spend nearly all its time in state one. Notice that, if p and
q are both very small, the chain will stay in one state for a long time, and then flip to the
other state, where it will stay for a long time.

and so the probability distribution for the state of X1 is given by PTπ. By a similar
argument, the probability distribution for the state of Xn is given by (PT )nπ. For
all Markov chains, there is at least one distribution πs such that πs = PTπs;
this is known as the stationary distribution. Markov chains allow quite simple and
informative pictures. We can draw a weighted, directed graph with a node for each
state and the weight on each edge, indicating the probability of a state transition
(Figure 20.1).

If we observe the random variable Xn, then inference is easy—we know what
state the chain is in. This is a poor observation model, however. A much better
model is to say that, for each element of the sequence, we observe another random
variable, whose probability distribution depends on the state of the chain. That is,
we observe some Yn, where the probability distribution is some P (Yn|Xn = si) =
qi(Yn). We can arrange these elements into a matrixQ. Specifying a hidden Markov
model requires providing the state transition process, the relationship between state
and the probability distribution on Yn, and the initial distribution on states, i.e.,
the model is given by (P ,Q,π). We will assume that the state space has k elements.

We will assume that we are dealing with a hidden Markov model on a discrete
state space; this simplifies computation considerably, usually at no particular cost.
There are two important problems:

• Inference: We need to determine what underlying set of states gave rise to
our observations. This will make it possible to, for example, infer what the
dancer is doing or the signer is saying.

• Fitting: We need to choose a hidden Markov model that represents a se-
quence of past observations well.

Each has an efficient, standard solution.

20.1.2 Inference for an HMM

Assume that we have a series of N measurements Y i that we believe to be the
output of a hidden Markov model. We can set up these measurements in a structure



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 593

1 2

3

1

2

3

1

2

3

1

2

3

1

2

3

FIGURE 20.2: At the top, a simple state transition model. Each outgoing edge has
some probability, though the topology of the model forces two of these probabilities to
be 1. Below, the trellis corresponding to that model. Notice that each path through the
trellis corresponds to a legal sequence of states, for a sequence of four measurements. We
weight the arcs with the log of the transition probabilities, and the nodes with the log of
the emission probabilities; weights are not shown here, to reduce the complexity of the
drawing.

called a trellis. This is a weighted, directed graph consisting of N copies of the
state space, which we arrange in columns. There is a column corresponding to each
measurement. We weight the node representing the case that state Xj = sk in the
column corresponding to Y j with log qk(Y j).

We join up the elements from column to column as follows. Consider the
column corresponding the Y j ; we join the element in this column representing
state Xj = sk to the element in the column corresponding to Y j+1 representing

state �Xj+1 = sl if pkl is nonzero. This arc represents the fact that there is a possible
transition between these states. This arc is weighted with log pkl. Figure 20.2 shows
a trellis constructed from an HMM.

The trellis has the following interesting property: each (directed) path through
the trellis represents a legal sequence of states. Now because each node of the trellis
is weighted with the log of the emission probability and each arc is weighted with
the log of the transition probability, the joint probability of a sequence of states
with the measurements can be obtained by identifying the path corresponding to
this sequence, and summing the weights (of arcs and nodes) along the path. This
yields an extremely effective algorithm for finding the best path, known as either



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 594

dynamic programming or the Viterbi algorithm.
We start at the final column of the tellis. We know the log-likelihood of a

one-state path, ending at each node, as this is just the weight of that node. Now
consider a two-state path, which will start at the second last column of the trellis.
We can easily obtain the best path leaving each node in this column. Consider a
node: we know the weight of each arc leaving the node and the weight of the node
at the far end of the arc, so we can choose the path segment with the largest value
of the sum; this arc is the best we can do leaving that node. Now, for each node,
we add the weight at the node to the value of the best path segment leaving that
node (i.e., the arc weight plus the weight of the node at the far end). This sum is
the best value obtainable on reaching that node—which we’ll call the node value.

Now, because we know the best value obtainable on reaching each node in
the second-last column, we can figure out the best value obtainable on reaching
each node in the third-last column. At each node in the third-last column, we have
a choice of arcs, each reaching a node whose value we know. We choose the arc
with the largest value of (arc weight plus node value), then add this value to the
weight at the starting node in the third last column, and this yields the value of
the starting node. We can repeat this process, until we have a value for each of the
nodes in the first column; the largest value is the maximum likelihood.

We can also get the path with the maximum likelihood value. When we
compute the value of a node, we erase all but the best arc leaving that node. Once
we reach the first column, we simply follow the path from the node with the best
value. Figure 20.3 illustrates this extremely simple and very powerful algorithm.

We can write all this out more formally. For inference, we have a series of
observations {Y0, Y1, . . . , Yn}, and we would like to obtain the sequence of n + 1
states S = {S0, S1, . . . , Sn} that maximizes

P (S|{Y0, Y1, . . . , Yn}, (P ,Q,π)),

which is the same as maximizing the joint distribution

P (S, {Y0, Y1, . . . , Yn}|(P ,Q,π)).

There is a standard algorithm for this purpose, the Viterbi algorithm.
We seek an n+1 element path through the states (from S0 to Sn). There are k

n+1

such paths, because we could choose from each state for every element of the path
(assuming that there are no zeros in P ; in most cases, there are certainly O(kn+1)
paths). We can’t look at every path, but in fact we don’t have to. The approach is
as follows: assume that, for each possible state sl, we know the value of the joint
for the best n-step path that ends in Sn−1 = sl; then, the path that maximizes
the joint for an n+ 1 step path must consist of one of these paths, combined with
another step. All we have to do is find the missing step.

We can approach finding the path with the maximum value of the joint as an
induction problem. Assume that, for each value j of Sn−1, we know the value of
the joint for the best path that ends in Sn−1 = j, which we write as

δn−1(j) = max
S0,S1,...,Sn−2

P ({S0, S1, . . . , Sn−1 = j}, {Y0, Y1, . . . , Yn−1}|(P ,Q,π)).



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 595

This algorithm yields the path through an HMM that maximizes the joint, and the
value of the joint at this path. Here δ and ψ are convenient bookkeeping variables
(as in the text); p∗ is the maximum value of the joint; and q∗t is the tth state in
the optimal path.

1. Initialization:

δ1(j) = πjqj(Y1)1.0cm1 ≤ j ≤ N

ψ1(j) = 0

2. Recursion:

δn(j) =
(
max

i
δn−1(i)Pij

)
qj(Yn)

ψn(j) = argmax (δn−1(i)Pij)

3. Termination:

p∗ = max
i

(δN (i))

q∗N = argmax
i

(δN (i))

4. Path backtracking:
q∗t = ψt+1(q

∗
t+1)

Algorithm 20.1: The Viterbi Algorithm

We fit a model to a data sequence Y is achieved by a version of EM. We assume a
model (P ,Q,π)i, and then compute the coefficients of a new model; this iteration
is guaranteed to converge to a local maximum of P (Y |(P ,Q,π)).

Until (P ,Q,π)i+1 is the same as (P ,Q,π)i
compute the forward variables α and β
using the procedures of algorithms 20.3 and 20.4

compute ξt(i, j) =
αt(i)pijqj(Yt+1)βt+1(j)∑N

i=1

∑N

j=1
αt(i)pijqj(Yt+1)βt+1(j)

compute the updated parameters using the procedures of Algorithm 20.5

These values are the elements of (P ,Q,π)i+1

end

Algorithm 20.2: Fitting Hidden Markov Models with EM



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 596

1

2

3

1

2

3

1

2

3

1

2

3

-4.69

-12

-10

-1

-3

-9

-1

-3

-9

1

2

3

1

2

3

1

2

3

1

2

3

-11.69

-13

-13.69

-1

-3

-9

1

2

3

1

2

3

1

2

3

1

2

3

-14.69

-16.69

-20.69

Computing the value
of the second last column

Roll this back
to the third
last column

At the final column,
we have the maximum
likelihood

FIGURE 20.3: It is a simple matter to find the best path through the trellis of Figure 20.2
(or any other trellis, for that matter!). We assume that each 1 node has log-probability
−1, each 2 node has log-probability −3, and each 3 node has log-probability −9. We
also assume that the probabilities of leaving a node are uniform (check our numbers!).
Now the value of each node in the second-last column is the value of the node plus the
best value to be obtained by leaving that node. This is easily computed. The algorithm
involves computing the value of each node in the second-last column; then of each node
in the third-last column, etc., as described in the text. Once we get to the start of the
trellis, the largest weight is the maximum of the log-likelihood; because we erased all but
the best path segments, we have the best path, too (indicated by a dashed line).

Now we have that

δn(j) =
(
max

i
δn−1(i)Pij

)
qj(Yn).

We need not only the maximum value, but also the path that gave rise to this value.
We define another variable

ψn(j) = argmax (δn−1(i)Pij)

(i.e., the best path that ends in Sn = j). This gives us an inductive algorithm for
getting the best path.

The reasoning is as follows: I know the best path to each state for the n− 1th
measurement; for each state for the nth measurement, I can look backward and
choose the best state for the n− 1th measurement; but I know the best path from
there, so I have the best path to each state for the nth measurements. We have
put everything together in Algorithm 20.1.



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 597

α0(j) = πjqj(Y0)

αt+1(j) =

[
k∑

l=1

αt(l)plj

]
qj(Yt+1) 1 ≤ t ≤ n− 1

Algorithm 20.3: Computing the Forward Variable for Fitting an HMM

βN (j) = 1

βt(j) =

[
k∑

l=1

pjlql(Yt+1)

]
βt+1(j) 1 ≤ t ≤ k − 1

Algorithm 20.4: Computing the Backward Variable for Fitting an HMM

20.1.3 Fitting an HMM with EM

We have a dataset Y for which we believe a hidden Markov model is an appropriate
model, but which hidden Markov model should we use? We wish to choose a
model that best represents a set of data. To do this, we will use a version of
the Expectation-Maximization algorithm of Section 10.5.3. In this algorithm, we
assume that we have an HMM, (P ,Q,π)); we now want to use this model and our
dataset to estimate a new set of values for these parameters. We now estimate
(P ,Q,π)) using a procedure that is given below. There will be two possibilities (a
fact that we won’t prove). Either P (Y |(P ,Q,π)) > P (Y |(P ,Q,π), or (P ,Q,π) =
(P ,Q,π).

The updated values of the model parameters will have the form:

πi = expected frequency of being in state si at time 1

pij =
expected number of transitions from si to sj
expected number of transitions from state si

qj(k) =
expected number of times in sj and observing Y = yk

expected number of times in state sj

We need to be able to evaluate these expressions. In particular, we need to
be able to determine

P (Xt = si, Xt+1 = sj |Y , (P ,Q,π)),



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 598

πi = expected frequency of being in state si at time 1

=
N∑
j=1

ξ1(i, j)

pij =
expected number of transitions from si to sj
expected number of transitions from state si

=

∑T
t=1 ξt(i, j)∑T

t=1

∑N
j=1 ξt(i, j)

qi(k) =
expected number of times in si and observing Y = yk

expected number of times in state si

=

∑T
t=1

∑N
j=1 ξt(i, j)δ(Yt, yk)∑T

t=1

∑N
j=1 ξt(i, j)

here δ(u, v) is one if its arguments are equal and zero otherwise.

Algorithm 20.5: Updating Parameters for Fitting an HMM

which we shall write as ξt(i, j). If we know ξt(i, j), we have

expected number of transitions from si to sj =

T∑
t=1

ξt(i, j)

expected number of transitions from si =
T∑

t=1

N∑
j=1

ξt(i, j)

expected number of times in si =

T∑
t=1

N∑
j=1

ξt(i, j)

expected frequency of being in si at time 1 =
N∑
j=1

ξ1(i, j)

expected number of times in si and observing Y = yk =

T∑
t=1

N∑
j=1

ξt(i, j)δ(Yt, yk)

where δ(u, v) is one if its arguments are equal and zero otherwise.
To evaluate ξt(i, j), we need two intermediate variables: a forward variable

and a backward variable.
The forward variable is αn(j) = P (Y0, Y1, . . . , Yn, Xn = sj |(P ,Q,π)).
The backward variable is βt(j) = P ({Yt+1, Yt+2, . . . , Yn}|Xt = sj , (P ,Q,π)).



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 599

If we assume that we know the values of these variables, we have that

ξt(i, j) = P (Xt = si, Xt+1 = sj |Y , (P ,Q,π))

=
P (Y , Xt = si, Xt+1 = sj |(P ,Q,π))

P (Y |(P ,Q,π))

=

⎧⎪⎪⎨
⎪⎪⎩

P (Y0, Y1, . . . , Yt, Xt = si|(P ,Q,π))
×P (Yt+1|Xt+1 = sj , (P ,Q,π))
×P (Xt+1 = sj |Xt = si, (P ,Q,π))
×P (Yt+2, . . . , YN |Xt+1 = sj , (P ,Q,π))

⎫⎪⎪⎬
⎪⎪⎭

P (Y |(P ,Q,π))

=
αt(i)pijqj(Yt+1)βt+1(j)

P (Y |(P ,Q,π))

=
αt(i)pijqj(Yt+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)pijqj(Yt+1)βt+1(j)

.

Both the forward and backward variables can be evaluated by induction. We
get αn(j), by observing that:

α0(j) = P (Y0, X0 = sj |(P ,Q,π))

= πjqj(Y0)

αt+1(j) = P (Y0, Y1, . . . , Yt+1, Xt+1 = sj |(P ,Q,π))

= P (Y0, Y1, . . . , Yt, Xt+1 = sj |(P ,Q,π))P (Yt+1|Xt+1 = sj)

=

k∑
l=1

[P (Y0, Y1, . . . , Yt, Xt = sl, Xt+1 = sj|(P ,Q,π))P (Yt+1|Xt+1 = sj)]

=

(
k∑

l=1

[
P (Y0, Y1, . . . , Yt, Xt = sl|(P ,Q,π))
×P (Xt+1 = sj|Xt = sl)

]
P (Yt+1|Xt+1 = sj)

)

=

[
k∑

l=1

αt(l)plj

]
qj(Yt+1) 1 ≤ t ≤ n− 1.



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 600

This backward variable can also be obtained by induction as:

βN (j) = P (no further output|Xn = sj , (P ,Q,π))

= 1

βt(j) = P ({Yt+1, Yt+2, . . . , Yn}|Xt = sj , (P ,Q,π))

=

k∑
l=1

[P ({Yt+1, Yt+2, . . . , Yn}, Xt = sl|Xt+1 = sj , (P ,Q,π))]

=

( [∑k
l=1 P (Xt = sl, Yt+1|Xt+1 = sj)

]
×P ({Yt+2, . . . , Yn}|Xt+1 = sj , (P ,Q,π))

)

=

[
k∑

l=1

pjlql(Yt+1)

]
βt+1(j) 1 ≤ t ≤ k − 1.

As a result, we have a simple fitting algorithm, collected in Algorithm 20.2.

20.1.4 Tree-Structured Energy Models

A major attraction of hidden Markov models is the relative simplicity of inference
and learning. This is a consequence of the combinatorial structure of the model;
in fact, our algorithms apply to somewhat richer combinatorial structures, and
to models that are not intrinsically probabilistic. We now consider a situation
where we will choose values for a set discrete variables, traditionally written Xi for
i = 1, . . . , n, to maximize the value of an objective function f(X1, . . . , Xn). This
objective function is a sum of unary terms (i.e., functions that take one argument),
which we write uj(Xi), and binary terms (i.e., functions that take two arguments),
which we write bk(Xi, Xj). This is a relatively general model of parts and relations.
There is one score (which would be the uk) associated with each part (which would
be the Xi) and another associated with some of the relations (i.e., the bk). For
example, in the case of the HMM, the variables would be the hidden states, the
unary terms would be the logs of emission probabilities, and binary terms would
be the logs of transition probabilities. It is natural to think of the unary terms as
nodes in a graph, and the binary terms as edges. However, it is not required to
think of the unary or binary terms as log probabilities; instead, you could think
of them as negative energies (because we are maximizing), or you could minimize,
and think of them as energies or costs. For this kind of model, maximization is
straightforward if the graph we have described is a forest.

HMM’s are a special case, because the graph in that case is a chain. We
will redescribe inference for an HMM in this more general setting, because it will
then follow easily that the method applies to a forest. We can write the objective
function as

fchain(X1, . . . , Xn) =
i=n∑
i=1

ui(Xi) +
i=n−1∑
i=1

bi(Xi, Xi + 1)

and we wish to maximize this function (you should check that the terms match
terms in the expression for the joint for an HMM; a strategically placed logarithm



Section 20.1 HMM’s, Dynamic Programming, and Tree-Structured Models 601

will help). Now we define a new function, the cost-to-go function, with a recursive
definition. Write

f
(n−1)

cost-to-go(Xn−1) = max
Xn

bn−1(Xn−1, Xn) + un(Xn),

and notice that we have

argmax
X1, . . . , Xn

fchain(X1, . . . , Xn)

is equal to

argmax
X1, . . . , Xn−1

(
fchain(X1, . . . , Xn−1) + f

(n−1)

cost-to-go(Xn−1)
)
,

which means that we can eliminate the nth variable from the optimization by
replacing the term bn−1(Xn−1, Xn)+un(Xn) with a function ofXn−1. This function
is obtained by maximizing this term with respect to Xn. Equivalently, assume
we must choose a value for Xn−1. The cost-to-go function tells us the value of
bn−1(Xn−1, Xn) + un(Xn) obtained by making the best choice of Xn conditioned
on our choice of Xn−1. Because any other choice would not lead to a maximum, if
we know the cost-to-go function at Xn−1, we can now compute the best choice of
Xn−1 conditioned on our choice of Xn−2. This yields that

max
Xn−1,Xn

[bn−2(Xn−2, Xn−1) + un−1(Xn − 1) + bn−1(Xn−1, Xn) + un(Xn)]

is equal to

max
Xn−1

[
bn−2(Xn−2, Xn−1) + un−1(Xn − 1) +

(
max
Xn

bn−1(Xn−1, Xn) + un(Xn)

)]
.

But all this can go on recursively, yielding

f
(k)

cost-to-go(Xk) = max
Xk+1

bk(Xk, Xk+1) + uk(Xk) + f
(k+1)

cost-to-go(Xk+1).

We can expand this to describe our use of the trellis in Section 20.1.2. Notice that

argmax
X1, . . . , Xn

fchain(X1, . . . , Xn)

is equal to

argmax
X1, . . . , Xn−1

(
fchain(X1, . . . , Xn−1) + f

(n−1)

cost-to-go(Xn−1)
)

which is equal to

argmax
X1, . . . , Xn−2

(
fchain(X1, . . . , Xn−2) + f

(n−2)

cost-to-go(Xn−2)
)
,



Section 20.2 Parsing People in Images 602

and we can apply the recursive definition of the cost-to-go function to get

argmax
X1, . . . , Xn

fchain(X1, . . . , Xn) =
argmax
X1

(
fchain(X1) + f1

cost-to-go(X1)
)
,

which yields an extremely powerful maximization strategy. We start at Xn, and

construct f
(n−1)

cost-to-go(Xn−1). We can represent this function as a table, giving the

value of the cost-to-go function for each possible value of Xn−1. We build a second
table giving the optimum Xn for each possible value of Xn−1. From this, we can

build f
(n−2)

cost-to-go(Xn−2), again as a table, and also the best Xn−1 as a function of

Xn−2, again as a table, and so on. Now we arrive at X1. We obtain the solution for

X1 by choosing the X1 that yields the best value of
(
fchain(X1) + f2

cost-to-go(X2)
)
.

But from this solution, we can obtain the solution for X2 by looking in the table
that gives the best X2 as a function of X1; and so on. It should be clear that this
process yields a solution in polynomial time; in the exercises, you will show that, if
each Xi can take one of k values, then the time is O(nK2).

This strategy will work for a model with the structure of a forest. The proof
is an easy induction. If the forest has no edges (i.e., consists entirely of nodes),
then it is obvious that a simple strategy applies (choose the best value for each Xi

independently). This is clearly polynomial. Now assume that the algorithm yields
a result in polynomial time for a forest with e edges, and show that it works for a
forest with e+1 edges. There are two cases. The new edge could link two existing
trees, in which case we could re-order the trees so the nodes that are linked are
roots, construct a cost-to-go function for each root, and then choose the best pair of
states for these roots from the cost-to-go functions. Otherwise, one tree had a new
edge added, joining the tree to an isolated node. In this case, we reorder the tree so
that this new node is the root and build a cost-to-go function from the leaves to the
root. The fact that the algorithm works is a combinatorial insight, but many kinds
of model have a tree structure. Models of this form are particularly important in
cases of tracking and of parsing.

20.2 PARSING PEOPLE IN IMAGES

A human parser must produce some report of the configuration of the body in an
image window. A human parse offers cues to what the person is doing, by reporting
where the arms, legs, and so on are. Applications could include building a user
interface that can respond to someone’s gestures or building a medical support
system that can tell, by watching video, whether a physically frail person is safe at
home or has sustained an injury and needs care. Tracking people is a particularly
useful technology (we’ll discuss its applications below), and currently the most
reliable technologies for human tracking involve a combination of detection and
parsing.

20.2.1 Parsing with Pictorial Structure Models

Parsing can be attacked by maximizing a tree-structured model. For example,
we could discretize the set of possible segments in an image by quantizing segment
orientation to a fixed set of values, and quantizing the top-left corner of the segment



Section 20.2 Parsing People in Images 603

to the pixel grid. We set up one variable per body segment, where the value of the
variable identifies which image segment corresponds to that body segment (you can
think of these variables as segment pointers). This set of variables can be scored by
evaluating (a) the extent to which the body segment looks like the corresponding
image and (b) the extent to which segments are consistent with each other. The
set of pointers that maximizes this objective function is the parse. We now use a
tree-structured model to ensure the maximization component is tractable.

A pictorial structure model is a tree structured model, where unary terms
compare parts to image observations, and binary terms evaluate relative configu-
ration. Such models are particularly well adapted to parsing people. Assume we
know the appearance of each of a set of limb segments that model a person (Fig-
ure 20.4). This means that we can build a set of unary functions that compare the
image segment that Xi points to with the corresponding model segment. Because
we are maximizing, larger values mean a more compatible appearance. We also ob-
tain a set of pairwise relations for a tree-structured subset of this model. It seems
natural to use the tree indicated in Figure 20.4. These terms evaluate the relative
location of the image segment endpoints, and perhaps the angles between the image
segments (there are numerous useful variants, as we shall see). For example, there
might be a term checking that the outer end of the thigh is close to the upper end
of the shin, and that the angle between the two is acceptable. Again, larger values
mean that the two image segments pointed to by the variables are compatible with
the relevant labels.

Models of this form can be used to find people in images in a fairly straight-
forward manner, and are the core technology of parsing. Felzenszwalb and Hut-
tenlocher (2000) assume that segments have known color patterns—typically, a
mixture of skin color and blue—and then compare the actual image color with
these patterns for the unary terms; the binary terms ensure endpoints are close and
angles are appropriate. This leads to a fairly satisfactory matcher (Figure 20.4),
with the proviso that the person’s clothing should be known in advance. It should
look natural to extend the appearance model to score similarities in texture as well
as in color, but this has not proven successful to date, most likely because folds in
clothing generate strong texture noise effects.

A persistent nuisance with tree-structured models as we have described them
is that the best parse typically will place the left leg (resp. arm) on top of the right
leg (resp. arm). This is because configuration cues are usually not strong enough to
force the legs (resp. arms) apart in the image, and one of the two image legs (resp.
arms) will look more like the model than the other does. It is difficult to change
the model to avoid this problem; inserting a term that forces the arms apart will
create inference difficulties. Instead, there is a simple trick that helps. We regard
the energy as the log of a probability distribution, and draw a large pool of samples
from this probability distribution. Each sample is a parse, and samples with high
energy will appear more commonly. We then search this pool of samples for a parse
where the legs and arms do not overlap, a relatively easy test.

The process of drawing a sample is straightforward. Our tree-structured
model yields a probability model P (X1, . . . , Xn). We can use the reasoning of
Section 20.1.3 to compute marginals (look at the α and β terms). Now compute
the marginal P (X1), and draw a sample from that distribution to get, say, X1 = r.



Section 20.2 Parsing People in Images 604

FIGURE 20.4: On the left, a tree-structured model of a person. Each segment is col-
ored with the image color expected within this segment. The model attempts to find a
configuration of these 11 body segments (nine limb segments, face, and hair) that (a)
matches these colors and (b) is configured like a person. This can be done with dynamic
programming, as described in the text. The other three frames show matches obtained
using the method. This figure was originally published as Figure 4 of “Efficient Matching
of Pictorial Structures,” by P. Felzenszwalb and D.P. Huttenlocher, Proc. IEEE CVPR
2000, c© 2000, IEEE.

We then draw a sample from P (X2|X1 = r) = P (X1 = r,X2)/
∑

X2
P (X1 = r,X2),

and so on.

20.2.2 Estimating the Appearance of Clothing

One crucial difficulty with the pictorial structure model, as we have described it,
is that we need to know the appearance of the body segments. We could avoid
this difficulty by changing the segment appearance models. Body segments are
extended, and we expect some contrast at either side, so the segment appearance
model could just require that there be strong edges on either side of the segment.
It turns out that this model works poorly, because there tend to be numerous such
segments in the image.

However, as Ramanan (2006) points out, this model can be used to start a



Section 20.2 Parsing People in Images 605

FIGURE 20.5: The human parser of Ramanan (2006) is a search of all spatial layouts
in the image to find one that is consistent with the constraints we know on appearance.
Ferrari et al. (2008) show that reducing the search space improves the results. First, one
finds upper bodies, and builds a box around those detections using constraints on the
body size (A). Outside this box is background, and some pixels inside this box are, too.
In B, body constraints mean that pixels labeled Fc and F are very likely foreground,
U are unknown, and B are very likely background. One then builds color models for
foreground and background using this information, then uses an interactive segmenter to
segment, requiring that Fc pixels be foreground, to get C. The result is a much reduced
search domain for the human parser, which starts using an edge map D, to get an initial
parse E, and, after iterating, produces F. This figure was originally published as Figure
2 of “Progressive search space reduction for human pose estimation,” by V. Ferrari, M.
Maŕın-Jiménez, and A. Zisserman, Proc. IEEE CVPR 2008, c© IEEE 2003.

process that first estimates appearance, then parses, then re-estimates appearance,
and so on. We start by assuming that segments have edges on their boundaries. We
use this model to generate multiple estimates of configuration, using the procedure
for sampling in Section 20.2.1. In turn, we can use these estimates to build a map of
the posterior probability a pixel is, for example, a head pixel, by rendering the head
segment for each of the sampled estimates of configuration and then summing the
images. In turn, this means we have a set of weighted head/non-head pixels, which
can be used to build a discriminative appearance model for the head. From this and
other such discriminative appearance models, we can re-estimate the configuration
(and then re-estimate appearance, and so on). The technical details are beyond
the scope of this chapter, but the procedure can produce simultaneous estimates of
parses and appearance models for complex images.

If the person covers a relatively small percentage of the image pixels, then
this strategy will work poorly because there is a strong chance the initial estimate
of configuration might be completely wrong, and then re-estimation is unlikely to
help. Ferrari et al. (2008) show improved parses obtained by pruning the search
domain using appearance information. They first detect the figure’s upper body,
and then use that information to derive a set of bounds. Everything outside a large



Section 20.3 Tracking People 606

box computed from the torso cannot be on the body (because the arms have fixed
length, and so on). Similarly, a smaller box can be guaranteed to line on the body,
because we have found the upper body. We can now use an interactive segmentation
method (Section 20.2.1) to segment an estimate of the person from the background.
The background color model can be estimated from pixels outside the box, and
some inside the box; the foreground color model can be estimated from some of
the pixels inside the box; and we can constrain some pixels to be foreground in the
final segmentation. Because the segmentation might not be precise, we can dilate
it (Algorithm 16.3) to get a somewhat larger domain. We now have a relatively
small search domain and a very rough initial estimate of configuration to start the
iterative re-estimation process. Further constraints are available if we are working
with a motion sequence; these are explored in Section 20.3.

20.3 TRACKING PEOPLE

Tracking people in video is an important practical problem. If we could tell how
people behave inside and outside buildings, it might be possible to design more
effective buildings. If we could reliably report the location of arms, legs, torso,
and head in video sequences, we could build much-improved game interfaces and
surveillance systems.

20.3.1 Why Human Tracking Is Hard

Any tracking system, for any target, must balance two kinds of evidence to produce
tracks. The first kind is direct measurements of state. In the extreme case, if we
can detect perfectly, building tracking systems isn’t that demanding. The second
kind is predictable dynamics, which allows a system to pool evidence over multiple
frames and produce good state estimates even when measurements are poor.

Tracking people is difficult, because detecting people is difficult and because
human motion can be quite unpredictable. Detection is hard because many ef-
fects cause people to look different from window to window. There is a range of
body shapes and sizes. Changes in body configuration and in viewpoint can pro-
duce dramatic changes in appearance. The appearance of clothing also can vary
widely. At time of writing, no published method can find clothed people wearing
unknown clothing in arbitrary configurations in complex scenes reliably (but see
Section 17.1.2). The main cues to help overcome these difficulties are the fairly
strong constraints on the layout of the body, and the relatively restricted appear-
ance of a range of human body parts and configurations.

Motion cues present more subtle difficulties. If the people we are observing are
engaged in known activities, their motions might be quite predictable. But the body
can accelerate very quickly—think of the degree of motion blur in sports videos
as an example—and the body parts that can engage in the most unpredictable
motions tend also to be the ones that are hardest to detect. Forearms turn out to
be difficult to track (small and fast moving), hands are even harder, and we are not
aware of finger trackers that behave reliably for the full range of (potentially very
fast-changing) finger motions.

Even so, motion is almost certainly a useful cue for detecting people or seg-
ments. Motion also can contribute by predicting plausible locations for detections



Section 20.3 Tracking People 607

in the next frame, through some form of filtering procedure. Although body con-
figurations change quickly from frame to frame, appearance changes very slowly,
particularly if one is careful about illumination. This is because people tend not
to change clothes from frame to frame. Generally, building a good person tracker
seems to involve paying close attention to image appearance and data association,
rather than to dynamical models or probabilistic inference. As a result, recent meth-
ods strongly emphasize various tracking by detection ideas, and the main kinds of
distinction between methods are the same as those for detection.

There is a rich range of options for representing the body when we track, and
a range of levels of detail are useful. Representing a person as a single point is
sometimes useful; for example, such representations are enough to tell where and
when people gather in a public space, or during a fire drill. Alternatives include:
representing the head and torso; representing the head, torso, and arms; represent-
ing head, torso, arms, and legs; and so on, down to the fingers. Tracking becomes
increasingly difficult as the number of degrees of freedom goes up, and we are not
aware of any successful attempts to track the body from torso to fingers (they
are a lot smaller than torsos, which introduces other problems). Most procedures
for tracking single point representations use the methods of Chapter 11 directly,
typically combining background subtraction with some form of blob appearance
tracker.

We focus on trackers that try to represent the body with fairly detailed kine-
matic models, because such trackers use procedures specialized for tracking people.
The state of the body could be represented in 3D or in 2D. If there are many
cameras, a 3D state representation is natural, and multicamera tracking of people
against constrained backgrounds now works rather well (see the notes). The flavor
of this subject is more like reconstruction than like detection or recognition, and
it doesn’t fit very well into general pattern of single camera tracking. In many
important cases—for example, an interface to a computer game—there will be only
one camera. If we require a representation of the body in three dimensions, then
we could use a 3D representation of state, perhaps joint locations in 3D, or a set of
body segments in 3D modeled as surfaces. Alternatively, we could track the body
using a 2D state representation, and then “lift” it to produce a 3D track. Relations
between the 2D figure and the 3D track are complicated and might be ambiguous.
The heart of the question is the number of possible 3D configurations that could
explain a single image, and this depends quite a lot on what we observe in the
image.

Generally, we favor tracking using a 2D representation then lifting the track
to 3D, and we will discuss only this strategy in any detail. This is mainly a question
of clarity. Methods for tracking using 3D state representations must deal with data
association and with lifting ambiguity simultaneously, and this leads to complexity.
In contrast, tracking in 2D is a data association problem alone, and lifting the
track is a problem of ambiguity alone. Another advantage to working in 2D first,
then lifting, is that the lifting process can use image evidence on longer timescales
without having any significant effect on the complexity of the tracking algorithm.
We will return to this argument in Section 20.4.



Section 20.3 Tracking People 608

FIGURE 20.6: Human body segments do not change appearance much over time, so using
multiple frames can yield a better appearance model and so a better parse. A shows a
frame, and A’ shows its parse, derived by the method of Ferrari et al. (2008), described
in Section 20.2.2 and Figure 20.5. In this case, the parse has relatively low entropy, and
we have a fairly accurate model of where everything is. The frame in B is more difficult,
and a single frame method produces the parse of B’, which has relatively high entropy.
By requiring that appearance be coherent over time, and that segments not move much
from frame to frame, we can obtain the tighter parse of B”. This figure was originally
published as Figure 6 of “Progressive search space reduction for human pose estimation,”
by V. Ferrari, M. Maŕın-Jiménez, and A. Zisserman, Proc. IEEE CVPR 2008, c© IEEE
2003.

20.3.2 Kinematic Tracking by Appearance

In Section 20.3.2, we described methods to identify an appearance model for a
person from a single image. Generally, the strategy was to find a small but plausible
spatial domain in the image, then iterate configuration estimation and appearance
estimation in that domain. In a motion sequence, we can build a much better
appearance model by exploiting the fact that body segment appearance doesn’t
change over time. Furthermore, the sampling time of the video is relatively fast
compared to body movement, which means we know roughly which search domain
in the n+1th frame corresponds to which in the nth frame. This means that we can
strengthen the appearance model by using multiple frames to estimate appearance.
We can improve configuration estimates both by using the improved appearance
model, and by exploiting the fact that segments move relatively slowly. Ferarri
et al. show significant improvements in practice for upper body models estimated
using these two constraints (Figure 20.6).

There is an alternative method to obtain an appearance model. It turns out
that people adopt a lateral walking configuration rather often, meaning that if
we have a long enough sequence (minutes are usually enough), we will detect this
configuration somewhere. Once we have detected it, we can read off an appearance
model because we know where the arms, legs, torso, and head are. The pictorial



Section 20.3 Tracking People 609

structure model can detect lateral walking configurations without knowing the color
or texture of body segments. We set up φ to score whether there are image edges
close to the edges of the segment rectangles, and use strong angular constraints in
ψ to detect only the lateral walking configuration. The resulting detector can be
tuned to have a very low false positive rate, though it will then have a low detect
rate, too. Now we run this lateral walking detector over every frame in the sequence.
Because the detector has a low false positive rate, we know when it responds that
we have found a real person; and because we have localized the torso, arms, legs,
and head, we know what these segments look like.

We can now build a discriminative appearance model for arms, legs, etc., and
use this in a new pictorial structure model to detect each instance of the person. We
take example pixels from each detected segment and from its background, and use,
say, logistic regression to build a classifier that gives a one at segment pixels and
a zero otherwise. Applying these to the images yields a set of segment maps, and
the φ for each segment scores how many ones appear inside the image rectangle on
the relevant segment map. We can now pass over the video again, using a pictorial
structure with weak constraints to detect instances of this person.

20.3.3 Kinematic Human Tracking Using Templates

Some human motions—walking, jumping, dancing—are highly repetitive, and the
relatively free structure of a fully deformable model is not necessary to track them.
If we are confident that we will be dealing with such motions, then we could benefit
by using more restrictive models of spatial layout. For example, if we are tracking
only walking people in lateral views, then there are relatively few configurations
that we will see, and so our estimate of layout should be better. There is another
advantage to doing this: we can identify body configurations that are wholly out
of line with what we expect, and report unusual behavior.

Toyama and Blake (2002) encode image likelihoods using a mixture built out
of templates, which they call exemplars (see also Toyama and Blake (2001)). As-
sume we have a single template, which could be a curve, or an edge map, or some
such. These templates may be subject to the action of some (perhaps local) group,
for example, translations, rotations, scale, or deformations. We model the likeli-
hood of an image patch given a template and its deformation with an exponential
distribution on distance between the image patch and the deformed template (one
could regard this as a simplified maximum entropy model; we are not aware of
successful attempts to add complexity at this point). The normalizing constant
is estimated with Laplace’s method. Multiple templates can be used to encode
the important possible appearances of the foreground object. State is now (a) the
template and (b) the deformation parameters, and the likelihood can be evaluated
conditioned on state as above.

We can think of this method as a collection of template matchers linked over
time with a dynamical model (Figure 20.8). The templates, and the dynamical
model, are learned from training sequences. Because we are modeling the fore-
ground, the training sequences can be chosen so that their background is simple,
so that responses from (say) edge, curve, and related detectors all originate on the
moving person. Choosing templates now becomes a matter of clustering. Once



Section 20.3 Tracking People 610

FIGURE 20.7: Ramanan (2005) shows that tracking people is easier with an instance-
specific model as opposed to a generic model. The top two rows show detections of
a pictorial structure where parts are modeled with edge templates. The figure shows
both the MAP pose—as boxes—and a visualization of the entire posterior obtained by
overlaying translucent, lightly colored samples (so major peaks in the posterior give strong
coloring). Note that the generic edge model is confused by the texture in the background,
as evident by the bumpy posterior map. The bottom two rows show results using a
model specialized to the subject of the sequence, using methods described above (part
appearances are learned from a stylized detection). This model does a much better job
of data association; it eliminates most of the background pixels. The table quantifies this
phenomenon by recording the percentage of frames where limbs are accurately localized.
Clearly, the specialized model does a much better job. Figure reprinted from D. Ramanan’s
UC Berkeley PhD thesis, “Tracking People and Recognizing their Activities,” 2005, c©
2005 D. Ramanan.

templates have been chosen, a dynamical model is estimated by counting.
What makes the resulting method attractive is that it relies on foreground

enhancement—the template groups together image components that, taken to-
gether, imply a person is present. The main difficulty with the method is that
many templates might be needed to cover all views of a moving person. Further-
more, inferring state might be quite difficult.



Section 20.4 3D from 2D: Lifting 611

FIGURE 20.8: Toyama and Blake (2001) show that human motion can be tracked by
matching templates then linking the templates over time. The templates encode possible
body configuration, and are allowed to deform to account for camera variations. This
representation has the advantage that a template can pool otherwise possibly unreliable
edge evidence; tracking uses a particle filter (Section 11.5). The figure shows frames
from two motion sequences, with the best matching template superimposed (ignore the
horizontal line structure in the frames; this is just interlacing effects in the video). On
the left of the bar, frames from a test sequence showing a person who also appears in
the training sequences (i.e., it’s the same actor, but not the same frames). Templates
generalize across individuals well; the right shows frames from a test sequence featuring
an actor who does not appear in the training sequences. This figure was originally published
as Figures 1 and 4 of “Probabilistic Tracking in a Metric Space,” by K. Toyama and A.
Blake, Proc. IEEE ICCV 2001, c© IEEE, 2001.

20.4 3D FROM 2D: LIFTING

Surprisingly, the 2D configuration of a person in an image allows reconstructing
that person’s 3D configuration, from some straightforward geometric reasoning.
There are two kinds of reconstruction. An absolute reconstruction reconstructs the
configuration of the body with respect to a global world coordinate system. A
relative reconstruction yields the configuration of body segments with respect to
some root coordinate system. The root coordinate system is carried with the body,
with its origin typically in the torso.

Absolute reconstruction is difficult, even with motion information, because
each separate frame is missing a translation in depth, and motion information is
not usually enough to recover this. Absolute reconstruction with a moving camera
is particularly tricky, because one would need good camera egomotion estimates
to produce such a reconstruction (we are not aware of any such reconstructions in
the literature at the time of writing). Relative reconstruction is enough for most
purposes. For example, absolute reconstruction doesn’t seem to be necessary to
label activities.

Reconstructions appear to be ambiguous, but might not be. There are meth-
ods for avoiding ambiguity that exploit appearance details (Section 20.4.2). Fur-
thermore, there may be disambiguating information in motion (Section 20.4.3).

20.4.1 Reconstruction in an Orthographic View

People in pictures typically are far from the camera compared to the range of
depths they span (the body is quite flat), and so a scaled orthographic camera
model is usually appropriate. One case where it fails is a person pointing toward



Section 20.4 3D from 2D: Lifting 612

FIGURE 20.9: An orthographic view of a segment of known length L will have length
sL cosφ, where φ is the angle of inclination of the segment to the camera and s is the
camera scale linking meters to pixels (which is one in the figure above). In turn, this
means that if we know the length of the body segment and can guess the camera scale,
we can estimate cos φ and so know the angle of inclination to the frame up to a twofold
ambiguity. This method is effective; below we show two 3D reconstructions obtained by
Taylor (2000), for single orthographic views of human figures. The image appears left,
with joint vertices on the body identified by hand (the user also identifies which vertex
on each segment is closer to the camera). Center shows a rendered reconstruction in
the viewing camera, and right shows a rendering from a different view direction. This
figure was originally published as Figures 1 and 4 of “Reconstruction of articulated objects
from point correspondences in a single uncalibrated image,” by C.J. Taylor, Proc. IEEE
CVPR, 2000 c© 2000 IEEE.

the camera; if the hand is quite close, compared with the length of the arm there
may be distinct perspective effects over the hand and arm and in extreme cases the
hand can occlude much of the body.

Regard each body segment as a cylinder and assume we know its length. If we
know the camera scale, and can mark each end of the body segment, then we know
the cosine of the angle between the image plane and the axis of the segment, which
means we have the segment in 3D up to a twofold ambiguity and translation in depth
(Figure 20.9 gives examples). We can reconstruct each separate segment and obtain
an ambiguity of translation in depth (which is important and often forgotten) and a
two fold ambiguity at each segment. We can now reconstruct the body by obtaining
a reconstruction for each segment, and joining them up. Each segment has a single
missing degree of freedom (depth), but the segments must join up, meaning that



Section 20.4 3D from 2D: Lifting 613

we have a discrete set of ambiguities. Depending on circumstances, one might
work with from 9 to 11 body segments (the head is often omitted; the torso can
reasonably be modeled with several segments), yielding from 512 to 2,048 possible
reconstructions. These ambiguities persist for perspective images; examples appear
in Figure 20.10.

FIGURE 20.10: Ambiguous reconstructions of a 3D figure, all consistent with a single
view, from Sminchisescu and Triggs (2003). The ambiguities are most easily visualized
by an argument about scaled orthographic cameras, given in the text, but persist for per-
spective views as these authors show. Note that the cocked wrist in the leftmost figure
violates kinematic constraints; no person with an undamaged wrist can take this configu-
ration. This figure was originally published as Figure 2 of “Kinematic jump processes for
monocular 3D human tracking,” by C. Sminchisescu and W. Triggs, Proc. IEEE CVPR,
2003 c© 2003 IEEE.

In this very simple model of the body, 3D reconstruction from a single image is
ambiguous. However, the model oversimplifies in some important ways, and the true
extent of ambiguity in this case is quite uncertain. One important oversimplification
is that we assume that all 3D configurations are available. In practice, there are
many constraints on the available joint rotations (for example, your elbow will
move through about 70◦), so some of the ambiguous configurations might not be
consistent with the kinematics of the body. Unfortunately, there is clear evidence
that there are multiple kinematically acceptable reconstructions consistent with a
single image (Figure 20.10). It is not known whether there are multiple acceptable
reconstructions associated with most images, or with only a few images.

20.4.2 Exploiting Appearance for Unambiguous Reconstructions

Mori and Malik (2005) deal with discrete ambiguities by matching (see also Mori
et al. (2002)). They have a set of example images with joint positions marked. The
outline of the body in each example is sampled, and each sample point is encoded
with a shape context (an encoding that represents local image structure at high
resolution and longer scale image structure at a lower resolution). Keypoints are
marked in the examples by hand, and this marking includes a representation of
which end of the body segment is closer to the camera. The outline of the body is
identified in a test image (Mori and Malik use an edge detector; a cluttered back-



Section 20.4 3D from 2D: Lifting 614

FIGURE 20.11: Mori et al. (2002) deal with discrete ambiguities by matching test image
outlines to examplars, which have keypoints marked. The keypoint markup includes
which end of the segment is closer to the view. The images on the left show example test
images, with keypoints established by the matching strategy superimposed. The resulting
reconstruction appears on the right. See also Mori and Malik (2005). This figure was
originally published as Figures 6 and 7 of “Estimating Human Body Configurations using
Shape Context Matching,” by G. Mori and J. Malik, IEEE Workshop on Models versus
Exemplars in Computer Vision 2001 c© IEEE, 2001.

ground might present issues here), and sample points on the outline are matched to
sample points in examples. A global matching procedure then identifies appropriate
examplars for each body segment and an appropriate 2D configuration. The body
is represented as a set of segments, allowing (a) kinematic deformations in 2D and
(b) different body segments in the test image to be matched to segments in different
training images. The best matching example keypoint can be extracted from the
matching procedure, and an estimate of the position of that keypoint in the test
image is obtained from a least-squares fit transformation that aligns a number of
sample points around that keypoint. The result is a markup of the test image with
labeled joint positions and with which end of the segment is closest to the camera.
A 3D reconstruction follows, as above (Figure 20.11 gives some examples).

An alternative is to regress the joint angles against an image of the body.
The simplest regression method is to match the input to its nearest neighbor in
a large training set then output the value associated with that nearest neighbor.
Shakhnarovich et al. (2003) built a data set of 3D configurations and rendered
frames, obtained using POSER (a program that renders human figures, from Cre-
ative Labs). They show error rates on held out data for a variety of regression meth-
ods applied to the pool of neighbors obtained using parameter-sensitive hashing.
Generally, performance improves with more neighbors, with using a linear locally
weighted regression (where one builds a linear regression model out of a pool of
nearest neighbors), and when the method is robust. The best is a robust, linear,
locally weighted regression. Their method produces estimates of joint angles with
root mean square errors of approximately 20◦ for a 13 degree of freedom upper body
model; a version of this approach can produce full 3D shape estimates (Grauman
et al. 2004).



Section 20.4 3D from 2D: Lifting 615

FIGURE 20.12: The 3D configuration of the body can be reconstructed using a form of
nonparametric regression. Shakhnarovich et al. (2003) match the input frame (top row)
to a large selection of labeled frames. The nearest neighbors are shown in the center row;
these give a fair reconstruction in most cases, but can be improved by finding multiple
nearest neighbors and building a robust linear regression (bottom row). This figure
was originally published as Figure 5 of “Fast Pose Estimation with Parameter-Sensitive
Hashing,” by G. Shakhnarovich, P. Viola, and T. Darrell, Proc. CVPR 2003, 2003. c©
IEEE, 2003.

20.4.3 Exploiting Motion for Unambiguous Reconstructions

In many applications there is a video sequence of a moving person. In such cases,
it does not make sense to infer the 3D structure for each frame. It is a reliable
rule of thumb from the animation community that most body motions are quite
slow compared to reasonable video frame rates. Evidence includes, for example, the
relative ease with which motion capture sequences can be compressed with minimal
loss (Arikan 2006). This means that reconstructed body configurations for each
frame will not be independent, so that future (or past) frames may disambiguate
the current reconstruction.

Howe (2004) incorporates dynamical information into the distance cost, by
matching entire 3D motion paths to 2D image tracks. For each frame of a motion
sequence, we render every motion capture frame in our collection using a discretized
grid containing every possible camera and every possible root coordinate system.
Now we must construct a sequence of 3D motion reconstructions that (a) joins up
well and (b) looks like the tracked frames. This is an optimization problem. We
build a transition cost for going from each triple of (motion capture frame, cam-
era, root coordinate system) to every other such triple. This cost should penalize
excessively large body segment and camera velocities. We compute a match cost
comparing the rendered frame with the tracked frame. Write Fi for the ith frame
in tracked sequence, S for a reconstruction of that sequence, and (Li, Ci, Ri) for
the reconstruction frame and camera corresponding to Fi. The cost function for a



Section 20.4 3D from 2D: Lifting 616

reconstruction is then

cost(S) =
∑
i∈S

[
transition cost((Li, Ci, Ri) → (Li+1, Ci+1, Ri+1))

+match cost((Li, Ci, Ri) → Fi)

]
,

and in principle we can minimize this cost with dynamic programming. In practice,
this would be very difficult to do, because there are a very large number of triples
(Li, Ci, Ri), but some of this complexity is quite easily reduced. For example,
the number of cameras that could apply is quite small, and we can estimate the
image plane location of the root with elementary methods from the track. If the
motion capture data set is very large, we may be able to prune the frames, or avoid
searching any triple where the match cost exceeds a threshold (Howe 2004).

We can extend the method described to take accelerations and higher-order
dynamics into account by matching short snippets (short runs of frames centered
about a given frame) of motion capture to short snippets of video. To do this, we
need to assume that the root moves relatively slowly with respect to the camera,
so that using a single camera and root configuration for each snippet is acceptable.

FIGURE 20.13: Left frames are taken from a walking sequence, matched to motion
capture data ((Ramanan and Forsyth 2003)). Matches are independent from frame to
frame. Note that the lateral view of the body (far left) is ambiguous, and can be recon-
structed inaccurately. This ambiguity does not persist, because the camera cannot move
freely from frame to frame. Right frames show reconstructions obtained using dynamic
programming to enforce a model of camera cost. The correct reconstruction usually is
available, because the person does not stay in an ambiguous configuration. The frames
are taken from a time sequence, and the graphs below show an automatically computed
annotation sequence—facing left versus facing right—as a function of time. Note that
the case on the left shows an essentially random choice of direction when the ambiguity
is present (the person appears to flip from facing left to facing right regularly). This is
because the free rotation of the camera means the ambiguity appears on a per-frame basis.
For the case on the right, the smoothing created by charging for fast camera rotations
means that the labels seldom change (and are, in fact, correct). Figure reprinted from D.
Ramanan’s UC Berkeley PhD thesis, “Tracking People and Recognizing their Activities,”
2005, c© 2005 D. Ramanan.

Some ambiguities seem to have a long-term character. For example, it remains
very difficult to tell whether the left leg or the right leg is leading in a lateral view



Section 20.5 Activity Recognition 617

of a walking figure. This is because very little in the image changes between these
cases; there is little contrast between the trouser legs, so that it is hard to tell
whether the left thigh occludes the right, or vice versa. Ambiguities like these
might be resolvable by propagating disambiguating evidence over long time scales.
For example, if one does not have a face detector, then it can be very difficult to
tell which way a person is facing in a lateral standing view. However, if the person
walks off (and if one assumes that the camera does not move fast), they reveal the
direction in which they are facing, and this information can be propagated.

20.5 ACTIVITY RECOGNITION

Activity recognition methods try to label single images or video with a represen-
tation of the activity depicted. This representation is usually, but not always, a
name. Activity recognition methods can use motion capture data (measurements of
3D body configuration), as well as visual data. Motion capture data is usually col-
lected for purposes of human animation, and we discuss some relevant points from
the animation literature in Section 20.5.1. A natural method to recognize activity
is to parse the body and then match the parse to labeled data (Section 20.5.2).
Alternatively, one can build appearance features and then classify (Section 20.5.3).
An important difficulty suggested by the animation literature is that human actions
seem to compose; this means that any label vocabulary might be too small to use,
because motions can be cut up and rearranged. Some methods model this process
explicitly (Section 20.5.4).

20.5.1 Background: Human Motion Data

Motion capture refers to special arrangements made to measure the configuration of
a human body with (relatively) non-invasive processes. More recent systems involve
optical markers. One can use either passive markers (for example, make people wear
tight-fitting black clothing with small white spots on them) or active markers (for
example, flashing infrared lights attached to the body). A collection of cameras
views some open space within which people wearing markers move around. The
3D configuration of the markers is reconstructed for each individual; this is then
cleaned up (to remove bad matches, etc.; see below) and mapped to an appropriate
skeleton—a kinematic tree of joints of known properties and modeled as points
separated by segments of fixed, known lengths, that approximates the kinematics of
the human body. The configuration of the skeleton can be specified either in terms
of its joint angles, or in terms of the position in 3D of the segment endpoints (joint
positions). Data represented using one skeleton cannot necessarily be transferred
to a different skeleton reliably. Motion capture is a complex and sophisticated
technology; typical modern motion capture setups require a substantial quantity of
skilled input to produce data. Reviews of available techniques in motion capture
appear in, for example Bodenheimer et al. (1997); Gleicher (2000); Liverman (2004);
Menache (1999); Moeslund (1999); or Silaghi et al. (1998).

An important practical problem is footskate, where the feet of a rendered
motion appear to slide on the ground plane. In the vast majority of actual motions,
the feet of the actor stay fixed when they are in contact with the floor (there are
exceptions such as skating or various sliding movements). This property is quite



Section 20.5 Activity Recognition 618

FIGURE 20.14: Many activities involve quite characteristic body poses. Thurau and Hlavac
(2008) show that a simple and effective representation of composite activities can be built
by finding these distinctive poses, then reporting a histogram. To provide some temporal
information, the histogram contains n-grams of poses (i.e., sequences of n poses), rather
than single poses. This representation performs well on established activity classification
datasets, but also produces sensible reports when faced with novel activities. This figure
was originally published as Figure 4 of “Action Recognition from a Distributed Represen-
tation of Pose and Appearance,” by C. Thurau and V. Hlavac Proc. IEEE CVPR 2008,
c© IEEE, 2008.

FIGURE 20.15: In many activities, some parts of the body have highly characteristic
appearance. Maji et al. (2011) show that one can classify activities using a vocabulary
of action specific poselets, local patches that (a) look like body parts and (b) convey
discriminative information about the action. This figure shows some such poselets; notice,
for example, how the head takes a characteristic tilt when one is phoning; how the legs
take a characteristic scissor shape when one is walking; and how riding a horse requires a
distinctive configuration of torso and arms. This figure was originally published as Figure
10 of “Action Recognition from a Distributed Representation of Pose and Appearance,” by
S. Maji, L. Bourdev, and J. Malik, Proc. CVPR 2011, c© IEEE, 2011.

sensitive to measurement problems, which tend to result in reconstructions where
some point quite close to, but not on, the bottom of the foot is stationary with
respect to the ground. The result is that the reconstructed foot appears to slide on
the ground (and sometimes penetrates it). The effect can be both noticeable and
offensive visually.

Although human motion is complex, it does seem to be a composite of smaller
pieces of motion. For example, when people walk, they repeat roughly the same
motion again and again. Many everyday motions are stereotyped. Think of reaching
for a kitchen knife, chopping onions, climbing stairs, dressing, and so on. There is
a fair body of practical evidence that motions are composites (or at least, that it is
useful to pretend that they are). The simplest mechanism is temporal composition,
where motions are strung together in time to produce a new, more complex motion.
For example, a subject might walk into a room, halt, look around, walk to a chair,



Section 20.5 Activity Recognition 619

FIGURE 20.16: Activities can be classified using a vector of poselet activations, which gives
the strength of support for the presence of each poselet (those of Figure 20.15 and others
like them). On the left, a class-confusion matrix for this process applied to a set of nine
activities from the Pascal activity challenge; on the right, misclassified examples from
Maji et al. (2011). This figure was originally published as Figures 12 and 13 of “Action
Recognition from a Distributed Representation of Pose and Appearance,” by S. Maji, L.
Bourdev, and J. Malik, Proc. IEEE CVPR 2011, c© IEEE, 2011.

and then sit down.
The use of motion capture data by, for example, the computer game industry

reflects this belief. Typically, motions are created for a game by writing and cap-
turing a script of motions, using a set of “complete” motions that start and end
at one of a few rest positions. The motions can be thought of as building blocks
that can be joined if one ends and the next starts at the same rest position. The
choice of which block is joined to the end of the last block can be made by a game
engine. Motions captured for a particular title are then usually discarded, as reuse
presents both economic and legal difficulties.

These blocks of motion can be thought of as motion primitives. There would
be important advantages to knowing a large dictionary of motion primitives that can
encode many motions well. Such a dictionary could be used to compress motion
data. It could be used to produce long time-scale statistics about how motions
are constructed, by representing motions with the dictionary and then looking for
important co-occurrences. For example, we know that people can walk backward
and sometimes do; but if you want to move to a point a long way behind you, you
will turn around and walk forwards toward the point. As another example, it is
quite uncommon to reach in a direction you haven’t looked in recently. Long time-
scale activities can be seen as a sequence of motion primitives assembled according
to a model. Building a dictionary of motion primitives seems to require iterative
re-estimation. One uses an existing dictionary (equivalently, a set of clustered
motions) to segment a set of motion sequences, and then uses that segmentation to
re-estimate the dictionary. Estimating motion primitives well remains difficult.

A practical representation that is currently more successful involves a more
fluid encoding of possible transitions between motions, usually known as a motion



Section 20.5 Activity Recognition 620

FIGURE 20.17: The objects that occur near people can strongly suggest their pose, and the
activities they are engaged in; similarly, pose information suggests the activity and what
objects might be nearby; and activity information suggests pose and nearby objects, too.
Yao and Li (2010) show that estimating all three jointly, using a graphical model, produces
better results for each task. For each activity shown in this figure, there are four results.
The upper left shows object detection (for a cricket bat and tennis racket respectively)
using their joint method, and the upper right shows a parse of the body using their
joint method. The lower left shows detections using a scanning window method, and
the lower right shows a parse recovered with a state-of-the-art method. Notice the im-
provements resulting from joint estimation. This figure was originally published as Figure
9 of “Modeling Mutual Context of Object and Human Pose in Human-Object Interaction
Activities,” by B. Yao and L. Fei-Fei, Proc. IEEE CVPR 2010, c© IEEE, 2010.

graph. The details vary from author to author, but the simplest model regards
every frame of motion as a node and inserts a directed edge from a frame to any
frame that could succeed it. Computed edges identify transitions that could have
been observed, but are not in the current dataset. Computed edges can be inserted
by matching; if two frames are sufficiently similar, their futures (or pasts) could be
interchanged. Frames can be matched using point locations and velocities. Once the
graph is built, there are numerous methods for searching it to produce a motion that
meets a demand, typically specified by a set of constraints. Experience has shown
that any path in a motion graph that does not involve too many computed edges
does look very much like a human motion. For our purposes, what is important
about motion graphs is that they work fairly well. This is strong evidence that
human motions compose over time.

Motions can be constructed by using different building blocks for different
parts of the body. For example, it is possible to walk while scratching your head
with one hand, and the arm motion involved in scratching your head with your left
hand is basically a reflected version of the arm motion involved in scratching your
head with your right hand. We refer to this idea as composition across the body.
Such composite motions could be produced from motion capture data by cutting a
limb off one sequence and attaching it to another sequence. Many such transplants
are successful, but some apparently innocuous transplants generate motions that
are extremely bad (Ikemoto and Forsyth 2004). It is difficult to be precise about
the source of difficulty, but at least one kind of problem appears to result from



Section 20.5 Activity Recognition 621

FIGURE 20.18: The feature constructions described in Chapters 5 and 16 can be extended
to produce features for motion sequences. There are two steps: first, we consider optic flow
vectors (as in Section 10.6.1) as well as gradient vectors; second, we can build histograms
that are essentially spatial (the set of buckets covering the X and Y directions here), or
essentially temporal (the buckets extending in the T directions here). This figure was
originally published as Figure 3 of “Retrieving Actions in Movies,” Y. Laptev and P.
Perez, Proc. IEEE ICCV 2007, c© IEEE, 2007.

passive reactions. For example, assume the actor punches his left arm in the air
very hard; then there is typically a small transient wiggle in the right arm. If one
transplants the right arm to another sequence where there is no such punch, the
resulting sequence often looks very bad, with the right arm apparently the culprit.
One might speculate that humans can identify movements that both don’t look as
though they have been commanded by a normal central nervous system and can’t
be explained as a passive phenomenon.

20.5.2 Body Configuration and Activity Recognition

It seems natural to recover the body from frames of video, and then use this in-
formation to classify activities. There are two important difficulties. First, parsing
and tracking are genuinely difficult problems, as we have seen, and noise incurred in
parsing might overwhelm any signal. Second, it isn’t clear what features we would
compute.

One possible feature emphasizes some poses that might appear in a sequence.
There is now a lot of direct (as well as merely suggestive) evidence that there are
highly distinctive poses associated with most of the activities in current activity
recognition datasets. This suggests finding these poses, and then representing the
sequence with a summary of the distinctive poses that are there. For example,
one might match poses to a vocabulary of distinctive poses, or vector quantize the
poses, then build a histogram. A plain histogram omits any sequencing information,



Section 20.5 Activity Recognition 622

FIGURE 20.19: Laptev and Perez (2007) show that complex activities can be detected
with a classifier applied to spatio-temporal features constructed as in Figure 20.18. Here
we show the top 10 responses for drinking, ranked by the strength of their response. The
lighter boxes are true positives, and the darker boxes are false positives. The detector
is relatively accurate for such a complex activity. This figure was originally published as
Figure 8 of “Retrieving Actions in Movies,” Y. Laptev and P. Perez, Proc. IEEE ICCV
2007, c© IEEE, 2007.

and this tends to be worth having because it is a rough representation of motion.
An n-gram of poses is a sequence of n vector quantized poses, and Thurau and
Hlavac (2008) obtain good results by building a histogram of these n-grams, and
then classifying (Figure 20.14).

An alternative to matching the whole pose is to find body components, and
then reason about the pool of available parts; this is a version of the poselet method
(Section 18.4.2). Maji et al. (2011) build poselets that are individually discrimi-
native, using a variant of the poselet clustering procedure of Bourdev and Malik
(2009) sketched in that section (Figure 20.15). Now, rather than trying to link up
the poselets or localize the individual, they build a feature that reports the activa-
tion of each of these poselets. This feature is then used to classify, and is effective
(Figure 20.16). We do not need to pass from the poselets to a parse, because we
are unlikely to find a pool of poselets that (a) agree on an activity and (b) are close
together but are not, in fact, joined up.

There is a rich and complex relationship between activity, body configura-
tion, and nearby objects. Knowing one or two of these three pieces of information
strongly constrains the unknowns. Yao and Li (2010) build a model that links all
three, then use this to estimate objects and configuration and activity. Coupling
these three properties results in significantly improved estimates (Figure 20.17). At
the time of writing, such methods had been applied only to static images, but we
expect methods that work on motion sequences to appear soon.

20.5.3 Recognizing Human Activities with Appearance Features

We can find faces with classifiers because all faces look similar to each other, and
largely different from reasonable backgrounds. For many activities, this general
idea applies too. For example, consider drinking in a frontal view; we expect to
see a face, a hand, and perhaps a mug in front of the face, and a set of motions
around the mouth as the hand comes up to the face. This information should be
characteristic, and it turns out that it is.

Feature construction methods mirror those described in Chapters 5 and 16,
but with the added complexity of building features that represent motion. One



Section 20.5 Activity Recognition 623

FIGURE 20.20: Laptev et al. (2008) learn discriminative models of actions by obtaining
film scripts, where actions will be named, and then aligning subtitles in the film with the
script (left) to get windows of film where an action is very likely to occur. With enough
examples, they can learn a classifier despite the odd mislabeled example. This classifier can
then be used to spot actions of considerable complexity. On the right, some examples of
true positives (TP), true negatives (TN), false positives (FP), and false negatives (FN) for
some complex actions detected with this method. This figure was originally published as
Figure 10 of “Learning realistic human actions from movies,” by I. Laptev, M. Marszalek,
C. Schmid, and B. Rozenfeld, Proc. IEEE CVPR 2008, c© IEEE, 2008.

natural procedure is to find spatio-temporal interest points, build spatio-temporal
neighborhoods around them, in those regions compute a spatio-temporal analog of
a SIFT feature, vector quantize these into spatio-temporal analogs of visual words,
and then proceed as before with a histogram of those visual words. Another is to
generalize the HOG feature to have spatio-temporal support. Neither procedure is
complicated.

The main alternatives to deal with in generalization are as follows. We could
either generalize image gradients to space-time gradients (i.e., look at ∂I

∂x ,
∂I
∂y , and

∂I
∂t , yielding two image orientations), or work with optical flow vectors and image
gradient vectors separately. Our histograms could be primarily spatial (i.e., the
buckets extend across individual frames), primarily temporal (i.e., the buckets are in
a small section of a frame, extending over time), or spatio-temporal (Figure 20.18).
Laptev and Perez (2007) favor boosting methods, because each weak learner can
use a relatively local histogram of a particular type, and the question of which type
is most informative can be avoided.

The recipe of generalizing local neighborhood features and then classifying,
has been extremely successful for surprisingly complex activities (Figures 20.19
and 20.20). Laptev et al. (2008) show that successful recognizers for complex activ-
ities can be trained by aligning film scripts to video (using subtitles, and speech),
then cutting out blocks of video corresponding to an activity named in the script.
Although not every training example found in this way is correct, enough are to
produce good recognizers (Figure 20.20).



Section 20.6 Resources 624

20.5.4 Recognizing Human Activities with Compositional Models

The evidence that human activities are composites seems very strong. If activities
are truly composite, then the number of activity labels could be very large indeed.
For example, if motions are composed across time and across the body, we could
have an activity where both legs walk, left arm walks, and right arm reaches,
followed by both legs walking and both arms reaching, followed by . . . and so
on. It should be clear that very significant complexity could result. This creates
disturbing problems for purely discriminative methods. We might not have a set of
labels that is big enough to represent all this complexity. Some of the complexity
may be irrelevant, in the sense that representing or observing it does not affect
our task performance. For example, if you want to find only standing people, then
there isn’t any particular reason to represent all the things that people are inclined
to do while they walk.

If we did have a sufficient set of labels, n-gram pose histograms (Section 20.5.2)
look like a plausible representation. They have the attractive property of suppress-
ing temporal details while preserving some information about sequencing. An al-
ternative is to have an explicit model of how local labels might be composed. For
example, Ikizler and Forsyth (2008) build local models of how body quarters move
for each of a set of basic labels. These models are strung together to build a large
HMM (Figure 20.21), where local models carry labels (for example, some states
represent a leg walking). They then use this HMM to query a set of activity videos
for activities that have never been seen, but are represented by a finite-state au-
tomaton linking arm and leg labels in time. It turns out to be easy to evaluate the
posterior that a sequence was generated by a finite state automaton (FSA), and
they rank sequences by this posterior.

Explicit representations of composition are attractive, because they allow us
to have a label space that has very high complexity but is still relatively easy
to represent. One difficulty is that current methods force one to parse the body,
because it is essential to know where to cut when composing. As a result, they are
susceptible to parsing problems. Parsing methods are getting a lot better at the
time of writing, and we can expect this difficulty to be overcome in the not-too-
distant future. Another difficulty is that it is hard to know what makes a good set
of basic labels.

20.6 RESOURCES

Ferrari, Eichner, Maŕın-Jiménez, and Zisserman publish the Buffy stickman dataset
at http://www.robots.ox.ac.uk/~vgg/data/stickmen/index.html.

Ferrari, Eichner, Maŕın-Jiménez, and Zisserman publish a dataset of labeled
pose classes (i.e., hands on hips, standing), taken from the fifth season of “Buffy
the Vampire Slayer”, at http://www.robots.ox.ac.uk/~vgg/data/buffy_pose_
classes/index.html.

Patron-Perez, Marszalek, Zisserman, and Reid publish a dataset of 300 video
clips showing 4 interactions (handshakes, and so on), at http://www.robots.ox.
ac.uk/~vgg/data/tv_human_interactions/index.html.

Buehler, Everingham, and Zisserman publish a dataset of frames of human
signers, labeled with segmentation masks for arm and hand, at http://www.robots.

http://www.robots.ox.ac.uk/~vgg/data/stickmen/index.html
http://www.robots.ox.ac.uk/~vgg/data/buffy_pose_classes/index.html
http://www.robots.ox.ac.uk/~vgg/data/buffy_pose_classes/index.html
http://www.robots.ox.ac.uk/~vgg/data/tv_human_interactions/index.html
http://www.robots.ox.ac.uk/~vgg/data/tv_human_interactions/index.html
http://www.robots.ox.ac.uk/~vgg/data/sign_language/index.html


Section 20.6 Resources 625

FIGURE 20.21: Ikizler and Forsyth (2007) build composite models of action by joining up
short hidden Markov models that encode the behavior of arms (resp. legs) for particular
activities (for example, walk; jump; run). Two states can be joined up if the 3D configu-
rations and velocities are similar. The resulting model is very large, but does not require
much parameter learning (top). A path through this model produces a sequence of labels
for arms (resp. legs). A motion can now be represented either by the posterior weights
of states in the HMM trellis (bottom); notice how this trellis suggests segmenting the
sequence into three blocks. Alternatively, one could evaluate the posterior that the trellis
represents a finite-state-automaton. This figure shows an FSA for walking, then picking
up, then carrying. The representation allows for one FSA for the arms and another for
the legs. This figure was originally published as Figure 3 of “Searching Video for Complex
Activities with Finite State Models,” by N. Ikizler and D.A. Forsyth, Proc. IEEE CVPR
2007, c© IEEE, 2007.

ox.ac.uk/~vgg/data/sign_language/index.html.
Gorelick, Blank, Shechtman, Irani, and Basri publish a dataset of labeled

activities, usually called the Weizmann dataset, at http://www.wisdom.weizmann.
ac.il/~vision/SpaceTimeActions.html.

Ikizler-Cinbis publishes datasets for learning actions from the Web, for search-
ing for complex composite actions, and for recognizing actions from still images at
http://web.cs.hacettepe.edu.tr/~nazli/research.html.

Yuan, Liu, and Wu publish the MSR action dataset of 16 video sequences
depicting 63 actions by 10 subjects at http://research.microsoft.com/en-us/
um/people/zliu/actionrecorsrc/default.htm.

Laptev and Caputo publish a widely used dataset (the KTH dataset) of video
of six types of actions in four different scenarios at http://www.nada.kth.se/

cvap/actions/.

http://www.robots.ox.ac.uk/~vgg/data/sign_language/index.html
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://www.wisdom.weizmann.ac.il/~vision/SpaceTimeActions.html
http://web.cs.hacettepe.edu.tr/~nazli/research.html
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/default.htm
http://research.microsoft.com/en-us/um/people/zliu/actionrecorsrc/default.htm
http://www.nada.kth.se/cvap/actions/
http://www.nada.kth.se/cvap/actions/


Section 20.7 Notes 626

Shah and others publish several large datasets of human activity, including
the UCF 50 dataset (50 action categories, using video taken from YouTube), an
infrared dataset, a sports action dataset, and an aerial action dataset at http:

//server.cs.ucf.edu/~vision/data.html.
Niebles, Chen, and Fei-Fei publish a dataset of 16 classes of Olympic sports

activity with 50 example videos per class at http://vision.stanford.edu.
The VIRAT dataset is a challenging collection of surveillance video data,

available at http://www.viratdata.org/.
Laptev publishes several human action datasets, including data collected from

movies aligned with their scripts (see Figures 20.19 and 20.20), at http://www.

irisa.fr/vista/Equipe/People/Laptev/download.html.
The HumanEva dataset is a collection of video data synchronized to mo-

tion capture data, published by Black and Sigal at http://vision.cs.brown.

edu/humaneva/.
PPMI is a dataset of people playing musical instruments, released by Yao and

Fei-Fei at http://ai.stanford.edu/~bangpeng/ppmi.html. This dataset makes
it possible to study interactions between body configuration, objects, and activity
labels.

The CMU graphics lab publishes a large motion capture database at http:
//mocap.cs.cmu.edu. The CMU Quality of Life lab publishes a collection of data
recorded in several different forms, covering people preparing food in a kitchen, at
http://kitchen.cs.cmu.edu/.

The IXMAS dataset, collected by Weinland, shows a range of human ac-
tions collected from five different viewing directions; it can be found at http://

4drepository.inrialpes.fr/public/datasets, together with several other mo-
tion datasets.

20.7 NOTES

Applying computer vision methods to pictures or video of people seems to be de-
veloping as a topic of its own; Moeslund et al. (2011) is a good synthesis of this
topic. Faces are one crucial subtopic. We have described face detection in Chap-
ter 17. We refer readers to Li and Jain (2005) for face recognition. There is a
review of tracking methods, detection methods, and animation topics in Forsyth
et al. (2006). Parsing has become an immensely active topic recently. We suggest
Sapp et al. (2010), Tran and Forsyth (2007), Tran and Forsyth (2010), Yang and
Ramanan (2011), and Wang et al. (2011) as good start points for reading.

http://server.cs.ucf.edu/~vision/data.html
http://server.cs.ucf.edu/~vision/data.html
http://vision.stanford.edu
http://www.viratdata.org/
http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
http://www.irisa.fr/vista/Equipe/People/Laptev/download.html
http://vision.cs.brown.edu/humaneva/
http://vision.cs.brown.edu/humaneva/
http://ai.stanford.edu/~bangpeng/ppmi.html
http://mocap.cs.cmu.edu
http://mocap.cs.cmu.edu
http://kitchen.cs.cmu.edu/
http://4drepository.inrialpes.fr/public/datasets
http://4drepository.inrialpes.fr/public/datasets


C H A P T E R 21

Image Search and Retrieval

Very large collections of digital pictures seem to spring up quite easily. Many appear
on the Web in various forms, including picture sharing websites, news websites,
museum websites, and websites that sell pictures or access to pictures. Collections
of family photographs and home videos, which can get quite big, are not necessarily
on the Web but are still important. We would like to be able to search and to
organize these collections. Searching for images raises some very difficult problems.
For example, assume you had a perfect object recognition system; how would you
describe the picture you wanted? As Armitage and Enser (1997), Enser (1995) and
Enser (1993) show, using human indexers and language doesn’t seem to work even
close to perfectly. Computer programs are nowhere near as effective as people are
at describing images, meaning that search tools can be quite erratic in practice.

Tools for interacting with collections of documents are now quite sophisti-
cated. One important interaction is search, where one describes what one wants,
and then gets a set of documents back. The other is browsing, where one looks
through a set of documents to see what is interesting. To search, one needs to
be able to judge the relevance of a document to a query and to rank the docu-
ments that have been retrieved. To browse, one needs to be able to organize the
documents to be browsed in a way that makes sense.

The key questions for visual materials are the same as for documents. We need
to be able to score relevance to a query, to rank items that have been retrieved,
and to organize items in a useful way.

In Section 21.1, we describe various applications, user needs, and metrics.
Section 21.2 describes basic technologies of information retrieval, which are used to
search for text documents. Using vector quantization, we can obtain image features
that can be treated like words, and Section 21.3 shows how to apply information
retrieval ideas to these features. Section 21.4 introduces the alternative strategy
of trying to attach words to images, then using these words as a search feature.
Finally, Section 21.5 summarizes the current state of this approach.

21.1 THE APPLICATION CONTEXT

An image retrieval system takes some representation of the images that are being
searched for, and returns some pictures. Assume that we can build one—what
would we use it for? This is important, because the systems we can build will
find images that are “similar” to the query, and different applications often involve
quite different notions of how images are similar. An important part of the problem
here is that users have quite a wide range of needs, and tend to use image retrieval
systems in quite different ways.

627



Section 21.1 The Application Context 628

FIGURE 21.1: A trademark identifies a brand; customers should find it unique and special.
This means that, when one registers a trademark, it is a good idea to know what other
similar trademarks exist. The appropriate notion of similarity is a near duplicate. Here
we show results from Belongie et al. (2002), who used a shape-based similarity system to
identify trademarks in a collection of 300 that were similar to a query. The figure shown
below each response is a distance (i.e., smaller is more similar). This figure was originally
published as Figure 12 of “Shape matching and object recognition using shape contexts,”
by S. Belongie, J. Malik, and J. Puzicha, IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2002, c© IEEE, 2002.

21.1.1 Applications

We have organized sample applications of image search systems under different
notions of image similarity. For some applications, one wants images that look very
similar to a query image. For others, one wants images that meet some semantic
description; for example, they contain a “hammer,” or are not offensive. For yet
other applications, one would like to expose trends or structure in a collection
to a user, where this structure is defined by a form of similarity that might be
difficult to define explicitly. This is rather a rough organization, and there are
many applications where one wants more than one of these types of similarity.

Finding Near Duplicates
There are several important applications of near duplicate detection, where

one looks for pictures that look very similar to a query picture, possibly ignoring
changes in size, resolution, and orientation, some cropping, compression noise and
similar effects. A trademark needs to be unique, and a user who is trying to register a
trademark can search for other similar trademarks that are already registered (e.g.,
Eakins et al. (1998); Jain and Vailaya (1998); Kato et al. (1988); and Kato and
Fujimura (1990)). Near duplicate detection can be used to protect copyright. For
example, at the time of writing, the owner of rights to a picture could register it
with an organization called BayTSP, which then searches for stolen copies of the
picture on the Web. Alternatively, if you are trying to get people to use images (as
in a viral marketing campaign), you could tell how successful you are by looking
for near-exact matches. If you keep a large enough library of pictures on your
computer, you could be able to save space by detecting and removing duplicate
images.

Semantic Searches
Other applications require more complex search criteria. For example, a stock



Section 21.1 The Application Context 629

photo library is a commercial library that survives by selling the rights to use
particular images. Users contact the library and ask for pictures of, say, “the
smoking of kippers,” and the library finds the picture and sells rights to the user.
How users of these libraries behave has been studied in some detail (somebody
really did query for “the smoking of kippers”; see Enser (1993)).

An automatic method for conducting such searches will need quite a deep un-
derstanding of the query and of the images in the collection. Internet image search
shows one can build useful image searches without using deep object recognition
methods (it is a safe bet that commercial service providers don’t understand object
recognition much better than the published literature). These systems seem to be
useful, though it is hard to know how much or to whom.

More narrow applications are also important. One is identifying distressing
images (which usually, but not always, depict nudity or sexual behavior). There
are many reasons to do this. Businesses might want to discourage employees from
viewing this material on company time. Some governments would like to prevent
their citizens from viewing this material on the Internet. Businesses that sell space
on web pages to advertisers are motivated to check that the space they sell is not
next to something that will worry the advertiser.

Trends and Browsing
In data mining, one uses simple statistical analyses on large datasets to spot

trends. Such fishing expeditions can suggest genuinely useful or novel hypotheses
that can be checked by domain experts. Good methods for exposing the contents
of images to data mining methods would find many applications. For example, we
might data mine satellite imagery of the earth to answer questions like: how far
does urban sprawl extend?; what acreage is under crops?; how large will the maize
crop be?; how much rainforest is left?; and so on (see Smith (1996)). Similarly, we
might data mine medical imagery to try and find visual cues to long-term treatment
outcomes.

21.1.2 User Needs

Retrieval systems can be difficult to evaluate, because we need to know what is
relevant to a query. This is a question on which competent human informants can
differ. The difficulty is particularly true in the case of images. Users of image search
systems seem to judge relevance using both whether the image is about the search
criterion, and what the image looks like (Choi and Rasmussen 2002, Boyce 1982).
What a picture is about might bear an obscure relationship to what the picture
looks like. For example, a picture of an airplane taking off might mean “General
Pinochet leaving on the Chilean Airforce jet at RAF Waddington, Lincolnshire,
today” (an example due to Enser (2000)). However, assuming we can make these
judgments, we use recall and precision measures, as in Section 16.2.2.

A more important assessment is whether the system does something that users
want. One way to assess this is to look at deployed systems. Google’s image search
and Bing’s image search have made enough people happy that they have survived.
Even if the companies knew how well these systems work (which they probably
don’t; could one really mark up a big enough set of images with enough right



Section 21.1 The Application Context 630

answers to get a sensible recall estimate?), the information would be commercially
sensitive. One problem is that keywords seem like a fairly weak device for dealing
with image queries, because it is hard to be precise. For example, if you want to
get a picture of a kitchen scene, lit from the right, with some fish on a cutting
board on the table in the center of the room, what do you do? Another problem
is that it is hard to associate images with keywords accurately. One great strength
of commercial systems is that they give quick responses, so you can try several
different approaches; this may be what makes them useful.

Another way to determine what users want is to study how they use analogous
resources, for example, stock photo services. Up until recently, getting a photo from
a stock photo service involved a discussion with a professional picture librarian.
Researchers have studied query logs for these services to draw conclusions about
what users are seeking. It is useful to divide queries into a rich system of types
(details in Section 21.1.3). People use a range of tactics to find what they want,
and very often find browsing important (details in Section 21.1.4).

21.1.3 Types of Image Query

Most researchers divide image queries into different types. Although there are
several systems, most are based on the work of Shatford (1986), itself drawing from
work by Panofsky (1962). These are interesting to us because different users seem
to make different types of query, and because many types of query are currently
quite inaccessible to modern systems. Shatford sorted different types of meaning
that people attach to images into a table (shown in Table 21.1, after Armitage and
Enser (1997)). There are a variety of simpler systems, usually a simplification of this
table. Enser and Mcgregor (1992) use four classes, unique objects (instances; for
example, Winston Churchill); unique objects with refiners (for example, Winston
Churchill in 1920); non-unique objects (categories; for example, a rhinoceros); and
non-unique objects with refiners (modified categories; for example, a rhinoceros
coated in mud). Users usually can tell quite accurately how their query should be
categorized in this taxonomy (Chen 2001). Hung (2005) divides queries into specific
(an instance of a category, for example, the neighbor’s tortoiseshell cat), general
(elements of a category, for example, a cat), and subjective (emotional or abstract
content, for example, catness).

Notice that these taxonomies are more refined than those current in the vi-
sion literature. Although we can regard specific queries or unique object queries
as being like near duplicate matching (or, for that matter, instance recognition),
there is little work on refiners for unique objects. Similarly, general or non-unique
object queries are like semantic matching (or category recognition), but again there
is little known about refiners. Finally, types of match that are important to peo-
ple (for example, subjective queries; much iconography and all iconology) remain
mysterious to computer vision systems.

Users of stock photo libraries seem to formulate quite precise queries, mainly
for unique objects, and interact with the photo librarian to refine the search (Enser
and Mcgregor 1992). Users of home collections—where all the photographs are their
own—like to have these pictures chronologically organized and like to see browsing
screens with many small thumbnails (Rodden and Wood 2003). These users seem



Section 21.1 The Application Context 631

Iconography Pre-Iconography Iconology
(instances) (categories) (abstractions)

Who? Named person Type of person Mythical
or thing or thing or fictitious being

(Winston Churchill) (Prime Ministers) (Plantagenet Palliser)
What? Named event Kind of event Emotion

or action or action or abstraction
(Battle of Waterloo) (Battle) (Conflict)

Where? Named place Kind of Symbolized
place place

(Urbana-Champaign) (Small town) (Utopia)
When? Specific time, Season, Abstraction

date or period time of day symbolized by time
(9/11) (Fall afternoon) (A Dance to

the Music of Time)

TABLE 21.1: Different types of query, according to Armitage and Enser (1997)

not to want to annotate their pictures, perhaps because when the pictures are new
they see no need, and later they either can’t remember what annotations apply
or don’t bother to annotate. Users of large online collections are more willing to
search for non-unique objects, or for categories (see Jörgensen (1998); Jörgensen
and Jörgensen (2005); or Hollinka et al. (2004)), perhaps because it is easy to change
or refine their search and to browse. Analysis of search logs can be complicated by
internet users who search aggressively for sexual materials but relatively few terms
seem to have high frequencies (Goodrum and Spink 2001).

21.1.4 What Users Do with Image Collections

People seem to use a range of tactics to find what they want. Online users have
a wider range of tactics available to them than users interacting with a librarian;
they can change search engine, look for surrogate sites that hold small, relevant
picture collections, browse, and so on. Image professionals studied by Jörgenson
often retried their query with some modifications (Jörgensen and Jörgensen 2005).
These modifications appeared to be experimental, rather than the result of some
clear strategy. There are detailed studies of how people change search tactics (Hung
2005). The most important points for us are that: (a) people do change their search
tactics often, meaning a responsive interface is important; and (b) browsing is a
very important tactic.

Browsing is consistently important in all studies. Frost et al. (2000) study the
behavior of users of a collection of art images. In this work, users could engage in
keyword search or browse, and users who did not know much about the collection
very much preferred to browse the collection, whereas users who knew the collection
preferred to search. Similarly, McDonald and Tait (2003) find users who know
what they want sketch or navigate, but users who don’t, browse. Markkula and
Sormunen (2000) study users of a newspaper photo archive, who typically search
with a small number of keywords and then browse the results. For the image



Section 21.2 Basic Technologies from Information Retrieval 632

professionals studied by Jörgensen and Jörgensen (2005), a search that resulted
in a download typically involved a browsing step, and a useful browsing interface
seemed to be important in the process of selecting an image to use. Browsing
behavior is affected by how images are arranged. If images are laid out randomly,
users select the image they want quickly, but if the images are laid out according
to similarity in appearance, then users take longer to select the image they want,
but tend to be happier with the result (Rodden et al. 2001).

21.2 BASIC TECHNOLOGIES FROM INFORMATION RETRIEVAL

Some techniques and ideas from text information retrieval are widely appropriated
in vision. Typical text information retrieval systems expect a set of query words.
They use these to query some form of index, producing a list of putative matches.
From this list they chose documents with a large enough similarity measure between
document and query. These are ranked by a measure of significance, and returned.

21.2.1 Word Counts

Much of text information retrieval is shaped by the fact that a few words are
common, but most words are rare. The most common words—typically including
“the,” “and,” “but,” “it”—are sometimes called stop words and are ignored because
almost every document contains many of them. Other words tend to be rare, which
means that their frequencies can be quite distinctive. Quite often, it is enough to
know whether the word is there or not. For example, documents containing the
words “stereo,” “fundamental,” “trifocal,” and “match” are likely to be about 3D
reconstruction; documents containing “chrysoprase,” “incarnadine,” “cinnabarine,”
and “importunate” are lists of 11 letter words ending in “e” (many such lists exist,
for crossword puzzle users; you can check this using Google).

Indexing Documents
It is straightforward to build a table representing the documents in which

each word occurs, because very few words occur in many documents, so the table
is sparse. Write Nw for the number of words and Nd for the number of documents.
We could represent the table as an array of lists. There is one list for each word, and
the list entries are the documents that contain that word. This object is referred to
as an inverted index, and can be used to find all documents that contain a logical
combination of some set of words. For example, to find all documents that contain
any one of a set of words, we would: take each word in the query, look up all
documents containing that word in the inverted index, and take the union of the
resulting sets of documents. Similarly, we could find documents containing all of
the words by taking an intersection, and so on. Such logical queries usually are
not sufficient, because the result set might be either very large or too small, and
because we have no notion of which elements of the result set are more important.
We need a more refined notion of similarity between documents, and between a
document and a query.

Similarity from Word Counts
One measure of similarity for two documents is to compare word frequencies.



Section 21.2 Basic Technologies from Information Retrieval 633

Assume we have a fixed set of terms that we will work with. We represent each
document by a vector c, with one entry for each term. These entries are zero when
the term is absent, and contain some measure of the word frequency when the word
is present. This measure might be as simple as a one if the word appears at least
once in the document, or might be a count of the number of words. Write c1, c2
for two such vectors; the cosine similarity between the documents they represent is

c1 · c2
||c1 ||||c2 ||

.

Two documents that both use an uncommon word are most likely more similar
than two documents that both use a common word. We can account for this effect
by weighting word counts. The most usual way to do this is called tf-idf weighting
(for “term frequency-inverse document frequency”). Terms that should have most
weight appear often in the particular document we are looking at, but seldom in
all documents. Write Nd for the total number of documents and Nt for the number
of documents that contain the particular term we are interested in. Then, the
inverse document frequency can be estimated as Nd/(1+Nt) (where we add one to
avoid dividing by zero). Write nt(j) for the number of times the term appears in
document j and nw(j) for the total number of words that appear in that document.
Then, the tf-idf weight for term t in document j is(

nt(j)

nw(j)

)
/log

(
Nd

(1 +Nt)

)
.

We divide by the log of the inverse document frequency because we do not want
very uncommon words to have excessive weight. Inserting this tf-idf weight into
the count vectors above will get a cosine similarity that weights uncommon words
that are shared more highly than common words that are shared.

21.2.2 Smoothing Word Counts

Our measurement of similarity will not work well on most real document collections,
even if we weight by tf-idf. This is because words tend to be rare, so that most pairs
of documents share only quite common words, and so most pairs of documents will
have quite small cosine similarity. The real difficulty here is that zero word counts
can be underestimates. For example, a document that uses the words “elephant,”
“tusk,” and “pachyderm” should have some affinity for “trunk.” If that word does
not appear in the document, it is an accident of counting. This means that to
measure similarity, we would do well to smooth the word counts.

We can do so by looking at how all terms are distributed across all documents.
An alternative representation of the information in an inverted index is as an Nw

by Nd table D, where each cell contains an entry if the relevant word is not in the
relevant document and a zero otherwise. Entries could be one if the word occurs,
or a count of the number of times the word occurs, or the tf-idf weight for the term
in the document. In any case, this table is extremely sparse, so it can be stored
and manipulated efficiently. A column of the table is a representation of the words
in a document, and the cosine similarity between columns is our original measure
of similarity between documents.



Section 21.2 Basic Technologies from Information Retrieval 634

Zeros in D might be the result of counting accidents, as above. We would
like a version of this table that smooths word counts. There are likely to be many
documents for any particular topic in the collection, so the smoothed version of the
table should have many columns that are similar. This means it will be significantly
rank-deficient. We compute a singular value decomposition of D as D = UΣVT .
Write Uk for the matrix consisting of the first k columns of U , Vk for the matrix
consisting of the first k columns of V , Σk for Σ with all but the k largest singular
values set to be zero, and write D̂ = UkΣkVT

k .
Now consider the ith column of D, which we write as di. The corresponding

column d̂i of D̂ lies in the span of Uk. The word counts are smoothed by forcing
them to lie in this span. For example, assume that there are many documents
discussing elephants, and only one uses the word “pachyderm.” The count vectors
for each of these documents could be represented by a single column, but error will
be minimized if there is a small count for “pachyderm” in each. Because of this
smoothing effect, cosine distances between documents represented by columns of D̂
are a much more reliable guide to similarity.

To compute cosine similarity between an old document and a new document
with count vector q, we project the new document’s count vector onto the columns
of Uk to obtain q̂ = UkUT

k q. We can then take the inner product of q̂ and d̂i. A
complete table of inner products (cosine distances) between documents is given by

D̂T D̂ = (VkΣk)(ΣkVT ) = (ΣkVT
k )

T (ΣkVT ),

so that we can think of the columns of ΣkVT as points in a k-dimensional “concept
space” that represents the inner products exactly. One could, for example, cluster
documents in this space rather than the original count space, and expect a better
clustering. Computing the SVD of D is known as latent semantic analysis; using
the concept space for indexing is known as latent semantic indexing.

D̂ is useful in other ways, too. There is a rough tendency of words that have
similar meaning to appear near similar words in similar documents, an idea known
as distributional semantics. This means that cosine similarity between rows of D̂ is
an estimate of the similarity of meaning of two terms, because it counts the extent
to which they co-occur. Furthermore, D̂ can be used as an inverted index. If we
use it in this way, we are not guaranteed that every document recovered contains
all the words we used in the query; instead, it might contain very similar words.
This is usually a good thing. The columns of U are sometimes called topics and
can be thought of as model word frequency vectors; the coordinates of a column in
the semantic space show the weights with which topics should be mixed to obtain
the document.

21.2.3 Approximate Nearest Neighbors and Hashing

Smoothing word counts may mean that the term-document table is no longer sparse,
and indexing will not be an efficient way to find documents with high similarity.
Instead, we can notice relations between the cosine similarity and the inner product.
In particular, for two documents with fixed length count vectors c1 and c2, a large
value of cosine similarity implies a small value of ||c1 − c2 ||2.

This leads us to a general, and difficult, problem. We need to find the members



Section 21.2 Basic Technologies from Information Retrieval 635

of a set of high dimensional vectors that are close or closest to some query vector.
A linear search through the dataset is fine for a small set of data items, but we
will operate at scales where we need something more efficient. The main trick to
obtaining a good approximate solution is to carve the space into cells, then look at
items that lie in cells near the query vector; there are two methods that are worth
discussing in detail here.

Locality Sensitive Hashing
In locality sensitive hashing, we build a set of hash tables containing the

data items, using different hashing functions for each table. For a query item, we
recover whatever is in each hash table at the location corresponding to the hash
code computed for the query item. We search this set, keeping any data items from
this set that are sufficiently close to the query. There are many choices of hash
function; the most widely used in vision is random projection. Write v for a vector,
representing either a query or a data item. We now obtain a single bit of a hash
code by choosing a random vector r and then computing sign(v · r). Computing
a k-bit hash code involves choosing k such random vectors, then computing one
bit for each. There is a set of k such random vectors associated with each hash
table. Geometrically, choosing an r corresponds to choosing a hyperplane in the
data space, and the hashing bit corresponds to which side of the hyperplane v lies
on. A k-bit hash code identifies a cell in an arrangement of k hyperplanes in which
v lies. k will be small compared to the dimension, and so we are cutting the space
into 2k cells. This means that there will be relatively few data items that lie in the
same cell as a query. Some nearby data items may not lie in the same cell, because
they could be on the other side of a hyperplane, but these items should lie in the
same cell in another hash table.

All these assertions can be made precise, resulting in a guarantee that: (a) a
data item that is almost as close as the nearest neighbor will be found with high
probability; and (b) all data items closer to the query than some threshold will be
found with high probability, whereas data items that are significantly more distant
will be found with low probability. Straightforward geometric intuition suggests
that this approach will work best when the data items have zero mean, which is
easy to arrange. Notice that using n k-bit hash tables is not the same as using one
nk-bit hash table. In the first case, the list of points returned from a particular
query is a union of the lists returned from each of the n hash tables. This means
that points that are near the query but just happen to lie outside the query’s cell
for one hash table, have a good chance of being found in another hash table. In the
second case, the list we must handle is much shorter (because there are more cells),
but there is a better chance of missing nearby points. The choice of n and k will
depend on dimension and on the nature of the probabilistic guarantee one wants.
There are a variety of other possible choices of hash function. Details of other
choices, and precise statements of the relevant guarantees, can be found in (Indyk
and Motwani 1998).

KD-Trees for Approximate Nearest Neighbors
Random projection methods build a cell structure that is independent of the

distribution of the data. This means trouble if data is heavily concentrated in some



Section 21.2 Basic Technologies from Information Retrieval 636

+

+

+

+1

2

3

4
+

+

+

+
1

2

3

4

0001

1100

1001

1100

Hash table 1 Hash table 2

Data point

Query

FIGURE 21.2: In locality sensitive hashing using a random projection hash function, the
hash function is equivalent to a hyperplane in the data space. Items that lie on one side of
the hyperplane corresponding to the nth bit have that bit set to one; otherwise, it is zero.
These hyperplanes cut the space of data into a set of cells. All the data items in a cell
get a binary hash code (shown for two points in each figure; we have marked the order of
the bits by labeling the hyperplanes, and the +s show which side of the hyperplane gets
a one). To query, we find all data items in the same hash table entry as the query (the
filled polygons in the figure), and then find the closest. However, the nearest neighbor
might not be in this cell (for example, the case on the left). To reduce the probability of
error from this cause, we use more than one hash table and search the union of the sets
of points lying in the query cell. In the case illustrated, the nearest neighbor of the query
lies in the query cell for the second hash table, on the right. The hash tables reduce the
set of points we need to search, with high probability of finding a point that is almost as
close as the nearest neighbor.

regions, because queries that land in a heavily populated cell of the hash table will
need to search a long list. An alternative method is to use a k-d tree to build the
cell structure. A k-d tree is built by recursively splitting cells. The root will be the
whole space. To generate the children of a cell, select one dimension d, perhaps at
random, and select some threshold value td. Write the dth component of v as vd.
Now all data items in a cell with vd ≤ td are placed in the left child, and all others
in the right. We now apply this splitting procedure recursively to the root, until
the children are sufficiently small. If we choose the threshold value appropriately
(for example, the median of the data in the cell), we can ensure that cells are small
in dense components of the space and large in sparse components.

The nearest neighbor to a query can then be found by walking the tree to
find the cell containing the query point. We then check any data items in that
cell. Write the distance from the query to the closest as dc. We now backtrack,
investigating cells that could contain points closer than dc and updating dc when
we find a better point. We can prune any branch of the tree that represents a



Section 21.2 Basic Technologies from Information Retrieval 637

1

2

3

Data point

Query

FIGURE 21.3: A k-d tree is built by recursively splitting cells along dimensions. The order
in which cells are split for this tree is shown by the dashes on the lines. The nearest
neighbor for the query point is found by (a) finding the closest item in the query point’s
cell, then (b) backtracking, and looking at cells that could contain closer items. Notice that
in this example one will need to go right up to the root of the tree and down the other side
to find the nearest neighbor. In high dimensions, this backtracking becomes intractable,
but if an approximate nearest neighbor is sufficient, the amount of backtracking can be
controlled successfully.

volume that is further from the query than dc. This procedure works well for low
dimensions, but becomes unattractive in high dimensions because we will need to
explore too many cells (the number of neighbors of a cell goes up exponentially
with dimension).

This difficulty can be avoided if an approximate nearest neighbor is sufficient.
In the best bin first approach, we look at a fixed number Nc of cells, then report
the best point found so far. Promising cells will tend to have some points that are
close to the query, and we define the distance between a cell and the query to be
the shortest distance from the query to any point on the cell’s boundary. Whenever
we investigate the child of a cell, we insert the other child into a priority queue,
ordered by distance to the query. Once we have checked a cell, we retrieve the next
cell from the priority queue. We do this until we have looked at Nc cells. We will
look mainly at cells that are close to the query, and so the point we report is a good
approximate nearest neighbor.

Good performance of a particular method depends somewhat on the dataset.
For most applications, the choice of method can be made offline using the dataset,
or a subset of it. Muja and Lowe (2009) describe a software package that can choose
an approximate nearest neighbors method that is fastest for a particular dataset.
Generally, they find that using multiple randomized k-d trees is usually the best; at
the time of writing, software could be found at http://www.cs.ubc.ca/~mariusm/

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN


Section 21.2 Basic Technologies from Information Retrieval 638

p

N
i

i

p

N

j

j

p

N
k

k

p=Σ(incoming importance)

p

No

FIGURE 21.4: The structure of the Web offers cues to what is important and what is not;
important documents have many links coming in from other important documents. We
model this process by associating an importance pi with the ith node. The importance at
any particular node is the sum of incoming contributions. Each node shares its importance
equally across the outgoing links. In turn, we obtain an eigenvalue equation that is too
big to solve. However, we can estimate importance by simulating a random walk through
the directed graph. This random walk chooses an outgoing edge with uniform probability
then proceeds along that edge; it will spend more time at more important documents.

index.php/FLANN/FLANN.

21.2.4 Ranking Documents

These measures can tell how similar terms or documents are to one another and
how similar a document is to a query, but they do not tell us anything about how
important a document is. In very large collections, documents that may be very
similar to a query might not be very interesting. Web search engines must choose
which documents appear first in response to a query. The procedure used now seems
to be very complex, and is influenced by potential revenues from advertising and
so on, but is based on an important simple insight: the structure of the Web itself
offers cues to what is important and what is not. This is because Web documents
have oriented links between them, and important documents will tend to have links
pointing to them. Write the importance of the jth document as pj . We assume
that: (a) if many important documents point to j, then it must be important; (b)
importance is additive; and (c) each document shares its importance evenly over
outgoing links. This means that, if we write N(k) for the number of outgoing links
in a document, we can write

pj =
∑
k→j

pk
N(k)

(where the sum is over all documents with links pointing to j).
Equivalently, we can write a matrix A that is an Nd by Nd table recording all

links. If there is no link from the kth document to the jth document, then the j,
kth element of this matrix, ajk, is zero; otherwise, we have ajk = 1/N(k). We write
p whose jth component is the importance of the jth document. Then we have

p = Ap.

In practice, A is far too big to write out explicitly. Instead, we can estimate

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN


Section 21.3 Images as Documents 639

importance using a random walk. Notice that, for mild conditions on A, the vector
defined by p = Ap is the stationary distribution of a random walk whose state
transition matrix is A. This justifies estimating importance by a random walk that
starts at some randomly chosen document, then chooses outgoing links uniformly
and at random. Because we do not know whether the Web has only one connect
component, it is a good idea to modify this random walk slightly. At each node,
we allow the walk to have a small constant probability of transitioning to any other
document (rather than just documents that are linked to the current one). If we
let this walk go on for many state transitions, then documents will appear with a
probability corresponding to their importance. Equivalently, if we leave a note each
time the random walk visits a document, the number of notes left at each document
is approximately proportional to the importance of the document. The importance
reported by this algorithm is known as Pagerank (after its inventor, Larry Page).
The Pagerank algorithm seems to have been at the core of Google’s early success,
and may still be part of its operations.

21.3 IMAGES AS DOCUMENTS

In near duplicate detection we have a query image and want to find a near duplicate
in a very large collection. The core problem here is to come up with a quick
procedure to reduce the main dataset to a small set of pictures that are very likely
to be near duplicates, and that is very likely to contain all the near duplicates.
The small set can then be checked in detail with a slow algorithm. We need a
representation that is efficient enough to scale well, but informative enough to be
accurate. Visual words (Section 16.1.3) are a natural choice.

The advantage of the word analogy is we can adopt standard strategies of
information retrieval, and all the machinery of Section 21.2 applies. Visual words
that are very common are analogous to stop words, and so can be ignored. We can
use inverted indexes to find logical combinations of visual words. We can represent
an image with a count vector of its visual words. This vector could be unweighted,
or weighted with TF-IDF. We can represent the similarity of two images by the
cosine similarity of these vectors. We can smooth count vectors. And we can find
near duplicates by finding images that have a large cosine similarity, using either
approximate nearest neighbors or an inverted index. Sivic and Zisserman (2003),
who first made this observation, applied this strategy to search for near duplicates
of user-identified objects in video (Figure 16.5), but it applies to near duplicate
image detection.

The visual word analogy makes other information retrieval ideas useable for
images. For example, in query expansion, we take the first set of responses to a
query, then query with those, and then merge the responses from those queries.
This could help overcome noise issues by finding things that are missed by the
original query but look very similar to it. However, it could make the results worse,
by finding things that look a lot like errors in the response to the original query.
Chum et al. (2007) show that, as long as the expanded query is carefully checked
with a verification procedure, query expansion can give significant improvements
in results.

One way in which images differ from documents is that relations between



Section 21.3 Images as Documents 640

local interest points in images are a great deal richer than relations between words.
Straightforward analogies with information retrieval based on visual words can’t
exploit this observation, so two images that have a high cosine similarity could
have similar sets of visual words in a different spatial arrangement. However, we
could build a quite efficient system by first retrieving images that have high cosine
similarity to a query and then checking the results for spatial consistency with the
query. This is efficient because we can’t make two different sets of visual words
look more similar by moving the words around in an image, so two images with
high cosine similarity will have many matching visual words. We just need to check
that the matched pairs are consistent with each other. We could check that each
match has nearby good matches. For example, Sivic and Zisserman find the 15
visual words closest in the image to each good match; any of those 15 that also
matches a visual word in the query gets to cast a vote for similarity, and images are
ranked by the total number of votes. This is a rough form of spatial consistency
because nearby words that match might not actually be in the right place, but it
is effective.

21.3.1 Matching Without Quantization

A problem with visual words is that some of the details that are suppressed by
vector quantization might be important. Jegou et al. (2010) show that this difficulty
can be evaded by computing several different vector quantizations. In effect, one
builds multiple systems using different k-means clusterings; each reports a ranked
list of similar near-duplicates; and one combines these lists by giving each image
its median rank. Another strategy is to use an extremely large vocabulary. It is
difficult to use a large vocabulary with k-means because vector quantizing a local
descriptor requires finding the closest cluster center, which will require a linear
search across the cluster centers. An alternative is to use hierarchical k-means.
Here we cluster to k centers using k-means, then cluster each cluster with k-means
again; we can repeat this recursively. The result is a tree, where finding the closest
leaf involves repeatedly finding the closest of k cluster centers. Nister and Stewenius
(2006) use this approach to produce a very large vocabulary. They have built what
is now a standard dataset, with near duplicates marked to allow easy evaluation
(at http://www.vis.uky.edu/~stewe/ukbench/ as of time of writing).

An alternative to vector quantization is to search for all interest points that
match a query. Ke et al. (2004) use LSH to find images that have many interest
points that match interest points in the query image, then check that the matching
interest points support the idea that there is an affine transform from the query
image to the returned images. Ke et al. use PCA-SIFT, rather than SIFT, to
describe interest points, and find similar interest points using locality sensitive
hashing. From this list, they extract the names of images that have many matching
interest points. For each of these images, they use RANSAC to search for an
affine transformation consistent with the (now relatively short) list of potentially
matching interest points. If they find such a transformation with a fixed number of
inliers, they regard the image as a near duplicate. The required number of inliers
is a parameter; too small a value will mean false positives and too large a value will
mean false negatives.

http://www.vis.uky.edu/~stewe/ukbench/


Section 21.3 Images as Documents 641

No Match

Match

Query

Collection

LSH hits

Indexing Geometric Verification

Local patch

representation

FIGURE 21.5: An alternative to using visual words is to apply locality sensitive hashing
to representations of local windows and then verify matches geometrically. Ke et al.
(2004)’s system takes a query image, computes representations of windows around image
points (they use PCA-SIFT; other representations would work), and then uses LSH to
identify all images which contain interest points within some distance of any interest
point in the query image. They then post-process this list, using RANSAC to search
for an affine transformation consistent with the potentially matching interest points; if
there are sufficient inliers for the transformation that is found, then the image is a near
duplicate. This figure kindly generated by Rahul Sukthankar, and used with his permission.

Numerous variants on these general recipes are possible. In the case of copy-
right enforcement, for example, the true near duplicates will be rotated, scaled, and
cropped versions of the original. Once we have a small set of potential duplicates
with matched interest points, we can estimate the transformation from the point
matches (as Ke et al. (2004) do, above), then transform the query image and com-
pare to the duplicate with, for example, a sum of squares difference on the intensity.
If most overlapping pixels have similar intensity, then there is a near duplicate.

21.3.2 Ranking Image Search Results

Reranking the results of an image search is usually an essential part of presenting
them to a user. This is because large image collections are often “clumpy.” If
there is one, say, side view of the Eiffel tower, there will be many similar views;
worse, there is very likely to be another clump of images of the Eiffel tower from
above. Typically, images from similar view directions will have similar relevance to
a query. This means that it is not helpful to present the user with images ranked
by relevance, because then the user will see several pages of side views followed by
several pages of top views, and so on. Instead, we must rerank the search results
in a way that gives a fair representation of all the kinds of results.



Section 21.3 Images as Documents 642

FIGURE 21.6: Jing and Baluja (2008) use a version of pagerank to rerank the results of
an image query. The graph shows results for a query for “Nemo”; notice there are several
tightly linked clumps of images, representing themes. Edges are built using a strategy
comparable to locality sensitive hashing. If an interest point in one image hashes to the
same location as an interest point in another image, then there is an edge between those
images; the number of such interest points gives the weight of the edge. Jing and Baluja
then use pagerank to identify important images. Pagerank will produce representatives
from strong clusters, like the inset images. Simply looking for images with high degree will
overemphasize pictures that appear repeatedly, for example, the strong cluster of Nemo
sushi images near the bottom of the figure. This figure was originally published as Figures
2 and 9 of “VisualRank: Applying PageRank to Large-Scale Image Search,” by Y. Jing
and S. Baluja, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,
c© IEEE, 2008.

The main question in reranking is which images should appear high in the final
ranking. The criterion should be relatively fast to implement, because we expect
to be dealing with many pools of result images. It should visit all the clumps of
images, and should emphasize bigger ones more strongly than small ones, but not
to the extent that small ones are missed completely.

Jing and Baluja (2008) do this with a variant of pagerank. For some k, the
top k query results are arranged into a graph. We will apply the pagerank random
walk, with restart, to this graph. We can then get the final ranked set of images by
occasionally (perhaps after a fixed number of steps of the random walk) reporting
an image when we visit its node. We expect this approach to work well, because
pagerank is good at identifying strongly linked nodes. It can be implemented very
quickly and efficiently. The trick is that we do not need to build the graph at any



Section 21.3 Images as Documents 643

time. All we need to know at a given node is which other nodes are connected to
it, and with what weights. Jing and Baluja obtain this information from a set of
hash tables. Before the random walk is started, a single pass through all the query
results computes local features at a set of interest points for each image. These local
features are hashed into a collection of hash tables, each using a different hashing
function. To take a step of the random walk, we must find all images connected to
the current image. We do so by querying the hash tables with each local feature in
the current image; any collision that occurs in enough hash tables corresponds to a
link. The number of local features that collide with local features in another image
gives the weight of the link to that image. This is reasonable, because images that
share many local features are likely to be more similar than images that share few.

21.3.3 Browsing and Layout

We have developed an analogy between images and text documents, but like all
analogies, it is only good as far as it goes. One failure of the analogy, as we have
seen briefly, is that spatial relations between points in images tend to be more
complex than those between words in documents. Another is that it is natural to
lay out documents in a ranked order list (perhaps with a little extra structure to
highlight adverts or sponsored results), but images might be laid out in much more
complex ways. Supporting browsing with complex layouts doesn’t seem to work
well for documents, but might for images, because it is easier to interpret an image
at a glance. Such layouts are interesting, because they can support browsing.

Browsing is tricky to define, but there seem to be four important components:
a browser sees a display of a broad range of options; selects one; examines it; then
either acquires it or rejects it (Bates 2007). This means that browsing tools should:

• allow a user to get a sense of the totality of a collection, perhaps by displaying
a representation of clusters of images where similar clusters might be close
together; big clusters might be large; and so on;

• provide some form of interaction that makes it possible to select, possibly at
different levels of detail (perhaps one wants to see a particular image, or the
elements of a particular cluster);

• display what has been selected, which could be an image or a group of images,
in some detail;

• and allow a user to move on, perhaps by making it possible to see and to
move through the collection in different “directions” or by displaying subsets
of images that are “similar.”

Browsing and search tools naturally complement one another. A user could
first browse the collection, and then frame a search. Having searched, the user
might then choose to browse items “near” to any hits returned by the search tool,
and so on.



Section 21.3 Images as Documents 644

21.3.4 Laying Out Images for Browsing

Generally, browsing systems involve a user interface built on top of a set of image
clusters. Constructing a good user interface for a browsing system is tricky. Desir-
able features include: responsiveness (so the user can move around without getting
frustrated); fluid navigation (so that minor puzzles created by errors in the image
clustering are easily resolved); and a sensible spatial metaphor, so that it is natural
to know where to go next as one moves around the collection. We can achieve
these goals by computing meaningful distances between images or image clusters
and then laying out those images in a way that reflects the distances.

We can compute inter-image distances by taking histograms (for some reason,
color histograms were particularly popular; now one would use a histogram of
visual words), then using χ-squared or similar distances between histograms. The
method shown in Figure 21.7 uses an alternative, the earthmovers distance, which
is a measure of similarity between vector quantized sets, each represented using
different collections of visual words (Rubner et al. 2000).

The general problem of finding embeddings for points in some dimension so
that the distances are similar to a given table of distances is known as multidi-
mensional scaling. Assume we have n points we wish to embed in an r-dimensional
space. Write D2 for a table of squared distances between points, with d2ij the squared

distance between point i and point j. Notice that if D2 is a table of distances, it
will be symmetric. Write the embedding for point i as xi. Because translation
does not change the distances between points, we can choose the origin, and we
will place it at the mean of the points, so that 1

n

∑
i xi = 0. Write 1 for the n-

dimensional vector containing all ones, and I for the identity matrix. By noticing
that d2ij = ||xi − xj ||2 = xi · xi − 2xi · xj + xj · xj , we can show that

M = −1

2

[
I − 1

n
11T

]
D2

[
I − 1

n
11T

]
has i, jth entry xi · xj . This means that, to estimate the embedding, we must
obtain a matrix X whose columns are the embedded points, so that M is “close”
to X TX . A variety of notions of “closeness” might be appropriate; the easiest to
use is least squares. In this case, we can apply a singular value decomposition to
M to get M = UΣUT . We form G = Σ1/2UT , and the first r rows of G are the X
we require.

We can use multidimensional scaling (MDS) to lay out sets of images using
an inter-image distance, as in Figure 21.7 (which uses the earthmovers’ distance,
applied to a color and texture representation). This figure illustrates one form
of selection of level of detail, where the user can select a subset of images in a
neighborhood, and have this subset laid out with MDS. We expect the relative
position of the images to change, because we expect the subset to have a different
distribution of distances between images. When the set of images is large, another
approach is to cluster them and then represent each cluster center with an image
(perhaps the image closest to the cluster center). We then build a squared distance
matrix out of inter-cluster distances, and again use MDS to lay out the cluster
centers, placing a thumbnail for the representative image at its most appropriate
location. We can then display finer-scale detail by allowing the user to select a



Section 21.4 Predicting Annotations for Pictures 645

1

2

3

FIGURE 21.7: Multidimensional scaling allows us to compute locations on a screen that are
consistent with inter-image distances, and so lay out images in a suggestive way. Frame
1 shows 500 images, the response to a query for a desert landscape. Multidimensional
scaling has been used to compute locations for the thumbnails. Notice how strongly
different images are far apart (this image distance places strong weight on global color
distances, and the purple images are to the left of this frame, while more yellow images are
to the right). The user then clicks on the black dot (near top right of the frame), and the
100 images closest to that point are selected; a new multidimensional scaling is computed
for this subset of images, and they are laid out to give frame 2. The layout changes because
the statistics of distances have changed. Again, the user clicks on the black dot (lower
center of the frame), to select a subset of 20 images; again, a new scaling is computed
for this subset, and they are laid out to give frame 3. This figure was originally published
as Figure 4 of “A Metric for Distributions with Applications to Image Databases,” by Y.
Rubner, C. Tomasi, and L. Guibas, Proc. IEEE ICCV 1998, c© IEEE, 1998.

cluster center, then see all the elements of the cluster.

21.4 PREDICTING ANNOTATIONS FOR PICTURES

Appearance-based searches for images seem to be useful only in quite special ap-
plications. In most cases, people appear to want to search for images using more
general criteria, like what objects are present, or what the people depicted are
doing (Jörgensen 1998). These searches are most easily specified with words. Rel-
atively few pictures come with keywords directly attached to them. Many pictures
have words nearby, and a fair strategy is to treat some of these words as keywords
(Section 21.4.1). More interesting to us is the possibility of learning to predict
good annotating words from image features. We could do so by predicting words
from the whole image (Section 21.4.2). Words tend to be correlated to one an-
other, and prediction methods that take this into account tend to perform better
(Section 21.4.3). Linking names in a caption to faces in an image is an important
special case (Section 21.4.4), which suggests a general strategy of thinking about
correspondences between image regions and words (Section 21.4.5).

Image annotation is important for two reasons: first, there are useful practical



Section 21.4 Predicting Annotations for Pictures 646

applications in image search; and second, it emphasizes a question that is crucial
for object recognition—what should we say about a picture? The main distinction
between methods is how they deal with the fact that image annotations tend to be
quite strongly correlated. Some methods model correlations explicitly, and others
allow words to be conditionally independent given image structures, and allow the
correlation between image structures to encode the correlation between words.

21.4.1 Annotations from Nearby Words

The name of the image might yield words. A picture called mydog.jpg likely shows
a dog, but it is hard to tell what might be in 13789.jpg. If the image appears on a
web page, then it is most likely in an IMG tag. The standard for these tags requires
an alt attribute, which is the text that should appear when the image can’t be
displayed. Words that appear in this attribute could also be used as keywords.
Unfortunately, HTML does not have a single standard way of captioning images,
but a text matcher could identify some of the many methods used to display images
with captions. If a caption is found, words that appear in the caption might be
used as keywords. Finally, one could use words that render on the web page near
to the image. One could also cluster any or all of these sources of words to try
to suppress noise, and attach cluster tags rather than keywords to images. Notice
that some kinds of web page might be more fruitful for this kind of analysis than
others. For example, a catalog might contain a lot of images whose identity is quite
obvious.

If you experiment informally with commercial image search engines, you will
notice that most pictures returned for simple one-word object queries are pictures in
which a single object is dominant. This underlines an important point. The images
that we are dealing with in Internet search applications may not be at all like the
images that appear at the back of your eye. There are quite strong relationships
between object recognition and image search, but they’re not the same problem.
Apart from this very important point, these pictures are there either because people
want such pictures (and so the search results are biased to place them at the top),
or because search engines are biased toward finding them (because they look in
places where such pictures are prominent and easily obtained).

21.4.2 Annotations from the Whole Image

The simplest way to attach words to pictures is to use a classifier to predict one
word for the whole picture (methods described in Chapter 16). The vocabulary
might need to be quite big, and the approach might not work well for images that
don’t contain a dominant object. A more attractive approach is to try to predict
more than one word. A simple and natural way to try and do this is to annotate
each image with a binary code. This code is the length of the vocabulary. Each bit
in the code corresponds to a word in the vocabulary, and there is a one if the word
is present and a zero if it is absent. We then find the set of codes that actually
appear (a set that will be much smaller than the set that could appear. Typical
vocabularies might run to 400 words or more, and the number of possible codes
is then 2400). We treat each code that actually appears as a word, and build a
multi-class classifier. This sounds easy, but is wholly impractical, because there



Section 21.4 Predicting Annotations for Pictures 647

FIGURE 21.8: A comparison of words predicted by human annotators and by the method
of Makadia et al. (2008) for images from the Corel5K dataset. This figure was originally
published as Figure 4 of “A New Baseline for Image Annotation,” by A. Makadia, V.
Pavlovic, and S. Kumar, Proc. European Conference on Computer Vision. Springer
Lecture Notes in Computer Science, Volume 5304, 2008 c© Springer, 2008.

will be very few examples for each code. By failing to pool data, we are wasting
examples. For example, our strategy would treat an image labeled with “sheep,”
“field,” “sky,” and “sun” as completely different from an image labeled “sheep,”
“field,” and “sky,” which is absurd.

So we must treat words individually; but words tend to be correlated, and we
should exploit this correlation in our prediction methods. Straightforward methods
are extremely strong. Makadia et al. (2008) describe a method based around k-
nearest neighbors, which performs as well as, or better than, more complex methods
in the literature (see also Makadia et al. (2010)). They use color and texture
features in a straightforward labeling algorithm (Algorithm 21.1). They compare
their method to a number of more complicated methods. It is highly competitive
(see Table 21.2 for comparative performance information).

To predict n tags:
obtain the k-nearest neighbors of the query image
sort the tags of the closest image in order of frequency, then report the first n
If the closest image has fewer than n tags:
rank tags associated with the other k − 1 neighbors according to:
(a) their cooccurrence with the tags already chosen and
(b) their frequency in the k-nearest neighbor set.

The remaining tags are the best in this ranked set.

Algorithm 21.1: Nearest Neighbor Tagging.

Some of the tags on the nearest neighbor might be much rarer than the tags
on the second nearest neighbor. To account for this, we can modify the tagging al-
gorithm to account for both similarity between nearby neighbors and tag frequency.
One plausible strategy is due to Kang et al. (2006). For a given query image, they
build a confidence measure associating each tag with that image. Larger values of
the measure associate the tag to the image more strongly. To do so, they require a



Section 21.4 Predicting Annotations for Pictures 648

ranking of the tags in importance; this ranking is given by a vector of values, one
per tag. Write αj for the ranking value of the jth tag; xi for the feature vector
of the ith training example image, and xt for the feature vector of the test image;
K(·, ·) for a kernel comparing images; Ω(·, ·) for a kernel comparing sets of tags;
and zt,k for the confidence with which the kth tag is associated with the test image.
We must compute zt,k. Kang et al. use a submodular function argument to derive
an algorithm for concave Ω, though in their examples they use

Ω(S,S ′) =

{
0 if S ∩ S ′ �= ∅
1 otherwise

.

Their method is a straightforward greedy algorithm, which appears in Algorithm
21.2. Once we have the confidence for each tag for a test image, we can choose the
tags to report with a variety of strategies (top k; top k if all confidences exceed
a threshold; all whose confidence exceeds a threshold; and so on). This method
works well (see Table 21.2).

Using the notation of the text

For k = 1, . . . ,m:
Let Tk = {1, 2, . . . , k}
f(Tk) =

∑n
i=1 K(xi,xt)Ω(Si, Tk)

zt,k = f(Tk)− f(Tk−1)

Algorithm 21.2: Greedy Labeling Using Kernel Similarity Comparisons.

21.4.3 Predicting Correlated Words with Classifiers

When word annotations are heavily correlated, we could predict some words based
on image evidence, and then predict others using the original set of word predictions.
A more efficient method is to train the classifiers so that their predictions are
coupled. For example, we will train a set of linear support vector machines, one
per word. Write N for the number of training images; T for the size of the tag
vocabulary; m for the number of features; xi for the feature vector of the ith
training image; X for the m×N matrix (x1, . . . ,xN ); ti for the tag vector of the
ith image (this is a 0-1 vector whose length is the vocabulary size, with a 0 value
if the tag corresponding to that slot is absent and a 1 if it is present); and T for
the T ×N matrix (t1, . . . , tN ). Training a set of linear SVMs to predict each word
independently involves choosing a T × m matrix C to minimize some loss L that
compares T to the predictions sign(CX ). If we chose to use the hinge loss, then the
result is a set of independent linear SVMs.

Loeff and Farhadi (2008) suggest that these independent linear SVMs can
be coupled by penalizing the rank of C. Assume for the moment that C does
have low rank; then it can be factored as GF , where the inner dimension is small.
Then CX = GFX . The term FX represents a reduced dimension feature space



Section 21.4 Predicting Annotations for Pictures 649

FIGURE 21.9: One way to build correlated linear classifiers is to learn a matrix of linear
classifiers C while penalizing the rank of C. A low rank solution factors into two terms
as C = GF . The term F maps image features to a reduced dimensional space of linear
features, and G maps these features to words. The word predictors must be correlated,
because the number of rows of G is greater than the dimension of the reduced dimensional
feature space. This figure was originally published as Figure 1 of “Scene Discovery by Ma-
trix Factorization,” by N. Loeff and A. Farhadi, Proc. European Conference on Computer
Vision. Springer Lecture Notes in Computer Science, Volume 5304, 2008 c© Springer,
2008.

(it is a linear map of the original feature space to a lower dimensional feature
space; Figure 21.9). Similarly, G is a set of linear classifiers, one per row. But
these classifiers have been coupled to one another (because there are fewer linearly
independent rows of G than there are classifiers, see Figure 21.9).

Penalizing rank can be tricky numerically. One useful measure of the rank is
the Ky-Fan norm, which is the sum of the absolute values of the singular values of
the matrix. An alternative definition is

λ |! |C ||kf= inf
U ,V|UV=C

(||U ||2 + ||V ||2).

Loeff and Farhadi learn by minimizing

L(T , CX ) + λ |! |C ||kf
as a function of the matrix of classifiers C, and they offer several algorithms to
minimize this objective function; the algorithm can be kernelized (Loeff et al. 2009).
These correlated word predictors are close to, or at, the state of the art for word
prediction (see Table 21.2). Results in this table support the idea that correlation is
important only rather loosely; there is no clear advantage for methods that correlate
word predictions. To some extent, this is an effect of the evaluation scheme. Image
annotators very often omit good annotations (see the examples in Figure 21.10),
and we do not have methods that can score word predictions that are accurate
and useful but not predicted by annotators. Qualitative results do suggest that
explicitly representing word correlation is helpful (Figure 21.10).

21.4.4 Names and Faces

Rather than predict all tags from the whole image, we could cut the image into
pieces (which might or might not overlap), then predict the tags from the pieces.



Section 21.4 Predicting Annotations for Pictures 650

FIGURE 21.10: Word predictions for examples from the Corel 5K dataset, using the
method of Loeff and Farhadi (2008). Blue words are correct predictions; red words are
predictions that do not appear in the annotation of the image; and green words are anno-
tations that were not predicted. Notice that the extra (red) words are strongly correlated
to those that are correctly predicted, and are often good annotations. Image annotators
often leave out the obvious—sky is present in the center image of the top row—and cur-
rent scoring methods do not account for this phenomenon well. his figure was originally
published as Figure 5 of “Scene Discovery by Matrix Factorization,” by N. Loeff and A.
Farhadi, Proc. European Conference on Computer Vision. Springer Lecture Notes in
Computer Science, Volume 5304, 2008 c© Springer, 2008.

This will increase the chance that that individual tag predictors could be trained
independently. For example, it is unlikely that names in news captions are in-
dependent (in 2010, the name “Elin Nordegren” was very likely to co-occur with
“Tiger Woods”). But this doesn’t mean we need to couple name predictors when
we train them; instead, we could find each individual face in the image and then
predict names independently for the individual faces. This assumes that the major
reason that the names are correlated is that the faces tend to appear together in
the images.

Linking faces in pictures with names and captions is a useful special case be-
cause news images are mainly about people, and captions very often give names. It
is also a valuable example for developing methods to apply to other areas because
it illustrates how correspondence between tags and image components can be ex-
ploited. Berg et al. (2004) describe a method to take a large dataset of captioned
images, and produce a set of face images with the correct names attached. In their
dataset, not every face in the picture is named in the caption, and not every name
in the caption has a face in the picture (see the example in Figure 21.11). The
first step is to detect names in captions using an open source named entity recog-
nizer (Cunningham et al. 2002). The next is to detect (Mikolajczyk n.d.), rectify,
and represent faces using standard appearance representations. We construct the
feature vector so that Euclidean distance in feature vector space is a reasonable
metric. We can now represent the captioned images as a set of data items that



Section 21.4 Predicting Annotations for Pictures 651

Compute

discriminative

features

Compute

cluster

means

Allocate

face to

named

cluster

, Sam Mendes, Kate Winslet,

Tom Hanks, Paul Newman,

Jude Law, Dan Chung

, Sam Mendes, Kate Winslet,

Tom Hanks, Paul Newman,

Jude Law, Dan Chung

FIGURE 21.11: Berg et al. (2004) take a collection of captioned news images and link
the faces in each image to names in the caption They preprocess the images by detecting
faces, then rectifying them and computing a feature representation of the rectified face.
They detect proper names in captions using an open source named entity recognizer
(Cunningham et al. 2002). The result is a set of data items that consist of (a) a face
representation and (b) a list of names that could be associated with that face. Part of
this figure was originally published as Figure 2 of “Names and Faces in the News,” by T.
Berg, A. Berg, J. Edwards, M. Maire, R. White, Y-W. Teh, E. Learned-Miller and D.
Forsyth, Proc. IEEE CVPR 2004, c© IEEE 2004.

consist of a feature representation of a face, and a list of names that could go to
that face (notice that some captioned images will produce several data items, as in
Figure 21.11).

We must now associate names with faces (Figure 21.12). This can be seen as
a form of k-means clustering. We represent each name with a cluster of possible
appearance vectors, represented by the cluster mean. Assume we have an initial
appearance model for each name; for each data item, we now allocate the face to
the closest name in its list of possible names. Typically, these lists are relatively
short, so we need only tell which item in a short list the face belongs to. We now
re-estimate the appearance models, and repeat until labels do not change. At this
point, we can re-estimate the feature space using the labels associated with the face
images, then re-estimate the labeling. A natural variant is to allocate a face only
when the closest name is closer than some threshold distance. The procedure can
be started by allocating faces to the names in their list at random, or by exploiting
cases where there is just one face and just one name. This strategy is crude, but
works quite well, because it exploits two important features of the problem. First,
on the whole, multiple instances of one individual’s face should look more like one
another than like another individual’s face. Second, allocating one of a short list of
names to a face is a lot easier than recognizing a face.

21.4.5 Generating Tags with Segments

The most attractive feature of these names-and-faces models is that by reasoning
about correspondence between pieces of image (in the models above, faces) and
tags, we can learn models for tags independently. The fact that some tags co-
occur strongly with others is caused by some pieces of image co-occuring strongly
with others, so it doesn’t need to be accounted for by the model. There is now a



Section 21.4 Predicting Annotations for Pictures 652

Compute

discriminative

features

Compute

cluster

means

Allocate

face to

named

cluster

, Sam Mendes, Kate Winslet,

Tom Hanks, Paul Newman,

Jude Law, Dan Chung

, Sam Mendes, Kate Winslet,

Tom Hanks, Paul Newman,

Jude Law, Dan Chung

FIGURE 21.12: We associate faces with names by a process of repeated clustering. Each
name in the dataset is associated with a cluster of appearance vectors, represented by a
mean. Each face is then allocated to the closest name in that face’s list of names. We now
re-estimate the cluster means, and then reallocate faces to clusters. Once this process has
converged, we can re-estimate the feature space using linear discriminants (Section 16.1.6),
then repeat the labeling process. The result is a correspondence between image faces and
names (right). Part of this figure was originally published as Figure 2 of “Names and
Faces in the News,” by T. Berg, A. Berg, J. Edwards, M. Maire, R. White, Y-W. Teh, E.
Learned-Miller and D. Forsyth, Proc. IEEE CVPR 2004, c© IEEE 2004.

huge variety of such models for tagging images with words. Generally, they can be
divided into two classes: in one class, we reason explicitly about correspondence,
as in the names and faces examples; in the other, the correspondence information
is hidden implicitly in the model.

Explicit correspondence models follow the lines of the names and faces ex-
ample. Duygulu et al. (2002) describe a model to which many other models have
been compared. The image is segmented, and a feature descriptor incorporating
size, location, color, and texture information is computed for each sufficiently large
image segment. These descriptors are vector quantized using k-means. This means
each tagged training image can be thought of as a bag that contains a set of vector
quantized image descriptors and a set of words. There are many such bags, and we
think of each bag as a set of samples from some process. This process generates im-
age segments and then some image segments generate words probabilistically. This
problem is analogous to one that occurs in the discipline of machine translation.
Imagine we wish to build a dictionary giving the French word that corresponds
to each English word. We could take the proceedings of the Canadian Parliament
as a dataset. These proceedings conveniently appear in both French and English,
and what a particular parliamentarian said in English (resp. French) is carefully
translated into French (resp. English). This means we can easily build a rough
paragraph-level correspondence. Corresponding pairs of paragraphs are bags of
French words generated by (known) English words; what we don’t know is which
English word produced which French word. The vision problem is analogous if we
replace English words with vector quantized image segments, and French words
with words (Figure 21.13).

Brown et al. (1990) give a series of natural models and corresponding algo-
rithms for this problem. The simplest model that applies is known as model 2
(there are five in total; the more complex models deal with the tendency of some



Section 21.4 Predicting Annotations for Pictures 653

Cat

Forest

Tiger

Grass

Sea

Sky

Sun

Waves

Cat 0.05

Forest 0.4

Tiger 0.05

Grass 0.4

Sea 0.025

Sky 0.025

Sun 0.025

Waves 0.025

Cat 0.5

Forest 0.4

Tiger 0.05

Grass 0.4

Sea 0.025

Sky 0.025

Sun 0.025

Waves 0.025

Cat 0.05

Forest 0.4

Tiger 0.05

Grass 0.4

Sea 0.025

Sky 0.025

Sun 0.025

Waves 0.025

FIGURE 21.13: Duygulu et al. (2002) generate annotations for images by segmenting the
image (left) and then allowing each sufficiently large segment to generate a tag. Segments
generate tags using a lexicon (right), a table of conditional probabilities for each tag
given a segment. They learn this lexicon by abstracting each annotated image as a bag of
segments and tags (center). If we had a large number of such bags, and knew which tag
corresponded to which segment, then building the lexicon just involves counting; similarly,
if we knew the lexicon, we could estimate which tag corresponded to which segment in
each bag. This suggests using an EM method to estimate the lexicon. This figure was
originally published as Figure 1 of “Object Recognition as Machine Translation: Learning
a lexicon for a fixed image vocabulary,” by P. Duygulu, K. Barnard, N. deFreitas, and
D. Forsyth, Proc. European Conference on Computer Vision. Springer Lecture Notes in
Computer Science, Volume 2353, 2002 c© Springer, 2002.

languages to be wordier than others, or to have specific word orders, and do not
apply). We assume that each word is generated by a single blob, and associate a
(hidden) correspondence variable with each bag. We can then estimate p(w|b), the
conditional probability that a word type is generated by a blob type (analogous to
a dictionary), using EM.

Once we have a lexicon, we can tag each sufficiently large region with its
highest probability word; or do so, but refuse to tag regions where the predicted
word has too low a probability; or tag only the k regions that predict words with
the highest probability; or do so, but check probabilities against a threshold. This
method as it stands is now obsolete as an image tagger, but is widely used as a
comparison point because it is natural, quite easily beaten, and associated with an
easily available dataset (the Corel5K dataset described in Section 21.5.1).

The cost of reasoning explicitly about correspondence between individual re-
gions and individual words is that such models ignore larger image context. An
alternative is to build a form of generative model that explains the bag of segments
and words without reasoning about which segment produced which word. An ex-
ample of such an implicit correspondence model is the cross-media relevance model
of Jeon et al. (2003). We approximate words as conditionally independent given an
image, which means we need to build a model of the probability of a single word
conditioned on an image, P (w|I). We approximate this as P (w|b1, . . . , bn), and
must now model this probability. We will do so by modelling the joint probability
P (w, b1, . . . , bn). We assume a stochastic relationship between the blobs and the
image; and we assume that, conditioned on the image, the blobs and the words are



Section 21.5 The State of the Art of Word Prediction 654

Nulls Clustering words

FIGURE 21.14: The basic correspondence method we described in the text can produce
reasonable results for some image tags (left), but tends to perform better with tags that
describe “stuff” rather than tags that describe “things” (center left). Some of this
is because the method has very weak shape representations, and cannot fuse regions.
However, it is extremely flexible. Improved word predictions can be obtained by refusing
to predict words for regions where the conditional probability of the most likely word is too
low (center right, “null” predictions), and by fusing words that are predicted by similar
image regions (right, “train” and “locomotive”). This figure was originally published as
Figures 8, 10, and 11 of “Object Recognition as Machine Translation: Learning a lexicon
for a fixed image vocabulary,” by P. Duygulu, K. Barnard, N. deFreitas, and D. Forsyth,
Proc. European Conference on Computer Vision. Springer Lecture Notes in Computer
Science, Volume 2353, 2002 c© Springer, 2002.

independent. If we write T for the training set, we have

P (w, b1, . . . , bn) =
∑
j∈T

P (J)P (w, b1, . . . , bn|J)

=
∑
j∈T

P (J)P (w|J)
#w∏
j=1

P (bj|J),

and these component probabilities can be estimated by counting and smoothing.
Jeon et al. assume that P (J) is uniform over the training images. Now write
c(w, J) for the number of times the word w appears as a tag for image J and cw(J)
for the total number of words tagging J . Then we could estimate

P (w|J) = (1 − α)
c(w, J)

cw(J)
+ α

c(w, T )

cw(T )

(where we have smoothed the estimate so that all words have some small probability
of being attached to J). Notice that this is a form of non-parametric topic model.
Words and blobs are not independent in the model as a result of the sum over
training images, but there is no explicit tying of words to blobs. This model is
simple and produces quite good results. As a model, it is now obsolete, but it is a
good example of a very large family of models.

21.5 THE STATE OF THE ART OF WORD PREDICTION

Word prediction is now an established problem that operates somewhat indepen-
dently from object recognition. It is quite straightforward to start research because
good standard datasets are available (Section 21.5.1), and methods are quite easy
to compare quantitatively because there is at least a rough consensus on appropri-
ate evaluation methodologies (Section 21.5.2). Finally, there are numerous good



Section 21.5 The State of the Art of Word Prediction 655

open questions (Section 21.5.3), which are worth engaging with because the search
application is so compelling.

21.5.1 Resources

Most of the code that would be used for systems described in this chapter is feature
code (Section 16.3.1) or classifier code (Section 15.3.3). Code for approximate
nearest neighbors that can tell whether k-d trees or locality sensitive hashing works
better on a particular dataset, and can tune the chosen method, is published by
Marius Muja at http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN.

The Corel5K dataset contains 5,000 images collected from a larger set of
stock photos, split into 4,500 training and 500 test examples. Each image has
3.5 keywords on average, from a dictionary of 260 words that appear in both the
training and the test set. The dataset was popularized by Duygulu et al. (2002).
As of the time of writing, an archive of features and tags for this dataset can be
found at http://lear.inrialpes.fr/people/guillaumin/data.php.

The IAPRTC-12 dataset contains 20,000 images, accompanied by free text
captions. Tags are then extracted from the text by various parsing methods. As
of the time of writing, the dataset can be obtained from http://imageclef.org/

photodata. Various groups publish the features and tags they use for this dataset.
See http://lear.inrialpes.fr/people/guillaumin/data.php, or http://www.
cis.upenn.edu/~makadia/annotation/.

The ESP dataset consists of 21,844 images collected using a collaborative
image labeling task (von Ahn and Dabbish 2004); two players assign labels to an
image without communicating, and labels they agree on are accepted. Images can
be reassigned, and then only new labels are accepted (see http://www.espgame.

org). This means that the pool of labels for an image grows, with easy labels being
assigned first.

MirFlickr is a dataset of a million Flickr images, licensed under creative com-
mons and released with concrete visual tags associated (see http://press.liacs.
nl/mirflickr/).

21.5.2 Comparing Methods

Generally, methods can be compared using recall, precision, and F1 measure on ap-
propriate datasets. Table 21.2 gives a comparison of methods applied to Corel5K
using these measures. The performance statistics are taken from the literature.
Some variations between experiments mean that comparisons are rough and ready:
CorrLDA predicts a smaller dictionary than the other methods; PicSOM predicts
only five annotations; and the F1 measure for Submodular is taken by eye from the
graph of figure 3 in (Kang et al. 2006), in the method’s most favorable configuration.
Table 21.2 suggests that (a) performance has improved over time, though the near-
est neighbor method of Section 21.4.2 is simultaneously the simplest and the best
performing method; and (b) that accounting for correlations between labels helps,
but isn’t decisive (for example, neither Submodular nor CorrPred decisively beats
JEC). This suggests there is still much to be learned about the image annotation
problem.

http://www.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://lear.inrialpes.fr/people/guillaumin/data.php
http://imageclef.org/photodata
http://imageclef.org/photodata
http://lear.inrialpes.fr/people/guillaumin/data.php
http://www.cis.upenn.edu/~makadia/annotation/
http://www.cis.upenn.edu/~makadia/annotation/
http://www.espgame.org
http://www.espgame.org
http://press.liacs.nl/mirflickr/
http://press.liacs.nl/mirflickr/


Section 21.5 The State of the Art of Word Prediction 656

Method P R F1 Ref
Co-occ 0.03 0.02 0.02 (Mori et al. 1999)
Trans 0.06 0.04 0.05 (Duygulu et al. 2002)
CMRM 0.10 0.09 0.10 (Jeon et al. 2003)
TSIS 0.10 0.09 0.10 (Celebi 30 Nov. - 1 Dec. 2005)

MaxEnt 0.09 0.12 0.10 (Jeon and Manmatha 2004)
CRM 0.16 0.19 0.17 (Lavrenko et al. 2003)

CT-3×3 0.18 0.21 0.19 (Yavlinsky et al. 2005)
CRM-rect 0.22 0.23 0.23 (Feng et al. 2004)
InfNet 0.17 0.24 0.23 (Metzler and Manmatha 2004)
MBRM 0.24 0.25 0.25 (Feng et al. 2004)
MixHier 0.23 0.29 0.26 (Carneiro and Vasconcelos 2005)
CorrLDA1 0.06 0.09 0.072 (Blei and Jordan 2002)

JEC 0.27 0.32 0.29 (Makadia et al. 2010)
JEC2 0.32 0.40 0.36 (Makadia et al. 2010)

Submodular - - 0.26 (Kang et al. 2006)
CorrPred 0.27 0.27 0.27 (Loeff and Farhadi 2008)

CorrPredKernel 0.29 0.29 0.29 (Loeff and Farhadi 2008)
PicSOM3 0.35 0.35 0.35 (Viitaniemi and Laaksonen 2007)

TABLE 21.2: Comparison of the performance of various word annotation prediction
methods by precision, recall, and F1-measure, on the Corel 5K dataset. The methods
described in the text are: Trans, which is the translation model of Section 21.4.5;
CMRM, which is the cross-media relevance model of Section 21.4.5; CorrPred, which
is the correlated classifier method of Section 21.4.3; JEC, which is the nearest neighbor
method of Section 21.4.2; and Submodular, which is the submodular optimization method
of Section 21.4.2. Other performance figures are given for information, and details of the
models appear in the papers cited.

21.5.3 Open Problems

One important open problem is selection. Assume we wish to produce a textual
representation of an image—what should it contain? It is unlikely that a list of
all objects present is useful or helpful. For most pictures, such a list would be
much too long and dominated by extraneous detail; preparing it would involve
dealing with issues like whether the nut used to hold the chairleg to the chair is
a separate object, or just a part of the chair. Several phenomena seem to affect
selection; some objects are interesting by their nature and tend to get mentioned if
they occur in an image. Spain and Perona (2008) give a probabilistic model that
can often predict such mentions. Other objects are interesting because of where
they occur in the image, or how big they are in the image. Yet other objects are
interesting because they have unusual properties (say, a glass cat or a car without
wheels), and identifying this remains difficult. Some objects are depicted in unusual
circumstances (for example, a car that is upsidedown). This means that context
cues might help tell what is worth mentioning. Choi et al. (2010) show a variety of
contextual cues that can be computed and identify an object as unusual for context.



Section 21.5 The State of the Art of Word Prediction 657

Without spatial relations

With spatial relations

FIGURE 21.15: Gupta and Davis (2008) show that image labeling can be improved by
representing spatial relations between regions, and taking these relations into account
when labeling. The top row shows labelings predicted using the method of (Duygulu et
al. 2002), which considers only individual regions when labeling; the bottom row shows
predictions made by their method. Notice that, for example, the “lighthouse” and the
“steps” in the image on the right are overruled by the other patches and given better
labels by the context. This figure was originally published as Figure 7 of “Beyond nouns;
exploiting prepositions and comparative adjectives for learning visual classifiers,” by A.
Gupta and L. Davis, Proc. European Conference on Computer Vision. Springer Lecture
Notes in Computer Science, Volume 5302, 2008 c© Springer, 2002.

Modifiers, such as adjectives or adjectival phrases, present interesting pos-
sibilities to advance learning. Yanai and Barnard (2005) demonstrated that it was
possible to learn local image features corresponding to color words (e.g., “pink”)
without knowing what parts of the image the annotation referred to (Yanai and
Barnard 2005). This raises the interesting possibility that possessing phrases can
help learning: for example, it is easier to learn from “pink cadillac” than from “cadil-
lac,” because the “pink” helps tell where the “cadillac” is in the image. Small im-
provements have been demonstrated using this approach (Wang and Forsyth 2009).
A discipline in linguistics, known as pragmatics, studies the things that people
choose to say; one guideline is that people mention things that are unusual or im-
portant. This suggests that, for example, there is no particular value in mentioning
that a sheep is white or a meadow is green. This means that we face two prob-
lems: first, we must determine what modifiers apply to a particular object, and
second, we must determine whether that modifier is worth mentioning. Farhadi et
al. (2009a) have demonstrated a method that can identify instances of objects that
either have unusual attributes, or lack usual ones. This method may be capable of
predicting what modifiers are worth mentioning.



Section 21.5 The State of the Art of Word Prediction 658

FIGURE 21.16: In structured video, we can predict narratives by exploiting the structure
of what can happen. This figure shows examples from the work of Gupta et al. (2009),
who show that by searching possible actors and templates for sports videos, one can come
up with matches that are accurate enough to build a reasonable narrative from templates.
This figure was originally published as Figure 7 of “Understanding Videos, Constructing
Plots Learning a Visually Grounded Storyline Model from Annotated Videos,” by A. Gupta,
P. Srinivasan, J. Shi, and L.S. Davis, Proc. IEEE CVPR 2009, c© IEEE 2009.

Another way to obtain richer descriptions of images is to use spatial rela-
tions between objects. Heitz and Koller (2008) improve the performance of object
detectors by identifying patches of stuff—materials such as grass, tarmac, sky and
so on, where the shape of the region has little to offer in identifying what it is—
that lie nearby. They train a probabilistic graphical model to enhance the detector
response when appropriate materials lie in appropriate places (and weaken the re-
sponse when they don’t); the result is a small improvement in detector performance.
Gupta and Davis (2008) use images labeled with relational phrases (e.g., “bear in
water”) to learn to label regions with noun tags together with models of spatial re-
lations. Relational cues could improve learning by disambiguating correspondence
quite strongly; for example, if one has a good model of “grass” and of the spatial
relation “on,” then “sheep on the grass” offers strong cues as to which region is
“sheep.” Experiments suggest that both of these effects are significant and helpful;
the paper shows significant improvements in region labeling (Figure 21.15).

The natural goal of all this generalization is to produce sentences from im-
ages. Even short sentences can represent a great deal of information in a compact
form. To produce a sentence, we would need to select what is worth mentioning;
we would need to decide what was happening, what was doing it, and to what it
was being done; and we would need to know what modifiers to attach where. In
some kinds of video (for example, of a sport), the narrative structure of what is
likely to happen is quite stylized, and so quite good sentences can be produced
(Figure 21.16). Gupta et al. (2009) have shown this means that we can search for
sets of actors that fit a template of an action, then report that action in quite a rich
sentence form. Yao et al. (2010) have been able to link image parsing strategies
to text generation strategies to generate informative sentences about video. For



Section 21.6 Notes 659

FIGURE 21.17: Farhadi et al. (2010b) link sentences to pictures by first computing an
affinity with an intermediate representation, then using this to compute a score for a
sentence-image pair; the sentence that produces the best score is the annotation. On the
left, two example images; in the center, the top five intermediate representations, given
as triples of (actor, scene, action); on the right, the top five sentences for each image.
Notice how sentence details tend to be inaccurate, but the general thrust of the sentence
is often right. This figure was originally published as Figure 3 of “Every picture tells a
story: Generating sentences from images,” by A. Farhadi, M. Hejrati, M.A. Sadeghi, P.
Young, C. Rastchian, J. Hockenmaier, and D. Forsyth, Proc. European Conference on
Computer Vision. Springer Lecture Notes in Computer Science, Volume 6314, 2010 c©
Springer, 2009.

static images, the problem remains very difficult; Farhadi et al. (2010b) describe
one method to link static images to sentences, using an intermediate representation
to manage difficulties created by the fact that we have no detector for most of the
words encountered (Figure 21.17).

21.6 NOTES

There are many datasets of images with associated words. Examples include: col-
lections of museum material (Barnard et al. 2001b); the Corel collection of images,
described in (Barnard and Forsyth 2001, Duygulu et al. 2002, Chen andWang 2004),
and numerous other papers; any video with sound or closed captioning (Satoh and
Kanade 1997, Satoh et al. 1999, Wang et al. 2000); images collected from the Web
with their enclosing web pages (Berg and Forsyth 2006); or captioned news im-
ages (Berg et al. 2004). It is a remarkable fact that, in these collections, pictures
and their associated annotations are complementary. The literature is very exten-
sive, and we can mention only the most relevant papers here. For a more complete
review, we refer readers to (Datta et al. 2005), which has 120 references. There
are three natural activities: One might wish to cluster images; to search for images
using keywords; or to attach keywords to new images. Typically, models intended
for one purpose can produce results for others.

Search: Belongie et al. (1998b) demonstrate examples of joint image-keyword
searches. Joshi et al. (2004) show that one can identify pictures that illustrate a
story by searching annotated images for those with relevant keywords, then rank-
ing the pool of images based on similarity of appearance. Clustering: Barnard
and Forsyth (2001) cluster Corel images and their keywords jointly to produce a
browsable representation; the clustering method is due to Hofmann and Puzicha
(1998). Barnard et al. (2001b) show that this form of clustering can produce a
useful, browsable representation of a large collection of annotated art in digital



Section 21.6 Notes 660

form.
Attaching keywords to images: Clustering methods can typically be used

to predict keywords from images, and accuracy at keyword prediction is used as one
test of such methods (see also Barnard et al. (2003b)). There are two prediction
tasks: predicting words associated with an image (auto-annotation) and predicting
words associated with particular image structures (which is a form of object recog-
nition). Maron and Ratan (1998) attach keywords to images usingmultiple-instance
learning. Multiple-instance learning is a general strategy to build classifiers from
“bags” of labeled examples. Typically, one knows only that a bag contains or does
not contain a positive example, but not which example is positive. Methods attempt
to find small regions in the feature space that appear in all positive bags and no neg-
ative bags; one can visualize these methods either as a form of smoothing (Maron
and Lozano-Pérez 1998, Zhang and Goldman 2001), with an SVM (Andrews et
al. 2003, Tao et al. 2004), or using geometric reasoning (Dietterich et al. 1997).
Comparisons between methods appear in (Ray and Craven 2005). Chen and Wang
describe a variant multiple-instance learning method, and use it to predict key-
words from regions (Chen and Wang 2004). Blei and Jordan use a variant of latent
Dirichlet allocation to predict words corresponding to particular image regions in
an auto-annotation task (Blei and Jordan 2003). Barnard et al. (2003a) demon-
strate and compare a wide variety of methods to predict keywords, including several
strategies for reasoning about correspondence directly. Li and Wang (2003) used 2-
dimensional multi-resolution hidden markov models on categorized images to train
models representing a set of concepts. They then used these concepts for automatic
linguistic indexing of pictures. Jeon et al. (2003) demonstrate annotation and re-
trieval with a cross-media relevance model. Lavrenko et al. (2003) used continuous
space relevance models to predict the probability of generating a word given image
regions for automatic image annotation and retrieval.

Other activities: Relations between text and images appear to be deep
and complex. Barnard and Johnson (2005) show one can disambiguate the senses
of annotating words using image information. Berg and Forsyth (2006) Berg and
Forsyth show that one can find images of complex categories (“monkey”; “penguin”)
by searching for images with distinctive words nearby and containing distinctive im-
age structures. Yanai and Barnard (2005) use region entropy to identify words that
have straightforwardly observed visual properties (“pink” as opposed to “affection-
ate”). All this work has tended to emphasize general image constructs (such as
regions), but one might instead use detectors and link the detector responses with
words. Faces are of particular interest.



P A R T S E V E N

BACKGROUND MATERIAL



This page intentionally left blank 



C H A P T E R 22

Optimization Techniques

Many computer vision tasks can be modeled as solving some optimization problem—
that is, the minimization or maximization of some real energy function, often av-
eraged over some data points, with respect to some parameters of interest. For
example, camera calibration, structure from motion, or pose estimation are natu-
rally cast as the minimization of some mean squared error function over data points.
Such least-squares problems come in two flavors: linear ones when the error func-
tion is linear in its parameters and the energy is a quadratic form; and nonlinear
ones for general smooth error functions. In the former case, the exact optimum can
be found using numerical tools for computing the eigenvalues and eigenvectors of a
matrix, its pseudoinverse, or its singular value decomposition (Section 22.1). In the
latter one, an approximate solution is usually found using some iterative variant of
Newton’s method, without guarantee of reaching a global optimum (Section 22.2).

Recent work in image processing and computer vision has shown that state-
of-the-art results in problems ranging from image denoising to object categorization
can be obtained by modeling the underlying data as sparse linear combinations of
basis vectors taken from a potentially large dictionary. We present in Section 22.3
a brief introduction to this approach to data modeling, and to the optimization
techniques underlying it. In particular, we show how to compute the sparse de-
composition of a signal on a given dictionary (sparse coding) and how to learn
the dictionary to adapt it to specific data and to tasks such as classification and
regression.

Some computer vision tasks are more naturally modeled by energy functions
depending on a discrete set of parameters than smooth functions of real variables,
leading to combinatorial optimization problems. For example, stereo fusion and,
more generally, matching problems are naturally cast this way, with the parame-
ters of interest being integer pixel disparities or the indices of matching pairs of
points, for example. As shown in Section 22.4, these optimization problems are, in
general, NP-hard, but under certain regularity conditions (submodularity), they are
amenable to efficient algorithms based on polynomial min-cuts algorithms, which in
some cases can be shown to provide an exact solution to the original optimization
problem.

22.1 LINEAR LEAST-SQUARES METHODS

Let us consider a system of p linear equations in q unknowns:⎧⎪⎪⎨
⎪⎪⎩

a11x1 + a12x2 + . . .+ a1qxq = y1
a21x1 + a22x2 + . . .+ a2qxq = y2
. . .
ap1x1 + ap2x2 + . . .+ apqxq = yp

, (22.1)

663



Section 22.1 Linear Least-Squares Methods 664

which can be rewritten as Ax = b, where A is a p× q real matrix, and x and b are
vectors in R

q and R
p respectively, defined by

A =

⎛
⎜⎜⎝
a11 a12 . . . a1q
a21 a22 . . . a2q
. . . . . . . . . . . .
ap1 ap2 . . . apq

⎞
⎟⎟⎠, x =

⎛
⎜⎜⎝
x1

x2

. . .
xq

⎞
⎟⎟⎠ and y =

⎛
⎜⎜⎝
y1
y2
. . .
yp

⎞
⎟⎟⎠.

We know from elementary linear algebra that (in general)

• when p < q, the set of solutions to Equation (22.1) forms a (q−p)-dimensional
vector subspace of Rq;

• when p = q, there is a unique solution;

• when p > q, there is no solution.

This statement is true when the maximum number of independent rows or
columns of A (its rank) is maximal—that is, equal to min(p, q) (this is what we
mean by in general). When the rank is smaller than min(p, q), the existence of
solutions to Equation (22.1) depends on the value of y and whether it belongs to
the subspace of Rp spanned by the columns of A (its range).

22.1.1 Normal Equations and the Pseudoinverse

Let us now focus on the overconstrained case p > q and assume that A has maximal
rank q. Because there is no exact solution in this case, we content ourselves with
finding the vector x that minimizes the error measure

E(x)
def
=

p∑
i=1

(ai1x1 + . . .+ aiqxq − yi)
2 = ||Ax− y||2,

where ||y|| denotes the Euclidean norm of the vector y.
This is a linear least-squares problem, whose name stems from the facts that

E is proportional to the mean-squared error associated with the equations and that
each term before squaring is linear in the parameters of interest.

Now, we can write E = e · e, where e
def
= Ax − y. To find the vector x

minimizing E(x), we write that the derivatives of this error measure with respect
to the coordinates xi (i = 1, . . . , q) of x must be zero—that is,

∂E

∂xi
= 2

∂e

∂xi
· e = 0 for i = 1, . . . , q.

But if the columns of A are the vectors cj = (a1j , . . . , amj)
T (j = 1, . . . , q),

we have

∂e

∂xi

=
∂

∂xi

⎡
⎣
⎛
⎝c1 . . . cq

⎞
⎠
⎛
⎝x1

. . .
xq

⎞
⎠− y

⎤
⎦ =

∂

∂xi

(x1c1 + . . .+ xqcq − y) = ci.



Section 22.1 Linear Least-Squares Methods 665

In particular, writing that ∂E/∂xi = 0 implies that cTi (Ax − y) = 0, and
stacking the constraints associated with the q coordinates of x yields the normal
equations associated with our least-squares problem—that is,

0 =

⎛
⎝cT1
. . .
cTq

⎞
⎠(Ax− y) = AT (Ax− y) ⇐⇒ ATAx = ATy. (22.2)

When A has maximal rank q, the matrix ATA is easily shown to be invertible,
and the solution of Equation (22.2) is

x = A†y with A† def
= [(ATA)−1AT ]. (22.3)

The q × q matrix A† is called the pseudoinverse of A. It coincides with A−1

when the matrix A is square and nonsingular. Linear least-squares problems can
be solved without explicitly computing the pseudoinverse, using, for example, QR
decomposition or singular value decomposition (as described in Section 22.1.5),
which might have a better numerical behavior.

22.1.2 Homogeneous Systems and Eigenvalue Problems

Let us now consider a variant of our original problem, where we have again a system
of p linear equations in q unknowns, but the vector y is zero:⎧⎪⎪⎨

⎪⎪⎩
a11x1 + a12x2 + . . .+ a1qxq = 0
a21x1 + a22x2 + . . .+ a2qxq = 0
. . .
ap1x1 + ap2x2 + . . .+ apqxq = 0

⇐⇒ Ax = 0. (22.4)

This is a homogeneous system of equations in x—that is, if x is a solution, so
is λx for any λ �= 0. When p = q and the matrix A is nonsingular, Equation (22.4)
admits as a unique solution x = 0. Conversely, when p ≥ q, nontrivial (nonzero)
solutions may exist only when A is singular with rank strictly smaller than q. In
this context, minimizing E(x) = ||Ax||2 makes sense only when some additional
constraint is imposed on x because the value x = 0 yields the zero global minimum
of E. By homogeneity, we have E(λx) = λ2E(x), and it is reasonable to choose the
constraint ||x||2 = 1, which avoids the trivial solution and forces the uniqueness of
the result.

The error E(x) can be rewritten as ||Ax||2 = xT (ATA)x. The q × q matrix
ATA is by construction symmetric positive semidefinite—that is, its eigenvalues
are all positive or zero, and it can be diagonalized in an orthonormal basis of
eigenvectors ei (i = 1, . . . , q) associated with the eigenvalues λ1 ≥ . . . ≥ λq ≥ 0
sorted in decreasing order. Thus we can write any unit vector as x = μ1e1 + . . .+
μqeq with μ2

1 + . . .+ μ2
q = 1. In particular,

E(x)− E(eq) = xT (ATA)x− eTq (ATA)eq = λ1μ
2
1 + . . .+ λqμ

2
q − λq

≥ λq(μ
2
1 + . . .+ μ2

q − 1) = 0.

It follows that:



Section 22.1 Linear Least-Squares Methods 666

The unit vector x minimizing E(x) = ||Ax||2 is the eigenvector eq associated
with the minimum eigenvalue λq of ATA, and the corresponding minimum
value of E is λq.

Various methods are available for computing the eigenvectors and eigenvalues of a
symmetric matrix, including Jacobi transformations and reduction to tridiagonal
form followed by QR decomposition. Singular value decomposition also can be
used to compute the eigenvectors and eigenvalues without actually constructing
the matrix ATA.

22.1.3 Generalized Eigenvalues Problems

Before illustrating the use of homogeneous linear least-squares techniques with an
example, let us pause for a minute to consider the slightly more general problem
of minimizing ||Ax||2 under the constraint ||Bx||2 = 1, where B is an r × q matrix
(this reduces to homogeneous linear least squares when B = Id). A vector x and a
scalar λ such that

ATAx = λBTBx
are called a generalized eigenvector and the corresponding generalized eigenvalue
of the q × q symmetric matrices ATA and BTB. It turns out that the solution of
the constrained optimization problem is precisely the generalized eigenvector asso-
ciated with the minimum generalized eigenvalue (which in this case is guaranteed
to be positive or zero by construction). As before, effective methods for computing
the generalized eigenvectors and eigenvalues of a pair of symmetric matrices are
available.

22.1.4 An Example: Fitting a Line to Points in a Plane

Consider n points pi (i = 1, . . . , n) in a plane, with coordinates (xi, yi) in some
fixed coordinate system (Figure 22.1). What is the straight line that best fits
these points? To answer this question, we must first quantify how well a line δ
fits a set of points or, equivalently, define some error function E measuring the
discrepancy between this line and the points. The best-fitting line can then be
found by minimizing E.

A reasonable choice for the error function is the mean-squared distance be-
tween the points and the line (Figure 22.1). The equation of a line with unit normal
n = (a, b)T lying at a distance d from the origin is ax+ by = d, and the perpendic-
ular distance between a point with coordinates (x, y)T and this line is |ax+ by−d|.
We can therefore use

E(a, b, d) =

n∑
i=1

(axi + byi − d)2 (22.5)

as our error measure, and the line-fitting problem reduces to the minimization of
E with respect to a, b, and d under the constraint a2 + b2 = 1.1

1One could also formulate the line-fitting problem as the minimization of Equation (22.5) with
respect to a, b, and d under the constraint that a2 + b2 + d2 = 1 (d cannot be interpreted as
a distance in this case, but this is not important). This formulation “works” too, but has the
disadvantage that the associated A matrix has one column consisting only of ones, with a scale
potentially very different from the other two. This may lead to some numerical difficulties, and
the solution proposed in the main text should always be used instead for this type of problems.



Section 22.1 Linear Least-Squares Methods 667

a
b

x

y

d

n=

δ

FIGURE 22.1: The line that best fits n points in the plane can be defined as the line δ that
minimizes the mean-squared perpendicular distance to these points (the mean-squared
length of the short parallel line segments joining δ to the points).

Differentiating E with respect to d shows that, at a minimum of this function,
we must have 0 = ∂E/∂d = −2

∑n
i=1(axi + byi − d), thus

d = ax̄+ bȳ, where x̄ =
1

n

n∑
i=1

xi and ȳ =
1

n

n∑
i=1

yi, (22.6)

and the two scalars x̄ and ȳ are simply the coordinates of the center of mass of the
input points. Substituting this expression for d in the definition of E yields

E =

n∑
i=1

[a(xi − x̄) + b(yi − ȳ)]2 = ||An||2 where A =

⎛
⎝x1 − x̄ y1 − ȳ

. . . . . .
xn − x̄ yn − ȳ

⎞
⎠,

and our original problem finally reduces to minimizing ||An||2 with respect to n

under the constraint ||n||2 = 1. We recognize a homogeneous linear least-squares
problem, whose solution is the unit eigenvector associated with the minimum eigen-
value of the 2× 2 matrix ATA. Once a and b have been computed, the value of d
is immediately obtained from Equation (22.6). Note that ATA is easily shown to
be equal to ⎛

⎜⎜⎜⎝
n∑

i=1

x2
i − nx̄2

n∑
i=1

xiyi − nx̄ȳ

n∑
i=1

xiyi − nx̄ȳ
n∑

i=1

y2i − nȳ2

⎞
⎟⎟⎟⎠,

that is, the matrix of second moments of inertia of the points pi. In fact, the line
best fitting these points in the sense defined in this section is simply their axis of
least inertia as defined in elementary mechanics.

22.1.5 Singular Value Decomposition

It turns out that both homogeneous and non-homogeneous linear least-squares
problems can be solved without computing the matrix ATA: any real p× q matrix



Section 22.1 Linear Least-Squares Methods 668

A, with p ≥ q, can be written as

A = UWVT ,

where

• U is a p× q column-orthogonal matrix—that is, UTU = Idp;

• W is a diagonal matrix whose diagonal entries wi (i = 1, . . . , q) are the sin-
gular values of A with w1 ≥ w2 ≥ . . . ≥ wq ≥ 0;

• and V is a q × q orthogonal matrix—that is, VTV = VVT = Idq.

This is the singular value decomposition (SVD) of the matrix A, and it can be
computed using the algorithm described in Wilkinson and Reich (1971).

The SVD of a matrix A can be used to solve non-homogeneous linear least-
squares problems without computing ATA. Indeed, the pseudoinverse associated
with the normal equations defined in Section 22.1.1 can be rewritten as

A† = (ATA)−1AT = [(VWTUT ) (UWVT )]−1 (VWTUT ) = VW−1UT ,

because U is column-orthogonal and V is orthogonal.
As shown by the following theorem, the singular value decomposition of a

matrix is related to the eigenvalues and eigenvectors of its square.

Theorem 5. The singular values of the matrix A are the square roots of
the eigenvalues of the matrix ATA, and the columns of the matrix V are the
corresponding eigenvectors.

This theorem can be used to solve overconstrained homogeneous linear equa-
tions as defined in the previous section without explicitly computing the corre-
sponding matrix ATA. The solution is simply the column vector of the matrix V in
the singular value decomposition of A that is associated with the smallest singular
value.

This result can easily be shown directly without resorting to Theorem 5.
Indeed, let us denote by e1, . . . , eq the columns of the matrix V . As before, we can
decompose any unit vector x on the basis formed by these vectors as

x = μ1e1 + . . .+ μqeq = Vμ

with ||μ||2 = μ2
1 + . . .+ μ2

q = 1. In particular,

E(x) = xT (ATA)x = (μTVT ) (VWTUT ) (UWVT ) (Vμ) = μTWTWμ =

q∑
i=1

w2
i μ

2
i

because U is column-orthogonal, and V is orthogonal. It follows that

E(x)− E(eq) = w2
1μ

2
1 + . . .+ w2

qμ
2
q − w2

q ≥ w2
q(μ

2
1 + . . .+ μ2

q − 1) = 0

since the singular values are sorted in decreasing order.



Section 22.2 Nonlinear Least-Squares Methods 669

The SVD of a matrix can also be used to characterize matrices that are rank-
deficient. Suppose that A has rank r < q. Then the matrices U , W , and V can be
written as

U = Ur Uq−r , W =
Wr 0
0 0

, and VT =
VT
r

VT
q−r

,

and

• the columns of Ur form an orthonormal basis of the range of A

• and the columns of Vq−r for a basis of the space spanned by the solutions of
Ax = 0 (the null space of this matrix).

The p× r and q × r matrices Ur and Vr are both column-orthogonal, and we
of course have A = UrWrVT

r .
The following theorem shows that singular value decomposition also provides

a valuable approximation procedure. There, Ur and Vr denote as before the matrices
formed by the r leftmost columns of the matrices U and V , and Wr is the r × r
diagonal matrix formed by the r largest singular values. This time, however, A
might have maximal rank q, and the remaining singular values might be nonzero.

Theorem 6. When A has a rank greater than r, UrWrVT
r is the best possible

rank-r approximation of A in the sense of the Frobenius norm.2

This theorem plays a fundamental role in the factorization approach to struc-
ture from motion presented in Chapter 8.

22.2 NONLINEAR LEAST-SQUARES METHODS

Let us now consider a general system of p equations in q unknowns:⎧⎪⎪⎨
⎪⎪⎩

f1(x1, x2, . . . , xq) = 0
f2(x1, x2, . . . , xq) = 0
. . .
fp(x1, x2, . . . , xq) = 0

⇐⇒ f (x) = 0. (22.7)

Here, f : Rq → R
p is a twice differentiable function with components fi : R

q → R,
i = 1, . . . , p. In general,

• when p < q, the solutions form a (q − p)-dimensional subset of Rq;

• when p = q, there is a finite set of solutions;

• when p > q, there is no solution.

Let us emphasize the main differences with the linear case: In general, the
dimension of the solution set is still q − p in the underconstrained case, but this
set does not form a vector space anymore. Its structure depends on the nature of
the functions fi. Likewise, in the case p = q, usually there is a finite number of
solutions instead of a unique one.

2The Frobenius norm of a matrix is the square root of the sum of the squares of its entries.



Section 22.2 Nonlinear Least-Squares Methods 670

There is no general method for finding all the solutions of Equation (22.7)
when p = q or for finding the global minimum of the least-squares error

E(x)
def
= ||f(x)||2 =

p∑
i=1

f2
i (x)

when p > q. Instead, we present next a number of iterative methods that linearize
the problem in hope of finding at least one suitable solution. They all rely on a
first-order Taylor expansion of the functions fi in the neighborhood of a point x:

fi(x+δx) = fi(x)+δx1

∂fi

∂x1

(x)+. . .+δxq

∂fi

∂xq

(x)+O(||δx||2) ≈ fi(x)+∇fi(x)·δx.

Here, ∇fi(x) = (∂fi/∂x1, . . . , ∂fi/∂xq)
T is the gradient of fi at the point x, and

we have neglected the second-order term O(||δx||2). It follows immediately that

f(x+ δx) ≈ f (x) + Jf (x)δx, (22.8)

where Jf (x) is the Jacobian of f—that is, the p× q matrix

Jf (x)
def
=

⎛
⎝∇fT

1 (x)
. . .

∇fT
p (x)

⎞
⎠ =

⎛
⎜⎜⎜⎜⎝

∂f1
∂x1

(x) . . .
∂f1
∂xq

(x)

. . . . . . . . .
∂fp
∂x1

(x) . . .
∂fp
∂xq

(x)

⎞
⎟⎟⎟⎟⎠.

22.2.1 Newton’s Method: Square Systems of Nonlinear Equations.

As mentioned earlier, Equation (22.7) admits (in general) a finite number of so-
lutions when p = q. Although there is no general method for finding all of these
solutions when f is arbitrary, Equation (22.8) can be used as the basis for a simple
iterative algorithm for finding one of these solutions: given some current estimate
x of the solution, the idea is to compute a perturbation δx of this estimate such
that f(x+ δx) ≈ 0, or, according to Equation (22.8),

Jf (x)δx = −f(x).

When the Jacobian is nonsingular, δx is easily found as the solution of this q × q
system of linear equations, and the process is repeated until convergence.

Newton’s method converges rapidly once close to a solution: It has a quadratic
convergence rate, that is, the error at step k+1 is proportional to the square of the
error at step k. When started far from a solution, Newton’s method as presented
here might be unreliable. Various strategies can be used to improve its robustness,
but their discussion is beyond the scope of this book.

22.2.2 Newton’s Method: Overconstrained Systems of Nonlinear Equations

When p is greater than q, we seek a local minimum of the least-squares error E
(there is no guarantee in general to reach its global minimum). Newton’s method



Section 22.2 Nonlinear Least-Squares Methods 671

can be adapted to this case by noting that such a minimum is a zero of the error’s
gradient. More precisely, we introduce F (x) = 1

2∇E(x) and use Newton’s method
to find the desired minimum as a solution of the q×q system of nonlinear equations
F (x) = 0. Differentiating E shows that

F (x) = J T
f (x)f (x), (22.9)

and differentiating this expression shows in turn that the Jacobian of F is

JF (x) = J T
f (x)Jf (x) +

p∑
i=1

fi(x)Hfi(x). (22.10)

In this equation, Hfi(x) denotes the Hessian of fi—that is, the q × q matrix of
second derivatives

Hfi(x)
def
=

⎛
⎜⎜⎜⎜⎝

∂2fi
∂x2

1

(x) . . .
∂2fi
∂x1xq

(x)

. . . . . . . . .
∂2fi
∂x1xq

(x) . . .
∂2fi
∂x2

q

(x)

⎞
⎟⎟⎟⎟⎠.

The term δx in Newton’s method satisfies JF (x)δx = −F (x). Equivalently,
combining Equations (22.9) and (22.10) shows that δx is the solution of

[J T
f (x)Jf (x) +

p∑
i=1

fi(x)Hfi (x)]δx = −J T
f (x)f (x). (22.11)

22.2.3 The Gauss–Newton and Levenberg–Marquardt Algorithms

Newton’s method requires computing the Hessians of the functions fi, which may
be difficult and/or expensive. We discuss here two other approaches to nonlinear
least-squares that do not involve the Hessians. Let us first consider the Gauss–
Newton algorithm: In this approach, we use again a first-order Taylor expansion of
f to minimize E, but this time we seek the value of δx that minimizes E(x+ δx)
for a given value of x. Substituting Equation (22.8) into Equation (22.7) yields

E(x+ δx) = ||f (x+ δx)||2 ≈ ||f (x) + Jf (x)δx||2.

At this point, we are back in the linear least-squares setting, and the adjust-
ment δx can be computed as the solution of J †

f (x)δx = −f(x) or, equivalently,

according to the definition of the pseudoinverse,

J T
f (x)Jf (x)δx = −J T

f (x)f (x). (22.12)

Comparing Equations. (22.11) and (22.12), we see that the Gauss–Newton
algorithm can be thought of as an approximation of Newton’s method where the
term involving the Hessians Hfi has been neglected. This is justified when the val-
ues of the functions fi at a solution (the residuals) are small because the matrices



Section 22.3 Sparse Coding and Dictionary Learning 672

Hfi are multiplied by these residuals in Equation (22.11). In this case, the perfor-
mance of the Gauss–Newton algorithm is comparable to that of Newton’s method,
with (nearly) quadratic convergence close to a solution. When the residuals at the
solution are too large, however, it might converge slowly or not at all.

When Equation (22.12) is replaced by

[J T
f (x)Jf (x) + μId]δx = −J T

f (x)f (x), (22.13)

where the parameter μ is allowed to vary at each iteration, we obtain the Levenberg–
Marquardt algorithm, popular in computer vision circles. This is another variant of
Newton’s method where the term involving the Hessians is this time approximated
by a multiple of the identity matrix. The Levenberg–Marquardt algorithm has
convergence properties comparable to its Gauss–Newton cousin, but it is more
robust: for example, unlike the Gauss–Newton algorithm, it can be used when the
Jacobian Jf does not have maximal rank and its pseudoinverse does not exist.

22.3 SPARSE CODING AND DICTIONARY LEARNING

Linear models representing data vectors as sparse combinations of dictionary ele-
ments are widely used in computer vision, machine learning, neuroscience, signal
processing, and statistics. This section gives an informal introduction to this ap-
proach to data modeling, and briefly discusses modern optimization techniques for
computing the sparse decomposition of a vector given a predefined dictionary, a
process known as sparse coding (Section 22.3.1), and for learning the dictionary to
adapt it to specific data (Section 22.3.2). In both cases, the objective function min-
imized can be thought of as a constrained version of a least-squares error, with the
aim of reconstructing the data as well as possible given the sparsity constraints. We
conclude in Section 22.3.3 by showing that sparse models can also be used for tasks
such as classification and regression, and presenting a formulation of dictionary
learning adapted to this supervised setting.

22.3.1 Sparse Coding

Consider a vector x in R
m and a dictionary D in R

m×k, whose columns are called
atoms. (In the image processing or computer vision domain, x may be a small
image patch, and D may be composed of wavelets [Mallat 1999], for example.) We
define sparse coding as

min
α∈Rk

||x−Dα||2 + λ||α||p (22.14)

where λ is some positive parameter, and ||α||p is the �p (pseudo) norm of α.3 Note
that overcomplete dictionaries with k > m are allowed in this setting because the
regularization term in ||α||p lifts the ambiguity associated with the corresponding
undertermined linear system, and we denote by α(x,D) the solution of Equa-
tion (22.14), assuming it is unique. When p = 0, the regularization term associated
with the �0 pseudo norm counts the nonzero coefficients of the vector α(x,D),

3The �p norm of a vector x in R
m is defined, for p ≥ 1, by ||x||p = (

∑m

i=1
|x[i]|p)1/p. Following

tradition, we denote by ||x||0 the number of nonzero elements of the vector x. This �0 sparsity
measure is not a true norm.



Section 22.3 Sparse Coding and Dictionary Learning 673

and naturally encourages it to be sparse. When p = 1, the regularization term
associated with the �1 (true) norm is known to yield a sparse solution of Equa-
tion (22.14), but there is no direct analytic link between the value of ||α(x,D)||1
and its effective sparsity.

The scalar λ controls the trade-off between the least-squares error term and
the �p regularizer. It can also be used as a Lagrange multiplier to impose constraints
on the optimization process: indeed, given two positive thresholds T ′ and T ′′, the
problem defined by Equation (22.14) is equivalent to

min
α∈Rk

||x−Dα||2 such that ||α||p ≤ T ′ (22.15)

for some value of λ, and to

min
α∈Rk

||α||p such that ||x−Dα||2 ≤ T ′′ (22.16)

for some other value of this parameter. Again, there is no analytical link between
these values of λ and the values of T ′ and T ′′.

When p = 1, the problem defined by Equation (22.14) or, equivalently, by
Equations (22.15)–(22.16), is also known as basis pursuit (Chen et al. 1999), or the
Lasso (Tibshirani 1996). It is convex, and efficient algorithms, such as LARS—for
least-angle regression (Efron et al. 2004), are available for solving it. When p = 0,
solving Equation (22.14) is NP-hard, and one must rely on greedy (but efficient)
algorithms such as forward selection (Weisberg 1980), also known as orthogonal
matching pursuit (Mallat and Zhang 1993), to find an approximate solution.

22.3.2 Dictionary Learning

Using a learned dictionary adapted to the data instead of a predefined one has
recently led to state-of-the-art results in numerous signal processing tasks, such
as image denoising, texture synthesis, and audio processing, as well as computer
vision ones, such as image classification, showing that sparse learned models are
well adapted to a wide range of natural signals. Classical techniques for learning
the dictionary (Olshausen & Field 1997; Engan, Aase, & Husoy 1999; Lewicki &
Sejnowski 2000; Aharon, Elad, & Bruckstein 2006) consider a finite training set of
signals X = [x1, . . . ,xn] in R

m×n, and minimize the empirical cost function

fn(D) =
1

n

n∑
i=1

l(xi,D), where l(x,D) = min
α∈Rk

1

2
||x−Dα||22 + λ||α||1, (22.17)

with respect to D. The number of samples n is usually large, and the signal di-
mension m is usually comparatively small, for example, m = 100 for 10× 10 image
patches, and n ≥ 100, 000 for typical image processing applications. In general, we
also have k � n (e.g., k = 200 for n = 100, 000), but each signal only uses a few
elements of D in its representation, say 10 for instance.

To prevent the Frobenius norm of D from being arbitrarily large, which would
lead to arbitrarily small vectors αi = α(xi,D), it is common to constrain its
columns d1, . . . ,dk to have an �2-norm less than or equal to one. We will call C the
convex set of matrices verifying this constraint:

C = {D ∈ R
m×k s.t. ∀j = 1, . . . , k, ||dj ||2 ≤ 1}. (22.18)



Section 22.3 Sparse Coding and Dictionary Learning 674

Note that the problem of minimizing the empirical cost fn(D) is not convex with
respect to D. It can be rewritten as a joint optimization problem with respect to the
dictionary D and the matrix A = [α1, . . . ,αn] in R

k×n formed by the coefficients
of the sparse decompositions:

min
D∈C,A∈Rk×n

n∑
i=1

(1
2
||xi −Dαi||22 + λ||αi||1

)
, (22.19)

or equivalently as the matrix factorization problem

min
D∈C,A∈Rk×n

1

2
||X − DA||2F + λ||A||1,1, (22.20)

where ||A||1,1 denotes the �1 norm of the matrix A—that is, the sum of the mag-
nitudes of its coefficients.

The problem defined by Equations (22.19)–(22.20) is not jointly convex in
D and A, but it is convex in each of these variables separately. This suggests
alternating between the two variables, minimizing the empirical cost with respect
to one while keeping the other fixed, as proposed by Engan et al. (1999) and Aharon
et al. (2006), for example.

As pointed out by Bottou and Bousquet (2007), however, the empirical cost
fn(D) is only a substitute for the expected cost

f(D) = Ex[l(x,D)] = lim
n→∞

fn(D) almost surely, (22.21)

where the expectation (which is supposed finite) is taken relative to the probability
distribution p(x) of the data. Of course, p(x) is unknown, but this suggests that,
given a finite training set, one should not spend too much effort on accurately min-
imizing the empirical cost, because it is only an approximation of the expected one.
An “inaccurate” solution may indeed have the same or better expected cost than
a “well-optimized” one. Bottou and Bousquet (2007) further show that stochastic
gradient algorithms, whose convergence rate is very poor in conventional optimiza-
tion terms, may in fact in certain settings be shown, both theoretically and empir-
ically, to be faster in reaching a solution with low expected cost than second-order,
Newton-like, batch methods.

Olshausen and Field (1997) learn a dictionary using stochastic gradient de-
scent. Mairal et al. (2010) have proposed recently a different online algorithm that
exploits the specific structure of the dictionary learning problem to efficiently solve
it by sequentially minimizing a quadratic local surrogate of the expected cost. Con-
cretely, assuming that the training set is composed of i.i.d. samples of a distribution
p(x), its inner loop draws one element xt at a time, as in stochastic gradient descent,
and alternates classical sparse coding steps using the LARS algorithm to compute
the decomposition αt = α(xt,Dt−1) of xt over the dictionary Dt−1 obtained at
the previous iteration, with dictionary update steps where the new dictionary Dt

is computed by minimizing over C the function

f̂t(D) =
1

t

t∑
i=1

(1
2
||xi −Dαi||22 + λ||αi||1

)
, (22.22)



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 675

and the vectors αi for i < t have been computed during the previous steps of the
algorithm. It can be shown that, under mild conditions, this simple procedure
converges almost surely to an optimum of f(D). In addition, its computational
cost is lower than classical batch algorithms, with low memory consumption, and
it scales up gracefully to large data sets with millions of training samples (Mairal
et al. 2010).

22.3.3 Supervised Dictionary Learning

Suppose now that we are interested in predicting a variable y in Y from the ob-
servation x, where Y is either a finite set of labels in the case of classification, or
R

q for some integer q in the case of regression. The simplest formulation consists
of learning a linear model for predicting the variable y using α(x,D) as feature
vector. More generally, and without restricting ourselves to a linear model, one can
learn model parameters W by solving an optimization problem of the form

min
D∈C,W∈V

f(D,W) +
ν

2
||W||2F , (22.23)

where C is the set of constraints defined in Equation (22.18), V is a convex subset
of Rd for some integer d, ν is a regularization parameter, and f has the form

f(D,W) = E(y,x)[l
(
y,W ,α(x,D)

)
], (22.24)

where l : Y × V ×R
k → R is a convex loss function. The expectation is taken with

respect to the unknown probability distribution p of the data (y,x). Depending
on the setting (classification or regression), different choices for l are possible, for
example the square loss, the logistic one, or the hinge loss from support vector
machines, potentially combined with some kernel (Raina et al. 2007). For example,
using the square loss and a linear model for binary classification amounts to taking
l(y,W ,α) = (y −W · α)2 with y in {−1,+1}.

The main difficulty with the optimization of the function f defined by Equa-
tion (22.24) is that α(x,D) is not differentiable with respect to D. This suggesting
replacing the original formulation of sparse coding by a slightly different one, the
elastic net (Zou and Hastie 2005), defined by

α(x,D) = argmin
α∈Rp

1

2
||x−Dα||22 + λ1||α||1 +

λ2

2
||α||22. (22.25)

The solution of this problem is always unique and well defined for λ2 > 0, and
although it is not smooth either, Mairal et al. (2011) show that, in that case, the
function f is in fact differentiable, and that its gradient can be computed in closed
form in the form of an expectation (the main idea is that the places where α is not
differentiable are negligible in the expectation from Equation [22.24]). Stochastic
descent methods are typically well suited to this kind of problems, and a projected
first-order stochastic gradient algorithm (Kushner and Yin 2003) gives good results
in practice.

22.4 MIN-CUT/MAX-FLOW PROBLEMS AND COMBINATORIAL OPTIMIZATION

So far we have considered smooth optimization problems. We now turn to com-
binatorial optimization, where the parameters of interest are integers. We focus



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 676

s
t

a

b

c

d

e

f

2

5

2

1

4

11

1

2

31

1

4

2

4

s
t

a

b

c

d

e

f

2

5

2

1

4

11

1

2

31

1

4

2

4

FIGURE 22.2: A graph (left) and its minimum cut (right), consisting of the dashed edges,
with a value of 7. Here, S = {s, a, b, c, d} and T = {e, f, t}.

on two such problems: the partition of a directed graph with non-negative weights
into two components S and T such that the sum of the weights of arcs originating
in S and terminating in T is minimal (min-cut problem); and the minimization of
a quadratic function of n binary variables (quadratic pseudo-Boolean function). It
turns out that the former problem can be solved in polynomial time by several
efficient algorithms, although the latter one can be reduced to a min-cut problem—
and thus also can be solved in polynomial time—when the function verifies certain
regularity properties (submodularity), and is NP hard otherwise. We conclude by
considering the more general case of functions of n integer variables defined over
some finite interval that can be written as a sum of unary and binary terms in
these variables, and show that their minimization can also be reduced to a min-cut
problem when they are submodular.

22.4.1 Min-Cut Problems

Consider a directed graph, or network, G = (V , E) with vertices V and edges E ; two
terminal nodes s and t respectively called the source and sink; and n non-terminal
nodes, say, v1, . . . , vn. Let us define a cut of G as a partition of its nodes into
disjoint subsets S and T such that s is in S and t is in T , and the corresponding cut
set C(S, T ) as the set of edges (v, w) such that v belongs to S and w belongs to T
(Figure 22.2). Given some non-negative cost (or capacity) function c : V ×V → R

+

such that c(v, w) = 0 when there is no edge between the vertices v and w, we define
the cost of the cut (S, T ) as ∑

(v,w)∈C(S,T )

c(v, w).

It turns out that a cut with minimal cost (min-cut problem) is equivalent to solving
a linear programming problem.

Given the capacity function c, a flow is a non-negative function f : V × V →
R

+ such that ⎧⎨
⎩

∀(v, w) ∈ V × V, f(v, w) ≤ c(v, w),
∀(v, w) ∈ V × V, f(v, w) = −f(w, v),
∀v ∈ V \{s, t}, ∑u∈V f(u, v) = 0.

The first of these three constraints states that the flow through an edge cannot
exceed its capacity, and the second and third constraints express a conservation
law: except for source and sink nodes, the sum of the flows entering a node is equal



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 677

to the sum of the flows leaving it. The value of the flow f is defined as

|f | =
∑
v∈V

f(s, v).

It can be shown that computing a maximal flow (max-flow problem) also amounts
to solving a linear program, and that the max-flow and min-cut values of a given
network are the same (Ford and Fulkerson 1956, minimal cut theorem). Contrary
to the case of general linear programming problems, efficient polynomial algorithms
for solving the max-flow problem, and thus the min-cut problem too, are available
(Ford & Fulkerson 1956; Goldberg & Tarjan 1988; Boykov & Kolgomorov 2004).4

22.4.2 Quadratic Pseudo-Boolean Functions

Let us now consider the class of energy functions E : {0, 1}n → R that can be
written as a sum of unary and binary terms in a vector x = (x1, . . . , xn)

T of n
binary variables—that is,

E(x) =

n∑
i=1

Ei(xi) +
∑

1≤i<j≤n

Eij(xi, xj). (22.26)

Note that any function that can be written as a sum of unary terms associated
with the nodes of some finite oriented graph G and binary terms associated with
its edges can be written this way. Without loss of generality, the nodes of G can be
identified with integers between 1 and n, and its edges can be identified with the
ordered pairs (p, q) such that 1 ≤ p < q ≤ n. This is done by assigning a zero cost
to edges not present in the original graph, and replacing the two terms associated
to reverse edges by their sum.

We show in the rest of this section that, under certain regularity conditions,
minimizing functions with the form defined by Equation (22.26) reduces to a min-
cut problem.

Let us first note that it is always possible to write any energy function de-
pending on a single binary variable as an affine function of this variable:

Ei(xi) = μixi + νi, where μi = Ei(1)− Ei(0) and νi = Ei(0). (22.27)

Likewise, it is possible to write any energy function depending on two different
binary variables as the sum of a constant and a quadratic function in these two
variables. Indeed, it is easy to check that the following identity holds for any value
of the binary variables xi and xj :

Eij(xi, xj) = βijxixj + γijxi + γjixj + δij , (22.28)

where ⎧⎪⎪⎨
⎪⎪⎩

βij = Eij(0, 0) + Eij(1, 1)− Eij(0, 1)− Eij(1, 0),
γij = Eij(1, 0)− Eij(0, 0),
γji = Eij(0, 1)− Eij(0, 0),
δij = Eij(0, 0).

4Although the simplex method for linear programming is in the worst case exponential in the
number of variables, polynomial interior-point algorithms do exist (Boyd and Vandenberghe 2004),
but they are designed for generic linear programming problems, and not as efficient in general as
dedicated min-cit/max-flow solutions.



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 678

It follows immediately from Equations (22.27) and (22.28) that E(x) can
always be rewritten, up to some additive constant, as

E(x) =

n∑
i=1

αixi +
∑

1≤i<j≤n

βijxixj , where αi = μi +
∑
j �=i

γij , (22.29)

which is a quadratic function of the binary variables x1, . . . , xn—that is, a quadratic
pseudo-Boolean function.

For any binary variable x, let us define x̄ = 1 − x. The energy function in
Equation (22.29) can also be rewritten, up to a (different) additive constant, as

E(x) =
∑
i∈P

ρixi −
∑
i∈N

ρix̄i −
∑

1≤i<j≤n

βijxix̄j , where

⎧⎨
⎩

ρi = αi +
∑

j>i βij ,

P = {i|ρi > 0},
N = {i|ρi ≤ 0}.

(22.30)
Note that all the coefficients of the unary terms in Equation (22.30) are non-
negative.

When the coefficients βij are negative, the minimization of energy functions of
the form shown in Equation (22.29), or equivalently, Equation (22.30), is equivalent
to a min-cut problem, and thus amenable to efficient computational solutions. To
show this, let us follow the construction of Boros and Hammer (2002), and consider
a graph G = (V , E) with n+ 2 vertices V , including source and sink nodes s and t,
the remaining vertices being identified with the n binary variables. The arcs of the
graph correspond to the various terms in Equation (22.30):

E = {(s, xi;−ρi)|i ∈ N} ∪ {(xi, t; ρi)|i ∈ P} ∪ {(xi, xj ;−βij)|1 ≤ i < j ≤ n},
where (x, y; c) denotes the arc linking nodes x and y with capacity c. Each value
of the binary vector x can be identified with the cut (Sx, Tx) of G such that Sx
consists of s and the nodes xi such that xi = 1, and Tx consists of t and the nodes
xi such that xi = 0. It is easy to check that the cost of the cut (Sx, Tx) is equal
to the value of E(x). Thus, when βij ≤ 0 for all ordered pairs (i, j) such that
1 ≤ i < j ≤ n, which ensures that all the network capacities are non-negative,
minimizing E(x) amounts to solving a min-cut problem, which can be done exactly
in polynomial time.

The regularity condition βij ≤ 0 is a special case of submodularity, a condition
on general set functions (real functions defined on the power set of some finite
set) that guarantees that they can be minimized in polynomial time (Boros and
Hammer 2002). On the other hand, minimizing an arbitrary quadratic pseudo-
Boolean function that is not submodular is NP-hard.

Note that Equation (22.29) can be rewritten as

E(x) =
n∑

i=1

⎛
⎝αi +

1

2

∑
j �=i

βij

⎞
⎠xi −

1

2

∑
1≤i<j≤n

βij(xi − xj)
2 (22.31)

by using the fact that for any binary variable xi, xi = x2
i . In particular, it fol-

lows from our discussion that the energy functions of the form in Equation (22.26)
that can be optimized efficiently are exactly those for which the binary terms are
attractive—that is, the weights −1/2βij of the terms (xi − xj)

2 are positive.



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 679

22.4.3 Generalization to Integer Variables

We consider in this section a generalization of the problem considered so far. Now
the energy E : Kn → R is a function of a vector x = (x1, . . . , xn)

T of n integer
variables within some fixed range K = {0, . . . ,K} instead of binary ones; however,
the energy can still be written as a sum of unary and binary terms

E(x) =

n∑
i=1

Ei(xi) +
∑

1≤i<j≤n

Eij(xi, xj). (22.32)

Reduction to a Quadratic Pseudo-Boolean Optimization Problem
It turns out that the integer problem defined by Equation (22.32) can always be
reduced to a quadratic pseudo-Boolean one, and thus solved using a min-cut/max-
flow algorithm when certain submodularity conditions are satisfied. We follow
the reduction proposed by Darbon (2009) in this section; see Ishikawa (2003) and
Schlesinger and Flach (2006) for related approaches.

Given some integer variable x, let us define the characteristic function of its
lower level-set for some value k in K as

xk = 0 if x ≤ k and 1 otherwise,

and note that (a) it satisfies the monotony property xk ≤ xl for all k ≥ l in K, and
(b) x = max{k ∈ K, xk = 0}. In particular, it can be shown that any family of K
binary functions satisfying the first of these properties defines an integer value in
K, which can be recovered using the second one.

A simple calculation shows that any energy function depending on a single
integer variable with values in K can be rewritten as

Ei(xi) =

[
K−1∑
k=0

μk
i x

k
i

]
+ νi, where μk

i = Ei(k+1)−Ei(k) and νi = Ei(0). (22.33)

Likewise, any energy function depending on two variables with values in K can be
rewritten as

Eij(xi, xj) =

⎡
⎣K−1∑
k,l=0

βkl
ij x

k
i x

l
j

⎤
⎦+

[
K−1∑
k=0

γk
ijx

k
i + γk

jix
k
j

]
+ δij , (22.34)

where⎧⎪⎪⎨
⎪⎪⎩

βkl
ij = Eij(k, l) + Eij(k + 1, l+ 1)− Eij(k, l + 1)− Eij(k + 1, l),

γk
ij = Eij(k + 1, 0)− Eij(k, 0),

γk
ji = Eij(0, k + 1)− Eij(0, k),

δij = Eij(0, 0).

(22.35)

It follows immediately from Equations (22.33) and (22.34) that E(x) always
can be rewritten, up to some additive constant, as

E(x) =

n∑
i=1

K−1∑
k=0

αk
i x

k
i +

∑
1≤i<j≤n

K−1∑
k,l=0

βkl
ij x

k
i x

l
j , where αk

i = μk
i +

∑
j �=i

γk
ij , (22.36)



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 680

which is a quadratic function of the integer variables xk
i , with i in {1, . . . , n} and k

in K.
Note the strong similarity of this expression with that obtained in the bi-

nary case (Equation [22.29]). Assuming that E is submodular—that is, all the
parameters βkl

ij are nonpositive—E obviously can be minimized exactly using a
min-cut/max-flow algorithm.

Note, however, that the monotony condition must be enforced for the cor-
responding binary variables values to define an integer value in K. This is easily
achieved by minimizing instead

E′(x) = E(x)+

n∑
i=1

K−1∑
k=0

T (xk+1
i −xk

i ), where T (r) = 0 if r ≤ 0 and +∞ otherwise.

Adding this penalty term forces all solutions with finite cost to be monotone. On
the other hand, any monotone solution will have zero penalty, and thus minimizing
E′(x) yields a labeling also minimizing E(x).

Alpha Expansion The reduction of an integer combinatorial optimization
problem to a binary one which we have just discussed is attractive because it allows
for an efficient procedure5 that yields the global optimum of the objective function.

However, the submodularity condition βkl
ij ≤ 0 that is associated with Equa-

tion (22.35) may be too restrictive for certain applications. Functions Eij that
can be written as Eij(xi, xj) = g(xi − xj), where g : Z → R is convex, do satisfy
this condition (Darbon 2009). A classical example of such a function in the image
processing domain is total variation, where Eij(xi, xj) = γij |xi − xj |, and γij > 0.
On the other hand, discontinuity preserving binary terms, such as the Potts model
Eij(xi, xj) = γijχ(xi �= xj) (where the characteristic function χ is one if its ar-
gument is true and zero otherwise, and γij > 0), do not obey the submodularity
conditions of Eq (22.35). Handling such terms may be important in practice; for
example, one might not want to overpenalize changes in disparity in stereo fusion
tasks because this function is discontinuous at occlusion boundaries, thus preferring
a Potts penalty term to a total variation one to encourage disparity smoothness.
This is one of the motivations for using alternate optimization approaches, such as
the alpha expansion procedure of Boykov et al. (2001), that make weaker assump-
tions on the energy functions they minimize. The price to pay is that they do not
give, in general, a global optimum of these functions.

Alpha expansion is an iterative algorithm, where, at each iteration, an ar-
bitrary number of integer variables xi are allowed to change their value to some
α in K, and the change in x minimizing E among these alpha expansion moves
is retained. A full iteration of the algorithm examines all possible values of α in
some arbitrary order, and the algorithm iterates until no further improvement of
the energy value is obtained (Algorithm 22.1).

The key step of this algorithm is the minimization of E(x′). It can be rewritten
as an energy minimization over a vector y of n binary variables yi as follows: Let

5One should keep in mind, however, that the number of binary variables in the reduced problem
is n(K+1) instead of n for the original problem, which prevents scaling up this method to problems
with large numbers of variables and integer values.



Section 22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization 681

1. Initialize x randomly.

2. Repeat

(a) For each α in K do

i. Find the value x′ minimizing E(x′) among integer variables within
one α expansion of x.

ii. If E(x′) < E(x) then x ← x′; Done← false else Done←true.

(b) until Done.

3. Return x.

Algorithm 22.1: The Alpha Expansion Algorithm of Boykov et al. (2001).

us define

E′(y) =
n∑

i=1

Ei(x
′
i(yi)) +

∑
1≤i<j≤n

Eij(x
′
i(yi), x

′
j(yj)), (22.37)

where x′
i(yi) = xi when yi = 0 and x′

i(yi) = α when yi = 1. Minimizing E(x′)
with respect to the variables x′ within one α expansion of x is clearly equivalent to
minimizing E′(y) with respect to y, which amounts to solving a quadratic pseudo-
Boolean optimization problem with the submodularity condition

Eij(xi, xj) + Eij(α, α) ≤ Eij(xi, α) + Eij(α, xj), (22.38)

which must be satisfied for all pairs (i, j) such that 1 ≤ i < j ≤ n and for all α in K.
This is clearly the case, for example, when the functions Eij are distances, for which
Eij(α, α) = 0 and the triangular inequality Eij(xi, xj) ≤ Eij(xi, α) + Eij(α, xj) is
satisfied. This is also the case for the Potts model discussed earlier.

In general, the submodularity condition of Equation (22.38) is weaker than the
corresponding condition βkl

ij ≤ 0 associated with Equation (22.35) in the previous
section. Alpha expansion can thus be applied to a wider variety of problems. Each
of its iterations is also cheaper because the number n of binary variables is equal to
the number of integer ones, and not to n(K+1) in Darbon’s reduction. As already
mentioned, however, the price to pay is that alpha expansion returns only a local
minimum of the corresponding objective function.

Ordering Issues Any combinatorial optimization problem where one must min-
imize the function E(x) defined by Equation (22.32) over some finite but not nec-
essarily integer, or ordered, set of labels can be reduced to an integer optimization
problem by picking some arbitrary order for the labels. One should keep in mind,
however, that this makes sense only when a natural ordering can be imposed on
the labels. This is the case, for example, in stereo fusion with rectified images,
where the labels are horizontal disparities, but not in a general graph-matching



Section 22.5 Notes 682

scenario. Otherwise, an exponential number of orderings must a priori be consid-
ered, which in general is computationally intractable, and whatever optimization
method is used, picking a particular ordering might lead to a suboptimal solution.
In the case of alpha expansion, the order for the α values can be chosen randomly
at each iteration, for example.

22.5 NOTES

General optimization techniques for smooth functions of their parameters are dis-
cussed in Luenberger (1984), Bertsekas (1995), and Heath (2002), for example.
An excellent survey and discussion of least-squares methods in the structure-from-
motion context of Chapter 8 can be found in Triggs et al. (2000). The output
of least-squares methods admits a statistical interpretation in maximum-likelihood
terms when the coordinates of the data points are modeled as random variables
obeying a normal distribution. This intepretation is discussed in Chapter 10.

The introduction to sparse coding and dictionary learning presented in Sec-
tion 22.3 is largely based on Mairal et al. (2010, 2011). Various types of wavelets
have been used as dictionaries for natural images (Mallat 1999). The convex basis
pursuit and Lasso problems are defined in (Chen et al. 1999; Tibshirani 1996). A
number of recent methods for solving this type of problems are based on coordi-
nate descent with soft thresholding (Fu 1998; Friedman, Hastie, Hölfling, & Tibshi-
rani 2001; Wu & Lange 2008). The LARS algorithm of Efron et al. (2004) provides
an efficient alternative when the columns of the dictionary are highly correlated,
which is often the case for learned dictionaries in image processing and computer vi-
sion applications. The �0 sparse coding problem is NP-hard, and greedy algorithms
for finding an approximate solution can be found in Weisberg (1980) and Mallat
and Zhang (1993). Building on ideas proposed in Olshausen and Field (1997) to
model neuronal responses in the V1 area of the brain, Elad and Aharon (2006)
have proposed to learn a dictionary D adapted to the image at hand instead of
using a predefined one, and demonstrated that learned dictionaries lead to better
empirical performance than off-the-shelf ones. Many other applications of learned
dictionaries have been proposed for tasks ranging from image denoising (Elad &
Aharon 2006; Mairal et al. 2009), texture synthesis (Peyre 2008), and audio process-
ing (Grosse, Raina, Kwong, & Ng 2007; Zibulevsky & Pearlmutter 2001), to image
classification (Raina et al. 2007; Mairal et al. 2008; Bradley & Bagnell 2009). The
supervised formulation presented in Section 22.3 is especially relevant for the latter
tasks because it allows for discriminative dictionary learning (Yang, Yu, Gong, &
Huang 2009b; Boureau, Bach, LeCun, & Ponce 2009; Yang, Yu, & Huang 2010a;
Mairal et al. 2011).

Classical treatments of min-cut/max-flow problems and algorithms include
Ford and Fulkerson (1956) and Goldberg and Tarjan (1988) for example. The
reduction of a submodular pseudo-Boolean optimization problem to a min-cut one
described in this chapter is due to Boros and Hammer (2002). The reduction of
an integer optimization problem to a binary one also presented in this chapter is
due to Darbon (2009). See Ishikawa (2003) and Schlesinger and Flach (2006) for
related approaches. The iterative alpha expansion algorithm is described in Boykov,
Veksler, and Zabih (2001), that also proposes an alternative α − β technique for



Section 22.5 Notes 683

solving the same problem.
In the computer vision domain, min-cut/max-flow algorithms are often known

under the nickname of graph-cuts algorithms. They have been popularized in large
part by Boykov et al. (2001), Boykov and Kolgomorov (2004), and Kolgomorov and
Zabih (2004), although they were used in earlier work, such as Greig, Porteous &
Seheult (1989), Roy and Cox (1998), and Ishikawa and Geiger (1998), for example.
Our presentation of combinatorial optimization does not assume or require any
probabilistic model. It is worth noting, however, that the energy functions discussed
in Section 22.4 (Equations [22.26,22.32]) also arise in the context of probabilistic
first-order Markov random fields, popularized in computer vision by Geman and
Geman (1984), who proposed to use simulated annealing to solve the corresponding
labeling problem.

Finally, let us close this chapter by noting that implementations of the vari-
ous algorithms discussed in this chapter are widely available. For example, freely
available libraries such as LAPACK (see http://www.netlib.org/lapack/) and
MINPACK (see http://www.netlib.org/minpack/) offer a wide variety of func-
tions for linear and nonlinear least-squares, singular value decomposition, and
(generalized) eigenvalue problems. MATLAB implements similar functionalities.
SPAMS, an extensive open-source library for sparse coding and dictionary learn-
ing, developed by J. Mairal, and implementing Mairal et al. (2010), is available
at http://www.di.ens.fr/willow/SPAMS/. Freely available code for solving min-
cut/max-flow and multi-label optimization problems, developed by Y. Boykov, A.
Delong, V. Kolmogorov, and O. Veksler, and implementing (Boykov et al. 2001;
Boykov & Kolmogorov 2004) can be found at http://vision.csd.uwo.ca/code/.

http://www.netlib.org/lapack/
http://www.netlib.org/minpack/
http://www.di.ens.fr/willow/SPAMS/
http://vision.csd.uwo.ca/code/


Bibliography

Abdel Hakim, A. and Farag, A. (2006), Csift: A sift descriptor with color invariant char-
acteristics, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. II: 1978–1983.

Abdellatif, M., Tanaka, Y., Gofuku, A. and Nagai, I. (2000), ‘Color constancy using
the inter-reflection from a reference nose’, International Journal of Computer Vision
39(3), 171–194.

Adelson, E. (2001), On seeing stuff: the perception of materials by humans and machines,
in ‘Proc. SPIE’, Vol. 4299: Human Vision and Electronic Imaging VI, pp. 1–12.

Adelson, E. and Bergen, J. (1991), The plenoptic function and the elements of early vision,
inM. Landy and J. Movshon, eds, ‘Computational Models of Visual Processing’, MIT
Press, Cambridge, MA.

Adelson, E. and Weiss, Y. (1996), A unified mixture framework for motion segmentation:
Incorporating spatial coherence and estimating the number of models, in ‘IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR)’, pp. 321–326.

Agarwal, S. and Roth, D. (May 2002), ‘Learning a Sparse Representation for Object
Detection’, Proceedings of ECCV’02.

Agin, G. (1972), Representation and description of curved objects, PhD thesis, Stanford
University, Stanford, CA.

Aharon, M., Elad, M. and Bruckstein, A. M. (2006), ‘The K-SVD: An algorithm for
designing of overcomplete dictionaries for sparse representations’, 54(11), 4311–4322.

Aho, A., Hopcroft, J. and Ullman, J. (1974), The design and analysis of computer algo-
rithms, Addison-Wesley.

Ahuja, N. and Abbott, A. (1993), ‘Active stereo: Integrating disparity, vergence, focus,
aperture, and calibration for surface estimation’, IEEE Trans. Pattern Analysis and
Machine Intelligence 15(10), 1007–1029.

Ahuja, N. and Schachter, B. (1983a), ‘Image models’, ACM Computing Surveys 15(1), 83–
84.

Ahuja, N. and Schachter, B. (1983b), Pattern Models, Wiley.

Ahuja, R., Magnanti, T. and Orlin, J. (1993), Network Flows: Theory, Algorithms and
Applications, Prentice-Hall.

Aloimonos, Y. (1986), Detection of surface orientation from texture. i. the case of planes.,
in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 584–593.

Aloimonos, Y. (1990), ‘Perspective approximations’, Image and Vision Computing
8(3), 177–192.

Aloimonos, Y., Weiss, I. and Bandyopadhyay, A. (1987), ‘Active vision’, International
Journal of Computer Vision 1(4), 333–356.

Amenta, N., Bern, M. and Kamvysselis, M. (1998), ‘A new voronoi-based surface re-
construction algorithm’, ACM Transactions on Graphics: Proc. SIGGRAPH 1998
pp. 415–421.

Amir, A. and Lindenbaum, M. (1996), Quantitative analysis of grouping processes, in
‘Proc. European Conference on Computer Vision (ECCV)’, pp. I:371–384.

684



BIBLIOGRAPHY 685

Amit, Y. and Geman, D. (1997), ‘Shape quantization and recognition with randomized
trees’, Neural Computation 9, 1545–1588.

Anderson, B. and Nayakama, K. (1994), ‘Toward a general theory of stereopsis — binocu-
lar matching, occluding contours, and fusion’, Psychological Review 101(3), 414–445.

Andrews, S., Tsochantaridis, I. and Hofmann, T. (2003), Support vector machines for
multiple-instance learning, in ‘Proc. NIPS 15’, MIT Press, pp. 561–568.

Arbelaez, P., Maire, M., Fowlkes, C. and Malik, J. (2011), ‘Contour detection and hierar-
chical image segmentation’, IEEE Trans. Pattern Analysis and Machine Intelligence
33(5), 898–916.

Arbogast, E. and Mohr, R. (1991), ‘3D structure inference from image sequences’, Journal
of Pattern Recognition and Artificial Intelligence.

Arikan, O. (2006), ‘Compression of motion capture databases’, ACM Transactions on
Graphics: Proc. SIGGRAPH 2006.

Armitage, L. and Enser, P. (1997), ‘Analysis of user need in image archives’, Journal of
Information Science 23(4), 287–299.

Arnol’d, V. (1984), Catastrophe Theory, Springer-Verlag, Heidelberg.

Arnon, D., Collins, G. and McCallum, S. (1984), ‘Cylindrical algebraic decomposition I
and II’, SIAM J. Comput. 13(4), 865–889.

Athitsos, V., Neidle, C., Sclaroff, S., Nash, J., Stefan, A., Yuan, Q. and Thangali, A.
(2008), The American Sign Language lexicon video dataset, in ‘IEEE Workshop
on Computer Vision and Pattern Recognition for Human Communicative Behavior
Analysis’, pp. 1–8.

Awate, S. and Whitaker, R. (2006), ‘Unsupervised, information-theoretic, adaptive image
filtering for image restoration’, IEEE Trans. Pattern Analysis and Machine Intelli-
gence pp. 364–376.

Ayache, N. (1995), ‘Medical computer vision, virtual-reality and robotics’, Image and
Vision Computing 13(4), 295–313.

Ayache, N. and Faugeras, O. (1986), ‘Hyper: a new approach for the recognition and
positioning of two-dimensional objects’, IEEE Trans. Pattern Analysis and Machine
Intelligence 8(1), 44–54.

Ayache, N. and Faugeras, O. (1987), Building, registrating, and fusing noisy visual maps,
in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 73–82.

Ayache, N. and Lustman, F. (1987), Fast and reliable passive trinocular stereovision, in
‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 422–427.

Bach, F., Jenatton, R., Mairal, J. and Obozinski, G. (2011), Convex optimization with
sparsity-inducing norms, in S. Sra, S. Nowozin and S. Wright, eds, ‘Optimization for
Machine Learning’, MIT Press.

Bagon, S., Boiman, O. and Irani, M. (2008), What is a good image segment? a unified
approach to segment extraction, in ‘Proc. European Conference on Computer Vision
(ECCV)’, pp. IV: 30–44.

Bajcsy, R. (1988), ‘Active perception’, Proceedings of the IEEE 76(8), 996–1005.

Bajcsy, R. and Lieberman, L. (1976), ‘Texture gradient as a depth cue’, Computer Graph-
ics Image Processing 5(1), 52–67.

Bajcsy, R. and Solina, F. (1987), Three-dimensional object representation revisited, in
‘Proc. Int. Conf. on Computer Vision (ICCV)’, London, U.K., pp. 231–240.



BIBLIOGRAPHY 686

Baker, H. and Binford, T. (1981), Depth from edge- and intensity-based stereo, in ‘Int.
Joint Conf. Artificial Intelligence’, pp. 631–636.

Baker, S., Szeliski, R. and Anandan, P. (1998), A layered approach to stereo reconstruc-
tion, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 434–
441.

Ballard, D. (1981), ‘Generalizing the Hough transform to detect arbitrary shapes’, Pattern
Recognition 13(2), 111–122.

Ballard, D. (1984), ‘Parameter nets’, Artificial Intelligence 22(3), 235–267.

Bar-Shalom, Y. and Li, X.-R. (2001), Estimation with Applications to Tracking and Nav-
igation, John Wiley & Sons, Inc., New York, NY, USA.

Barinova, O., Konushin, V., Yakubenko, A., Lee, K., Lim, H. and Konushin, A. (2008),
Fast automatic single-view 3-d reconstruction of urban scenes, in ‘Proc. European
Conference on Computer Vision (ECCV)’, pp. II: 100–113.

Barnard, K. (2000), Improvements to gamut mapping colour constancy algorithms, in
‘Proc. European Conference on Computer Vision (ECCV)’, pp. 390–402.

Barnard, K. and Forsyth, D. (2001), Learning the semantics of words and pictures, in
‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 408–15.

Barnard, K. and Johnson, M. (2005), ‘Word sense disambiguation with pictures’, Artif.
Intell. 167(1-2), 13–30.

Barnard, K., Cardei, V. and Funt, B. (2002a), ‘A comparison of computational color
constancy algorithms-part i: Methodology and experiments with synthesized data’,
IEEE Trans. Image Processing 11(9), 972–984.

Barnard, K., Ciurea, F. and Funt, B. (2001a), ‘Sensor sharpening for computational color
constancy’, Journal of the Optical Society of America 18(11), 2728–2743.

Barnard, K., Duygulu, P. and Forsyth, D. (2001b), Clustering art, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’, pp. II:434–441.

Barnard, K., Duygulu, P., de Freitas, N., Forsyth, D., Blei, D. and Jordan, M. I. (2003a),
‘Matching words and pictures’, Journal of Machine Learning Research 3, 1107–1135.

Barnard, K., Duygulu, P., Guru, R., Gabbur, P., and Forsyth, D. (2003b), The effects
of segmentation and feature choice in a translation model of object recognition, in
‘Proceedings of Computer Vision and Pattern Recognition (CVPR)’.

Barnard, K., Finlayson, G. and Funt, B. (1997), ‘Color constancy for scenes with varying
illumination’, Computer Vision and Image Understanding 65(2), 311–321.

Barnard, K., Martin, L., Coath, A. and Funt, B. (2002b), ‘A comparison of computational
color constancy algorithms-part ii: Experiments with image data’, IEEE Trans. Im-
age Processing 11(9), 985–996.

Barnard, K., Martin, L., Funt, B. and Coath, A. (2002c), ‘A data set for colour research’,
Color Research and Applications 27, 147–151.

Basri, R. and Jacobs, D. W. (2003), ‘Lambertian reflectance and linear subspaces’, IEEE
Trans. Pattern Analysis and Machine Intelligence 25(2), 218–233.

Bates, M. (2007), ‘What is browsing really? A model drawing from behavioural science
research’, Information Research.

Baumgart, B. (1974), Geometric modeling for computer vision, Technical Report AIM-
249, Stanford University. Ph.D. Thesis. Department of Computer Science.



BIBLIOGRAPHY 687

Beardsley, P., Zisserman, A. and Murray, D. (1997), ‘Sequential updating of projective and
affine structure from motion’, International Journal of Computer Vision 23(3), 235–
259.

Beauchemin, M. and Thomson, K. (1997), ‘The evaluation of segmentation results and
the overlapping area matrix’, International Journal of Remote Sensing 18(18), 3895–
3899.

Beckmann, P. and Spizzichino, A. (1987), Scattering of Electromagnetic Waves from Rough
Surfaces, Artech House.

Belhumeur, P. and Kriegman, D. (1998), ‘What is the set of images of an object un-
der all possible illumination conditions?’, International Journal of Computer Vision
28(3), 245–260.

Belhumeur, P., Chen, D., Feiner, S., Jacobs, D., Kress, W., Ling, H., Lopez, I., Ramamoor-
thi, R., Sheorey, S., White, S. and Zhang, L. (2008), Searching the world’s herbaria:
A system for visual identification of plant species, in ‘Proc. European Conference on
Computer Vision (ECCV)’, pp. IV: 116–129.

Belongie, S., Carson, C., Greenspan, H. and Malik, J. (1998a), Color- and texture-based
image segmentation using the expectation-maximization algorithm and its appli-
cation to content-based image retrieval, in ‘Proc. Int. Conf. on Computer Vision
(ICCV)’, pp. 675–682.

Belongie, S., Carson, C., Greenspan, H. and Malik, J. (1998b), Color and texture-based
image segmentation using EM and its applications to content based image retrieval,
in ‘Proc. Int. Conf. on Computer Vision (ICCV)’.

Belongie, S., Malik, J. and Puzicha, J. (2001), Matching shapes, in ‘Proc. Int. Conf. on
Computer Vision (ICCV)’, pp. I: 454–461.

Belongie, S., Malik, J. and Puzicha, J. (2002), ‘Shape matching and object recogni-
tion using shape contexts’, IEEE Trans. Pattern Analysis and Machine Intelligence
24(4), 509–522.

Benes̆, V. (1981), ‘Exact finite-dimensional filters with certain diffusion non-linear drift’,
Stochastics 5, 65–92.

Berg, A., Berg, T. and Malik, J. (2005), Shape matching and object recognition using
low distortion correspondences, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, pp. I: 26–33.

Berg, T. and Forsyth, D. (2006), Animals on the web, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, Vol. 2, pp. 1463–1470.

Berg, T., Berg, A., Edwards, J., Maire, M., White, R., Teh, Y., Learned Miller, E. and
Forsyth, D. (2004), Names and faces in the news, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. II: 848–854.

Berger, M. (1987), Geometry, Springer-Verlag.

Bergholm, F. (1987), ‘Edge focusing’, IEEE Trans. Pattern Analysis and Machine Intel-
ligence 9(6), 726–741.

Berns, R. (2000), Billmeyer and Saltzman’s Principles of Color Technology, Wiley-
Interscience.

Bertsekas, D. (1995), Nonlinear programming, Athena Scientific, Belmont, MA.

Besl, P. (1989), ‘Active optical range imaging sensors’, Machine vision and applications
1, 127–152.



BIBLIOGRAPHY 688

Besl, P. and Jain, R. (1988), ‘Segmentation through variable-order surface fitting’, IEEE
Trans. Pattern Analysis and Machine Intelligence 10(2), 167–192.

Besl, P. and McKay, N. (1992), ‘A method for registration of 3D shapes’, IEEE Trans.
Pattern Analysis and Machine Intelligence 14(2), 239–256.

Binford, T. (1984), Stereo vision: complexity and constraints, in ‘Int. Symp. on Robotics
Research’, MIT Press, pp. 475–487.

Bishop, C. M. (2007), Pattern Recognition and Machine Learning, Springer.

Black, M. and Anandan, P. (1996), ‘The robust estimation of multiple motions: Paramet-
ric and piecewise-smooth flow-fields’, Computer Vision and Image Understanding
63(1), 75–104.

Black, M. and Jepson, A. (1998), A probabilistic framework for matching temporal tra-
jectories: CONDENSATION-based recognition of gestures and expressions, in ‘Proc.
European Conference on Computer Vision (ECCV)’, pp. 909–924.

Blackman, S. and Popoli, R. (1999), Design and Analysis of Modern Tracking Systems,
Artech House.

Blake, A. (1985), ‘Boundary conditions for lightness computation in mondrian world’,
CVGIP: Image Understanding 32(3), 314–327.

Blake, A. (1999), Introduction to Active Contours and Visual Dynamics, Online Book.

Blake, A. and Isard, M. (1996), The condensation algorithm - conditional density propa-
gation and applications to visual tracking, in M. Mozer, M. Jordan and T. Petsche,
eds, ‘Advances in neural information processing systems 9’.

Blake, A. and Isard, M. (1998), ‘Condensation - conditional density propagation for visual
tracking’, International Journal of Computer Vision 29(1), 5–28.

Blake, A. and Marinos, C. (1990), ‘Shape from texture: estimation, isotropy and mo-
ments’, Artificial Intelligence 45(3), 323–80.

Blake, A., Kohli, P. and Rother, C., eds (2011), Markov Random Fields for Vision and
Image Processing, MIT Press.

Blei, D. M. and Jordan, M. I. (2002), Modeling annotated data, Technical Report CSD-
02-1202, University of California Computer Science Division.

Blei, D. M. and Jordan, M. I. (2003), Modeling annotated data, in ‘SIGIR ’03: Pro-
ceedings of the 26th annual international ACM SIGIR conference on Research and
development in informaion retrieval’, ACM Press, New York, NY, USA, pp. 127–134.

Bodenheimer, B., Rose, C., Rosenthal, S. and Pella, J. (1997), The process of motion
capture: Dealing with the data, in ‘Computer Animation and Simulation ’97. Pro-
ceedings of the Eurographics Workshop’.

Boissonnat, J.-D. (1984), ‘Geometric structures for three-dimensional shape representa-
tion’, ACM Transaction on Computer Graphics 3(4), 266–286.

Boissonnat, J.-D. and Germain, F. (1981), A new approach to the problem of acquiring
randomly-oriented workpieces from a bin, in ‘Int. Joint Conf. Artificial Intelligence’,
Vancouver, Canada.

Bookstein, F. (1979), ‘Fitting conic sections to scattered data’, Computer Graphics Image
Processing 9(1), 56–71.

Borgefors, G. (1988), ‘Hierarchical chamfer matching: A parametric edge matching algo-
rithm’, IEEE Trans. Pattern Analysis and Machine Intelligence 10(6), 849–865.



BIBLIOGRAPHY 689

Boros, E. and Hammer, P. (2002), ‘Pseudo-boolean optimization’, Discrete applied math-
ematics 123(1-3), 155–225.

Bosch, A., Zisserman, A. and Munoz, X. (2008), ‘Scene classification using a hybrid gen-
erative/discriminative approach’, IEEE Trans. Pattern Analysis and Machine Intel-
ligence 30(4), 712–727.

Bosson, A., Cawley, G., Chan, Y. and Harvey, R. (2002), Non-retrieval: Blocking porno-
graphic images, in ‘Int. Conf. Image Video Retrieval’, pp. 50–59.

Bottou, L. and Bousquet, O. (2007), The tradeoffs of large scale learning, in ‘Advances in
Neural Information Processing’.

Bourdev, L. and Malik, J. (2009), Poselets: Body part detectors trained using 3d human
pose annotations, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1365–1372.

Bourdev, L., Maji, S., Brox, T. and Malik, J. (2010), Detecting people using mutually
consistent poselet activations, in ‘Proc. European Conference on Computer Vision
(ECCV)’.

Boureau, Y.-L., Bach, F., LeCun, Y. and Ponce, J. (2009), Learning mid-level features for
recognition, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Bowden, R., Windridge, D., Kadir, T., Zisserman, A. and Brady, M. (2004), A linguis-
tic feature vector for the visual interpretation of sign language, in ‘Proc. European
Conference on Computer Vision (ECCV)’, pp. Vol I: 390–401.

Boyce, B. (1982), ‘Beyond topicality: a two stage view of relevance and the retrieval
process’, Information Processing and Management 18, 105–109.

Boyd, S. and Vandenberghe, L. (2004), Convex optimization, Cambridge University Press.

Boyer, E. (1996), Object Models from Contour Sequences, in ‘Proceedings of Fourth Euro-
pean Conference on Computer Vision, Cambridge, (England)’, pp. 109–118. Lecture
Notes in Computer Science, volume 1065.

Boyer, E. and Berger, M.-O. (1996), ‘3d surface reconstruction using occluding contours’,
International Journal of Computer Vision.

Boykov, Y. and Funka Lea, G. (2006), ‘Graph cuts and efficient n-d image segmentation’,
International Journal of Computer Vision 70(2), 109–131.

Boykov, Y. and Jolly, M. (2001), Interactive graph cuts for optimal boundary and region
segmentation of objects in n-d images, in ‘Proc. Int. Conf. on Computer Vision
(ICCV)’, pp. I: 105–112.

Boykov, Y. and Kolmogorov, V. (2004), ‘An experimental comparison of min-cut/max-
flow algorithms for energy minimization in computer vision’, IEEE Trans. Pattern
Analysis and Machine Intelligence 26(9), 1124–1137.

Boykov, Y., Veksler, O. and Zabih, R. (2001), ‘Fast approximate energy minimization via
graph cuts’, IEEE Trans. Pattern Analysis and Machine Intelligence 23(11), 1222–
1239.

Bracewell, R. (1995), Two-Dimensional Imaging, Prentice Hall.

Bracewell, R. (2000), The Fourier Transform and its Applications, 3ed, McGraw-Hill.

Bradley, D., Boubekeur, T. and Heidrich, W. (2008a), Accurate multi-view reconstruction
using robust binocular stereo and surface meshing, in ‘IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR)’.

Bradley, D. M. and Bagnell, J. A. (2009), Differentiable sparse coding, in ‘Advances in
Neural Information Processing’, Vol. 21, pp. 113–120.



BIBLIOGRAPHY 690

Bradley, D., Popa, T., Sheffer, A., Heidrich, W. and Boubekeur, T. (2008b), ‘Markerless
garment capture’, ACM Trans. Graph. (SIGGRAPH Proceedings).

Bradski, G. and Kaehler, A. (2008), Learning OpenCV: Computer Vision with the OpenCV
Library, O’Reilly.

Brady, J., Ponce, J., Yuille, A. and Asada, H. (1985), ‘Describing surfaces’, CVGIP: Image
Understanding 32(1), 1–28.

Brainard, D. and Wandell, B. (1986), ‘Analysis of the retinex theory of color vision’,
Journal of the Optical Society of America 3, 1651–1661.

Branson, S., Wah, C., Babenko, B., Schroff, F., Welinder, P., Perona, P. and Belongie, S.
(2010), Visual recognition with humans in the loop, in ‘Proc. European Conference
on Computer Vision (ECCV)’.

Breiman, L. (1996), ‘Bagging predictors’, Machine Learning 26, 123–140.

Breiman, L. (2001), ‘Random forests’, Machine Learning 45, 5–32.

Breiman, L., Friedman, J., Ohlsen, R. and Stone, C. (1984), Classification and regression
trees, Wadsworth, NY.

Brelstaff, G. and Blake, A. (1987), ‘Computing lightness’, Pattern Recognition Letters
5, 129–138.

Brelstaff, G. and Blake, A. (1988a), Detecting specular reflection using lambertian con-
straints, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 297–302.

Brelstaff, G. and Blake, A. (1988b), Detecting specular reflections using lambertian con-
straints, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’.

Bridson, R., Fedkiw, R. and Anderson, J. (2002), ‘Robust treatment of collisions, con-
tact and friction for cloth animation’, ACM Transactions on Graphics (SIGGRAPH
Proceedings) pp. 594–603.

Brostow, G. and Essa, I. (1999), Motion based decompositing of video, in ‘Proc. Int. Conf.
on Computer Vision (ICCV)’, pp. 8–13.

Brostow, G., Hernández, C., Vogiatzis, G., Stenger, B. and Cipolla, R. (2011), ‘Video
normals from colored lights’, IEEE Trans. Pattern Analysis and Machine Intelligence.

Brown, L. (2000), A Radar History of World War II: Technical and Military Imperatives,
Institute of Physics Press.

Brown, M. and Lowe, D. (2003), Recognising panoramas, in ‘Proc. Int. Conf. on Computer
Vision (ICCV)’, pp. 1218–1225.

Brown, M. and Lowe, D. (2007), ‘Automatic panoramic image stitching using invariant
features’, International Journal of Computer Vision 74(1), 59–73.

Brown, P. F., Cocke, J., Pietra, S. A. D., Pietra, V. J. D., Jelinek, F., Lafferty, J. D., Mer-
cer, R. L. and Roossin, P. S. (1990), ‘A statistical approach to machine translation’,
Computational Linguistics 16(2), 79–85.

Brunnström, K., Ekhlund, J.-O. and Uhlin, T. (1996), ‘Active fixation for scene explo-
ration’, International Journal of Computer Vision 17(2), 137–162.

Buades, A., Coll, B. and Morel, J. (2005), A non-local algorithm for image denoising, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Bubna, K. and Stewart, C. (2000), ‘Model selection techniques and merging rules for
range data segmentation algorithms’, Computer Vision and Image Understanding
80(2), 215–245.



BIBLIOGRAPHY 691

Buchsbaum, G. (1980), ‘A spatial processor model for object colour perception’, J.
Franklin Inst. 310, 1–26.

Buderi, R. (1998), The Invention that Changed the World, Touchstone Press. reprint.

Buehler, P., Everingham, M., Huttenlocher, D. and Zisserman, A. (2008), Long term arm
and hand tracking for continuous sign language tv broadcasts, in ‘British Machine
Vision Conference (BMVC)’.

Buehler, P., Zisserman, A. and Everingham, M. (2009), Learning sign language by watch-
ing tv (using weakly aligned subtitles), in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 2961–2968.

Burger, W. and Burge, M. J. (2009), Principles of Digital Image Processing: Fundamental
Techniques, Springer.

Burghouts, G. and Geusebroek, J. (2009), ‘Performance evaluation of local colour invari-
ants’, Computer Vision and Image Understanding 113(1), 48–62.

Burt, P. and Adelson, E. (1983), ‘The Laplacian pyramid as a compact image code’, IEEE
Trans. Communication pp. 532–540.

Callahan, J. and Weiss, R. (1985), A model for describing surface shape, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’, San Francisco, CA, pp. 240–245.

Canny, J. (1986), ‘A computational approach to edge detection’, IEEE Trans. Pattern
Analysis and Machine Intelligence 8(6), 679–698.

Canny, J. (1988), The Complexity of Robot Motion Planning, MIT Press.

Carceroni, R. and Kutulakos, K. (2002), ‘Multi-view scene capture by surfel sampling:
From video streams to non-rigid 3D motion, shape and reflectance’, International
Journal of Computer Vision 49(2-3), 175–214.

Cardoso, J. and Corte Real, L. (2005), ‘Toward a generic evaluation of image segmenta-
tion’, IEEE Trans. Image Processing 14(11), 1773–1782.

Cardoso, J. and Corte Real, L. (2006), ‘A measure for mutual refinements of image seg-
mentations’, IEEE Trans. Image Processing 15(8), 2358–2363.

Cardoso, J., Carvalho, P., Teixeira, L. and Corte Real, L. (2009), ‘Partition-distance
methods for assessing spatial segmentations of images and videos’, Computer Vision
and Image Understanding 113(7), 811–823.

Carleer, A., Debeir, O. and Wolff, E. (2005), ‘Assessment of very high spatial resolution
satellite image segmentations’, Photogrammetric Engineering and Remote Sensing
71(11), 1285–1294.

Carmichael, O., Huber, D. and Hebert, M. (1999), Large data sets and confusing scenes
in 3-D surface matching and recognition, in ‘Second International Conference on 3-D
Digital Imaging and Modeling (3DIM’99)’, pp. 358–367.

Carneiro, G. and Vasconcelos, N. (2005), Formulating semantic image annotation as a
supervised learning problem, in ‘CVPR ’05: Proceedings of the 2005 IEEE Com-
puter Society Conference on Computer Vision and Pattern Recognition (CVPR’05)
- Volume 2’, pp. 163–168.

Celebi, E.; Alpkocak, A. (30 Nov. - 1 Dec. 2005), ‘Combining textual and visual clusters for
semantic image retrieval and auto-annotation’, Integration of Knowledge, Semantics
and Digital Media Technology, 2005. EWIMT 2005. The 2nd European Workshop on
the (Ref. No. 2005/11099) pp. 219–225.



BIBLIOGRAPHY 692

Chakravarty, I. (1982), The use of characteristic views as a basis for recognition of three-
dimensional objects, Image Processing Laboratory IPL-TR-034, Rensselaer Polytech-
nic Institute.

Chasles, M. (1855), ‘Question no. 296’, Nouv. Ann. Math.

Chen, E. (1995), QuickTime VR - an image-based approach to virtual environment navi-
gation, in ‘Proc. of SIGGRAPH ’95’.

Chen, H., Belhumeur, P. and Jacobs, D. (2000), In search of illumination invariants, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. I:254–261.

Chen, H.-L. (2001), ‘An analysis of image queries in the field of art history’, J. Am. Soc.
Information Science and Technology 52(3), 260–273.

Chen, S., Donoho, D. and Saunders, M. (1999), ‘Atomic decomposition by basis pursuit’,
SIAM Journal on Scientific Computing 20, 33–61.

Chen, Y. and Wang, J. Z. (2004), ‘Image categorization by learning and reasoning with
regions’, J. Mach. Learn. Res. 5, 913–939.

Cheng, C.-H., Fu, A. W. and Zhang, Y. (1999), Entropy-based subspace clustering for
mining numerical data, in ‘Proc. 1999 Int. Conf. Knowledge Discovery and Data
Mining (KDD’99)’, San Diego, CA, pp. 84–93.

Cheng, Y. (1995), ‘Mean shift, mode seeking, and clustering’, IEEE Trans. Pattern Anal-
ysis and Machine Intelligence 17(8), 790–799.

Chin, R. and Dyer, C. (1986), ‘Model-based recognition in robot vision’, ACM Computing
Surveys 18(1), 67–108.

Choe, Y. and Kashyap, R. (1991), ‘3-D shape from a shaded textural surface image’, IEEE
Trans. Pattern Analysis and Machine Intelligence 13(9), 907–919.

Choi, M., Lim, J., Torralba, A. and Willsky, A. (2010), Exploiting hierarchical context
on a large database of object categories, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 129–136.

Choi, Y. and Rasmussen, E. (2002), ‘Users’ relevance criteria in image retrieval in Amer-
ican history’, Information Processing and Management 38, 695–726.

Chua, C. and Jarvis, R. (1996), ‘Point signatures: a new representation for 3D object
recognition’, International Journal of Computer Vision 25(1), 63–85.

Chui, C. (1991), Kalman Filtering: With Real-Time Applications, Springer-Verlag.

Chum, O., Philbin, J., Sivic, J., Isard, M. and Zisserman, A. (2007), Total recall: Auto-
matic query expansion with a generative feature model for object retrieval, in ‘Proc.
Int. Conf. on Computer Vision (ICCV)’, pp. 1–8.

Cipolla, R. and Blake, A. (1992), ‘Surface shape from the deformation of the apparent
contour’, International Journal of Computer Vision 9(2), 83–112.

Cipolla, R., Astrom, K. and Giblin, P. (1995), Motion from the frontier of curved surfaces,
in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, Boston, MA, pp. 269–275.

Clarkson, K. (1988), ‘A randomized algorithm for closest-point queries’, SIAM J. Com-
puting 17, 830–847.

Clerc, M. and Mallat, S. (1999), Shape from texture through deformations, in ‘Proc. Int.
Conf. on Computer Vision (ICCV)’, pp. 405–410.

Cohen, J. (1964), ‘Dependency of the spectral reflectance curves of the munsell color
chips’, Psychon. Sci. 1, 369–370.



BIBLIOGRAPHY 693

Cohen, M. andWallace, J. (1993), Radiosity and realistic image synthesis, Academic Press.

Collins, G. (1971), ‘The calculation of multivariate polynomial resultants’, Journal of the
ACM 18(4), 515–522.

Collins, G. (1975), Quantifier Elimination for Real Closed Fields by Cylindrical Algebraic
Decomposition, Vol. 33 of Lecture Notes in Computer Science, Springer-Verlag, New
York.

Comaniciu, D. and Meer, P. (2002), ‘Mean shift: A robust approach toward feature space
analysis’, IEEE Trans. Pattern Analysis and Machine Intelligence 24(5), 603–619.

Connolly, C. and Stenstrom, J. (1989), 3D scene reconstruction from multiple intensity im-
ages, in ‘Proc. IEEE Workshop on Interpretation of 3D Scenes’, Austin, TX, pp. 124–
130.

Cook, R. and Torrance, K. (1987), A reflectance model for computer graphics, in ‘ARPA
Image Understanding Workshop’, pp. 1–19.

Cooper, H. and Bowden, R. (2009), Learning signs from subtitles: A weakly supervised
approach to sign language recognition, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 2568–2574.

Cootes, T. and Taylor, C. (1992), Active shape models: Smart snakes, in ‘British Machine
Vision Conference (BMVC)’, pp. 267–275.

Cootes, T., Edwards, G. and Taylor, C. (2001), ‘Active appearance models’, IEEE Trans.
Pattern Analysis and Machine Intelligence 23(6), 681–685.

Cootes, T., Hill, A., Taylor, C. and Haslam, J. (1994), ‘Use of active shape models for
locating structure in medical images’, Image and Vision Computing 12(6), 355–365.

Cormen, T., Leiserson, C. and Rivest, R. (2009), Introduction to Algorithms, MIT Press.

Correia, P. and Pereira, F. (2003), ‘Objective evaluation of video segmentation quality’,
IEEE Trans. Image Processing 12(2), 186–200.

Costeira, J. and Kanade, T. (1998), ‘A multi-body factorization method for motion anal-
ysis’, International Journal of Computer Vision 29(3), 159–180.

Cover, T. and Thomas, J. (1991), Elements of Information Theory, Wiley-Interscience.

Cox, I., Zhong, Y. and Rao, S. (1996), Ratio regions: A technique for image segmentation,
in ‘Proceedings, International Conference on Pattern Recognition’, pp. 557–564.

Coxeter, H. (1974), Projective Geometry, Springer-Verlag. Second Edition.

Criminisi, A., Kang, S., Swaminathan, R., Szeliski, R. and Anandan, P. (2005), ‘Extracting
layers and analyzing their specular properties using epipolar-plane-image analysis’,
Computer Vision and Image Understanding 97(1), 51–85.

Criminisi, A., Perez, P. and Toyama, K. (2004), ‘Region filling and object removal by
exemplar-based image inpainting’, IEEE Trans. Image Processing 13(9), 1200–1212.

Crum, W., Camara, O. and Hill, D. (2006), ‘Generalized overlap measures for eval-
uation and validation in medical image analysis’, IEEE Trans. Medical Imaging
25(11), 1451–1461.

Cunningham, H., Maynard, D., Bontcheva, K. and Tablan, V. (2002), Gate: A framework
and graphical development environment for robust nlp tools and applications, in
‘40th Anniversary Meeting of the Association for Computational Linguistics’.

Curless, B. and Levoy, M. (1996), A volumetric method for building complex models from
range images, in ‘ACM Trans. Graphics (SIGGRAPH Proceeding)’, New Orleans,
LA.



BIBLIOGRAPHY 694

Cyganek, B. and Siebert, P. (2009), An Introduction to 3D Computer Vision Techniques
and Algorithms, Wiley.

Dabov, K., Foi, A., Katkovnik, V. and Egiazarian, K. (2007), ‘Image denoising by sparse
3-d transform-domain collaborative filtering’, 16(8), 2080–2095.

Dalal, N. and Triggs, B. (2005), Histograms of oriented gradients for human detection, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. I: 886–893.

Dana, K., van Ginneken, B., Nayar, S. and Koenderink, J. (1999), ‘Reflectance and texture
of real-world surfaces’, ACM Transactions on Graphics 18(1), 1–34.

Darbon, J. (2009), ‘Global optimization for first-order markov random fields with sub-
modular priors’, Discrete Applied Mathematics 157(16), 3412–3423.

Darrell, T. and Simoncelli, E. (1993), ‘Nulling’ filters and the separation of transparent
motions, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 738–739.

Datta, R., Li, J. and Wang, J. Z. (2005), Content-based image retrieval: approaches and
trends of the new age, in ‘MIR ’05: Proceedings of the 7th ACM SIGMM international
workshop on Multimedia information retrieval’, ACM Press, New York, NY, USA,
pp. 253–262.

Daum, F. (1995a), Beyond kalman filters: practical design of nonlinear filters, in ‘Proc.
SPIE’, Vol. 2561, pp. 252–262.

Daum, F. (1995b), ‘Exact finite dimensional nonlinear filters’, IEEE. Trans. Automatic
Control 31, 616–622.

Davies, E. (2005), Machine Vision, Third Edition: Theory, Algorithms, Practicalities: 3E,
Morgan Kauffmann.

Davis, L. (1975), ‘A survey of edge detection techniques’, Computer Graphics Image Pro-
cessing 4(3), 248–270.

Dawn, S., Saxena, V. and Sharma, B. (2010), Remote sensing image registration tech-
niques: A survey, in ‘Proc. Int. Conf. Image and Signal Processing’, pp. 103–112.

de Grazia, E. (1993), Girls lean back everywhere: The Law of Obscenity and the Assault
on Genius, Vintage.

Debevec, P. and Malik, J. (1997), Recovering high dynamic range radiance maps from
photographs, in ‘SIGGraph-97’, pp. 369–378.

Del Pozo, A. and Savarese, S. (2007), Detecting specular surfaces on natural images, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 1–8.

Delage, E., Lee, H. and Ng, A. (2006), A dynamic Bayesian network model for autonomous
3d reconstruction from a single indoor image, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. II: 2418–2428.

Dellaert, F., Burgard, W., Fox, D. and Thrun, S. (1999), Using the condensation algorithm
for robust, vision-based mobile robot localization, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. II:588–594.

Dellaert, F., Seitz, S., Thorpe, C. and Thrun, S. (2000), Structure from motion with-
out correspondence, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II:557–564.

Demazure, M. (1989), Catastrophes et Bifurcations, Editions Ellipses.

Deming, W. (1943), Statistical Adjustment of Data, Wiley.



BIBLIOGRAPHY 695

Dempster, A., Laird, N. and Rubin, D. (1977), ‘Maximum likelihood from incomplete data
via the EM algorithm’, Journal of the Royal Statistical Society 39 (Series B), 1–38.

Deng, J., Berg, A., Li, K. and Fei-Fei, L. (2010), What does classifiying more than
10,000 image categories tell us?, in ‘Proc. European Conference on Computer Vi-
sion (ECCV)’.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K. and Fei-Fei, L. (2009), ImageNet: A
Large-Scale Hierarchical Image Database, in ‘CVPR09’.

Deriche, R. (1987), ‘Using Canny’s criteria to derive a recursively implemented optimal
edge detector’, International Journal of Computer Vision 1(2), 167–187.

Deriche, R. (1990), ‘Fast algorithms for low-level vision’, IEEE Trans. Pattern Analysis
and Machine Intelligence 12(1), 78–87.

Desai, C., Ramanan, D. and Fowlkes, C. (2009), Discriminative models for multi-class
object layout, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 229–236.

Deselaers, T., Pimenidis, L. and Ney, H. (2008), Bag-of-visual-words models for adult
image classification and filtering, in ‘Proceedings IAPR International Conference on
Pattern Recognition’, pp. 1–4.

Deutscher, J., Blake, A. and Reid, I. (2000), Articulated body motion capture by an-
nealed particle filtering, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II:126–133.

Devernay, F. and Faugeras, O. (1994), Computing differential properties of 3D shapes
from stereopsis without 3D models, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, Seattle, WA, pp. 208–213.

Devroye, L., Gyorfi, L. and Lugosi, G. (1996), A Probabilistic Theory of Pattern Recogni-
tion, Springer Verlag.

Devy, M., Garric, V. and Orteu, J. (1997), Camera calibration from multiple views of a 2D
object using a global non-linear minimization method, in ‘IEEE/RSJ International
Conference on Intelligent Robots and Systems’, Grenoble, France, pp. 1583–1589.

Dickinson, S., Leonardis, A., Schiele, B. and Tarr, M., eds (2009), Object Categorization:
Computer and Human Vision Perspectives, Cambridge.

Dietterich, T. G., Lathrop, R. H. and Lozano-Pérez, T. (1997), ‘Solving the multiple
instance problem with axis-parallel rectangles’, Artif. Intell. 89(1-2), 31–71.

Digabel, H. and Lantuéjoul, C. (1978), Iterative algorithms, in J. Chermant, ed., ‘Proc.
2nd European Symp. Quant. Analysis of Microstructures in Material Science, Biology
and Medicine, 1977’, Riederer Verlag, pp. 85–99.

do Carmo, M. (1976), Differential Geometry of Curves and Surfaces, Prentice-Hall, En-
glewood Cliffs, NJ.

Dollar, P., Wojek, C., Schiele, B. and Perona, P. (2009), Pedestrian detection: A bench-
mark, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 304–311.

Donoho, D. and Johnstone, I. (1995), ‘Adapting to unknown smoothness via wavelet
shrinkage’, Journal of the American Statistical Association 90(432), 1200–1224.

Doucet, A., Freitas, N. D. and Gordon, N. (2001), Sequential Monte Carlo Methods in
Practice, Springer-Verlag.

Dove, H. (1841), ‘Über Stereoskopie’, Annals Phys. Series 2 110, 494–498.



BIBLIOGRAPHY 696

Drew, M. and Funt, B. (1990), Calculating surface reflectance using a single-bounce model
of mutual reflection, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 393–399.

Duchenne, O., Audibert, J.-Y., Keriven, R., Ponce, J. and Segonne, F. (2008), Segmenta-
tion by transduction, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’.

Duda, R. and Hart, P. (1973), Pattern Classification and Scene Analysis, John Wiley &
Sons.

Duncan, J. and Ayache, N. (2000), ‘Medical image analysis: Progress over two decades
and the challenges ahead’, IEEE Trans. Pattern Analysis and Machine Intelligence
22(1), 85–106.

Durou, J.-D., Falcone, M. and Sagona, M. (2008a), ‘Numerical methods for shape-from-
shading: A new survey with benchmarks’, Comput. Vis. Image Underst. 109(1), 22–
43.

Durou, J., Falcone, M. and Sagona, M. (2008b), ‘Numerical methods for shape-from-
shading: A new survey with benchmarks’, Computer Vision and Image Understand-
ing 109(1), 22–43.

Duygulu, P., Barnard, K., de Freitas, N. and Forsyth, D. (2002), Object recognition as
machine translation, in ‘Proc. European Conference on Computer Vision (ECCV)’.

D’Zmura, M. and Lennie, P. (1986), ‘Mechanisms of colour constancy’, Journal of the
Optical Society of America 3, 1662–1672.

Eakins, J., Boardman, J. and Graham, M. (1998), ‘Similarity retrieval of trademark im-
ages’, IEEE Multimedia 5(2), 53–63.

Efron, B. (1979), ‘Bootstrap methods: another look at the jacknife’, Annals of Statistics
7, 1–26.

Efron, B., Hastie, T., Johnstone, I. and Tibshirani, R. (2004), ‘Least angle regression’,
Ann. Statist. 32(2), 407–499.

Efros, A. and Freeman, W. (2001), ‘Image quilting for texture synthesis and transfer’,
ACM Trans. Graphics (SIGGRAPH Proceeding) pp. 341–346.

Efros, A. and Leung, T. (1999), Texture synthesis by non-parametric sampling, in ‘Proc.
Int. Conf. on Computer Vision (ICCV)’, pp. 1033–1038.

Elad, M. and Aharon, M. (2006), ‘Image denoising via sparse and redundant representa-
tions over learned dictionaries’, 54(12), 3736–3745.

Elder, J. and Zucker, S. (1998), ‘Local scale control for edge detection and blur estimation’,
IEEE Trans. Pattern Analysis and Machine Intelligence 20(7), 699–716.

Endres, I., Farhadi, A., Hoiem, D. and Forsyth, D. (2010), The benefits and challenges of
collecting richer object annotations, in ‘Proc. IEEE Workshop on Advancing Com-
puter Vision with Humans in the Loop’, pp. 1–8.

Engan, K., Aase, S. O. and Husoy, J. H. (1999), Frame based signal compression us-
ing method of optimal directions (MOD), in ‘Proc. of the IEEE Intern. Symposium
Circuits Syst.’, Vol. 4.

Enser, P. (1993), ‘Query analysis in a visual information retrieval context’, J. Document
and Text Management 1(1), 25–52.

Enser, P. (1995), ‘Pictorial information retrieval’, Journal of Documentation 51(2), 126–
170.



BIBLIOGRAPHY 697

Enser, P. (2000), ‘Visual image retrieval: seeking the alliance of concept-based and content-
based paradigms’, J. Information Science.

Enser, P. and Mcgregor, C. (1992), Analysis of visual information retrieval queries, Tech-
nical report, British Library R+D Report 6104.

Enzweiler, M. and Gavrila, D. (2009), ‘Monocular pedestrian detection: Survey and exper-
iments’, IEEE Trans. Pattern Analysis and Machine Intelligence 31(12), 2179–2195.

Enzweiler, M., Eigenstetter, A., Schiele, B. and Gavrila, D. (2010), Multi-cue pedestrian
classification with partial occlusion handling, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. 990–997.

Erdem, U. and Sclaroff, S. (2002), Automatic detection of relevant head gestures in Amer-
ican sign language communication, in ‘Proceedings IAPR International Conference
on Pattern Recognition’, pp. I: 460–463.

Ess, A., Leibe, B., Schindler, K. and Van Gool, L. (2009), ‘Robust multiperson tracking
from a mobile platform’, IEEE Trans. Pattern Analysis and Machine Intelligence
31(10), 1831–1846.

Esteban, C. H., Vogiatzis, G., Brostow, G., Stenger, B. and Cipolla, R. (2007), Non-
rigid photometric stereo with colored lights, in ‘Proc. Int. Conf. on Computer Vision
(ICCV)’.

Ettinger, G. (1988), Large hierarchical object recognition using libraries of parameter-
ized model sub-parts, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 32–41.

Everingham, M., Van Gool, L., Williams, C. K. I., Winn, J. and Zisserman, A. (2010),
‘The pascal visual object classes (voc) challenge’, International Journal of Computer
Vision 88(2), 303–338.

Faig, W. (1975), ‘Calibration of close-range photogrammetry systems: mathematical for-
mulation’, Photogrammetric Engineering and Remote Sensing 41(12), 1479–1486.

Fairchild, M. (1998), Color Appearance Models, Addison-Wesley.

Fan, T., Médioni, G. and Nevatia, R. (1987), ‘Segmented descriptions of 3D surfaces’,
3(6), 527–538.

Farenzena, M. and Fusiello, A. (2007), Recovering intrinsic images using an illumination
invariant image, in ‘IEEE Int. Conf. Image Processing’.

Farhadi, A. and Forsyth, D. (2006), Aligning asl for statistical translation using a discrim-
inative word model, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II: 1471–1476.

Farhadi, A. and Sadeghi, A. (2011), Recognition using visual phrases, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’.

Farhadi, A., Endres, I. and Hoiem, D. (2010a), Attribute-centric recognition for cross-
category generalization, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 2352–2359.

Farhadi, A., Endres, I., Hoiem, D. and Forsyth, D. (2009a), Describing objects by their
attributes, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 1778–1785.

Farhadi, A., Forsyth, D. and White, R. (2007), Transfer learning in sign language, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 1–8.



BIBLIOGRAPHY 698

Farhadi, A., Hejrati, M., Sadeghi, A., Young, P., Rashtchian, C., Hockenmaier, J. and
Forsyth, D. (2010b), Every picture tells a story: Generating sentences for images, in
‘Proc. European Conference on Computer Vision (ECCV)’.

Farhadi, A., Tabrizi, M., Endres, I. and Forsyth, D. (2009b), A latent model of discrimi-
native aspect, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 948–955.

Faugeras, O. (1992), What can be seen in three dimensions with an uncalibrated stereo
rig?, in G. Sandini, ed., ‘Proc. European Conference on Computer Vision (ECCV)’,
Vol. 588 of Lecture Notes in Computer Science, Springer-Verlag, Santa Margherita,
Italy, pp. 563–578.

Faugeras, O. (1993), Three-Dimensional Computer Vision, MIT Press.

Faugeras, O. (1995), ‘Stratification of 3D vision: projective, affine and metric representa-
tions’, 12(3), 465–484.

Faugeras, O. and Hebert, M. (1986), ‘The representation, recognition, and locating of 3-D
objects’, International Journal of Robotics Research 5(3), 27–52.

Faugeras, O. and Keriven, R. (1998), ‘Variational principles, surface evolution, PDE’s,
level set methods and the stereo problem’, IEEE Trans. Im. Proc. 7(3), 336–344.

Faugeras, O. and Maybank, S. (1990), ‘Motion from point matches: multiplicity of solu-
tions’, International Journal of Computer Vision 4(3), 225–246.

Faugeras, O. and Mourrain, B. (1995), On the geometry and algebra of the point and line
correspondences between n images, Technical Report 2665, INRIA Sophia-Antipolis.

Faugeras, O. and Papadopoulo, T. (1997), Grassman-Caylay algebra for modeling systems
of cameras and the algebraic equations of the manifold of trifocal tensors, Technical
Report 3225, INRIA Sophia-Antipolis.

Faugeras, O., Hebert, M., Pauchon, E. and Ponce, J. (1984), Object representation, iden-
tification, and positioning from range data, in ‘Robotics Research: The First Inter-
national Symposium’, MIT Press, pp. 425–446.

Faugeras, O., Luong, Q.-T. and Papadopoulo, T. (2001), The Geometry of Multiple Im-
ages, MIT Press.

Fei-Fei, L., Fergus, R. and Perona, P. (2006), ‘One-shot learning of object categories’,
IEEE Trans. Pattern Analysis and Machine Intelligence 28(4), 594–611.

Fellbaum, C., ed. (1998), WordNet: An Electronic Lexical Database, MIT Press. with a
preface by George Miller.

Felzenszwalb, P. and Huttenlocher, D. (2000), Efficient matching of pictorial structures,
in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II:66–73.

Felzenszwalb, P. and Huttenlocher, D. (2004), ‘Efficient graph-based image segmentation’,
International Journal of Computer Vision 59(2), 167–181.

Felzenszwalb, P., Girshick, R. and McAllester, D. (2010a), Cascade object detection with
deformable part models, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 2241–2248.

Felzenszwalb, P., Girshick, R., McAllester, D. and Ramanan, D. (2010b), ‘Object detection
with discriminatively trained part-based models’, IEEE Trans. Pattern Analysis and
Machine Intelligence 32(9), 1627–1645.

Feng, S. L., Manmatha, R. and Lavrenko, V. (2004), Multiple bernoulli relevance models
for image and video annotation, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, Vol. 02, pp. 1002–1009.



BIBLIOGRAPHY 699

Feng, X. and Perona, P. (1998), Scene segmentation from 3D motion, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’, pp. 225–231.

Fergus, R., Perona, P. and Zisserman, A. (2003), Object class recognition by unsupervised
scale-invariant learning, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II: 264–271.

Ferrari, V., Marin Jimenez, M. and Zisserman, A. (2008), Progressive search space reduc-
tion for human pose estimation, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, pp. 1–8.

Finlayson, G. (1996), ‘Colour in perspective’, IEEE Trans. Pattern Analysis and Machine
Intelligence 18, 1034–1038.

Finlayson, G. and Hordley, S. (1999), ‘Selection for gamut mapping colour constancy’,
Image and Vision Computing 17(8), 597–604.

Finlayson, G. and Hordley, S. (2000), ‘Improving gamut mapping color constancy’, IEEE
Trans. Image Processing 9(10), 1774–1783.

Finlayson, G., Drew, M. and Funt, B. (1994a), ‘Color constancy: Generalized diagonal
transforms suffice’, Journal of the Optical Society of America 11(11), 3011–3019.

Finlayson, G., Drew, M. and Funt, B. (1994b), ‘Spectral sharpening: Sensor transfor-
mations for improved color constancy’, Journal of the Optical Society of America
11(5), 1553–1563.

Fischler, M. and Bolles, R. (1981), ‘Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography’, Communi-
cations of the ACM 24(6), 381–395.

Fitzgibbon, A. (2003), ‘Robust registration of 2d and 3d point sets’, Image and Vision
Computing 21(12-13), 1145–1153.

Fitzgibbon, A. and Zisserman, A. (1998), Automatic 3D model acquisition and generation
of new images from video sequences, in ‘European Signal Processing Conference’,
Rhodes, Greece, pp. 311–326.

Fitzgibbon, A., Pilu, M. and Fisher, R. (1999), ‘Direct least square fitting of ellipses’,
IEEE Trans. Pattern Analysis and Machine Intelligence 21(5), 476–480.

Fleck, M. (1992), ‘Multiple widths yield reliable finite differences’, IEEE Trans. Pattern
Analysis and Machine Intelligence 14(4), 412–429.

Flock, H. (1984), ‘Illumination: inferred or observed?’, Perception and Psychophysics.

Foley, J., van Dam, A., Feiner, S. and Hughes, J. (1990), Computer Graphics: Principle
and Practice, Addison-Wesley. Second edition.

Ford, L. and Fulkerson, D. (1956), ‘Maximal flow through a network’, Canadian Journal
of Mathematics 8, 399–404.

Forney, G. (1973), ‘The Viterbi algorithm’, Proceedings of the IEEE.

Forsyth, D. (1990), ‘A novel algorithm for color constancy’, International Journal of Com-
puter Vision 5(1), 5–36.

Forsyth, D. (1999), Sampling, resampling and colour constancy, in ‘IEEE Conf. on Com-
puter Vision and Pattern Recognition (CVPR)’, pp. I:300–305.

Forsyth, D. (2001), Shape from texture and integrability, in ‘Proc. Int. Conf. on Computer
Vision (ICCV)’, pp. II: 447–452.

Forsyth, D. (2002), Shape from texture without boundaries, in ‘Proc. European Confer-
ence on Computer Vision (ECCV)’, p. III: 225 ff.



BIBLIOGRAPHY 700

Forsyth, D. and Fleck, M. (1999), ‘Automatic detection of human nudes’, International
Journal of Computer Vision 32(1), 63–77.

Forsyth, D. and Zisserman, A. (1989), Mutual illumination, in ‘IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR)’, pp. 466–473.

Forsyth, D. and Zisserman, A. (1990), ‘Shape from shading in the light of mutual illumi-
nation’, Image and Vision Computing 8, 42–29.

Forsyth, D. and Zisserman, A. (1991), ‘Reflections on shading’, IEEE Trans. Pattern
Analysis and Machine Intelligence 13(7), 671–679.

Forsyth, D., Arikan, O., Ikemoto, L., O’Brien, J. and Ramanan, D. (2006), ‘Computational
aspects of human motion i: tracking and animation’, Foundations and Trends in
Computer Graphics and Vision 1(2/3), 1–255.

Forsyth, D., Mundy, J., Zisserman, A. and Rothwell, C. (1994), Using global consistency to
recognise euclidean objects with an uncalibrated camera, in ‘IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR)’, pp. 502–507.

Franco, J.-S. and Boyer, E. (2009), ‘Efficient polyhedral modeling from silhouettes’, IEEE
Trans. Pattern Analysis and Machine Intelligence 31(3), 414–427.

Freeman, W. and Adelson, E. (1991), ‘The design and use of steerable filters’, IEEE Trans.
Pattern Analysis and Machine Intelligence 13(9), 891–906.

Freeman, W. and Brainard, D. (1997), ‘Bayesian color constancy’, Journal of the Optical
Society of America 14(7), 1393–1411.

Freeman, W., Anderson, D. and et al., P. B. (1998), ‘Computer vision for interactive
computer graphics’, Computer Graphics and Applications pp. 42–53.

Freeman, W., Pasztor, E. and Carmichael, O. (2000), ‘Learning low-level vision’, Interna-
tional Journal of Computer Vision 40(1), 25–47.

Friedman, J. H. (2001), ‘Greedy function approximation: A gradient boosting machine’,
Ann. Statist. 29(5), 1189–1232.

Friedman, J. H., Bentley, J. L. and Finkel, R. A. (1977), ‘An algorithm for finding best
matches in logarithmic expected time’, ACM Transactions on Math Software 3, 209–
226.

Friedman, J., Hastie, T. and Tibshirani, R. (1998), ‘Additive logistic regression: a statis-
tical view of boosting’, Annals of Statistics 28, 2000.

Frisby, J. (1980), Seeing: Illusion, Brain and Mind, Oxford University Press.

Frost, C. O., Taylor, B., Noakes, A., Markel, S., Torres, D. and Drabenstott, K. M.
(2000), ‘Browse and search patterns in a digital image database’, Information re-
trieval 1, 287–313.

Fu, K. and Mui, J. (1981), ‘A survey of image segmentation’, Pattern Recognition 13(1), 3–
16.

Fu, W. (1998), ‘Penalized Regressions: The Bridge Versus the Lasso’, Journal of compu-
tational and graphical statistics 7, 397–416.

Fukunaga, K. (1990), Introduction to Statistical Pattern Recognition, Academic Press.

Fukunaga, K. and Hostetler, L. (1975), ‘The estimation of the gradient of a density
function, with applications in pattern recognition’, IEEE Trans. Information Theory
21(1), 32–40.



BIBLIOGRAPHY 701

Funt, B. and Drew, M. (1988), Color constancy computation in near-mondrian scenes
using a finite dimensional linear model, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 544–549.

Funt, B. and Drew, M. (1993), ‘Color space analysis of mutual illumination’, IEEE Trans.
Pattern Analysis and Machine Intelligence 15(12), 1319–1326.

Funt, B., Barnard, K. and Martin, L. (1998), Is machine colour constancy good enough?,
in ‘Proc. European Conference on Computer Vision (ECCV)’, p. I: 445.

Funt, B., Drew, M. and Brockington, M. (1992), Recovering shading from color images,
in ‘Proc. European Conference on Computer Vision (ECCV)’.

Funt, B., Drew, M. and Ho, J. (1991), ‘Color constancy from mutual reflection’, Interna-
tional Journal of Computer Vision 6(1), 5–24.

Furukawa, Y. and Ponce, J. (2008), Dense 3D motion capture from synchronized video
streams, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Furukawa, Y. and Ponce, J. (2009a), ‘Carved visual hulls for image-based modeling’,
International Journal of Computer Vision 81(1), 53–67.

Furukawa, Y. and Ponce, J. (2009b), Dense 3D motion capture for human faces, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Furukawa, Y. and Ponce, J. (2010), ‘Accurate, dense, and robust multiview stereopsis’,
IEEE Trans. Pattern Analysis and Machine Intelligence 32(8), 1362–1376.

Furukawa, Y., Curless, B., Seitz, S. and Szeliski, R. (2010), Towards internet-scale multi-
view stereo, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Garcia-Bermejo, J., Diaz Pernas, F. and Coronado, J. (1996), An approach for determining
bidirectional reflectance parameters from range and brightness data, in ‘IEEE Int.
Conf. Image Processing’, p. 16A2.

Garding, J. (1992), Shape from texture for smooth curved surfaces, in ‘Proc. European
Conference on Computer Vision (ECCV)’, pp. 630–638.

Garding, J. (1995), Surface orientation and curvature from differential texture distortion,
in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 733–739.

Gaston, P. and Lozano-Pérez, T. (1984), ‘Tactile recognition and localization using object
models: The case of polyhedra in the plane’, IEEE Trans. Pattern Analysis and
Machine Intelligence.

Gear, C. (1998), ‘Multibody grouping in moving objects’, International Journal of Com-
puter Vision 29(2), 133–150.

Gehler, P. and Nowozin, S. (2009), On feature combination for multiclass object classifi-
cation, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 221–228.

Gelb, A. and of the Analytical Sciences Corporation, S. (1974), Applied Optimal Estima-
tion, MIT Press.

Geman, S. and Geman, D. (1984), ‘Stochastic relaxation, gibbs distribution , and the
Bayesian restoration of images’, IEEE Trans. Pattern Anal. Machine Intell.

Gennery, D. (1980), Modelling the environment of an exploring vehicle by means of stereo
vision, PhD thesis, Stanford University, Stanford, CA.

Georghiades, A. S., Belhumeur, P. N. and Kriegman, D. J. (2001), ‘From few to many:
Illumination cone models for face recognition under variable lighting and pose’, IEEE
Trans. Pattern Analysis and Machine Intelligence 23(6), 643–660.



BIBLIOGRAPHY 702

Gerig, G., Pun, T. and Ratib, O. (1994), ‘Image analysis and computer vision in medicine’,
Computerized Medical Imaging and Graphics 18(2), 85–96.

Gerónimo, D., Sappa, A., López, A. and Ponsa, D. (2007), Adaptive image sampling and
windows classification for on-board pedestrian detection, in ‘International Conference
on Computer Vision Systems’.

Gersho, A. and Gray, R. (1992), Vector quantization and signal compression, Kluwer
Academic Publishers.

Gershon, R. (1987), The Use of Color in Computational Vision, PhD thesis, University of
Toronto.

Gershon, R., Jepson, A. and Tsotsos, J. (1986), ‘Ambient illumination and the determi-
nation of material changes’, J. Opt. Soc. America A-3(10), 1700–1707.

Geusebroek, J., van den Boomgaard, R., Smeulders, A. and Geerts, H. (2001), ‘Color
invariance’, IEEE Trans. Pattern Analysis and Machine Intelligence 23(12), 1338–
1350.

Gevers, T., Gijsenij, A., van de Weijer, J. and Geusebroek, J.-M. (2011), Color in Com-
puter Vision: Fundamentals and Applications, Wiley.

Gevrekci, M. and Gunturk, B. (2009), ‘Illumination robust interest point detection’, Com-
puter Vision and Image Understanding 113(4), 565–571.

Gibson, J. (1950), The perception of the visual world, Houghton-Mifflin.

Gilchrist, A., Kossyfidis, C., Bonato, F., Agostini, T., Cataliotti, J., Li, X., Spehar, B.,
Annan, V. and Economou, E. (1999), ‘An anchoring theory of lightness perception’,
Psychological Review 106(4), 795–834.

Gill, P., Murray, W. and Wright, M. (1981), Practical Optimization, Academic Press.

Gleicher, M. (2000), ‘Animation from observation: Motion capture and motion editing’,
SIGGRAPH Comput. Graph. 33(4), 51–54.

Goesele, M., Curless, B. and Seitz, S. M. (2006), Multi-view stereo revisited, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 2402–2409.

Goldberg, A. and Tarjan, R. (1988), ‘A new approach to the maximum-flow problem’,
35(4), 921–940.

Goodrum, A. and Spink, A. (2001), ‘Image searching on the excite web search engine’,
Information Processing and Management 37, 295–311.

Gordon, I. (1997), Theories of Visual Perception, John Wiley & Son.

Gortler, S., Grzeszczuk, R., Szeliski, R. and Cohen, M. (1996), The lumigraph, in ‘SIG-
GRAPH’, New Orleans, LA, pp. 43–54.

Grauman, K. and Darrell, T. (2005), The pyramid match kernel: Discriminative classifi-
cation with sets of image features, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’,
pp. II: 1458–1465.

Grauman, K., Shakhnarovich, G. and Darrell, T. (2004), Virtual visual hulls: Example-
based 3d shape inference from silhouettes, in ‘SMVP04’, pp. 26–37.

Greenspan, H., Belongie, S., Perona, P., Goodman, R., Rakshit, S. and Anderson, C.
(1994), Overcomplete steerable pyramid filters and rotation invariance, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 222–228.

Greig, D., Porteous, B. and Seheult, A. (1989), ‘Exact maximum a posteriori estimation
from binary images’, Journal of the Royal Statistical Society 51(2), 271–279.



BIBLIOGRAPHY 703

Griffin, G., Holub, A. and Perona, P. (2007), Caltech-256 object category dataset, Tech-
nical Report 7694, California Institute of Technology.

Grimson, W. (1981a), ‘A computer implementation of a theory of human stereo vision’,
Philosophical Transactions of the Royal Society of London pp. 217–253.

Grimson, W. (1981b), From images to surfaces, MIT Press.

Grimson, W. (1992), ‘The cost of choosing the wrong model in object recognition by
constrained search’, International Journal of Computer Vision 7(3), 195–210.

Grimson, W. and Huttenlocher, D. (1990), ‘On the sensitivity of the Hough transform
for object recognition’, IEEE Trans. Pattern Analysis and Machine Intelligence
12(3), 255–274.

Grimson, W. and Huttenlocher, D. (1991), ‘On the verification of hypothesized matches
in model-based recognition’, IEEE Trans. Pattern Analysis and Machine Intelligence
13(12), 1201–1213.

Grimson, W. and Lozano-Pérez, T. (1987), ‘Localizing overlapping parts by searching
the interpretation tree’, IEEE Trans. Pattern Analysis and Machine Intelligence
9(4), 469–482.

Grimson, W., Huttenlocher, D. and Alter, T. (1992), Recognizing 3D objects from 2D im-
ages: An error analysis, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 316–321.

Grimson, W., Huttenlocher, D. and Jacobs, D. (1994), ‘A study of affine matching with
bounded sensor error’, International Journal of Computer Vision 13(1), 7–32.

Grimson, W., Lozano-Perez, T. and Huttenlocher, D. (1990), Object Recognition by Com-
puter: The Role of Geometric Constraints, MIT Press.

Gross, A. and Boult, T. (1988), Error of fit measures for recovering parametric solids, in
‘Proc. Int. Conf. on Computer Vision (ICCV)’, Tampa, FL, pp. 690–694.

Grossberg, M. and Nayar, S. (2002), What can be known about the radiometric response
from images?, in ‘Proc. European Conference on Computer Vision (ECCV)’, p. IV:
189 ff.

Grosse, R., Johnson, M. K., Adelson, E. H. and Freeman, W. T. (2009), Ground truth
dataset and baseline evaluations for intrinsic image algorithms, in ‘Proc. Int. Conf.
on Computer Vision (ICCV)’.

Grosse, R., Raina, R., Kwong, H. and Ng, A. Y. (2007), Shift-invariant sparse coding for
audio classification, in ‘Proceedings of the Twenty-third Conference on Uncertainty
in Artificial Intelligence’.

Gu, C., Lim, J., Arbelaez, P. and Malik, J. (2009), Recognition using regions, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 1030–1037.

Gupta, A. and Davis, L. (2008), Beyond nouns: Exploiting prepositions and comparative
adjectives for learning visual classifiers, in ‘Proc. European Conference on Computer
Vision (ECCV)’, pp. I: 16–29.

Gupta, A., Satkin, S., Efros, A. A. and Hebert, M. (2011), From 3d scene geometry
to human workspace, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’.

Gupta, A., Srinivasan, P., Shi, J. and Davis, L. (2009), Understanding videos, constructing
plots learning a visually grounded storyline model from annotated videos, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 2012–2019.



BIBLIOGRAPHY 704

Habbecke, M. and Kobbelt, L. (2006), Iterative multi-view plane fitting, in ‘11th Fall
Workshop on VISION, MODELING, AND VISUALIZATION’.

Haddon, J. and Forsyth, D. (1997), Shading primitives, in ‘Proc. Int. Conf. on Computer
Vision (ICCV)’.

Haddon, J. and Forsyth, D. (1998a), Shading primitives: Finding folds and shallow
grooves, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 236–241.

Haddon, J. and Forsyth, D. (1998b), Shape descriptions from shading primitives, in ‘Proc.
European Conference on Computer Vision (ECCV)’.

Haddon, J. and Forsyth, D. (1998c), Shape representations from shading primitives, in
‘Proc. European Conference on Computer Vision (ECCV)’, p. II: 415.

Hadsell, R., Sermanet, P., Scoffier, M., Erkan, A., Kavackuoglu, K., Muller, U. and LeCun,
Y. (2009), ‘Learning long-range vision for autonomous off-road driving’, Journal of
Field Robotics 26(2), 120–144.

Hamilton, W. (1844), ‘On a new species of imaginary quantities connected with a theory
of quaternions’, Transactions of the Royal Irish Academy 2, 424–434.

Han, F. and Zhu, S.-C. (2005), Cloth representation by shape from shading with shading
primitives, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
Vol. 1, pp. 1203–1210.

Han, F. and Zhu, S.-C. (2007), ‘A two-level generative model for cloth representation
and shape from shading’, IEEE Trans. Pattern Analysis and Machine Intelligence
29(7), 1230–1243.

Hanbury, A. and Stottinger, J. (2008), On segmentation evaluation metrics and region
counts, in ‘Proceedings IAPR International Conference on Pattern Recognition’,
pp. 1–4.

Haralick, R. and Shapiro, L. (1985), ‘Image segmentation techniques’, CVGIP: Image
Understanding 29(1), 100–132.

Haralick, R. and Shapiro, L. (1992), Computer and robot vision, Addison Wesley.

Hardin, C. and Maffi, L. (1997), Color Categories in thought and lanuage, Cambridge
University Press.

Harris, C. and Stephens, M. (1988), A combined corner and edge detector, in ‘Proc. Alvey
Vision Conference’, pp. 147–152.

Hartley, R. (1994a), An algorithm for self calibration from several views, in ‘IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR)’, Seattle, WA, pp. 908–912.

Hartley, R. (1994b), ‘Projective reconstruction and invariants from multiple images’, IEEE
Trans. Pattern Analysis and Machine Intelligence 16(10), 1036–1041.

Hartley, R. (1995), In defence of the 8-point algorithm, in ‘Proc. Int. Conf. on Computer
Vision (ICCV)’, Boston, MA, pp. 1064–1070.

Hartley, R. (1997), ‘Lines and points in three views and the trifocal tensor’, International
Journal of Computer Vision 22(2), 125–140.

Hartley, R. and Zisserman, A. (2000a), Multiple View Geometry in Computer Vision,
Cambridge University Press.

Hartley, R. and Zisserman, A. (2000b), Multiple view geometry in computer vision, Cam-
bridge University Press.



BIBLIOGRAPHY 705

Hartley, R., Gupta, R. and Chang, T. (1992), Stereo from uncalibrated cameras, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, Champaign,
IL, pp. 761–764.

Hartley, R., Wang, C., Kitchen, L. and Rosenfeld, A. (1982), ‘Segmentation of FLIR im-
ages: A comparative study’, IEEE Trans. Systems, Man and Cybernetics 12(4), 553–
566.

Hastie, T., Tibshirani, R. and Friedman, J. (2009), The Elements of Statistical Learning:
Data Mining, Inference and Prediction Second Edition, Springer Verlag.

Hays, J. and Efros, A. (2007), ‘Scene completion using millions of photographs’, ACM
Trans. Graph. (SIGGRAPH Proceedings).

Healey, G. and Binford, T. (1986), Local shape from specularity, Computer Science STAN-
CS-86-1139, Stanford University.

Heath, M. (2002), Scientific Computing: An Introductory Survey, McGraw-Hill. Second
edition.

Hebert, M. (2000), Active and passive range sensing for robotics, in ‘Int. Conf. on Robotics
and Automation’, San Francisco, CA.

Hebert, M. and Kanade, T. (1985), The 3D profile method for object recognition, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, San Francisco, CA,
pp. 458–463.

Hecht, E. (1987), Optics, Addison-Wesley.

Hedau, V., Hoiem, D. and Forsyth, D. (2009), Recovering the spatial layout of cluttered
rooms, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1849–1856.

Hedau, V., Hoiem, D. and Forsyth, D. (2010), Thinking inside the box: Using appearance
models and context based on room geometry, in ‘Proc. European Conference on
Computer Vision (ECCV)’.

Heikkilä, J. (2000), ‘Geometric camera calibration using circular control points’, IEEE
Trans. Pattern Analysis and Machine Intelligence 22(10), 1066–1077.

Heitz, G. and Koller, D. (2008), Learning spatial context: Using stuff to find things, in
‘Proc. European Conference on Computer Vision (ECCV)’, pp. I: 30–43.

Hel-Or, Y. and Teo, P. (1996), Canonical decomposition of steerable functions, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 809–816.

Helmholtz, H. (1909), Physiological optics, Dover. 1962 edition of the English translation
of the 1909 German original, first published by the Optical Society of America in
1924.

Helson, H. (1934), ‘Some factors and implications of colour constancy’, Journal of the
Optical Society of America 48, 555–567.

Helson, H. (1938a), Fundamental problems in color vision, i, in ‘Journal of Experimental
Psychology’, Vol. 23.

Helson, H. (1938b), Fundamental problems in color vision, ii, in ‘Journal of Experimental
Psychology’, Vol. 26.

Henderson, J. and Hollingworth, A. (1999), ‘High-level scene perception’, Annual Review
of Psychology 50(1), 243–271.

Hernandez, C., Vogiatzis, G. and Cipolla, R. (2008), Shadows in three-source photometric
stereo, in ‘Proc. European Conference on Computer Vision (ECCV)’, pp. I: 290–303.



BIBLIOGRAPHY 706

Hernández Esteban, C. and Schmitt, F. (2004), ‘Silhouette and stereo fusion for 3D object
modeling’, Computer Vision and Image Understanding 96(3), 367–392.

Herskovits, A. and Binford, T. (1970), On boundary detection, Technical report, MIT AI
Lab.

Hertzmann, A., Jacobs, C., Oliver, N., Curless, B. and Salesin, D. (2001), ‘Image analo-
gies’, ACM Trans. Graph. (SIGGRAPH Proceedings) pp. 327–340.

Hesse, O. (1863), ‘Die cubische Gleichung, von welcher die Lösung des Problems der
Homographie von M. Chasles abhängt’, J. Reine Angew. Math. 62, 188–192.

Heyden, A. and Åström, K. (1996), Euclidean reconstruction from constant intrinsic pa-
rameters, in ‘International Conference on Pattern Recognition’, pp. 339–343.

Heyden, A. and Åström, K. (1998), Minimal conditions on intrinsic parameters for Eu-
clidean reconstruction, in ‘Asian Conference on Computer Vision’, Hong Kong.

Heyden, A. and Åström, K. (1999), Flexible calibration: minimal cases for auto-
calibration, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, Kerkyra, Greece,
pp. 350–355.

Hiep, V., Keriven, R., Labatut, P. and Pons, J.-P. (2009), Toward high-resolution large-
scale multi-view stereo, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’.

Hilbert, D. and Cohn-Vossen, S. (1952), Geometry and the Imagination, Chelsea, New
York.

Hofmann, T. and Puzicha, J. (1998), Statistical models for co-occurrence data, A.I. Memo
1635, Massachusetts Institute of Technology.

Hoiem, D., Efros, A. A. and Hebert, M. (2005), ‘Automatic photo pop-up’, ACM Trans.
Graph. - SIGGRAPH Proceedings.

Hoiem, D., Efros, A. and Hebert, M. (2006), Putting objects in perspective, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II: 2137–2144.

Hoiem, D., Efros, A. and Hebert, M. (2008), ‘Putting objects in perspective’, International
Journal of Computer Vision 80(1), 3–15.

Hollinka, L., Schreiber, A., Wieling, B. and Worring, M. (2004), ‘Classification of user
image descriptions’, Int. J. Human-Computer Studies 61, 601–626.

Hordley, S. and Finlayson, G. (2006), ‘Reevaluation of color constancy algorithm perfor-
mance’, Journal of the Optical Society of America 23(5), 1008–1020.

Horn, B. (1970a), Shape from Shading: a Method for Obtaining the Shape of a Smooth
Opaque Object from One View, PhD thesis, MIT Department of Electrical Engineer-
ing.

Horn, B. (1970b), Shape from shading: A method for obtaining the shape of a smooth
opaque object from one view, Technical report, MIT AI Lab.

Horn, B. (1971), The Binford-Horn line finder, Technical report, MIT AI Lab.

Horn, B. (1974), ‘Determining lightness from an image’, Computer Graphics Image Pro-
cessing 3(1), 277–299.

Horn, B. (1975), Obtaining shape from shading information, in ‘The Psychology of Com-
puter Vision’, McGraw-Hill, pp. 115–155.

Horn, B. (1977), ‘Understanding image intensities’, Artificial Intelligence 8(2), 201–231.

Horn, B. (1986), Robot Vision, MIT Press, Cambridge,Mass.



BIBLIOGRAPHY 707

Horn, B. (1987a), ‘Closed-form solution of absolute orientation using unit quaternions’,
4(4), 629–642.

Horn, B. (1987b), ‘Closed form solutions of absolute orientation using orthonormal matri-
ces’, Journal of the Optical Society of America 5(7), 1127–1135.

Horn, B. (1990), ‘Height and gradient from shading’, International Journal of Computer
Vision 5(1), 37–76.

Horn, B. and Brooks, M. (1989), Shape from Shading, MIT Press.

Horn, B., Woodham, R. and Silver, W. (1978), Determining shape and reflectance using
multiple images, Technical report, MIT AI Lab.

Hornung, A. and Kobbelt, L. (2006), Hierarchical volumetric multi-view stereo recon-
struction of manifold surfaces based on dual graph embedding, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’.

Hough, P. (1962), Method and means for recognizing complex patterns, in ‘US Patent’.

Howe, N. (2004), Silhouette lookup for automatic pose tracking, in ‘IEEE Workshop on
Articulated and Non-Rigid Motion’, p. 15.

Hsu, S., Anandan, P. and Peleg, S. (1994), Accurate computation of optical flow by using
layered motion representations, in ‘Proceedings IAPR International Conference on
Pattern Recognition’, pp. A:743–746.

Huang, T. and Faugeras, O. (1989), ‘Some properties of the E-matrix in two-view motion
estimation’, IEEE Trans. Pattern Analysis and Machine Intelligence 11(12), 1310–
1312.

Hueckel, M. (1971), ‘An operator which locates edges in digitized pictures’, Journal of the
ACM 18(1), 113–125.

Hung, T.-Y. (2005), ‘Search moves and tactics for image retrieval in the field of journalism:
A pilot study’, Journal of Educational Media & Library Sciences 42(3), 329–346.

Hurvich, L. and Jameson, D. (1957), ‘An opponent process theory of color vision’, Psych.
Review 64(6), 384–404.

Huttenlocher, D. and Ullman, S. (1987), Object recognition using alignment, in ‘Proc.
Int. Conf. on Computer Vision (ICCV)’, London, U.K., pp. 102–111.

Huttenlocher, D. and Ullman, S. (1990), ‘Recognizing solid objects by alignment with an
image’, International Journal of Computer Vision 5(2), 195–212.

Huttenlocher, D. and Wayner, P. (1992), ‘Finding convex edge groupings in an image’,
International Journal of Computer Vision 8(1), 7–27.

Ikemoto, L. and Forsyth, D. (2004), Enriching a motion collection by transplanting limbs,
in ‘Proc. Symposium on Computer Animation’.

Ikeuchi, K. (1987), Precompiling a geometrical model into an interpretation tree for object
recognition in bin-picking tasks, in ‘Image Understanding Workshop’, Los Angeles,
CA, pp. 321–339.

Ikeuchi, K. and Kanade, T. (1988), ‘Automatic generation of object recognition programs’,
Proceedings of the IEEE 76(8), 1016–35.

Ikizler, N. and Forsyth, D. (2007), Searching video for complex activities with finite state
models, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 1–8.

Ikizler, N. and Forsyth, D. (2008), ‘Searching for complex human activities with no visual
examples’, International Journal of Computer Vision 80(3), 337–357.



BIBLIOGRAPHY 708

Indyk, P. and Motwani, R. (1998), Approximate nearest neighbors: towards removing
the curse of dimensionality, in ‘STOC: Proceedings of the thirtieth annual ACM
symposium on Theory of computing’.

Irani, M., Anandan, P., Bergen, J., Kumar, R. and Hsu, S. (1996), ‘Mosaic representations
of video sequences and their applications’, Signal Processing: Image Communication.

Isard, M. and Blake, A. (1996), Contour tracking by stochastic propagation of conditional
density, in ‘Proc. European Conference on Computer Vision (ECCV)’, pp. I:343–356.

Isard, M. and Blake, A. (1998a), ICONDENSATION: Unifying low-level and high-level
tracking in a stochastic framework, in ‘Proc. European Conference on Computer
Vision (ECCV)’, pp. 893–908.

Isard, M. and Blake, A. (1998b), A mixed-state condensation tracker with automatic
model-switching, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 107–112.

Ishikawa, H. (2003), ‘Exact optimization for markov random fields with convex priors’,
IEEE Trans. Pattern Analysis and Machine Intelligence 25(10), 1333–1336.

Ishikawa, H. and Geiger, D. (1998), Occlusions, discontinuities, and epipolar lines in stereo,
in ‘Proc. European Conference on Computer Vision (ECCV)’, pp. 232–248.

Jacobs, D., Belhumeur, P. and Basri, R. (1998), Comparing images under variable illu-
mination, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 610–617.

Jacobs, G. (1981), Comparative Color Vision, Academic Press, New York.

Jacobs, G. and Aeron-Thomas, A. (2000), A review of global road accident fatalities,
in ‘Paper commissioned by the Department for International Development (United
Kingdom) for the Global Road Safety Partnership.’.

Jain, A. and Vailaya, A. (1998), ‘Shape-based retrieval: a case study with trademark
image databases’, Pattern Recognition 31(9), 1369–1390.

Jain, A., Zhong, Y. and Lakshmanan, S. (1996), ‘Object matching using deformable tem-
plates’, IEEE Trans. Pattern Analysis and Machine Intelligence 18(3), 267–278.

Jarvis, R. (1983), ‘A perspective on range finding techniques in computer vision’, IEEE
Trans. Pattern Analysis and Machine Intelligence 5(2), 122–139.

Jegou, H., Schmid, C., Harzallah, H. and Verbeek, J. (2010), ‘Accurate image search using
the contextual dissimilarity measure’, IEEE Trans. Pattern Analysis and Machine
Intelligence 32(1), 2–11.

Jeon, J. and Manmatha, R. (2004), Using maximum entropy for automatic image an-
notation, in ‘Proceedings of international conference on image and video rettrieval’,
pp. 24–32.

Jeon, J., Lavrenko, V. and Manmatha, R. (2003), Automatic image annotation and re-
trieval using cross-media relevance models, in ‘SIGIR ’03: Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in infor-
maion retrieval’, pp. 119–126.

Jepson, A. and Black, M. (1993), Mixture models for optical flow computation, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 760–761.

Jing, Y. and Baluja, S. (2008), ‘Visualrank: Applying pagerank to large-scale image
search’, IEEE Trans. Pattern Analysis and Machine Intelligence 30(11), 1877–1890.

Joachims, T. (1999), Transductive inference for text classification using support vector
machines, in ‘International Conference on Machine Learning (ICML)’, Bled, Slowe-
nien, pp. 200–209.



BIBLIOGRAPHY 709

Johnson, A. and Hebert, M. (1998), ‘Surface matching for object recognition in complex
three-dimensional scenes’, Image and Vision Computing 16, 635–651.

Johnson, A. and Hebert, M. (1999), ‘Using spin images for efficient object recognition
in cluttered 3D scenes’, IEEE Trans. Pattern Analysis and Machine Intelligence
21(5), 433–449.

Jones, M. and Rehg, J. (2002), ‘Statistical color models with application to skin detection’,
International Journal of Computer Vision 46(1), 81–96.

Jones, R. V. (1998), Most Secret War, Wordsworth Military Library. reprint.

Jörgensen, C. (1998), ‘Attributes of images in describing tasks’, Information Processing
& Management 34, 161–174.

Joshi, D., Wang, J. Z. and Li, J. (2004), The story picturing engine: finding elite images
to illustrate a story using mutual reinforcement, in ‘MIR ’04: Proceedings of the 6th
ACM SIGMM international workshop on Multimedia information retrieval’, ACM
Press, New York, NY, USA, pp. 119–126.

Joshi, T., Ahuja, N. and Ponce, J. (1999), ‘Structure and motion estimation from dynamic
silhouettes under perspective projection’, International Journal of Computer Vision
31(1), 31–50.

Jörgensen, C. and Jörgensen, P. (2005), ‘Image querying by image professionals’, J. Am.
Soc. Information Science and Technology 56(12), 1346–1359.

Ju, S. X., Black, M. J. and Yacoob, Y. (1996), Cardboard people: A parameterized model
of articulated image motion, in ‘Proc. Int. Conference on Face and Gesture’, pp. 561–
567.

Judd, D. (1940), ‘Hue, saturation and lightness of surface colors with chromatic illumina-
tion’, Journal of the Optical Society of America 30(1), 2–32.

Judd, D. (1960), ‘Appraisal of Land’s work on two-primary color projections’, Journal of
the Optical Society of America 50(3), 254–268.

Julesz, B. (1960), ‘Binocular depth perception of computer-generated patterns’, The Bell-
System Technical Journal 39(5), 1125–1162.

Julesz, B. (1971), Foundations of Cyclopean Perception, The University of Chicago Press,
London.

Julez, B. (1959), ‘A method of coding tv signals based on edge detection’, Bell System
Tech. J. 38(4), 1001–1020.

Jungnickel, D. (1999), Graphs, Networks and Algorithms, Springer.

Kadir, T., Bowden, R., Ong, E. and Zisserman, A. (2004), Minimal training, large lexi-
con, unconstrained sign language recognition, in ‘British Machine Vision Conference
(BMVC)’.

Kanatani, K. (1994), ‘Statistical bias of conic fitting and renormalization’, IEEE Trans.
Pattern Analysis and Machine Intelligence 16(3), 320–326.

Kanatani, K. (1998), ‘Geometric information criterion for model selection’, International
Journal of Computer Vision 26(3), 171–189.

Kanatani, K. (2006), ‘Ellipse fitting with hyperaccuracy’, Transactions Institute Elec.
Info. and Comm. Eng. E89-D(10), 2653–2660.

Kanazawa, K., Koller, D. and Russell, S. (1995), Stochastic simulation algorithms for
dynamic probabilistic networks, in ‘Proceedings of the Eleventh Conference on Un-
certainty in Artificial Intelligence’, Morgan Kaufmann, Montreal, Canada.



BIBLIOGRAPHY 710

Kang, F., Jin, R. and Sukthankar, R. (2006), Correlated label propagation with application
to multi-label learning, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II: 1719–1726.

Kanizsa, G. (1976), ‘Subjective contours’, Scientific American.

Kanizsa, G. (1979), Organization in Vision: Essays on Gestalt Perception, Praeger.

Kass, M., Witkin, A. and Terzopoulos, D. (1988), ‘Snakes: Active contour models’, Inter-
national Journal of Computer Vision 1(4), 321–331.

Kato, T. and Fujimura, K. (1990), ‘Trademark: Multimedia image database system with
intelligent human interface’, Systems and Computers in Japan 21(11), 33–45.

Kato, T., Shimogaki, H., Mizutori, T. and Fujimura, K. (1988), Trademark: Multimedia
database with abstracted representation on knowledge base, in ‘Proc. Second Int.
Symp. on Interoperable Information Systems’, pp. 245–252.

Kavukcuoglu, K., Ranzato, M., Fergus, R. and LeCun, Y. (2009), Learning invariant
features through topographic filter maps, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’.

Kawakami, R., Takamatsu, J. and Ikeuchi, K. (2007), ‘Color constancy from blackbody
illumination’, Journal of the Optical Society of America 24(7), 1886–1893.

Kazhdan, M., Bolitho, M. and Hoppe, H. (2006), Poisson surface reconstruction, in ‘Sym-
posium on Geometry Processing’, pp. 61–70.

Ke, Y. and Sukthankar, R. (2004), Pca-sift: a more distinctive representation for local
image descriptors, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II: 506–513.

Ke, Y., Sukthankar, R., Huston, L., Ke, Y. and Sukthankar, R. (2004), Efficient near-
duplicate detection and sub-image retrieval, in ‘In ACM Multimedia’, pp. 869–876.

Kelly, R., McConnell, P. and Mildenberger, S. (1977), ‘The Gestalt photomapping system’,
Photogrammetric Engineering and Remote Sensing 43(11), 1407–1417.

Keren, D., Cooper, D. and Subrahmonia, J. (1994), ‘Describing complicated objects
by implicit polynomials’, IEEE Trans. Pattern Analysis and Machine Intelligence
16(1), 38–53.

Kergosien, Y. (1981), ‘La famille des projections orthogonales d’une surface et ses singu-
larités’, C.R. Acad. Sc. Paris 292, 929–932.

King, D. (1997), The Commissar Vanishes: The Falsification of Photographs and Art in
Stalin’s Russia, Metropolitan books.

Kinoshita, K. and Lindenbaum, M. (2000), Camera model selection based on geomet-
ric AIC, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. II:514–519.

Kitagawa, G. (1987), ‘Non-gaussian state space modelling of non-stationary time series
with discussion’, J. Am. Stat. Assoc. 82, 1032–1063.

Klinker, G., Shafer, S. and Kanade, T. (1987), Using a colour reflection model to separate
highlights from object colour, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’.

Klinker, G., Shafer, S. and Kanade, T. (1990), ‘A physical approach to color image un-
derstanding’, International Journal of Computer Vision 4(1. January 1990), 7–38.

Koenderink, J. (1984), ‘What does the occluding contour tell us about solid shape?’,
Perception 13, 321–330.



BIBLIOGRAPHY 711

Koenderink, J. (1986), An internal representation for solid shape based on the topologi-
cal properties of the apparent contour, in W. Richards and S. Ullman, eds, ‘Image
Understanding: 1985-86’, Ablex Publishing Corp., Norwood, NJ, chapter 9, pp. 257–
285.

Koenderink, J. (1990), Solid Shape, MIT Press, Cambridge, MA.

Koenderink, J. and Doorn, A. V. (1983), ‘Geometrical modes as a method to treat diffuse
interreflections in radiometry’, J. Opt. Soc. Am. 73(6), 843–850.

Koenderink, J. and Van Doorn, A. (1976a), ‘Geometry of binocular vision and a model
for stereopsis’, Biological Cybernetics 21, 29–35.

Koenderink, J. and Van Doorn, A. (1976b), ‘The singularities of the visual mapping’,
Biological Cybernetics 24, 51–59.

Koenderink, J. and Van Doorn, A. (1979), ‘The internal representation of solid shape with
respect to vision’, Biological Cybernetics 32, 211–216.

Koenderink, J. and van Doorn, A. (1983), ‘Geometrical modes as a general method to
treat diffuse interreflections in radiometry’, Journal of the Optical Society of America
73(6), 843–850.

Koenderink, J. and van Doorn, A. (1986), ‘Dynamic shape’, Biological Cybernetics
53, 383–396.

Koenderink, J. and Van Doorn, A. (1990), ‘Affine structure from motion’, 8, 377–385.

Koenderink, J., van Doorn, A., Dana, K. and Nayar, S. (1999), ‘Bidirectional reflection
distribution function of thoroughly pitted surfaces’, International Journal of Com-
puter Vision 31(2/3), 129–144.

Koffka, K. (1935), Principles of Gestalt Psychology, Harcourt Brace.

Kolmogorov, V. and Zabih, R. (2001), Computing visual correspondences with occlusions
using graph cuts, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, Vol. B, pp. 508–
515.

Kolmogorov, V. and Zabih, R. (2004), ‘What energy functions can be minimized via graph
cuts’, IEEE Trans. Pattern Analysis and Machine Intelligence 26(2), 147–159.

Krinov, E. (1947), Spectral reflectance properties of natural formations, Technical report,
National Research Council of Canada, Technical Translation: TT-439.

Krumm, J. and Shafer, S. (1990), Local spatial frequence analysis for computer vision, in
‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 354–358.

Krumm, J. and Shafer, S. (1992), Shape from periodic texture using the spectorgram, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 284–289.

Kruppa, E. (1913), ‘Zur Ermittung eines Objektes aus zwei Perspektiven mit innerer
Orientierung’, Sitz.-Ber. Akad. Wiss., Wien, Math. Naturw. Kl., Abt. Ila. 122, 1939–
1948.

Kube, P. and Perona, P. (1996), ‘Scale-space properties of quadratic feature-detectors’,
IEEE Trans. Pattern Analysis and Machine Intelligence 18(10), 987–999.

Kumar, M., Torr, P. and Zisserman, A. (2010), ‘Objcut: Efficient segmentation using top-
down and bottom-up cues’, IEEE Trans. Pattern Analysis and Machine Intelligence
32(3), 530–545.

Kushner, H. and Yin, G. (2003), Stochastic Approximation and Recursive Algorithms and
Applications, Springer.



BIBLIOGRAPHY 712

Kutulakos, K. and Seitz, S. (1999), A theory of shape by space carving, in ‘Proc. Int.
Conf. on Computer Vision (ICCV)’, Corfu, Greece, pp. 307–314.

Labov, W. (1973), The boundaries of words and their meanings, in ‘New Ways of Ana-
lyzing Variation in English’, Georgetown University Press, pp. 340–373.

Lamb, T. and Bourriau, J., eds (1995), Colour Art and Science, Cambridge University
Press.

Lampert, C., Blaschko, M. and Hofmann, T. (2008), Beyond sliding windows: Object
localization by efficient subwindow search, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 1–8.

Land, E. (1959a), ‘Color vision and the natural image: Part i’, Proceedings National
Academy Science USA 45(1), 115–129.

Land, E. (1959b), ‘Color vision and the natural image: Part ii’, Proceedings National
Academy Science USA 45(4), 636–644.

Land, E. (1959c), ‘Experiments in color vision’, Scientific American 200, 84–89.

Land, E. (1983), ‘Color vision and the natural image’, Proceedings National Academy
Science USA 80, 5163–5169.

Land, E. and McCann, J. (1971), ‘Lightness and retinex theory’, Journal of the Optical
Society of America 61(1), 1–11.

Laptev, I. (2005), ‘On space-time interest points’, International Journal of Computer
Vision 64(2-3), 107–123.

Laptev, I. and Perez, P. (2007), Retrieving actions in movies, in ‘Proc. Int. Conf. on
Computer Vision (ICCV)’, pp. 1–8.

Laptev, I., Marszalek, M., Schmid, C. and Rozenfeld, B. (2008), Learning realistic human
actions from movies, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 1–8.

Laurentini, A. (1995), ‘How far 3D shapes can be understood from 2D silhouettes’, IEEE
Trans. Pattern Analysis and Machine Intelligence 17(2), 188–194.

Lavallee, S. (1996), Registration for computer integrated surgery: Methodology and state
of the art, in R. Taylor, S. Lavallee, G. Burdea and R. Mosges, eds, ‘Computer
Integrated Surgery’, MIT Press.

Lavest, J.-M., Viala, M. and Dhome, M. (1998), Do we really need an accurate calibration
pattern to achieve a reliable camera calibration?, in ‘Proc. European Conference on
Computer Vision (ECCV)’, Vol. 1, pp. 158–174.

Lavrenko, V., Manmatha, R. and Jeon, J. (2003), A model for learning the semantics of
pictures, in ‘Neural Information Processing Systems’.

Lazebnik, S., Boyer, E. and Ponce, J. (2001), On computing exact visual hulls of solids
bounded by smooth surfaces, in ‘IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR)’, pp. 156–161.

Lazebnik, S., Furukawa, Y. and Ponce, J. (2007), ‘Projective visual hulls’, International
Journal of Computer Vision 74(2), 137–165.

Lazebnik, S., Schmid, C. and Ponce, J. (2006), Beyond bags of features: Spatial pyramid
matching for recognizing natural scene categories, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. II: 2169–2178.

Lee, D., Hebert, M. and Kanade, T. (2009), Geometric reasoning for single image structure
recovery, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 2136–2143.



BIBLIOGRAPHY 713

Lee, H. (1986), ‘Method for computing the scene-illuminant chromaticity from specular
highlights’, J. Opt. Soc. Am.-A 3, 1694–1699.

Lee, H.-C. (2009), Introduction to Color Imaging Science, Cambridge.

Lee, K. and Kuo, C. (1998), Direct shape from texture using a parametric surface model
and an adaptive filtering technique, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, pp. 402–407.

Lee, S. and Bajcsy, R. (1992a), Detection of specularity using colour and multiple views,
in ‘Proc. European Conference on Computer Vision (ECCV)’, pp. 99–114.

Lee, S. and Bajcsy, R. (1992b), ‘Detection of specularity using colour and multiple views’,
Image and Vision Computing 10, 643–653.

Lei, T. and Udupa, J. (2003), ‘Performance evaluation of finite normal mixture model-
based image segmentation techniques’, IEEE Trans. Image Processing 12(10), 1153–
1169.

Leung, T. and Malik, J. (1996), Detecting, localizing and grouping repeated scene ele-
ments from an image, in ‘Proc. European Conference on Computer Vision (ECCV)’,
pp. I:546–555.

Leung, T. and Malik, J. (1999), Recognizing surfaces using three-dimensional textons, in
‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1010–1017.

Leung, T. and Malik, J. (2001), ‘Representing and recognizing the visual appearance of
materials using three-dimensional textons’, International Journal of Computer Vision
43(1), 29–44.

Levoy, M. and Hanrahan, P. (1996), ‘Light field rendering’, ACM Trans. Graphics (SIG-
GRAPH Proceeding) pp. 31–42.

Lewicki, M. and Sejnowski, T. (2000), ‘Learning Overcomplete Representations’, Neural
Computation 12(2), 337–365.

Lhuillier, M. and Quan, L. (2005), ‘A quasi-dense approach to surface reconstruction
from uncalibrated images’, IEEE Trans. Pattern Analysis and Machine Intelligence
27(3), 418–433.

Li, J. and Wang, J. Z. (2003), ‘Automatic linguistic indexing of pictures by a statistical
modeling approach’, IEEE Trans. on Pattern Analysis and Machine Intelligence.

Li, S. and Jain, A. (2005), A Handbook of face recognition, Springer.

Li, Y. and Huttenlocher, D. P. (2008), Sparse long-range random field and its application
to image denoising, in ‘Proc. European Conference on Computer Vision (ECCV)’.

Lin, S., Gu, J., Yamazaki, S. and Shum, H. (2004), Radiometric calibration from a single
image, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II:
938–945.

Lin, S., Li, Y., Kang, S., Tong, X. and Shum, H. (2002), Diffuse-specular separation and
depth recovery from image sequences, in ‘Proc. European Conference on Computer
Vision (ECCV)’, p. III: 210 ff.

Lindeberg, T. (1993), Scale-Space Theory in Computer Vision, Kluwer.

Liu, C., Sharan, L., Adelson, E. and Rosenholtz, R. (2010), Exploring features in a
Bayesian framework for material recognition, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. 239–246.

Liu, Y., Collins, R. and Tsin, Y. (2004), ‘A computational model for periodic pattern
perception based on frieze and wallpaper groups’, IEEE Trans. Pattern Analysis and
Machine Intelligence 26(3), 354–371.



BIBLIOGRAPHY 714

Liverman, M. (2004), The Animator’s Motion Capture Guide : Organizing, Manag-
ing,Editing, Charles River Media.

Ljung, L. (1995), System identification, in W. S. Levine, ed., ‘The Control Handbook’,
CRC Press, in cooperation with IEEE Press.

Lobay, A. and Forsyth, D. (2004), Recovering shape and irradiance maps from rich dense
texton fields, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. I: 400–406.

Lobay, A. and Forsyth, D. (2006), ‘Shape from texture without boundaries’, International
Journal of Computer Vision 67(1), 71–91.

Loeff, N. and Farhadi, A. (2008), Scene discovery by matrix factorization, in ‘Proc. Euro-
pean Conference on Computer Vision (ECCV)’, pp. IV: 451–464.

Loeff, N., Farhadi, A., Endres, I. and Forsyth, D. (2009), Unlabeled data improves word
prediction, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 956–962.

Loh, A. and Hartley, R. (2005), Shape from non-homogeneous, non-stationary, anisotropic,
perspective texture, in ‘British Machine Vision Conference (BMVC)’.

Longuet-Higgins, H. (1981), ‘A computer algorithm for reconstructing a scene from two
projections’, Nature 293, 133–135.

Lorensen, W. and Cline, H. (1987), ‘Marching cubes: a high resolution 3D surface con-
struction algorithm’, Computer Graphics 21, 163–169.

Lowe, D. (1985), Perceptual Organization and Visual Recognition, Kluwer.

Lowe, D. (2004), ‘Method and apparatus for identifying scale invariant features in an
image and use of same for locating an object in an image’, U.S. Patent 6,711,293.

Lu, R., Koenderink, J. and Kappers, A. (1998), ‘Optical properties (bidirectional reflection
distribution functions) of velvet’, Applied Optics 37(25), 5974–5984.

Lu, R., Koenderink, J. and Kappers, A. (1999), Specularities on surfaces with tangential
hairs or grooves, in ‘ICCV’, pp. 2–7.

Luenberger, D. (1984), Linear and nonlinear programming, Addison-Wesley. Second edi-
tion.

Luong, Q.-T. (1992), Matrice fondamentale et calibration visuelle sur l’environnement:
vers une plus grande autonomie des systèmes robotiques, PhD thesis, University of
Paris XI, Orsay, France.

Luong, Q.-T. and Faugeras, O. (1996), ‘The fundamental matrix: theory, algorithms, and
stability analysis’, International Journal of Computer Vision 17(1), 43–76.

Luong, Q.-T., Deriche, R., Faugeras, O. and Papadopoulo, T. (1993), On determining the
fundamental matrix: analysis of different methods and experimental results, Techni-
cal Report 1894, INRIA Sophia-Antipolis.

Lynch, D. and Livingston, W. (2001), Color and Light in Nature, Cambridge University
Press.

Ma, Y., Soatto, S., Kosecka, J. and Sastry, S. (2003a), An invitation to 3D vision – From
images to geometric models, Springer-Verlag.

Ma, Y., Soatto, S., Kosecka, J. and Sastry, S. S. (2003b), An Invitation to 3-D Vision,
Springer Verlag.

MacAdam, D. (1942), ‘Visual sensitivities to small color differences in daylight’, Journal
of the Optical Society of America 32, 247.



BIBLIOGRAPHY 715

Macaulay, F. (1916), The Algebraic Theory of Modular Systems, Cambridge University
Press.

MacKay, D. J. (2003), Information Theory, Inference and Learning Algorithms, Cambridge
University Press.

Mahamud, S., Hebert, M., Omori, Y. and Ponce, J. (2001), Provably-convergent iterative
methods for projective structure from motion, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. 1018–1025.

Maintz, J. and Viergever, M. (1998), ‘A survey of medical image registration’, Medical
Image Analysis 2(1), 1–16.

Mairal, J., Bach, F. and Ponce, J. (2011), ‘Task-driven dictionary learning’, IEEE
Trans. Pattern Analysis and Machine Intelligence. Accepted for publication, preprint
ArXiv:1009.5358.

Mairal, J., Bach, F., Ponce, J. and Sapiro, G. (2010), ‘Online learning for matrix factor-
ization and sparse coding’, 11, 19–60.

Mairal, J., Bach, F., Ponce, J., Sapiro, G. and Zisserman, A. (2008), Discriminative
learned dictionaries for local image analysis, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, Anchorage, USA.

Mairal, J., Bach, F., Ponce, J., Sapiro, G. and Zisserman, A. (2009), Non-local sparse
models for image restoration, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’.

Maji, S. and Malik, J. (2009), Object detection using a max-margin Hough transform, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 1038–1045.

Maji, S., Berg, A. and Malik, J. (2008), Classification using intersection kernel support
vector machines is efficient, in ‘IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR)’, pp. 1–8.

Maji, S., Bourdev, L. and Malik, J. (2011), Action recognition from a distributed repre-
sentation of pose and appearance, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’.

Makadia, A., Pavlovic, V. and Kumar, S. (2008), A new baseline for image annotation, in
‘Proc. European Conference on Computer Vision (ECCV)’, pp. III: 316–329.

Makadia, A., Pavlovic, V. and Kumar, S. (2010), ‘Baselines for image annotation’, Inter-
national Journal of Computer Vision 90(1), 88–105.

Malik, J. and Rosenholtz, R. (1997), ‘Computing local surface orientation and shape from
texture for curved surfaces’, International Journal of Computer Vision pp. 149–168.

Malisiewicz, T. and Efros, A. (2007), Improving spatial support for objects via multiple
segmentations, in ‘British Machine Vision Conference (BMVC)’.

Malisiewicz, T. and Efros, A. (2008), Recognition by association via learning per-exemplar
distances, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. 1–8.

Mallat, S. (1999), A Wavelet Tour of Signal Processing, Second Edition, Academic Press,
New York.

Mallat, S. and Zhang, Z. (1993), ‘Matching pursuit in a time-frequency dictionary’,
41(12), 3397–3415.

Maloney, L. (1984), Computational Approaches to Color Vision, PhD thesis, Stanford
University.



BIBLIOGRAPHY 716

Maloney, L. (1986), ‘Evaluation of linear models of surface spectral reflectance with small
numbers of parameters’, Journal of the Optical Society of America 3(10), 1673–1683.

Maloney, L. and Wandell, B. (1986), ‘Color constancy: A method for recovering surface
spectral reflectance’, Journal of the Optical Society of America 3, 29–33.

Manocha, D. (1992), Algebraic and Numeric Techniques for Modeling and Robotics, PhD
thesis, Computer Science Division, Univ. of California at Berkeley.

Marimont, D. and Wandell, B. (1992), ‘Linear models of surface and illuminant spectra’,
J. Opt. Soc. Am.-A 9, 1905–1913.

Marin, J., Vazquez, D., Geronimo, D. and Lopez, A. (2010), Learning appearance in
virtual scenarios for pedestrian detection, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 137–144.

Markkula, M. and Sormunen, E. (2000), ‘End-user searching challenges indexing practices
in the digital newspaper photo archive’, Information retrieval 1, 259–285.

Maron, O. and Lozano-Pérez, T. (1998), A framework for multiple-instance learning, in
‘NIPS ’97: Proceedings of the 1997 conference on Advances in neural information
processing systems 10’, MIT Press, Cambridge, MA, USA, pp. 570–576.

Maron, O. and Ratan, A. (1998), Multiple-instance learning for natural scene classification,
in ‘The Fifteenth International Conference on Machine Learning’.

Marr, D. (1977), ‘Analysis of occluding contour’, Proc. Royal Society, London B-197, 441–
475.

Marr, D. (1982), Vision, Freeman, San Francisco.

Marr, D. and Nishihara, K. (1978), ‘Representation and recognition of the spatial organi-
zation of three-dimensional shapes’, Proc. Royal Society, London B-200, 269–294.

Marr, D. and Poggio, T. (1976), ‘Cooperative computation of stereo disparity’, Science
194, 283–287.

Marr, D. and Poggio, T. (1979), ‘A computational theory of human stereo vision’, Pro-
ceedings of the Royal Society of London B 204, 301–328.

Marszalek, M. and Schmid, C. (2007), Accurate object localization with shape masks, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 1–8.

Martin, D., Fowlkes, C. and Malik, J. (2004), ‘Learning to detect natural image boundaries
using local brightness, color, and texture cues’, IEEE Trans. Pattern Analysis and
Machine Intelligence 26(5), 530–549.

Martin, D., Fowlkes, C., Tal, D. and Malik, J. (2001), A database of human segmented nat-
ural images and its application to evaluating segmentation algorithms and measuring
ecological statistics, in ‘Proc. 8th Int’l Conf. Computer Vision’, Vol. 2, pp. 416–423.

Martin, W. and Aggarwal, J. (1983), ‘Volumetric description of objects from multiple
views’, IEEE Trans. Pattern Analysis and Machine Intelligence 5(2), 150–158.

Matusik, W., Buehler, C., Raskar, R., Gortler, S. and McMillan, L. (2001), Image-based
visual hulls, in ‘ACM Trans. Graphics (SIGGRAPH Proceeding)’.

Maxwell, B. and Shafer, S. (2000), ‘Segmentation and interpretation of multicolored ob-
jects with highlights’, Computer Vision and Image Understanding 77(1), 1–24.

Maybank, S. and Faugeras, O. (1992), ‘A theory of self-calibration of a moving camera’,
International Journal of Computer Vision 8(2), 123–151.

Maybank, S. and Sturm, P. (1999), MDL, collineations and the fundamental matrix, in
‘British Machine Vision Conference (BMVC)’.



BIBLIOGRAPHY 717

McDonald, S. and Tait, J. (2003), Search strategies in content-based image retrieval, in
‘Proc. ACM SIGIR Conference on Research and Development in Information Re-
trieval’.

McInerney, T. and Terzopolous, D. (1996), ‘Deformable models in medical image analysis:
a survey’, Medical Image Analysis 1(2), 91–108.

McKee, S., Levi, D. and Brown, S. (1990), ‘The imprecision of stereopsis’, Vision Research
30(11), 1763–1779.

McLachlan, G. and Krishnan, T. (1996), The EM Algorithm and Extensions, John Wiley
and Sons.

McMillan, L. and Bishop, G. (1995), Plenoptic modeling: an image-based rendering ap-
proach, in ‘SIGGRAPH’, Los Angeles, CA, pp. 39–46.

Medioni, G. and Nevatia, R. (1984), ‘Matching images using linear features’, IEEE Trans.
Pattern Analysis and Machine Intelligence 6(6), 675–685.

Menache, A. (1999), Understanding Motion Capture for Computer Animation and Video
Games, Morgan-Kaufmann.

Metzler, D. and Manmatha, R. (2004), An inference network approach to image retrieval,
in ‘CIVR’, pp. 42–50.

Mikolajczyk, K. (n.d.), Face detector, Technical report, INRIA Rhone-Alpes. Ph.D report.

Mikolajczyk, K. and Schmid, C. (2002), An affine invariant interest point detector, in
‘Proc. European Conference on Computer Vision (ECCV)’, p. I: 128 ff.

Mikolajczyk, K. and Schmid, C. (2005), ‘A performance evaluation of local descriptors’,
IEEE Trans. Pattern Analysis and Machine Intelligence 27(10), 1615–1630.

Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky,
F., Kadir, T. and Van Gool, L. (2005), ‘A comparison of affine region detectors’,
International Journal of Computer Vision 65(1-2), 43–72.

Milenkovic, V. and Kanade, T. (1985), Trinocular vision using photometric and edge
orientation constraints, in ‘Image Understanding Workshop’, pp. 163–175.

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D. and Miller, K. J. (1990), ‘Introduc-
tion to wordnet: an on-line lexical database’, International Journal of Lexicography
3(4), 235 – 244.

Minnaert, M. (1993), Light and Color in the Outdoors, Springer Verlag. Translator: L.
Seymour.

Mitsunaga, T. and Nayar, S. (1999), Radiometric self calibration, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’, pp. I: 374–380.

Moeslund, T. (1999), Summaries of 107 computer vision-based human motion capture
papers, Technical Report LLA 99-01, University of Aalborg.

Moeslund, T., Hilton, A. and Sigal, L. (2011), Visual Analysis of Humans, Springer.

Mohan, R. and Nevatia, R. (1992), ‘Perceptual organization for scene segmentation and
description’, IEEE Trans. Pattern Analysis and Machine Intelligence 14(6), 616–635.

Mohr, R., Morin, L. and Grosso, E. (1992), Relative positioning with uncalibrated cam-
eras, in J. Mundy and A. Zisserman, eds, ‘Geometric Invariance in Computer Vision’,
MIT Press, Cambridge, Mass., pp. 440–460.

Mollon, J. (1982), ‘Color vision’, Ann. Rev. Psychol. 33, 41–85.



BIBLIOGRAPHY 718

Mollon, J. (1995), Seeing colour, in T. Lamb and J. Bourriau, eds, ‘Colour Art and
Science’, Cambridge University Press.

Moravec, H. (1980), Obstacle avoidance and navigation in the real world by a seeing robot
rover, in ‘Tech. Report CMU Robotics Institute’.

Morgan, A. (1987), Solving Polynomial Systems using Continuation for Engineering and
Scientific Problems, Prentice Hall, Englewood Cliffs, NJ.

Mori, G., and Malik, J. (2002), Estimating human body configurations using shape context
matching, in ‘European Conference on Computer Vision LNCS 2352’, Vol. 3, pp. 666–
680.

Mori, G. and Malik, J. (2005), ‘Recovering 3d human body configurations using shape
contexts’, IEEE Transactions on Pattern Analysis and Machine Intelligence.

Mori, Y., Takahashi, H. and Oka, R. (1999), Image-to-word transformation based on
dividing and vector quantizing images with words, in ‘Proceedings of the First Inter-
national Workshop on Multimedia Intelligent Storage and Retrieval Management’.

Morita, T. and Kanade, T. (1997), ‘A sequential factorization method for recovering
shape and motion from image sequences’, IEEE Trans. Pattern Analysis and Machine
Intelligence.

Muja, M. and Lowe, D. G. (2009), Fast approximate nearest neighbors with automatic
algorithm configuration, in ‘International Conference on Computer Vision Theory
and Application VISSAPP’09)’, INSTICC Press, pp. 331–340.

Mukawa, N. (1990), Estimation of shape, reflection coefficients and illuminant direction
from image sequences, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 507–512.

Munder, S. and Gavrila, D. (2006), ‘An experimental study on pedestrian classification’,
IEEE Trans. Pattern Analysis and Machine Intelligence 28(11), 1863–1868.

Mutch, J. and Lowe, D. (2006), Multiclass object recognition with sparse, localized fea-
tures, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. I:
11–18.

Nalwa, V. (1988), ‘Line-drawing interpretation: A mathematical framework’, Interna-
tional Journal of Computer Vision 2, 103–124.

Nathans, J., Piantanida, T., Eddy, R., Shows, T. and Hogness, D. (1986a), ‘Molecular
genetics of inherited variation in human color vision’, Science 232, 203–210.

Nathans, J., Thomas, D. and Hogness, D. (1986b), ‘Molecular genetics of human color
vision: The genes encoding blue, green, and red pigments’, Science 232, 193–203.

Navy, U. (1969), Basic Optics and Optical Instruments, Dover. Prepared by the Bureau
of Naval Personnel.

Nayar, S. and Oren, M. (1993), Diffuse reflectance from rough surfaces, in ‘IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR)’, pp. 763–764.

Nayar, S. and Oren, M. (1995), ‘Visual appearance of matte surfaces’, Science
267(5201), 1153–1156.

Nayar, S., Ikeuchi, K. and Kanade, T. (1990), ‘Determining shape and reflectance of
hybrid surfaces by photometric sampling’, IEEE Trans. Robotics and Automation
6(4), 418–431.

Nayar, S., Ikeuchi, K. and Kanade, T. (1991a), ‘Shape from interreflections’, International
Journal of Computer Vision 6(3), 173–195.



BIBLIOGRAPHY 719

Nayar, S., Ikeuchi, K. and Kanade, T. (1991b), ‘Shape from interreflections’, International
Journal of Computer Vision 6(3), 173–195.

Nayar, S., Ikeuchi, K. and Kanade, T. (1991c), ‘Surface reflection: Physical and geometri-
cal perspectives’, IEEE Trans. Pattern Analysis and Machine Intelligence 13(7), 611–
634.

Nedovic, V., Smeulders, A., Redert, A. and Geusebroek, J. (2010), ‘Stages as mod-
els of scene geometry’, IEEE Trans. Pattern Analysis and Machine Intelligence
32(9), 1673–1687.

Nelder, J. and Mead, R. (1965), ‘A simplex method for function minimization’, Computer
Journal 7, 308–313.

Nevatia, R. (1986), Image segmentation, in K. Fu and T. Young, eds, ‘Handbook of
Pattern Recognition and Image Processing’, Academic Press, pp. 215–231.

Nielsen, M., Johansen, P., Olsen, O. F. and Weickert, J., eds (1999), Scale-Space Theory
in Computer Vision, Vol. 1682, Springer Verlag LNCS.

Niem, W. and Buschmann, R. (1994), Automatic modelling of 3D natural objects from
multiple views, in ‘European Workshop on Combined Real and Synthetic Image
Processing for Broadcast and Video Production’, Hamburg, Germany.

Nilsback, M. and Zisserman, A. (2010), ‘Delving deeper into the whorl of flower segmen-
tation’, Image and Vision Computing 28(6), 1049–1062.

Nistér, D. (2004), ‘An efficient solution to the five-point relative pose problem’, IEEE
Trans. Pattern Analysis and Machine Intelligence 26(6), 756–770.

Nister, D. and Stewenius, H. (2006), Scalable recognition with a vocabulary tree, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II: 2161–2168.

Nitzan, D. (1988), ‘Three-dimensional vision structure for robot applications’, IEEE
Trans. Pattern Analysis and Machine Intelligence 10(3), 291–309.

O’Brien, D. (2010), Congress Shall Make No Law: The First Amendment, Unprotected
Expression, and the U.S. Supreme Court, Rowman & Littlefield.

Ohlander, R., Price, K. and Reddy, R. (1978), ‘Picture segmentation by a recursive region
splitting method’, Computer Graphics Image Processing 8, 313–333.

Ohta, Y. and Kanade, T. (1985), ‘Stereo by intra- and inter-scanline search’, IEEE Trans.
Pattern Analysis and Machine Intelligence 7(2), 139–154.

Ohta, Y., Maenobu, K. and Sakai, T. (1981), Obtaining surface orientation from texels
under perspective projection, in ‘Int. Joint Conf. Artificial Intelligence’, pp. 746–751.

Oja, E. (1983), Subspace methods of pattern recognition, Research Study Press.

Okutami, M. and Kanade, T. (1993), ‘A multiple-baseline stereo system’, IEEE Trans.
Pattern Analysis and Machine Intelligence 15(4), 353–363.

Oliva, A. and Torralba, A. (2001), ‘Modeling the shape of the scene: A holistic represen-
tation of the spatial envelope’, International Journal of Computer Vision 42(3), 145–
175.

Oliva, A. and Torralba, A. (2007), ‘The role of context in object recognition’, Trends in
Cognitive Sciences 11(12), 520 – 527.

Olshausen, B. A. and Field, D. J. (1997), ‘Sparse coding with an overcomplete basis set:
A strategy employed by v1?’, Vision Research 37, 3311–3325.

Olson, C. (1998), Variable-scale smoothing and edge detection guided by stereoscopy, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 80–85.



BIBLIOGRAPHY 720

Opelt, A., Pinz, A., Fussenegger, M. and Auer, P. (2006), ‘Generic object recognition with
boosting’, IEEE Trans. Pattern Analysis and Machine Intelligence 28(3), 416–431.

Oren, M. and Nayar, S. (1995), ‘Generalization of the lambertian model and implications
for machine vision’, International Journal of Computer Vision 14(3), 227–251.

O’Rourke, J. (1998), Computational Geometry in C, 2 edn, Cambridge University Press,
Cambridge.

Osuna, E., Freund, R. and Girosi, F. (1997), Training support vector machines: An appli-
cation to face detection, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 130–136.

Overett, G., Petersson, L., Brewer, N., Andersson, L. and Pettersson, N. (2008), A new
pedestrian dataset for supervised learning, in ‘IEEE Intelligent Vehicles Symposium’.

Pae, S. and Ponce, J. (1999), Toward a scale-space aspect graph: Solids of revolution, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, Vol. II, Fort
Collins, CO, pp. 196–201.

Pae, S. and Ponce, J. (2001), ‘On computing structural changes in evolving surfaces and
their appearance’, International Journal of Computer Vision 43(2), 113–131.

Paglieroni, D. (2004), ‘Design considerations for image segmentation quality assessment
measures’, Pattern Recognition 37(8), 1607–1617.

Pal, N. and Pal, S. (1993), ‘A review on image segmentation techniques’, Pattern Recog-
nition 26(9), 1277–1294.

Palmer, S. (1999), Vision Science : Photons to Phenomenology, MIT Press.

Panofsky, E. (1962), Studies in Iconology: Humanistic Themes in the Art of the Renais-
sance, Harper & Row.

Pantofaru, C., Schmid, C. and Hebert, M. (2008), Object recognition by integrating
multiple image segmentations, in ‘Proc. European Conference on Computer Vision
(ECCV)’, pp. III: 481–494.

Papageorgiou, C. and Poggio, T. (2000), ‘A trainable system for object detection’, Inter-
national Journal of Computer Vision 38(1), 15–33.

Paragios, N., Chen, Y. and Faugeras, O., eds (2010), Handbook of Mathematical Models
in Computer Vision, Springer.

Parikh, D. and Grauman, K. (2011), Interactively building a discriminative vocabulary of
nameable attributes, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’.

Paris, S., Sillion, F. and Quan, L. (2004), A surface reconstruction method using global
graph cut optimization, in ‘Proc. Asian Conf. on Computer Vision (ACCV)’.

Parker, J. (2010), Algorithms for Image Processing and Computer Vision, Wiley.

Pentland, A. (1986), ‘Perceptual organization and the representation of natural form’,
28, 293–331.

Peri, V. and Nayar, S. (1997), Generation of perspective and panoramic video from om-
nidirectional video, in ‘Image Understanding Workshop’, New Orleans, LA.

Perona, P. (1992), Steerable-scalable kernels for edge detection and junction analysis, in
‘Proc. European Conference on Computer Vision (ECCV)’, pp. 3–18.

Perona, P. (1995), ‘Deformable kernels for early vision’, IEEE Trans. Pattern Analysis
and Machine Intelligence 17(5), 488–499.



BIBLIOGRAPHY 721

Perona, P. and Freeman, W. (1998), A factorization approach to grouping, in ‘Proc.
European Conference on Computer Vision (ECCV)’, pp. 655–670.

Perona, P. and Malik, J. (1990a), Detecting and localizing edges composed of steps, peaks
and roofs, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 52–57.

Perona, P. and Malik, J. (1990b), ‘Scale space and edge detection using anisotropic diffu-
sion’, IEEE Trans. Pattern Analysis and Machine Intelligence 12(7), 629–639.

Perona, P. and Malik, J. (1990c), ‘Scale-space and edge detection using anisotropic diffu-
sion’, IEEE Trans. Pattern Analysis and Machine Intelligence 12(7), 629–639.

Perona, P., Fergus, R. and Li, F. (2004), Learning generative visual models from few
training examples: An incremental Bayesian approach tested on 101 object categories,
in ‘Proc. IEEE Workshop on Generative Model Based Vision’, p. 178.

Petitjean, S. (1998), ‘A computational geometric approach to visual hulls’, International
Journal of Computational Geometry and Applications 8(4), 406–436.

Petitjean, S., Ponce, J. and Kriegman, D. (1992), ‘Computing exact aspect graphs
of curved objects: Algebraic surfaces’, International Journal of Computer Vision
9(3), 231–255.

Petrov, A. (1987), Light color and shape, in E. Velikhov, ed., ‘Cognitive processes and
their simulation’, pp. 350–358. In Russian.

Petrov, A. (1991), Color and Grassman-Cayley coordinates of shape, in ‘SPIE-Int. Soc.
Opt. Eng. Proceedings of SPIE - the International Society for Optical Engineering’,
Vol. 1453, pp. 342–352.

Peyre, G. (2008), ‘Sparse modeling of textures’, Journal of Mathematical Imaging and
Vision.

Pinto, N., Cox, D. and DiCarlo, J. (2008), ‘Why is real-world visual object recognition
hard?’.

Platonova, O. (1981), ‘Singularities of the mutual disposition of a surface and a line’,
Russian Mathematical Surveys 36(1), 248–249.

Platt, J. C. (1999), Probabilistic outputs for support vector machines and comparisons
to regularized likelihood methods, in ‘ADVANCES IN LARGE MARGIN CLASSI-
FIERS’, MIT Press, pp. 61–74.

Pluim, J., Maintz, J. and Viergever, M. (2003), ‘Mutual-information-based registration of
medical images: a survey’, IEEE Trans. Medical Imaging 22(8), 986–1004.

Poelman, C. and Kanade, T. (1997), ‘A paraperspective factorization method for shape
and motion recovery’, IEEE Trans. Pattern Analysis and Machine Intelligence
19(3), 206–218.

Polak, M., Zhang, H. and Pi, M. (2009), ‘An evaluation metric for image segmentation of
multiple objects’, Image and Vision Computing 27(8), 1223–1227.

Pollard, S., Mayhew, J. and Frisby, J. (1970), ‘A stereo correspondence algorithm using a
disparity gradient limit’, Perception 14, 449–470.

Pollefeys, M. (1999), Self-calibration and metric 3D reconstruction from uncalibrated im-
age sequences, PhD thesis, Katholieke Universiteit Leuven.

Pollefeys, M., Koch, R. and Van Gool, L. (1999), ‘Self-calibration and metric reconstruc-
tion in spite of varying and unknown internal camera parameters’, International
Journal of Computer Vision 32(1), 7–26.



BIBLIOGRAPHY 722

Ponce, J. (2000), Metric upgrade of a projective reconstruction under the rectangular
pixel assumption, in ‘3D Structure from Images — SMILE 2000’, Dublin, Ireland,
pp. 52–67.

Ponce, J. and Brady, J. (1987), Toward a surface primal sketch, in T. Kanade, ed., ‘Three-
dimensional machine vision’, Kluwer Publishers, pp. 195–240.

Ponce, J., Papadopoulo, T., Teillaud, M. and Triggs, B. (2005), The absolute quadratic
complex and its application to camera self calibration, in ‘IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR)’, Vol. I, pp. 780–787.

Pons, J.-P., Keriven, R. and Faugeras, O. (2005), Modelling dynamic scenes by register-
ing multi-view image sequences, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, Vol. 2, pp. 822–827.

Pons, J.-P., Keriven, R. and Faugeras, O. (2007), ‘Multi-view stereo reconstruction and
scene flow estimation with a global image-based matching score’, International Jour-
nal of Computer Vision 72(2), 179–193.

Pont, S. and Koenderink, J. (2002), Bidirectional texture contrast function, in ‘Proc.
European Conference on Computer Vision (ECCV)’, pp. 808–823.

Porrill, J. (1990), ‘Fitting ellipses and predicting confidence envelopes using a bias cor-
rected kalman filter’, Image and Vision Computing 8(1), 37–41.

Portilla, J., Strela, V., Wainwright, M. and Simoncelli, E. (2003), ‘Image denoising using
scale mixtures of Gaussians in the wavelet domain’, 12(11), 1338–1351.

Prados, E. and Faugeras, O. (2005a), ‘A generic and provably convergent shape-from-
shading method for orthographic and pinhole cameras’, International Journal of
Computer Vision 65(1-2), 97–125.

Prados, E. and Faugeras, O. (2005b), Shape from shading: A well-posed problem?, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Pritchard, D. (2003), Cloth parameters and motion capture, Master’s thesis, University
of British Columbia.

Pritchard, D. and Heidrich, W. (2003), ‘Cloth motion capture’, Computer Graphics Forum
(Eurographics 2003) 22(3), 263–271.

Privitera, C. and Stark, L. (1998), ‘Evaluating image processing algorithms that predict
regions of interest’, Pattern Recognition Letters 19(11), 1037–1043.

Quinlan, R. (1993), C4.5: Programs for Machine Learning, Morgan Kaufmann, San Ma-
teo.

Radke, R. (2012), Computer Vision for Visual Effects, Cambridge.

Raina, R., Battle, A., Lee, H., Packer, B. and Ng, A. Y. (2007), Self-taught learning:
transfer learning from unlabeled data, in ‘Int. Conf. Machine Learning’.

Raja, Y., McKenna, S. and Gong, S. (1998), Colour model selection and adaptation
in dynamic scenes, in ‘Proc. European Conference on Computer Vision (ECCV)’,
pp. 460–474.

Ramamoorthi, R. and Hanrahan, P. (2001), A signal-processing framework for inverse
rendering, in ‘Proceedings of SIGGRAPH’, pp. 117–128.

Ramanan, D. (2005), Tracking People and Recognizing their Activities, PhD thesis, U.C.
Berkeley.

Ramanan, D. (2006), Learning to parse images of articulated objects, in ‘Proc. NIPS’.



BIBLIOGRAPHY 723

Ramanan, D. and Forsyth, D. (2003), Automatic annotation of everyday movements, in
‘Advances in Neural Information Processing’.

Ranade, S. and Prewitt, J. (1980), A comparison of some segmentation algorithms for
cytology, in ‘Proceedings IAPR International Conference on Pattern Recognition’,
pp. 561–564.

Ranzato, M., Poultney, C., Chopra, S. and LeCun, Y. (2007), Efficient learning of sparse
representations with an energy-based model, in ‘Advances in Neural Information
Processing’.

Rashtchian, C., Young, P., Hodosh, M. and Hockenmaier, J. (2010), Collecting image
annotations using Amazons mechanical turk, in ‘NAACL HLT 2010 Workshop on
Creating Speech and Language Data with Amazons Mechanical Turk’.

Ray, S. and Craven, M. (2005), Supervised versus multiple instance learning: an empiri-
cal comparison, in ‘ICML ’05: Proceedings of the 22nd international conference on
Machine learning’, ACM Press, New York, NY, USA, pp. 697–704.

Reinhard, E., Khan, E. A., Akyüz, A. O. and Johnson, G. (2008), Color Imaging: Fun-
damentals and Applications, AK Peters.

Rieger, J. (1987), ‘On the classification of views of piecewise-smooth objects’, Image and
Vision Computing 5, 91–97.

Rieger, J. (1990), ‘The geometry of view space of opaque objects bounded by smooth
surfaces’, 44(1-2), 1–40.

Rieger, J. (1992), ‘Global bifurcations sets and stable projections of non-singular algebraic
surfaces’, International Journal of Computer Vision 7(3), 171–194.

Ripley, B. (1996), Pattern Recognition and Neural Networks, Cambridge University Press.

Riseman, E. and Arbib, M. (1977), ‘Computational techniques in the visual segmentation
of static scenes’, Computer Graphics Image Processing 6(3), 221–276.

Rissanen, J. (1983), ‘A universal prior for integers and estimation by minimum description
length’, Annals of Statistics 11, 416–431.

Rissanen, J. (1987), ‘Stochastic complexity (with discussion)’, J. Roy. Stat. Soc. Series B
49, 223–239.

Rittscher, J. and Blake, A. (1999), Classification of human body motion, in ‘Proc. Int.
Conf. on Computer Vision (ICCV)’, pp. 634–639.

Robert, L. and Faugeras, O. (1991), Curve-based stereo: figural continuity and curvature,
in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, Maui, Hawaii,
pp. 57–62.

Roberts, L. (1965), Machine perception of 3-D solids, in J. Tippet, ed., ‘Optical and
Electro-Optical Information Processing’, MIT Press, pp. 159–197.

Rodden, K. and Wood, K. (2003), How do people manage their digital photographs?, in
‘Proc. SIGCHI conference on Human factors in computing systems (CHI)’.

Rodden, K., Basalaj, W., Sinclair, D. and Wood, K. (2001), Does organisation by sim-
ilarity assist image browsing?, in ‘Proc. SIGCHI conference on Human factors in
computing systems (CHI)’.

Romeiro, F., Vasilyev, Y. and Zickler, T. (2008), Passive reflectometry, in ‘Proc. European
Conference on Computer Vision (ECCV)’.

Rosenholtz, R. and Malik, J. (1997), ‘Surface orientation from texture: isotropy or homo-
geneity (or both)?’, Vision Research 37(16), 2283–2293.



BIBLIOGRAPHY 724

Rosten, E., Porter, R. and Drummond, T. (2010), ‘Faster and better: A machine learning
approach to corner detection’, IEEE Trans. Pattern Analysis and Machine Intelli-
gence 32(1), 105–119.

Rother, C., Kolmogorov, V. and Blake, A. (2004), ‘”grabcut”: interactive foreground
extraction using iterated graph cuts’, ACM Trans. Graph.

Rowley, H., Baluja, S. and Kanade, T. (1996), Neural network-based face detection, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 203–208.

Rowley, H., Baluja, S. and Kanade, T. (1998a), ‘Neural network-based face detection’,
IEEE Trans. Pattern Analysis and Machine Intelligence 20(1), 23–38.

Rowley, H., Baluja, S. and Kanade, T. (1998b), Rotation invariant neural network-
based face detection, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 38–44.

Roy, S. and Cox, I. (1998), A maximum-flow formulation of the n-camera stereo corre-
spondence problem, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 492–499.

Rubner, Y., Tomasi, C. and Guibas, L. (2000), ‘The earth mover’s distance as a metric
for image retrieval’, International Journal of Computer Vision 40(2), 99–121.

Rudin, C., Schapire, R. E. and Daubechies, I. (2004), Boosting based on a smooth margin.,
in ‘COLT’.

Russell, B., Freeman, W., Efros, A., Sivic, J. and Zisserman, A. (2006), Using multiple
segmentations to discover objects and their extent in image collections, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II: 1605–1614.

Russell, B., Torralba, A., Murphy, K. and Freeman, W. (2008), ‘Labelme: A database
and web-based tool for image annotation’, International Journal of Computer Vision
77(1-3), 157–173.

Sakai, K. and Finkel, L. (1994), A shape-from-texture algorithm based on the human
visual psychophysics, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 527–532.

Sampson, P. (1982), ‘Fitting conic sections to ’very scattered’ data: An iterarive refinement
of the bookstein algorithm’, Computer Graphics Image Processing 18(1), 97–108.

Samuel, P. (1988), Projective Geometry, Springer-Verlag. English translation of
“Géométrie Projective”, Presses Universitaires de France, 1986.

Sapp, B., Jordan, C. and Taskar, B. (2010), Adaptive pose priors for pictorial structures,
in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 422–429.

Sarachik, K. and Grimson, W. (1993), Gaussian error models for object recognition, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 400–406.

Sarkar, S. and Boyer, K. (1993), ‘Integration, inference, and management of spatial in-
formation using Bayesian networks: Perceptual organization’, IEEE Trans. Pattern
Analysis and Machine Intelligence 15(3), 256–274.

Sarkar, S. and Boyer, K. (1994), Computing Perceptual Organization in Computer Vision,
World Scientific.

Sarkar, S. and Boyer, K. (1998), ‘Quantitative measures of change based on feature orga-
nization: Eigenvalues and eigenvectors’, Computer Vision and Image Understanding
71(1), 110–136.

Satoh, S. and Kanade, T. (1997), Name-it: Association of face and name in video, in
‘CVPR ’97: Proceedings of the 1997 Conference on Computer Vision and Pattern
Recognition (CVPR ’97)’, IEEE Computer Society, Washington, DC, USA, p. 368.



BIBLIOGRAPHY 725

Satoh, S., Nakamura, Y. and Kanade, T. (1999), ‘Name-it: naming and detecting faces in
news videos’, IEEE Multimedia 6(1), 22–35.

Saund, E. and Moran, T. (1995), Perceptual organization in an interactive sketch editing
application, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 597–604.

Savarese, S. and Fei-Fei, L. (2007), 3d generic object categorization, localization and pose
estimation, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1–8.

Savarese, S. and Fei-Fei, L. (2008), View synthesis for recognizing unseen poses of object
classes, in ‘Proc. European Conference on Computer Vision (ECCV)’, pp. III: 602–
615.

Saxena, A., Chung, S. and Ng, A. (2008), ‘3-d depth reconstruction from a single still
image’, International Journal of Computer Vision 76(1), 53–69.

Saxena, A., Sun, M. and Ng, A. (2009), ‘Make3d: Learning 3d scene structure from a single
still image’, IEEE Trans. Pattern Analysis and Machine Intelligence 31(5), 824–840.

Schachter, B. (1980), ‘Model-based texture measures’, IEEE Trans. Pattern Analysis and
Machine Intelligence 2(2), 169–171.

Schachter, B. and Ahuja, N. (1979), ‘Random pattern generation processes’, Computer
Graphics Image Processing 10(1), 95–114.

Schapire, R. E. (2002), The boosting approach to machine learning an overview, in ‘De-
ductive Database Workshops’.

Scharstein, D. and Szeliski, R. (2002), ‘A taxonomy and evaluation of dense two-frame
stereo correspondence algorithms’, International Journal of Computer Vision 47(1-
3), 7–42.

Schlesinger, D. and Flach, B. (2006), Transforming an arbitrary minsum problem into a
binary one, Technical Report TUD-FI06-01, Dresden University of Technology.

Schmid, C. (2001), Constructing models for content-based image retrieval, in ‘IEEE Conf.
on Computer Vision and Pattern Recognition (CVPR)’, pp. II:39–45.

Schmid, C. and Mohr, R. (1997), ‘Local grayvalue invariants for image retrieval’, IEEE
Trans. Pattern Analysis and Machine Intelligence 19(5), 530–535.

Schmid, C., Mohr, R. and Bauckhage, C. (2000), ‘Evaluation of interest point detectors’,
International Journal of Computer Vision 37(2), 151–172.

Schneiderman, H. and Kanade, T. (2000), A statistical method for 3d object detection
applied to faces and cars, in ‘CVPR00’, pp. I: 746–751.

Schrijver, A. (2003), Combinatorial Optimization, Springer. 3 Vols.

Seitz, S. M., Curless, B., Diebel, J., Scharstein, D. and Szeliski, R. (2006), A comparison
and evaluation of multi-view stereo reconstruction algorithms, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’.

Sermanet, P., Hadsell, R., Scoffier, M., Grimes, M., Ben, J., Erkan, A., Crudele, C.
and LeCun, Y. (2009), ‘A multi-range architecture for collision-free off-road robot
navigation’, Journal of Field Robotics 26(1), 58–87.

Shade, J., Gortler, S., Li-wei, H. and Szeliski, R. (1998), Layered depth images, in ‘SIG-
GRAPH 98’, pp. 231–242.

Shafer, S. (1985), ‘Using color to separate reflection components’, Color Res. App.
10(4), 210–218.

Shakhnarovich, G., Viola, P. and Darrell, T. (2003), Fast pose estimation with parameter-
sensitive hashing, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 750–757.



BIBLIOGRAPHY 726

Shams, R., Sadeghi, P., Kennedy, R. and Hartley, R. (2010), ‘A survey of medical image
registration on multicore and the gpu’, IEEE Signal Processing Magazine 27(2), 50–
60.

Sharan, L., Rosenholtz, R. and Adelson, E. (2009), ‘Material perception: What can you
see in a brief glance?’, Journal of Vision.

Shashua, A. (1993), Projective depth: a geometric invariant for 3D reconstruction from
two perspective/orthographic views and for visual recognition, in ‘Proc. Int. Conf.
on Computer Vision (ICCV)’, Berlin, Germany, pp. 583–590.

Shashua, A. (1995), ‘Algebraic functions for recognition’, IEEE Trans. Pattern Analysis
and Machine Intelligence 17(8), 779–789.

Shatford, S. (1986), ‘Analyzing the subject of a picture: A theoretical approach’, Cata-
loging & Classification Quarterly 6(3), 39–62.

Shi, J. and Malik, J. (1997), Normalized cuts and image segmentation, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’, pp. 731–737.

Shi, J. and Malik, J. (1998a), Motion segmentation and tracking using normalized cuts,
in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1154–1160.

Shi, J. and Malik, J. (1998b), Self-inducing relational distance and its application to
image segmentation, in ‘Proc. European Conference on Computer Vision (ECCV)’,
pp. 528–43.

Shi, J. and Malik, J. (2000), ‘Normalized cuts and image segmentation’, IEEE Trans.
Pattern Analysis and Machine Intelligence 22(8), 888–905.

Shi, J. and Tomasi, C. (1994), Good features to track, in ‘IEEE Conf. Computer Vision
and Pattern Recognition’.

Shirai, Y. (1972), ‘Recognition of polyhedrons with a range finder’, Pattern Recognition
4, 243–250.

Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., Kipman, A.
and Blake, A. (2011), Real-time human pose recognitiom in parts from single depth
images, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Shum, H. and Szeliski, R. (1998), Construction and refinement of panoramic mosaics
with global and local alignment, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’,
Bombay, India, pp. 953–958.

Shum, H., Ikeuchi, K. and Reddy, R. (1995), ‘Principal component analysis with miss-
ing data and its application to polyhedral object modeling’, IEEE Trans. Pattern
Analysis and Machine Intelligence 17(9), 854–867.

Sidenbladh, H., Black, M. and Fleet, D. (2000), Stochastic tracking of 3d human figures
using 2d image motion, in ‘Proc. European Conference on Computer Vision (ECCV)’.

Silaghi, M.-C., Plänkers, R., Boulic, R., Fua, P. and Thalmann, D. (1998), Local and global
skeleton fitting techniques for optical motion capture, in ‘Modelling and Motion Cap-
ture Techniques for Virtual Environments’, pp. 26–40. Proceedings of CAPTECH
’98.

Sillion, F. (1994), Radiosity and Global Illumination, Morgan-Kauffman.

Simon, D., Hebert, M. and Kanade, T. (1994), Real-time 3D pose estimation using a
high-speed range sensor, in ‘Int. Conf. on Robotics and Automation’, San Diego,
CA, pp. 2235–2241.

Simoncelli, E. and Farid, H. (1995), Steerable wedge filters, in ‘Proc. Int. Conf. on Com-
puter Vision (ICCV)’, pp. 189–194.



BIBLIOGRAPHY 727

Simoncelli, E. and Freeman, W. (1995a), The steerable pyramid: A flexible architecture for
multi-scale derivative computation, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’,
pp. III: 444–447.

Simoncelli, E. and Freeman, W. (1995b), The steerable pyramid: A flexible architecture for
multi-scale derivative computation, in ‘IEEE Int. Conf. Image Processing’, pp. 444–7.

Sinha, S. and Pollefeys, M. (2005), Multi-view reconstruction using photo-consistency and
exact silhouette constraints: A maximum-flow formulation, in ‘Proc. Int. Conf. on
Computer Vision (ICCV)’.

Sinha, S., Mordohai, P. and Pollefeys, M. (2007), Multi-view stereo via graph cuts on
the dual of an adaptive tetrahedral mesh, in ‘Proc. Int. Conf. on Computer Vision
(ICCV)’.

Sivic, J. and Zisserman, A. (2003), Video Google: A text retrieval approach to object
matching in videos, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1470–
1477.

Slama, C., Theurer, C. and Henriksen, S., eds (1980), Manual of photogrammetry, Amer-
ican Society of Photogrammetry. Fourth edition.

Sminchisescu, C. and Triggs, B. (2003), Kinematic jump processes for monocular 3d human
tracking, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. I: 69–76.

Smith, S. and Brady, J. (1997), ‘Susan: A new approach to low-level image-processing’,
International Journal of Computer Vision 23(1), 45–78.

Smith, T. (1996), ‘A digital library for geographically referenced materials’, Computer
29(5), 54–60.

Snapper, E. and Troyer, R. (1989), Metric Affine Geometry, Dover Publications Inc.
Reprinted from Academic Press, 1971.

Snavely, N., Seitz, S. and Szeliski, R. (2008), ‘Modeling the world from internet photo
collections’, International Journal of Computer Vision 80(2), 189–210.

Sorokin, A. and Forsyth, D. (2008), Utility data annotation with amazon mechanical turk,
in ‘Proc. IEEE Workshop on Internet Vision’, pp. 1–8.

Spacek, L. (1986), ‘Edge detection and motion detection’, Image and Vision Computing
4(1), 43–56.

Spain, M. and Perona, P. (2008), Some objects are more equal than others: Measuring and
predicting importance, in ‘Proc. European Conference on Computer Vision (ECCV)’,
pp. I: 523–536.

Spetsakis, M. and Aloimonos, Y. (1990), ‘Structure from motion using line correspon-
dences’, International Journal of Computer Vision 4(3), 171–183.

Srivastava, S. and Ahuja, N. (1990), ‘Octree generation from object silhouettes in per-
spective views’, CVGIP: Image Understanding 49(1), 68–84.

Starner, T., Weaver, J. and Pentland, A. (1998), ‘Real-time American sign language recog-
nition using desk and wearable computer based video’, IEEE Trans. Pattern Analysis
and Machine Intelligence 20(12), 1371–1375.

Steger, C., Ulrich, M. and Wiedemann, C. (2008), Machine Vision Algorithms and Appli-
cations, Wiley.

Stein, F. and Medioni, G. (1992), ‘Structural indexing: efficient 3D object recognition’,
IEEE Trans. Pattern Analysis and Machine Intelligence.



BIBLIOGRAPHY 728

Stone, J. and Isard, S. (1995), ‘Adaptive scale filtering: A general-method for obtain-
ing shape from texture’, IEEE Trans. Pattern Analysis and Machine Intelligence
17(7), 713–718.

Strecha, C., Fransens, R. and Gool, L. V. (2006), Combined depth and outlier estimation
in multi-view stereo, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 2394–2401.

Struik, D. (1988), Lectures on classical differential geometry, Dover. Reprint of the second
edition (1961) of the work first published by Addison-Wesley in 1950.

Sturm, P. and Triggs, B. (1996), A factorization-based algorithm for multi-image pro-
jective structure and motion, in ‘Proc. European Conference on Computer Vision
(ECCV)’, pp. 709–720.

Sullivan, J., Blake, A., Isard, M. and MacCormick, J. (1999), Object localization by
Bayesian correlation, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 1068–
1075.

Sullivan, S. and Ponce, J. (1998), ‘Automatic model construction, pose estimation, and
object recognition from photographs using triangular splines’, IEEE Trans. Pattern
Analysis and Machine Intelligence 20(10), 1091–1096.

Sullivan, S., Sandford, L. and Ponce, J. (1994), ‘Using geometric distance fits for 3D object
modelling and recognition’, IEEE Trans. Pattern Analysis and Machine Intelligence
16(12), 1183–1196.

Sung, K.-K. and Poggio, T. (1998), ‘Example-based learning for view-based human face
detection’, IEEE Trans. Pattern Analysis and Machine Intelligence 20, 39–51.

Super, B. and Bovik, A. (1995), ‘Shape from texture using local spectral moments’, IEEE
Trans. Pattern Analysis and Machine Intelligence 17(4), 333–343.

Swaminathan, R., Kang, S., Szeliski, R., Criminisi, A. and Nayar, S. (2002), On the motion
and appearance of specularities in image sequences, in ‘Proc. European Conference
on Computer Vision (ECCV)’, p. I: 508 ff.

Szeliski, R. (2010), Computer Vision: Algorithms and Applications, Springer.

Szeliski, R., Avidan, S. and Anandan, P. (2000), Layer extraction from multiple images
containing reflections and transparency, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. I:246–253.

Szlam, A., Maggioni, M. and Coifman, R. (2007), ‘Regularization on graphs with function-
adapted diffusion processes’.

Tacc, M. and Ahuja, N. (1997), ‘Multiscale image segmentation by integrated edge and
region detection’, IEEE Trans. Image Processing 6(5), 642–655.

Tagare, H. and de Figueiredo, R. (1992), ‘Simultaneous estimation of shape and reflectance
map from photometric stereo’, CVGIP: Image Understanding 55(3), 275–286.

Tagare, H. and de Figueiredo, R. (1993), ‘A framework for the construction of reflectance
maps for machine vision’, CVGIP: Image Understanding 57(3), 265–282.

Tankus, A., Sochen, N. and Yeshurun, Y. (2005), ‘Shape-from-shading under perspective
projection’, Int. J. Comput. Vision 63(1), 21–43.

Tao, H., Sawhney, H. and Kumar, R. (2000), Dynamic layer representation with appli-
cations to tracking, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. II:134–141.



BIBLIOGRAPHY 729

Tao, Q., Scott, S., Vinodchandran, N. V. and Osugi, T. T. (2004), Svm-based generalized
multiple-instance learning via approximate box counting, in ‘ICML ’04: Proceedings
of the twenty-first international conference on Machine learning’, ACM Press, New
York, NY, USA, p. 101.

Tappen, M., Freeman, W. and Adelson, E. (2006a), Estimating intrinsic component im-
ages using non-linear regression, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’.

Tappen, M., Freeman, W. and Adelson, E. (2006b), ‘Recovering intrinsic images from a
single image’, IEEE Trans. Pattern Analysis and Machine Intelligence.

Taubin, G. (1991), ‘Estimation of planar curves, surfaces, and nonplanar space curves de-
fined by implicit equations with applications to edge and range image segmentation’,
IEEE Trans. Pattern Analysis and Machine Intelligence 13(11), 1115–1138.

Taubin, G., Cukierman, F., Sullivan, S., Ponce, J. and Kriegman, D. (1994), ‘Parameter-
ized families of polynomials for bounded algebraic and surface curve fitting’, IEEE
Trans. Pattern Analysis and Machine Intelligence 16(3), 287–303.

Taylor, C. (2000), Reconstruction of articulated objects from point correspondences in a
single uncalibrated image, in ‘IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR)’, pp. 677–84.

Taylor, C., Edwards, G. and Cootes, T. (1998), Active appearance models, in ‘Proc.
European Conference on Computer Vision (ECCV)’, p. II: 484.

ter Haar Romeny, B. (1994), Geometry-driven diffusion in computer vision, in ‘Geometry
Driven Diffusion in Computer Vision’, Kluwer Academic Press.

ter Haar Romeny, B., Florack, L. M., Koenderink, J. J. and Viergever, M. A., eds (1997),
Scale-Space Theory in Computer Vision, Vol. 1252, Springer Verlag LNCS.

Terzopolous, D., Platt, J., Barr, A. and Fleischer, K. (1987), ‘Elastically deformable
models’, Computer Graphics (SIGGRAPH 87 Proceedings) pp. 205–214.

Terzopoulos, D. (1984), Multiresolution Computation of Visible-Surface Representations,
PhD thesis, Massachusetts Institute of Technology, Cambridge, MA.

Thom, R. (1972), Structural Stability and Morphogenesis, Benjamin, New-York.

Thompson, D. (1992), On growth and form, Dover. Complete version of original 1917
edition; there is also a CUP edition in 1961.

Thompson, D. and Mundy, J. (1987), Three dimensional model matching from an un-
constrained viewpoint, in ‘International Conference on Robotics and Automation’,
pp. 208–220.

Thompson, M., Eller, R., Radlinski, W. and Speert, J., eds (1966), Manual of Photogram-
metry, American Society of Photogrammetry. Third Edition.

Thurau, C. and Hlavac, V. (2008), Pose primitive based human action recognition in
videos or still images, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 1–8.

Tibshirani, R. (1996), ‘Regression shrinkage and selection via the lasso’, J. Royal. Statist.
Soc B. 58(1), 267–288.

Todd, J. (1946), Projective and Analytical Geometry, Pitman Publishing Corporation,
New York – Chicago.

Todorovic, S. and Ahuja, N. (2008a), ‘Region-based hierarchical image matching’, Inter-
national Journal of Computer Vision 78(1), 47–66.



BIBLIOGRAPHY 730

Todorovic, S. and Ahuja, N. (2008b), ‘Unsupervised category modeling, recognition, and
segmentation in images’, IEEE Trans. Pattern Analysis and Machine Intelligence
30(12), 2158–2174.

Tomasi, C. and Kanade, T. (1992), ‘Shape and motion from image streams under orthog-
raphy: a factorization method’, International Journal of Computer Vision 9(2), 137–
154.

Tomasi, C. and Shi, J. (1994), Good features to track, in ‘IEEE Conf. on Computer Vision
and Pattern Recognition (CVPR)’, pp. 593–600.

Torr, P. (1997), An assessment of information criteria for motion model selection, in ‘IEEE
Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 47–52.

Torr, P. (1999), Model selection for two view geometry: a review, in D. Forsyth, J. Mundy,
V. diGesu and R. Cipolla, eds, ‘Shape, Contour and Grouping in Computer Vision’,
Springer-Verlag, pp. 277–301.

Torr, P. and Davidson, C. (2003), ‘Impsac: Synthesis of importance sampling and ran-
dom sample consensus’, IEEE Trans. Pattern Analysis and Machine Intelligence
25(3), 354–364.

Torr, P. and Zisserman, A. (1998), Concerning Bayesian motion segmentation, model aver-
aging, matching and the trifocal tensor, in ‘Proc. European Conference on Computer
Vision (ECCV)’, pp. 511–27.

Torr, P. and Zisserman, A. (2000), ‘Mlesac: A new robust estimator with application to
estimating image geometry’, Computer Vision and Image Understanding 78(1), 138–
156.

Torr, P., Fitzgibbon, A. and Zisserman, A. (1999a), ‘The problem of degeneracy in struc-
ture and motion recovery from uncalibrated image sequences’, International Journal
of Computer Vision 32(1), 27–44.

Torr, P., Szeliski, R. and Anandan, P. (1999b), An integrated Bayesian approach to layer
extraction from image sequences, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’,
pp. 983–990.

Torralba, A. and Efros, A. (2011), Unbiased look at dataset bias, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’.

Torralba, A., Murphy, K., Freeman, W. and Rubin, M. (2003), Context-based vision
system for place and object recognition, in ‘Proc. Int. Conf. on Computer Vision
(ICCV)’, pp. 273–280.

Torrance, K. and Sparrow, E. (1967), ‘Theory for off-specular reflection from roughened
surfaces’, Journal of the Optical Society of America 57, 1105–1114.

Torre, V. and Poggio, T. (1986), ‘On edge detection’, IEEE Trans. Pattern Analysis and
Machine Intelligence 8(2), 147–163.

Toyama, K. and Blake, A. (2001), Probabilistic tracking in a metric space, in ‘Proc. Int.
Conf. on Computer Vision (ICCV)’, pp. II: 50–57.

Toyama, K. and Blake, A. (2002), ‘Probabilistic tracking with exemplars in a metric space’,
International Journal of Computer Vision 48(1), 9–19.

Trajkovic, M. and Hedley, M. (1998), ‘Fast corner detection’, Image and Vision Computing
16(2), 75–87.

Tran, D. and Forsyth, D. (2007), Configuration estimates improve pedestrian finding, in
‘Advances in Neural Information Processing’.



BIBLIOGRAPHY 731

Tran, D. and Forsyth, D. (2010), Improved human parsing with a full relational model,
in ‘Proc. European Conference on Computer Vision (ECCV)’.

Tran, S. and Davis, L. (2006), 3d surface reconstruction using graph cuts with surface
constraints, in ‘Proc. European Conference on Computer Vision (ECCV)’.

Triesman, A. (1982), ‘Perceptual grouping and attention in visual search for features and
objects’, Journal of Experimental Psychology: Human Perception and Performance
8(2), 194–214.

Triggs, B. (1995), Matching constraints and the joint image, in ‘Proc. Int. Conf. on Com-
puter Vision (ICCV)’, Boston, MA, pp. 338–343.

Triggs, B., McLauchlan, P., Hartley, R. and Fitzgibbon, A. (2000), Bundle adjustment - a
modern synthesis, in B. Triggs, A. Zisserman and R. Szeliski, eds, ‘Vision Algorithms:
Theory and Practice’, Springer-Verlag, pp. 298–372. Lecture Notes in Computer
Science 1883.

Triggs, W. (1997), Auto-calibration and the absolute quadric, in ‘IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR)’, San Juan, Puerto Rico, pp. 609–614.

Trussell, H., Allebach, J., Fairchild, M., Funt, B. and Wong, P. (1997), ‘Special issue:
Digital color imaging’, IEEE Trans. Image Processing 6(7), 897–900.

Tsai, R. (1987), ‘A versatile camera calibration technique for high-accuracy 3D machine
vision metrology using off-the-shelf TV cameras’, RA-3(4), 323–344.

Tsai, R. and Huang, T. (1984), ‘Uniqueness and estimation of 3D motion parameters
of rigid bodies with curved surfaces’, IEEE Trans. Pattern Analysis and Machine
Intelligence 6, 13–27.

Turk, G. and Levoy, M. (1994), ‘Zippered polygon meshes from range images’, ACM
Trans. Graphics (SIGGRAPH Proceeding) pp. 311–318.

Ullman, S. (1979), The Interpretation of Visual Motion, The MIT Press, Cambridge, MA.

Ullman, S. (1996), High-Level Vision: Object Recognition and Visual Cognition, MIT
Press.

Unnikrishnan, R., Pantofaru, C. and Hebert, M. (2007), ‘Toward objective evaluation of
image segmentation algorithms’, IEEE Trans. Pattern Analysis and Machine Intel-
ligence 29(6), 929–944.

Vaillant, R. and Faugeras, O. (1992), ‘Using extremal boundaries for 3D object modeling’,
IEEE Trans. Pattern Analysis and Machine Intelligence 14(2), 157–173.

Valdés, A., Ronda, J. and Gallego, G. (2006), ‘The absolute line quadric and camera
autocalibration’, International Journal of Computer Vision 66(3), 283–303.

van de Sande, K., Gevers, T. and Snoek, C. (2010), ‘Evaluating color descriptors for ob-
ject and scene recognition’, IEEE Trans. Pattern Analysis and Machine Intelligence
32(9), 1582–1596.

van Ginneken, B., Koenderink, J. and Dana, K. (1999), ‘Texture histograms as a func-
tion of irradiation and viewing direction’, International Journal of Computer Vision
31(2/3), 169–184.

Vapnik, V. N. (1998), Statistical Learning Theory, John Wiley & Sons.

Varma, M. and Zisserman, A. (2003), Texture classification: are filter banks necessary?, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II: 691–698.

Varma, M. and Zisserman, A. (2005), ‘A statistical approach to texture classification from
single images’, International Journal of Computer Vision 62(1-2), 61–81.



BIBLIOGRAPHY 732

Varma, M. and Zisserman, A. (2009), ‘A statistical approach to material classification us-
ing image patch exemplars’, IEEE Trans. Pattern Analysis and Machine Intelligence
31(11), 2032–2047.

Vasconcelos, N. and Lippman, A. (1997), Empirical Bayesian em based motion segmenta-
tion, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 527–
532.

Vedula, S., Baker, S. and Kanade, T. (2005), ‘Image-based spatiotemporal modeling and
view interpolation of dynamic events’, ACM Transactions on Graphics 24(2), 240–
261.

Velho, L., Frery, A. C., Gomes, J. and Levy, S. (2008), Image Processing for Computer
Graphics and Vision, Springer.

Viitaniemi, V. and Laaksonen, J. (2007), ‘Evaluating the performance in automatic im-
age annotation: Example case by adaptive fusion of global image features’, Image
Commun. 22(6), 557–568.

Vijayanarasimhan, S. and Grauman, K. (2009), What’s it going to cost you?: Predict-
ing effort vs. informativeness for multi-label image annotations, in ‘IEEE Conf. on
Computer Vision and Pattern Recognition (CVPR)’, pp. 2262–2269.

Vijayanarasimhan, S. and Grauman, K. (2011), ‘Cost-sensitive active visual category
learning’, International Journal of Computer Vision 91, 24–44.

Vincent, L. and Soille, P. (1991), ‘Watersheds in digital spaces: An efficient algorithm
based on immersion simulations’, IEEE Trans. Pattern Analysis and Machine Intel-
ligence 13(6), 583–598.

Viola, P. A. and III, W. W. (1995), Alignment by maximization of mutual information,
in ‘International Journal of Computer Vision’, pp. 16–23.

Viola, P. and Jones, M. (2001), Rapid object detection using a boosted cascade of simple
features, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’,
pp. I:511–518.

Vogiatzis, G., Torr, P. H. and Cipolla, R. (2005), Multi-view stereo via volumetric graph-
cuts, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Vogler, C., Sun, H. and Metaxas, D. (2000), A framework for motion recognition with
applications to American sign language and gait recognition, in ‘IEEE Workshop on
Human Motion’.

von Ahn, L. and Dabbish, L. (2004), Labeling images with a computer game, in ‘Proceed-
ings of the SIGCHI conference on Human factors in computing systems’.

Vondrick, C., Ramanan, D. and Patterson, D. (2010), Efficiently scaling up video annota-
tion with crowdsourced marketplaces, in ‘Proc. European Conference on Computer
Vision (ECCV)’.

Wallace, C. and Freeman, P. (1987), ‘Estimation and inference by compact encoding (with
discussion)’, J. Roy. Stat. Soc. Series B 49, 240–265.

Wandell, B. (1987), ‘The synthesis and analysis of color images’, IEEE Trans. Pattern
Analysis and Machine Intelligence 9(1), 2–13.

Wandell, B. (1995), Foundations of Vision, Sinauer Associates, Inc., Sunderland, MA.

Wang, G. and Forsyth, D. (2009), Joint learning of visual attributes, object classes and
visual saliency, in ‘Proc. Int. Conf. on Computer Vision (ICCV)’, pp. 537–544.



BIBLIOGRAPHY 733

Wang, G., Zhang, Y. and Fei-Fei, L. (2006), Using dependent regions for object catego-
rization in a generative framework, in ‘IEEE Conf. on Computer Vision and Pattern
Recognition (CVPR)’, pp. II: 1597–1604.

Wang, H. and Brady, M. (1994), A practical solution to corner detection, in ‘IEEE Int.
Conf. Image Processing’, pp. I: 919–923.

Wang, H., Wexler, Y., Ofek, E. and Hoppe, H. (2008), ‘Factoring repeated content within
and among images’, ACM Trans. Graph. (SIGGRAPH Proceedings) 27, 14:1–14:10.

Wang, J. and Adelson, E. (1994), ‘Representing moving images with layers’, IEEE Trans.
Image Processing 3(5), 625–638.

Wang, J. and Cohen, M. F. (2007), Image and Video Matting: A Survey, Foundations and
Trends in Computer Graphics and Vision, Now.

Wang, Y., Liu, Z. and Huang, J.-C. (2000), ‘Multimedia content analysis-using both audio
and visual clues’, Signal Processing Magazine 17(6), 12–36.

Wang, Y., Tran, D. and Liao, Z. (2011), Learning hierarchical poselets for human parsing,
in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Warfield, S., Zou, K. and Wells, W. (2004), ‘Simultaneous truth and performance level
estimation (staple): An algorithm for the validation of image segmentation’, IEEE
Trans. Medical Imaging 23(7), 903–921.

Weinshall, D. and Tomasi, C. (1995), ‘Linear and incremental acquisition of invariant
shape models from image sequences’, IEEE Trans. Pattern Analysis and Machine
Intelligence.

Weisberg, S. (1980), Applied Linear Regression, Wiley, New York.

Weiss, Y. (1997), Smoothness in layers: Motion segmentation using nonparametric mix-
ture estimation, in ‘IEEE Conf. on Computer Vision and Pattern Recognition
(CVPR)’, pp. 520–526.

Weiss, Y. (1999), Segmentation using eigenvectors: A unifying view, in ‘Proc. Int. Conf.
on Computer Vision (ICCV)’, pp. 975–982.

Weiss, Y. (2001), Deriving intrinsic images from image sequences, in ‘Proc. Int. Conf. on
Computer Vision (ICCV)’.

Wells, W., Grimson, W., Kikinis, R. and Jolesz, F. (1996), ‘Adaptive segmentation of mri
data.’, IEEE Transactions on Medical Imaging 15(4), 429–442.

Weng, J., Huang, T. and Ahuja, N. (1992), ‘Motion and structure from line correspon-
dences: closed-form solution, uniqueness, and optimization’, IEEE Trans. Pattern
Analysis and Machine Intelligence 14(3), 318–336.

West, J., Fitzpatrick, M., Wang, M., Dawant, B., Maurer, C.R., J., Kessler, R., Maciunas,
R., Barillot, C., Lemoine, D., Collignon, A., Maes, F., Suetens, P., Vandermeulen,
D., van den Elsen, P., Napel, S., Sumanaweera, T., Harkness, B., Hemler, P., Hill,
D., Hawkes, D., Studholme, C., Antoine Maintz, J., Viergever, M., Malandain, G.,
Pennec, X., Noz, M., Maguire, G.Q., J., Pollack, M., Pelizzari, C., Robb, R., Hanson,
D. and Woods, R. (1997), ‘Comparison and evaluation of retrospective intermodality
registration techniques’, J. Computer Assisted Tomography 21(4), 554–566.

West, M. and Harrison, J. (1997), Bayesian Forecasting and Dynamic Models, Springer
Verlag.

Wheatstone, C. (1838), ‘On some remarkable, and hitherto unobserved, phenomena
of binocular vision’, Philosophical Transactions of the Royal Society. (London)
128, 371–394.



BIBLIOGRAPHY 734

Wheeler, M. and Ikeuchi, K. (1995), ‘Probabilistic hypothesis generation and robust lo-
calization for object recognition’, IEEE Trans. Pattern Analysis and Machine Intel-
ligence 17(3), 252–265.

White, R. and Forsyth, D. (2006), Combining cues: Shape from shading and texture, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. II: 1809–
1816.

White, R., Crane, K. and Forsyth, D. (2007), ‘Capturing and animating occluded cloth’,
ACM Trans. Graph. (SIGGRAPH Proceedings).

Whitney, H. (1955), ‘On singularities of mappings of Euclidean spaces. I. Mappings of the
plane into the plane’, Annals of Mathematics 62(3), 374–410.

Wilkinson, J. and Reinsch, C. (1971), Linear Algebra - Vol. II of Handbook for Auto-
matic Computation, Springer-Verlag, New York. Chapter I.10 by G.H. Golub and C.
Reinsch.

Willems, G., Tuytelaars, T. and Van Gool, L. (2008), An efficient dense and scale-invariant
spatio-temporal interest point detector, in ‘Proc. European Conference on Computer
Vision (ECCV)’, pp. II: 650–663.

Williamson, S. and Cummins, H. (1983), Light and Color in Nature and Art, John Wiley
and Sons.

Witkin, A. (1981), ‘Recovering surface shape and orientation from texture’, Artificial
Intelligence 17, 17–45.

Witkin, A. (1983), Scale-space filtering, in ‘International Joint Conference on Artificial
Intelligence’, pp. 1019–1022.

Wojek, C., Walk, S. and Schiele, B. (2009), Multi-cue onboard pedestrian detection, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 794–801.

Wolff, L., Nayar, S. and Oren, M. (1998), ‘Improved diffuse reflection models for computer
vision’, International Journal of Computer Vision 30(1), 55–71.

Woodham, R. (1979), Analyzing curved surfaces using reflectance map techniques, in
‘Artificial Intelligence: An MIT Perspective’, MIT Press, pp. 161–182.

Woodham, R. (1980), ‘Photometric method for determining surface orientation from mul-
tiple images’, Optical Engineering 19(1), 139–144.

Woodham, R. (1989), Determining surface curvature with photometric stereo, in ‘Inter-
national Conference on Robotics and Automation’, pp. 36–42.

Woodham, R. (1994), ‘Gradient and curvature from the photometric-stereo method,
including local confidence estimation’, Journal of the Optical Society of America
11(11), 3050–3068.

Woodham, R., Iwahori, Y. and Barman, R. (1991), Photometric stereo: Lambertian re-
flectance and light sources with unknown direction and strength, in ‘Univ. of BC’.

Wu, T. and Lange, K. (2008), ‘Coordinate descent algorithms for lasso penalized regres-
sion’, Annals of Applied Statistics 2(1), 224–244.

Wu, Z. and Leahy, R. (1993), ‘An optimal graph theoretic approach to data clustering:
Theory and its application to image segmentation’, IEEE Trans. Pattern Analysis
and Machine Intelligence 15(11), 1101–1113.

Wyszecki, G. and Stiles, W. (1982), Color Science: Concepts and Methods, Quantitative
Data and Formulas, Wiley.



BIBLIOGRAPHY 735

Xiao, J., Hays, J., Ehinger, K., Oliva, A. and Torralba, A. (2010), Sun database: Large-
scale scene recognition from abbey to zoo, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 3485–3492.

Yachida, M., Kitamura, Y. and Kimachi, M. (1986), Trinocular vision: new approach for
correspondence problem, in ‘Proceedings IAPR International Conference on Pattern
Recognition’, pp. 1041–1044.

Yanai, K. and Barnard, K. (2005), Image region entropy: a measure of ”visualness” of
web images associated with one concept, in ‘MULTIMEDIA ’05: Proceedings of the
13th annual ACM international conference on Multimedia’, ACM Press, New York,
NY, USA, pp. 419–422.

Yang, J., Yu, K. and Huang, T. (2010a), Efficient highly over-complete sparse coding using
a mixture model, in ‘Proc. European Conference on Computer Vision (ECCV)’.

Yang, J., Yu, K. and Huang, T. (2010b), Supervised translation-invariant sparse coding, in
‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’, pp. 3517–3524.

Yang, J., Yu, K., Gong, Y. and Huang, T. (2009a), Linear spatial pyramid matching
using sparse coding for image classification, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’, pp. 1794–1801.

Yang, J., Yu, K., Gong, Y. and Huang, T. (2009b), Linear spatial pyramid matching
using sparse coding for image classification, in ‘IEEE Conf. on Computer Vision and
Pattern Recognition (CVPR)’.

Yang, Y. and Ramanan, D. (2011), Articulated pose estimation using flexible mixtures of
parts, in ‘IEEE Conf. on Computer Vision and Pattern Recognition (CVPR)’.

Yao, B. and Li, F. (2010), Modeling mutual context of object and human pose in human-
object interaction activities, in ‘IEEE Conf. on Computer Vision and Pattern Recog-
nition (CVPR)’, pp. 17–24.

Yao, B., Yang, X., Lin, L., Lee, M. and Zhu, S. (2010), ‘I2t: Image parsing to text
description’, Proceedings of IEEE 98(8), 1485–1508.

Yasnoff, W., Mui, W. and Bacus, J. (1977), ‘Error measures in scene segmentation’,
Pattern Recognition 9(4), 217–231.

Yavlinsky, A., Schofield, E. and Rger, S. (2005), Automated image annotation using global
features and robust nonparametric density estimation, in ‘Automated image annota-
tion using global features and robust nonparametric density estimation’, pp. 507–517.

Yu, Y., Debevec, P., Malik, J. and Hawkins, T. (1999), Inverse global illumination: Re-
covering reflectance models of real scenes from photographs from, in A. Rockwood,
ed., ‘Siggraph99, Annual Conference Series’, Addison Wesley Longman, Los Angeles,
pp. 215–224.

Zaharescu, A., Boyer, E. and Horaud, R. (2007), Transformesh : A topology-adaptive
mesh-based approach to surface evolution., in Y. Yagi, S. B. Kang, I.-S. Kweon and
H. Zha, eds, ‘ACCV (2)’, Vol. 4844 of Lecture Notes in Computer Science, Springer,
pp. 166–175.

Zhang, H., Berg, A., Maire, M. and Malik, J. (2006a), Svm-knn: Discriminative nearest
neighbor classification for visual category recognition, in ‘IEEE Conf. on Computer
Vision and Pattern Recognition (CVPR)’, pp. II: 2126–2136.

Zhang, H., Fritts, J. and Goldman, S. (2008), ‘Image segmentation evaluation: A survey of
unsupervised methods’, Computer Vision and Image Understanding 110(2), 260–280.



BIBLIOGRAPHY 736

Zhang, K., Kwok, J. and Tang, M. (2006b), Accelerated convergence using dynamic mean
shift, in ‘Proc. European Conference on Computer Vision (ECCV)’, pp. II: 257–268.

Zhang, L., Curless, B. and Seitz, S. M. (2002), Rapid shape acquisition using color struc-
tured light and multi-pass dynamic programming, in ‘Proc. Symposium on 3D Data
Processing Visualization and Transmission (3DPVT)’.

Zhang, L., Snavely, N., Curless, B. and Seitz, S. M. (2004), ‘Spacetime faces: high
resolution capture for modeling and animation’, ACM Transactions on Graphics
23(3), 548–558.

Zhang, Q. and Goldman, S. (2001), Em-dd: An improved multiple-instance learning tech-
nique, in ‘Proc NIPS’, pp. 1073–1080.

Zhang, R., Tsai, P., Cryer, J. and Shah, M. (1999), ‘Shape from shading: A survey’, IEEE
Trans. Pattern Analysis and Machine Intelligence 21(8), 690–706.

Zhang, Y. (1996a), ‘A survey on evaluation methods for image segmentation’, Pattern
Recognition 29(8), 1335–1346.

Zhang, Y. (1996b), ‘A survey on evaluation methods for image segmentation’, Pattern
Recognition 29(8), 1335–1346.

Zhang, Y. (1997), ‘Evaluation and comparison of different segmentation algorithms’, Pat-
tern Recognition Letters 18(10), 963–974.

Zhang, Y. and Gerbrands, J. (1994), ‘Objective and quantitative segmentation evaluation
and comparison’, Signal Processing 39(1-2), 43–54.

Zhang, Z. (1994), ‘Iterative point matching for registration of free-form curves and sur-
faces’, International Journal of Computer Vision 13(2), pages 119–152.

Zhang, Z. (2000), ‘A flexible new technique for camera calibration’, IEEE Trans. Pattern
Analysis and Machine Intelligence 22(11), 1330–1334.

Zheng, J. and Murata, A. (2000), ‘Acquiring a complete 3d model from specular mo-
tion under the illumination of circular-shaped light sources’, IEEE Trans. Pattern
Analysis and Machine Intelligence 22(8), 913–920.

Zhong, Y., Jain, A. and Dubuisson Jolly, M. (2000), ‘Object tracking using deformable
templates’, IEEE Trans. Pattern Analysis and Machine Intelligence 22(5), 544–549.

Zibulevsky, M. and Pearlmutter, B. (2001), ‘Blind source separation by sparse decompo-
sition in a signal dictionary’, Neural Computation 13(4), 863–882.

Zitova, B. and Flusser, J. (2003), ‘Image registration methods: A survey’, Image and
Vision Computing 21(11), 977–1000.

Ziv, J. and Lempel, A. (1977), ‘A universal algorithm for sequential data compression’,
IEEE Transactions on Information Theory IT-23, 337–343.

Zou, H. and Hastie, T. (2005), ‘Regularization and variable selection via the elastic net’,
Journal of the Royal Statistical Society Series B 67(2), 301–320.



Index

F -measures, see image classification
F1-measure, see image classification
Fβ-measure, see image classification
Pb, see probability of boundary
χ-squared kernel, see classifier
0-1 loss, 459, 511
2 1
2
-dimensional sketch, 210

aberrations, 10–12
astigmatism, 11
chromatic aberration, 12
circle of least confusion, 11
coma, 11
distortion, 11

radial, 27
field curvature, 11
primary aberrations, 11
spherical aberration, 10

absolute
conic, 249
dual quadric, 250

absolute reconstruction, 611
accumulator array, see fitting
actions from the web, see datasets
active markers, see people
active sensors, 422
active vision, 218, 221
activity recognition, see people
affine, 230
affine geometry

affine shape, 232
affine transformation, 231

affine motion model, see optical flow
affine shape, 232
affine structure from motion

ambiguity, 232
definition, 230
Euclidean upgrade, 238–240

multiple views, 239–240
from binocular correspondences, 233–

236

from multiple images
factorization, 237–238

affine transformation, 15
affinity, see clustering
affordances, see object recognition
AIC, see model selection
airlight, see color sources
albedo, 34

low dynamic range, 90
reflectance, 76
spectral albedo, 76
spectral reflectance, 76

algebraic surface, 454
aliasing, see sampling
alignment, 377
all-vs-all, see classifier
alpha expansion, 214, 680
ambient illumination, 35
ambiguity

affine, see affine structure from motion
Euclidean, 223, see structure from mo-

tion, 246
projective, see projective structure from

motion
aperture problem, see corner
apparent curvature, 402, 406
apparent motion, 315
arc length, 400, 404
area source, 36
area sources

shadows, 36, 37
aspect, 416, 531, 547
aspect graph, 392, 416–417
astigmatism, 11
asymptotic

bitangent, 415
curve, 409–410

red and blue, 409
directions, 399, 403–405, 425
spherical image, 412
spherical map, 407, 410–411

737



INDEX 738

tangent, 409, 412, 414
atlas, see medical imaging
attached shadow, 403
attributes, 550, see object recognition
AUC, 466
average pooling, see pooling
average precision, see image classification

background subtraction, 261–263, 314
backward variable, see people
barycentric coordinates, 379
baseline, 199
basis pursuit, 184
Bayes classifier, see classifier
Bayes information criterion, see model se-

lection
Bayes risk, see classifier
beak-to-beak, 412
beat frequency, 424
bed-of-nails function, 125
best bin first, see nearest neighbors
between-class variance, 495
between-class variation, see image classifi-

cation
Bhattacharyya coefficient, 336
bias, 515
binary terms, see tree-structured models
binocular fusion, 197
binormal

vector, 403
birds, see image classification
bitangent, 413

line, 414
asymptotic, 415
limiting, 415

plane, 415, 417
ray manifold, 407, 413–414

black body, see color sources
color, physical terminology, 75

blind spot, 14
blurring, see smoothing
BM3D, 183–184
boosting, 475
bootstrapping, see classifier
bottles, see datasets
brightness, 32, 44, see color spaces
browsing, 643
browsing images, 627

desiderata for systems, 643
BSDS, see datasets
Buffy, see datasets

bundle adjustment, 245, see for mosaics

Caltech 101, see image classification
Caltech 256, see image classification
Caltech-101, see datasets
Caltech-256, see datasets
camels, see datasets
camera

obscura, 3
pinhole, see pinhole camera

camera calibration
linear, 23–26

camera parameters, 25–26
degeneracies, 24–25
projection matrix, 23–24

photogrammetry, 27–29
weak, see weak calibration

camera consistency, 367
camera model

affine, 20–22
extrinsic parameters, 22
intrinsic parameters, 22
projection equation, 6, 7, 22

perspective, 14–20
extrinsic parameters, 18–19
intrinsic parameters, 16–18
projection equation, 18

weak perspective, 20–22
canonical variates, see classifier
capacity, see graphs
CART, 450
carved visual hull, 572–573
cascade, see detection
cast shadow, 403
catadioptric optical systems, 8
category, see object recognition
center of curvature, 395
central limit theorem, 430
central perspective, see projection model →

pinhole perspective
chaff, 349
Chamfer matching, 388
chromatic aberration, 12
CIE, see color spaces
CIE LAB, see color spaces
CIE u’v’ space, see color spaces
CIE xy, see color spaces
CIE xy color space, see color spaces
CIE XYZ, see color spaces
CIE XYZ color space, see color spaces
circle of curvature, 395



INDEX 739

circle of least confusion, 11
circuit, see graph
class-confusion matrix, see classifier
classifier, 457, see also image classification

Bayes classifier, 459, 460
Bayes risk, 459
boosting, 475

decision stump, 475
decision stump, training, 476
discrete adaboost, 477
fast face detection by, 524
real adaboost, 478
weak learner, 475

class confusion matrix, 465
class-confusion matrix, 464
correlated image keywords, 649, 650
cost of misclassification, 457
cross-validation, 464
decision boundary, 458

chosen to minimize total risk, 458,
459

definition, 457
error rate, 463
estimating performance, 459, 464

detection rate, 466
leave-one-out cross-validation, 464
receiver operating characteristic curve,

466
receiver operating curve, 466, 501
true positive rate, 466

examples
finding faces using a neural network,

522, 523
false negative, 457
false positive, 457
feature selection

by canonical variates, 494, 497–499
by principal component analysis or

PCA, 493–495
problems with principal component

analysis, 496
from class histograms

skin finding examples, 466, 500, 501
general methods for building

directly determining decision bound-
aries, 467

from explicit probability models, 467
kernel machine, 473

kernel, 474
kernel machines

χ-squared kernel, 488

histogram intersection kernel, 489
spatial pyramid kernel, 489

linking faces to names, 651, 652
logistic regression, 461

logistic loss, 461
loss, 457
Mahalanobis distance, 468
multiclass

all-vs-all, 479
one-vs-all, 479

naive Bayes, 469
nearest neighbor classifier

k-nearest neighbor classifier, 469
nearest neighbors, 469, 470
neural network

finding faces using, 522, 523
plug-in classifier

example, 467, 468
practical tips, 475

bootstrapping, 477
hard negative mining, 478
manipulating training data, 477

predicting keywords for images, 646–
648, 654, 656

regularization, 460
choosing weight with cross-validation,

463
for numerical reasons, 463
possible norms, 463
to improve generalization, 463

risk function, 458
software, 480

LIBSVM, 480
multiple kernel learning, 480
PEGASOS, 480
SVMLight, 480

support vector machine, 526
for linearly separable datasets, 470–

472
for non-separable data, 472
hinge loss, 472

total risk, 458
closing point, 564
closure, see segmentation
clustering, 268

as a missing data problem, see missing
data problems

complete-link clustering, 270
dendrogram, 270
graph theoretic, 277

agglomerative, 280, 281



INDEX 740

divisive, 281–283
normalized cuts, 284, 285

group average clustering, 270
grouping and agglomeration, 269
image pixels using agglomerative or di-

visive methods, 270
image pixels using K-means, 272, 273
image pixels, as a missing data prob-

lem, 308
normalized cut, 284
partitioning and division, 269
single-link clustering, 270
using hierarchical k-means, 640
using K-means, 172

clutter, 377
CMU Quality of Life dataset, see datasets
CMY space, see color spaces
coarse-to-fine matching, 137
coding, see image classification
collections of images, browsing

MDS for layout, 644, 645
color bleeding, 59, 101
color constancy, 95

finite-dimensional linear model, 96
recovering surface color by gamut map-

ping, 98
recovering surface color from aver-

age reflectance, 98
recovering surface color from gamut,

99
recovering surface color from specu-

lar reflections, 98
human color constancy, 95, 96
lightness computation, 44

color matching functions, see color spaces
color perception, 68

cone, 72, 73
Grassman’s laws, 70
lightness

computing lightness, 44
photometry does not explain, 95, 96
primaries, 68
principle of univariance, 71
rod, 72
subtractive matching, 69
surface color, 96
surface color perception, 95
test light, 68
trichromacy, 69

color sources
airlight, 73

black body, 75
color temperature, 75

daylight, 73
fluorescent light, 74
incandescent light, 74
mercury arc lamps, 75
Mie scattering, 74
Rayleigh scattering, 73
skylight, 73
sodium arc lamps, 75

color spaces, 77
brightness, 83
by matching experiments, 78
CIE, 79
CIE LAB, 85
CIE u’ v’ space, 87
CIE u’v’ space, 85
CIE xy color space, 80
CIE XYZ color space, 79, 81

CIE xy, 80, 82, 83
CMY space, 81

mixing rules, 81
use of four inks, 82

color differences, 86
color matching functions, 78

negative values, 78
obtaining weights from, 78

cyan, 81
HSV space, 84, 85
hue, 83
imaginary primaries, 78
just noticeable differences, 84
lightness, 83
Macadam ellipses, 84, 86
magenta, 81
opponent color space, 80
RGB color space, 80
RGB cube, 80
saturation, 83
subtractive matching, required, 78
uniform color space, 85, 87
uniform color spaces, 86
value, 83
yellow, 81

color temperature, see color sources
color, modeling image, 87

color constancy using model, 96
color depends on surface and on illu-

minant, 89
complete equation, 88
diffuse component, 89



INDEX 741

finding specularities using model, 92
finite-dimensional linear model, 96, 97

computing receptor responses, 98
recovering surface color by gamut map-

ping, 98
recovering surface color from aver-

age reflectance, 98
recovering surface color from gamut,

99
recovering surface color from specu-

lar reflections, 98
illuminant color, 88, 89

color, physical terminology
spectral energy density, 68

coma, 11
comb function, 125
combinatorial optimization, 663
common fate, see segmentation
common region, see segmentation
compact support, 116
complete data log-likelihood, see missing data

problems
composition across the body, see people
compound lenses, 12
computational molecules, 429
computed tomography imaging, see medical

imaging
concave point, 405

plane curve, 397
surface, 399

cone strip, 561, 567
cones, 13
conjugate directions, 403, 405
connected, see graph
connected components, see graph
connected graph, see graph
consecutive, see graph
content based image retrieval, see digital li-

braries
continuity, see segmentation
contour

image, see image contour
occluding, see occluding contour

convex point
planar curve, 397
surface, 399

convolution, 107
associative, 117
commutative, 117
continuous, 115, 117

1D derivation, 115

2D derivation, 117
impulse response, 117
point spread function, 117
properties, 117

discrete, 108
convention about sums, 108
effects of finite input datasets, 118

examples
finite differences, 110, 112, 141, 142,

144, 145
local average, 107
ringing, 108, 109
smoothing, see smoothing
weighted local average, see smooth-

ing
gives response of shift invariant linear

system
discrete 1D derivation, 113
discrete 2D derivation, 114

kernel, 107, 117
like a dot product, 131–133
notation, 114, 115

convolution theorem, 120
convolutional nets, 216
coordinate system

local, see differential geometry
copyright, see near duplicate detection
corner

aperture problem, 148
covariant windows, 156
detection, 149
estimating scale and orientation, 151
estimating scale with Laplacian of Gaus-

sian, 151, 153
finding pattern elements, 154, 155
Harris corner detector, 150
interest point, 148
self-similar, 149

correspondence problem, 197
cosine similarity, 633
cost-to-go function, see tree-structured mod-

els
covariance, 154
cross-validation, see model selection, see clas-

sifier
crowdsourcing, 515
crust algorithm, 454
curvature, 396, 402, 404

curve, 395, 397, 428
apparent, 402
sign, 397



INDEX 742

surface
Gaussian, 401, 404, 406
normal, 398, 401, 405
principal, 41, 399, 401

cusp, 391, 394, 399, 402, 407–409, 411–413,
416

crossing, 415, 416
of Gauss, 408, 410, 411
of the first kind, 394
of the second kind, 394
point, 391, 404

cut, see graph
cyan, see color spaces
cyclopean retina, 205
cylindrical panorama, 371

data association, 349
Data-driven texture representations, 164
datasets

activity
actions from the web, 625
CMU Quality of Life dataset, 626
IXMAS dataset, 626
KTH action dataset, 625
movies and scripts datasets, 626
MSR action dataset, 625
Olympic sports dataset, 626
PMI dataset, 626
UCF activity datasets, 626
VIRAT dataset, 626
Weizmann activity, 625

BSDS, 287
crowdsourcing, 515
dataset bias, 515
face detection, 539
general object detection, 539
human interactions, 624
human signers, 625
image classification, 513

bottles, 514
Caltech-101, 513
Caltech-256, 513
camels, 514
flowers, 514
Graz-02, 514
Imagenet, 514
LabelMe, 513
Lotus Hill data, 514
materials, 515
Pascal challenge, 514
repositories, 515

scenes, 515
LHI, 287
near duplicate detection, 640
parsing

Buffy, 624
HumanEva dataset, 626

pedestrian detection, 538
people, 624
pose

Buffy, 624
segmentation, 287

daylight, see color sources
decision boundary, see classifier
decision stump, see classifier
decision tree, 448
Decision trees, 448–450
decoding, see object recognition
definite patch neighbor, 577
definitely visible patch, 576
deformable objects

detection, 530, 533, 534
software, 535

deformation, 531
degree, see graph
Delaunay triangulation, 454
delta function, see convolution
dendrogram, see clustering
dense depth map, 47
depth map, 47, 422
depth of field, 9
depth of focus, 9
derivative of Gaussian filters, see gradient,

estimating
derivatives

using finite differences, 430
derivatives, estimating

differentiating and smoothing with one
convolution, 142

using finite differences, 110
noise, 112
smoothing, 141, 142, 144, 145

detection
cascade, 524
deformable objects

model, 530, 533, 534
software, 535

evaluation
overlap test, 535

face detection, 520, 524
non-maximum suppression, 519
occluding boundaries, 527, 529



INDEX 743

evaluation, 530
method, 531

pedestrian detection, 524–526, 528
evaluation, 527, 537

sliding windows, 520
state of the art, 536

detection rate, see classifier
dictionary, 183, 184
dielectric surfaces, 90
differential geometry, 391, 441

analytical, 424–426
descriptive, 393–401
plane curves, 393–397

concave point, 397
convex point, 397
curvature, 395, 396, 428
cusp of the first kind, 394
cusp of the second kind, 394
Gauss map, 396
Gaussian image, 396
inflection, 394, 396
local coordinate system, 393
normal line, 393
normal vector, 393
regular point, 394
singular point, 394
tangent line, 393
tangent vector, 393

space curves, 397
curvature, 397
Gauss map, 397
normal plane, 397
osculating plane, 397
parametric curve, 420
principal normal line, 397
tangent line, 397

surfaces, 397–401
asymptotic directions, 399
concave point, 399
conjugate directions, 403, 405
convex point, 399
differential of the Gauss map, 400,

425
elliptic point, 399, 405
first fundamental form, 425
Gauss map, 399
Gaussian curvature, 401, 404
Gaussian image, 399
hyperbolic point, 399
local coordinate system, 399
Monge patch, 425

normal curvature, 398
normal line, 398
normal section, 398
normal vector, 398
parabolic point, 399
parametric surface, 41
principal curvatures, 399
principal directions, 398, 403
second fundamental form, 400, 425
second-order model, 399
tangent plane, 398

differential of the Gauss map, 400, 425
diffraction, 8
diffuse reflection, 33
diffusion equation, 138
digital libraries, 627

browsing, 627
desiderata for systems, 643
MDS for layout, 644, 645

correlated image keywords, 649, 650
evaluation, 629

news search example, 506
patent search example, 506
precision, 506
recall, 506
web filtering example, 506

example applications, 628
image browsing, 629
image search, 628
near duplicate detection, 628
trademark evaluation, 628

image search by keyword, 645
linking faces to names, 651, 652
predicting keywords for images, 646–

648, 654, 656
user behavior, 630, 631
user needs, 629

dilation, 499, 500
diopter, 13
directed graph, see graph
discrete Adaboost, 475
discrete cosine transform, 184
discrete wavelet transform, 184
disparity, 197
distance minimization

geometric, 225
distance transformation, 388
distant point light source, 34
distortion, 11
distributional semantics, see information re-

trieval



INDEX 744

dual problem, 473
dynamic programming, 210, see hiddenMarkov

models
dynamics, 327

E-step, see missing data problems
ecologically valid, 260
edge

detection, 424
roof edges, 428–429
step edges, 427–428

edge detection, 144
gradient based, 145

examples, 148
finding maxima of gradient magni-

tude, 145, 146
hysteresis, 146
nonmaximum suppression, 147

poor behavior at corners, 149
rectifying, see corner

roof edges, 161
step edges, 161

edge points, 145
edge-preserving smoothing, 138
edges, 141, 145
egg-shaped, see differential geometry→ sur-

faces → elliptic
egomotion, 315
eigenvalue problem, 666

generalized, 666
eight-point algorithm, see weak calibration
elastic net, 675
elliptic point, 399, 405
EM, see missing data problems
empirical cost function, 673
entropy, 94, 387
entropy coding, 586
envelope, 410
epipolar

geometry, 198–199
line, 198, 199, 202, 210
plane, 198

epipolar constraint, 199
affine fundamental matrix, 233–235

parameterization, 235
essential matrix

characterization, 201
parameterization, 200

fundamental matrix, 201
characterization, 201

Longuet–Higgins relation

uncalibrated, 201
Longuet-Higgins relation

calibrated, 200
instantaneous, 218

epipoles, 199
erosion, 500, 501
error rate, see classifier
essential matrix, see epipolar constraint
estimating scale with Laplacian of Gaussian

corner
Laplacian, 151

Euclidean geometry
Euclidean shape, 223, 246
rotation matrix

exponential representation, 219
quaternions, 434
Rodrigues formula, 455

Euclidean structure from motion
ambiguity, 224
definition, 222
from binocular correspondences, 224–

228
Euclidean upgrade

from affine structure, 238–240
multiple views, 239–240

from projective structure, 246–248
partially-calibrated cameras, 246–248

Euler angles, 15
exemplars, 609
EXIF tags, 17
exitance, 55
expectation-maximization, see EM
exterior orientation, 27
extremal points, 564
extrinsic parameters, 18

affine camera, 22
perspective camera, 18–19

f-number, 9, 206
false negative, see classifier
false positive, see classifier
false positive rate, 466
familiar configuration, see segmentation, see

segmentation
feature tracking, 137
feature vectors, 457
field curvature, 11
field of view

camera, 9
human eye, 13

figure-ground, see segmentation



INDEX 745

filtering, see linear filtering
finite difference, 110
finite differences, 112, 142

choice of smoothing, 145
derivative of Gaussian filters, 142, 144,

145
differentiating and smoothing with one

convolution, 142
smoothing, 141, 142, 144

finite-dimensional linear model, see color,
modeling image

first fundamental form, 425
first-order geometric optics, see paraxial →

geometric optics
fitting, see segmentation, 290

curves, 297
parametric curves, distance from a

point to, 299
Hough transform, 290

accumulator array, 292
for lines, 290–292
practical issues, 292

identifying outliers with EM, 312, 313
layered motion models with EM, 313,

318–320
least squares, 294, 295

outliers, 299
sensitivity to outliers, 299, 300

lines
by least squares, 294, 295
by total least squares, 294, 295
fitting multiple lines, 296
identifying outliers with EM, 312, 313
incremental line fitting, 296
k-means, 296

outliers, see robustness
planes, 295
robust, see robustness
tokens, 293
total least squares, 294, 295
using k-means, 296

flecnodal
curve, 411, 412, 414, 417
point, 411, 412

flow, see graph
flow-based matching, 334
flowers, see datasets
FM beat, 424
focal points, 9
focus of expansion, see optical flow
fold

of the Gauss map
plane curve, 396
surface, 400, 404

point, 391, 404
footskate, see people
for mosaics

bundle adjustment, 374
forest, see graph
forward selection, 673
forward variable, see people
Fourier transform, 118, 119

as change of basis, 118, 119
basis elements as sinusoids, 119
definition for 2D signal, 119
inverse, 120
is linear, 120
of a sampled signal, 126
pairs, 120
phase and magnitude, 120

magnitude spectrum of image unin-
formative, 121, 122

sampling, see sampling
fovea, 13
frame-bearing group, 369
free-form surface, 441
Frobenius norm, 247, 669
frontier point, 561, 564
fronto-parallel plane, 6
fundamental matrix, see epipolar constraint

gamut, 81
gate, 350
Gauss map

differential of the, 400, 425
fold, 396, 400, 404
plane curve, 396
space curve, 397
surface, 399

Gauss sphere, 399, 439
Gauss–Newton, see nonlinear least squares
Gaussian curvature, 401, 404, 406, 425
Gaussian image

curve, 396, 404
surface, 399, 401

Gaussian kernel, 474
Gaussian smoothing, 426
generalized

eigenvalue problem, 666
eigenvector, 666

generalized eigenvalue problem, 496
generalized polyhedron, 561



INDEX 746

generalizing badly, 460
generative model, 306
generic

surface, 409
geoconsistency, 572
geometric consistency

in pedestrian detection, 528
geometrical modes, 65
geometry

differential, see differential geometry
gestalt, see segmentation
GIST features, see image classification
global shading model, 52

color bleeding, 59
comparing black and white rooms, 56
governing equation, 56
interreflections, 35
reflexes, 59
smoothing effect of interreflection, 57

gradient, estimating
differentiating and smoothing with one

convolution, 142
using derivative of Gaussian filters, 142,

145
using finite differences, 110

noise, 112
smoothing, 141, 144

graph, 277
agglomerative clustering using, 280, 281
circuit, 278
connected, 278
connected components, 279
connected graph, 278
consecutive, 278
cut, 279
degree, 277
directed graph, 278
divisive clustering using, 281–283
flow, 279
forest, 279
min-cut, 283
path, 278
self-loop, 278
spanning tree, 279
tree, 278
undirected graph, 278
weighted graph, 278

graph cuts, see min-cut/max-flow problems
and combinatorial optimization

graphs
capacity, 279

Grassman’s laws, see color perception
Graz-02, see datasets
grouping, see segmentation, see fitting
gutterpoint, 408
gzip, 586

half-angle direction, 40
hard negative mining, see classifier, 535
hard thresholding, 183
Harris corner detector, see corner
height map, 47
Hessian, 671
hidden Markov models, see also matching

on relations, see also people, see
also tracking, see also tree struc-
tured energy models

dynamic programming, 594
homogeneous Markov chain, 591
Markov chain, 591
state transition matrix, 591
stationary distribution, 592
Viterbi algorithm, 594

hierarchical k-means, see clustering
high dynamic range image, 39
highlights, see specular
hinge loss, see classifier
histogram equalization, 521
histogram intersection kernel, see classifier
HOG feature, 155, 157, 159, 524–526

software, 160
HOG features

difficulties with, 546
homogeneous

projection matrices, 19
homogeneous Markov chain, see hiddenMarkov

models
homography, see projective transformation,

372, 589
homotopy continuation, 419
horopter, 204
Hough transform, see fitting
HSV space, see color spaces
hue, see color spaces
human

eye, 12–14
blind spot, 14
cones, 13
fovea, 13
Helmoltz’s schematic eye, 13
macula lutea, 13
rods, 13



INDEX 747

stereopsis, 203–205, 217
cyclopean retina, 205
horopter, 204
monocular hyperacuity threshold, 204
random dot stereogram, 204

human parser, see people
HumanEva dataset, see datasets
hyperbolic point, 391, 399, 405
hypernyms, 511
hyponyms, 511
hysteresis, see edge detection

ICP algorithm, see iterated closest-point al-
gorithm

illumination cone, 65
illusory contour, 260
illusory contours, see segmentation
image browsing, 629
image classification, see also classifier

as information retrieval, 639
between-class variation, 482
classifying images of single objects, 504

evaluation, 505
general points, 505

correlated image keywords, 649, 650
dataset bias, 515
datasets, 512, 513

birds, 515
bottles, 514
Caltech 101, 510
Caltech 256, 510
Caltech-101, 513
Caltech-256, 513
camels, 514
crowdsourcing, 515
flowers, 514
Graz-02, 514
Imagenet, 514
LabelMe, 513
Lotus Hill data, 514
materials, 515
Pascal challenge, 509, 514
repositories, 515
scenes, 515

evaluation
F -measures, 506
F1-measure, 506
Fβ-measure, 506
average precision, 507
news search example, 506
patent search example, 506

precision, 506
recall, 506
web filtering example, 506

example applications
explicit images, 482, 498
material classification, 483, 502
scene classification, 484, 502

features
coding, 544
contour features, 546
general points, 484
geometric representations, 548
GIST features, 486
histogram equalization, 521
HOG feature, 524–526
pooling, 545
preclustering, 546
shading features, 547
spatial pyramid kernel, 489
visual words, 488, 639

linking faces to names, 651, 652
output

affordances, 549
attributes, 550–553

predicting keywords for images, 646–
648, 654, 656

software, 512
color descriptor, 513
course software, 513
GIST, 513
link repository, 513
pyramid match, 513
VLFeat, 513

specialized problems, 511
state of art

number of classes, 509
performance on fixed classes, 508

within-class variation, 482
image completion, 176

by matching, 180
by texture synthesis, 181
methods, 179
state of the art, 182

image contour, 391
convexities and concavities, 405
curvature, 404
cusp, 391, 403, 404
inflection, 403, 404
Koenderink’s theorem, 404–407
T-junction, 391

image denoising, 182–186



INDEX 748

BM3D, 183
learned sparse coding, 184
non-local means, 183
results, 186

image hole filling, 176
by matching, 180
by texture synthesis, 181
methods, 179
state of the art, 182

image irradiance equation, 59
image mosaic, 370
image plane, 4
image pyramid, 134, see also scale, 135

coarse scale, 135
Gaussian pyramid, 135

analysis, 135, 136
applications, 136, 137

image rectification, 202–203, 205
image search, see digital libraries

correlated image keywords, 649, 650
linking faces to names, 651, 652
predicting keywords for images, 646–

648, 654, 656
using keywords, 645

image stabilization, 330
image-based modeling and rendering, 221,

559
PMVS, 573
visual hulls, 559

Imagenet, see datasets
impulse response, 114, see convolution
incremental fitting, see fitting
index of refraction, 9, 11
inertia

axis of least, 667
second moments, 667

inflection, 394, 396, 399, 408, 412, 413
information retrieval, 632

distributional semantics, 634
latent semantic analysis, 634
latent semantic indexing, 634
pagerank, 638

for image layout, 642
query expansion, 639
ranking by importance, 638
stop words, 632
strategies applied to image classifica-

tion, 639
tf-idf weighting, 633
word counts, 632

smoothing, 633

integrability, 50
in lightness computation, 45
in photometric stereo, 50

integral image, 522
interactive segmentation, see segmentation
interest point, see corner
interior orientation, 27
interior-point methods, 677
interpretation tree, 438, 454
interreflections, see global shading model
intrinsic parameters, 17

affine camera, 22
perspective camera, 16–18

intrinsic representations, 43
invariant image, see shadow removal
inverted index, 632
isotropy, see texture
iterated closest points, 369
iterated closest-point algorithm, 434–436
IXMAS dataset, see datasets

Jacobian, 670
joint angles, see people
joint positions, see people

k-d tree, see nearest neighbors, 637
software, 638

k-d trees, 435
k-means, see clustering
k-nearest neighbor classifier, see classifier
Kalman filter, 345
Kalman filtering, see tracking
kernel, see convolution, see convolution, see

classifier
kernel profile, 274, 336
kernel smoother, 336
kernel smoothing, 273
key frame, see shot boundary detection
Kinect, 446–453
Koenderink’s theorem, 404–407
KTH action dataset, see datasets
Ky-Fan norm, 649

LabelMe, see datasets
Lagrange multiplier, 673
Lambert’s cosine law, 34
Lambertian+specular model

image color model, 91, 92
lambertian+specular model, 36
Laplacian, see estimating scale with Lapla-

cian of Gaussian



INDEX 749

Lasso, 184
latent semantic analysis, see information re-

trieval
latent semantic indexing, see information

retrieval
latent variable, 531
layered motion, 318, see also fitting, see also

optical flow
support maps, 319

learned sparse coding, 184–185
least squares, see fitting, 663

linear, 201
homogeneous, 436
non-homogeneous, 441

nonlinear, 202
least-angle regression, 673
leave-one-out cross-validation, 322, see clas-

sifier
lenses

depth of field, 9
f number, 9

level set, 436
Levenberg–Marquardt, see nonlinear least

squares
LHI, see datasets287
LIBSVM, see classifier
light field, 559, 584–586
light slab, 585
lightness, 44, see color spaces
lightness computation, 44

algorithm, 43, 45
assumptions and model, 44
constant of integration, 45

lightness constancy, 44
limiting bitangent developable, 415
line space, 291
linear, see properties, 113
linear filtering, see convolution, see linear

systems, shift invariant
linear least squares, 663–669

homogeneous, 665–669
eigenvalue problem, 666
generalized eigenvalue problem, 666

nonhomogeneous, 664–665
normal equations, 664
pseudoinverse, 665

linear systems, shift invariant
convolution like a dot product, 131–

133
filtering as output of linear system, 107

filters respond strongly to signals they
look like, 131

impulse response, 117
point spread function, 117
properties, 112

scaling, 113
superposition, 113

response given by convolution, 115
1D derivation, 115
2D derivation, 117
discrete 1D derivation, 113
discrete 2D derivation, 114

lines of curvature, 421
lip, 412
local shading model, 36
Local texture representations, 164
local visual events, 407, 412–413
locality sensitive hashing, see nearest neigh-

bors, 636
software, 638

logistic loss, see classifier
logistic regression, see classifier
Longuet–Higgins relation, see epipolar con-

straint, 200
loss, see classifier
Lotus Hill data, see datasets
luminaires, 33

M-estimator, see robustness
M-step, see missing data problems
macula lutea, 13
magenta, see color spaces
magnetic resonance imaging, see medical imag-

ing
magnification, 6
magnitude spectrum, see Fourier transform
Mahalanobis distance, see classifier
manifold, 414
MAP inference, 213
marching cubes, 437
markerless motion capture, 589
Markov chain, 339, see hiddenMarkov mod-

els
Markov models, hidden, see hidden Markov

models, see also matching on re-
lations, see also people, see also
tracking

matching on relations
hidden Markov models, 590

backward variable, 598
dynamic programming, 594



INDEX 750

dynamic programming algorithm, 595
dynamic programming figure, 596
example of Markov chain, 592
fitting a model with EM, 595, 597,

598
forward variable, 598
node value, 594
trellis, 592, 593
Viterbi algorithm, 594, 595

pictorial structure models, 602, 604, 605,
608, 610

tree-structured energy models, 600
material properties, 164
materials, see datasets
matrix

nullspace, 24
range, 664
rank, 664

matte, 266
max pooling, see pooling
MDL, see model selection
MDS, see multidimensional scaling
Mean average precision, 508
mean shift

tracking with, 335
medical imaging

applications of registration, 383, 387
atlas, 384
imaging techniques, 384

computed tomography imaging, 385
magnetic resonance imaging, 385
nuclear medical imaging, 385
ultra-sound imaging, 385

metric shape, see Euclidean shape
Meusnier’s theorem, 401
Mie scattering, see color sources
min-cut/max-flow, 214
min-cut/max-flow problems and combina-

torial optimization, 675–682
min-cuts, 663
minimum description length, see model se-

lection
missing data problem, 307
missing data problems, 307

EM algorithm, 310, 311
background subtraction example, 314
complete data log-likelihood, 309
E-step, 311
fitting HMM with, 595, 597, 598
incomplete data log-likelihood increases

at each step, 311

M-step, 311
motion segmentation example, 313,

318–320
outlier example, 312, 313
practical difficulties, 312
soft weights, 311

image segmentation, 308
iterative reestimation strategy, 310
layered motion, 318
mixture model, 309

mixing weights, 309
mixture, 309

mixing weights, see missing data problems
mixture, see missing data problems
mixture model, see missing data problems
mobile robot

navigation, 197, 221
model selection, 319

AIC, 321
Bayes information criterion, 321
Bayesian, 321
BIC, 321
cross-validation, 322
MDL, 321
minimum description length, 321
overfit, 321
selection bias, 320
test set, 320
training set, 320

model-based vision
alignment, 377
application in medical imaging, 383, 384,

387
verification, 377

by edge proximity and orientation,
378

by edge proximity is unreliable, 378,
379

Mondrian worlds, 96
Monge patch, 47, 425
motion capture, 451, see people
motion field, 218
motion graph, see people
motion primitives, see people
movies and scripts datasets, see datasets
MSR action dataset, see datasets
Muller-Lyer illusion, 256
multidimensional scaling, 644

for image layout, 645
multilocal visual events, 407, 414–416
multiple kernel learning, 475, see classifier



INDEX 751

multiple-view stereo, see stereopsis → mul-
tiple views

Munsell chips, 100
mutual information, 387

N-cut, see clustering
naive Bayes, see classifier
narrow-baseline stereopsis, 217, 573
near duplicate detection, 628, 639

using hierarchical k-means, 640
copyright, 628
trademark, 628
using LSH, 640
using visual words, 639

nearest neighbor classifier, see classifier
nearest neighbors, 350

approximate algorithms, 635, 637
best bin first, 637
k-d tree, 636
locality sensitive hashing, 635
software, 638

correlated image keywords, 649, 650
linking faces to names, 651, 652
near duplicate detection, 640
predicting keywords for images, 647,

648
neural net, 522
Newton’s method

convergence rate, 670
nonlinear equations, 670
nonlinear least squares, 670–671

node value, see matching on relations
noise

additive stationary Gaussian noise, 142,
143

choice of smoothing filter
effect of scale, 145

smoothing to improve finite difference
estimates, 141, 142, 144

non-local means, 183
non-maximum suppression, see detection
non-square pixels, 124
nonlinear least squares, 669–672

Gauss–Newton, 671–672
convergence rate, 672

Levenberg–Marquardt, 672
Newton, see Newton’s method

nonmaximum suppression, see edge detec-
tion

normal
curvature, 398

line, 393, 398
plane, 397
principal, 397
section, 398
vector, 393, 398

normal equations, 665
normal section, 399
normalized correlation, 133, 206, 445, 576
normalized cut, see clustering, 285
normalized image plane, 16
nuclear medical imaging, see medical imag-

ing
Nyquist’s theorem, 126

object model acquisition
from range images, 436–438

object recognition
affordances, 549
aspect, 547
attributes, 550–553
categorization, 542–543
current strategies, 542
desirable properties, 540–541
from range images, 438–446
geometric representations, 548
part representations, 553
poselets, 553, 554
selection, 544
visual phrases, 554, 555

decoding, 555, 556
observations, 327
occluding boundaries

detecting, 527, 529
evaluation, 530
method, 531

occluding contour, 141, 391
cusp point, 391, 404
fold point, 391, 404

Olympic sports dataset, see datasets
one-vs-all, see classifier
OpenCV, 30
opening point, 564
opponent color space, see color spaces
optical axis, 8
optical flow, 313, 589

focus of expansion, 315
layered motion, 318
parametric models of

affine motion model, 316
more general, 317

segmentation by, 316, 318–320



INDEX 752

yields time to contact, 315
ordering constraint, 210
orientation, 147
orientations, 144, 147

affected by scale, 150
differ for different textures, 151
do not depend on intensity, 149
in HOG features, 159
in SIFT descriptors, 157

orthogonal matching pursuit, 673
osculating plane, 397
outliers, see robustness
outline, see image contour
overcomplete dictionaries, 672
overfit, see model selection
overfitting, 460
overlap test, see detection
oversegmentation, 268

Pagerank, 639
pagerank, see information retrieval

for image layout, 642
parabolic

curve, 407–409, 411, 417
point, 410, 412

parabolic point, 391, 399, 404, 405
paraboloid, 399
parallelism, see segmentation
parametric

curve, 420
surface, 41

parametric models of
optical flow, 316

parametric surface, 424
part representations, see object recognition
parts, 532, 551
Pascal challenge, see image classification,

see datasets
passive markers, see people
patch-based multi-view stereopsis, 573–584
path, see graph
pattern elements

describing neighborhoods, 155, 157
finding with corner detector, 154
finding with Laplacian of Gaussian, 155
shape context, 613
software, 160
yield covariant windows, 156

PCA, see classifier
PEGASOS, see classifier
penumbra, 37

people
3D from 2D, 611, 612, 614

ambiguities, 613
snippets, 616

activity is compositional, 619
composition across the body, 620
motion primitives, 619

activity recognition, 617, 619
by characteristic poses, 618
by poselets, 618, 619
by spacetime features, 621–623
from compositional models, 621, 624,

625
datasets, see datasets
detecting, 525, 526, 528

evaluation, 527, 537
hidden Markov models, 590

backward variable, 598
dynamic programming, 594
dynamic programming algorithm, 595
dynamic programming figure, 596
example of Markov chain, 592
fitting a model with EM, 595, 597,

598
forward variable, 598
trellis, 592, 593
Viterbi algorithm, 594, 595

human parser, 602
pictorial structure models, 602, 604,

605
motion capture, 617

active markers, 617
computed edges, 620
footskate, 617
joint angles, 617
joint positions, 617
motion graph, 620
passive markers, 617
skeleton, 617

pictorial structure models, 608, 610
software, see software
tracking, 606

by appearance, 608, 610
by templates, 609
is hard, 606

tree-structured energy models, 600
perceptual organization, see segmentation
perspective

camera, see camera model → perspec-
tive

effects, 5



INDEX 753

projection matrix, see projection ma-
trix → pinhole perspective

phase spectrum, see Fourier transform
photoconsistency, 572
photogrammetry, 27, 197
Photometric stereo, 47
photometric stereo

depth from normals, 49
formulation, 49
integrability, 45, 50
normal and albedo in one vector, 48
recovering albedo, 49
recovering normals, 49

pictorial structure models, see people
pinhole, 3

camera, 4–6
pinhole perspective, 4
planes, representing orientation of

slant, 188, 189
tilt, 188, 189
tilt direction, 188, 189

plenoptic function, 584
PMI dataset, see datasets
PMVS, see patch-based multi-view stereop-

sis, 574
point spread function, see convolution
pooled texture representations, 164
pooling, see image classification

average pooling, 545
max pooling, 545

pose, 367
pose consistency, 367
poselet, 552
poselets, see object recognition

for activity recognition, 618, 619
posterior, 340
potential patch neighbor, 577
potentially visible patch, 576
pragmatics, 657
precision, see image classification
preclustering, see image classification
predictive density, 340
primaries, see color perception
primary aberrations, 11
principal

curvatures, 399, 426
directions, 398, 403, 425

principal component analysis, see classifier
principal points, 10
principle of univariance, see color percep-

tion

prior, 339
probabilistic data association, 350
probability distributions

normal distribution
important in tracking linear dynamic

models, 344
sampled representations, 351

probability of boundary
Pb, 528

probability, formal models of
expectation

computed using sampled representa-
tions, 351, 352

integration by sampling
sampling distribution, 351

representation of probability distribu-
tions by sampled representations,
352

marginalizing a sampled representa-
tion, 353

prior to posterior by weights, 354,
355

projection equation
affine, 22

orthographic, 7
weak-perspective, 6

pinhole perspective, 6
points, 18

projection matrix
affine, 22

characterization, 22
weak-perspective, 22

pinhole perspective
characterization, 19–20
explicit parameterization, 19
general form, 18

projection model
affine, 6–7

orthographic, 7
paraperspective, 21
weak-perspective, 6

pinhole perspective
planar, 4–6

weak perspective, 20–22
projective, 230
projective coordinate system, 242
projective geometry

projective shape, 242
projective transformation, 241

projective projection matrix, 241
projective shape, 241



INDEX 754

projective structure from motion
ambiguity, 241
definition, 241
Euclidean upgrade, 246–248

partially-calibrated cameras, 246–248
from multiple images

bilinear method, 244–245
bundle adjustment, 245
factorization, 244

from the fundamental matrix, 242–243
projective transformations, 15
properties

linear systems, shift invariant
linear, 107
shift invariant, 107, 113

proximity, see segmentation
pseudoinverse, 665
pulse time delay, 424
pyramid kernel, see image classification

QR decomposition, 665, 666
quaternions, 433–434, 436, 440, 454
query expansion, see information retrieval
QuickTime VR, 588

radial
curvature, 405
curve, 404
distortion, 27

radiance
definition, 52
units, 53

radiometric calibration, 38
radiosity, 54

of a surface whose radiance is known,
54

definition and units, 54
radius of curvature, 395
random dot stereogram, 204
random forest, 448
Random forests, 448–450
random forests, 446
range finders, 422–424

acoustico-optical, 424
time of flight, 423
triangulation, 422

range image, 422
ranking, see Pagerank
RANSAC, see robustness
ratio, 232
Rayleigh scattering, see color sources

recall, see image classification
receiver operating characteristic curve, see

classifier
estimating performance

ROC, 466
reciprocity, 38
reflectance, see albedo

color, physical terminology, 76
reflexes, 58
region, 164
region growing, 431
regional properties, 58
regions, 256
registration

from planes, 439–441
from points, 434–436

regular point, 394
regularization, 213, see classifier
regularization term, 672
regularizer, 463
relative reconstruction, 611
render, 377
repetition, 164
repositories, see datasets
rest positions, 619
retargeting, 451
Retinex, 63
RGB color space, see color spaces
RGB cube, see color spaces
rigid transformation, 15
rigid transformations and homogeneous co-

ordinates, 14–16
rim, see occluding contour
ringing, see convolution
risk, see classifier
risk function, see classifier
robustness, 299

identifying outliers with EM, 312, 313
M-estimator, 300, 303, 304

influence function, 301
M-estimators, 301

scale, 302
outliers

causes, 299
sensitivity of least squares to, 299,

300
RANSAC, 302

how many points need to agree?, 305
how many tries?, 303
how near should it be?, 305
searching for good data, 302



INDEX 755

ROC, see receiver operating characteristic
curve

Rodrigues formula, 455
rods, 13
roof, 426
roof edge, 161
root, 532
root coordinate system, 611
rotation matrices, 15
Rotoscoping, 266
ruled surface, 411

saddle-shaped, see differential geometry →
surfaces → hyperbolic

sample impoverishment, 357
sampling, 121, 122

aliasing, 123, 125–130
formal model, 122, 123, 125
Fourier transform of sampled signal, 126
illustration, 124
non-square pixels, 124
Nyquist’s theorem, 126
poorly causes loss of information, 123

sampling distribution, see probability, for-
mal models of

saturation, see color spaces
scale, 134, see smoothing

anisotropic diffusion or edge preserving
smoothing, 138

applications, 136
coarse scale, 135
effects of choice of scale, 145
of an M-estimator, 302

scale ambiguity, see ambiguity → Euclidean
scale space, 426
scaled orthography, see weak perspective
scaling, see linear systems, shift invariant
scan conversion, 443
scene classification, see scenes
scenes, 483, see datasets

scene classification, 484
searching for images, see digital libraries
secant, 393
second fundamental form, 400, 425
segmentation, 164, 255, see also clustering,

see also fitting, 424
as a missing data problem, 308, see

missing data problems
by clustering, general recipe, 268
example applications, 261

background subtraction, 261–263

shot boundary detection, 264
gestalt, 257
human, 256

closure, 258
common fate, 258
common region, 258
continuity, 258
examples, 258–261
factors that predispose to grouping,

257–261
familiar configuration, 258, 260
figure and ground, 256, 257
gestalt quality or gestaltqualität, 256,

257
illusory contours, 260
parallelism, 258
proximity, 257
similarity, 257
symmetry, 258

in humans
examples, 255

interactive segmentation, 261
range data, 424–432
trimaps, 281
watershed, 271

selection bias, see also model selection, 460
self-calibration, 250
self-loop, see graph
self-similar, see corner
self-similarities, 183
semi-local surface representation, 441
SFM, 221
shading, 33
shading primitives, 65
shadow, 35
shadow removal, 92

color temperature direction, 94
estimating color temperature direction,

94
examples, 95
general procedure, 93
invariant image, 94

shadows
area sources, 36, 37
penumbra, 37
umbra, 36

shape
affine, see affine geometry
Euclidean, see Euclidean geometry
projective, see projective geometry

shape context, see pattern elements



INDEX 756

shape from shading, 59–61
shape from texture

for curved surfaces, 190
repetition of elements yields lighting,

190
shift invariant, see properties
shift invariant linear system, see linear sys-

tems, shift invariant
shot boundary detection, 261, 264

key frame, 264
shots, 264

shots, see shot boundary detection
shrinkage, 183
SIFT descriptor, 155, 157–159

software, 160
SIFT descriptors

difficulties with, 546
silhouette, see image contour
similarity, 223, see segmentation
simplex method, 576
simulated annealing, 683
singular point, 394
singular value decomposition, 237, 244, 666–

669
skeleton, 563, see people
skinning, 451
skylight, see color sources
slack variables, 472
slant, 188, 189

normal is ambiguous given, 189, 191
smoothing, 108

as high pass filtering, 126, 128–130
Gaussian kernel, 109

discrete approximation, 110
Gaussian smoothing, 108, 109

avoids ringing, 108, 109
discrete kernel, 110
effects of scale, 110, 145
standard deviation, 109
suppresses independent stationary ad-

ditive noise, 111
scale, 143
to reduce aliasing, 126, 128–130
weighted average, 107
word counts, see information retrieval

Snell’s law, 8
snippets, see people
soft thresholding, 183
soft weights, see missing data problems
software

active appearance models, 383

approximate nearest neighbors, 638
classifier

LIBSVM, 480
multiple kernel learning, 480
PEGASOS, 480
SVMLight, 480

deformable object detection, 535
deformable registration, 383
face detection, 539
FLANN, 638
general object detection, 539
homography estimation, 373
image classification

color descriptor, 513
course software, 513
GIST, 513
link repository, 513
pyramid match, 513
VLFeat, 513

image segmenters, 285
pattern elements, 160

color descriptors, 160
HOG feature, 160
PCA-SIFT, 160
toolbox, 160
VLFEAT, 160

people, 624
sources

source colors, 88, 89
space carving, 587
spanning tree, see graph
sparse coding, 663, 672
sparse coding and dictionary learning, 672–

675
dictionary learning, 673–675
sparse coding, 672–673
supervised dictionary learning, 675

sparse model, 183
spatial frequency

see Fourier transform, 118
spatial frequency components, 119
spectral albedo, see albedo

color, physical terminology, 76
spectral colors, 68
spectral energy density, see color, physical

terminology
spectral locus, 83
spectral reflectance, see albedo

color, physical terminology, 76
specular

dielectric surfaces, 90



INDEX 757

metal surfaces, 90
specularities, 90
specularity

finding, 90, 91
specular albedo, 34
specular direction, 34
specular reflection, 34
specularities, see specular
specularity, 34
spherical

aberration, 10
spherical panorama, 371
spin

coordinates, 442
images, 441–446
map, 442

SSD, see sum-of-squared differences
ssd, see sum of squared differences
standard deviation, see smoothing
state, 327
state transition matrix, see hidden Markov

models
stationary distribution, see hidden Markov

models
step, 426
step edges, 161
stereolithography, 438
stereopsis

binocular fusion
combinatorial optimization, 211–214
dynamic programming, 210–211
global methods, 210–214
local methods, 205–210
multi-scale matching, 207–210
normalized correlation, 205–207

constraints
epipolar, 198
ordering, 210

disparity, 197, 202, 203
multiple views, 214–215
random dot stereogram, 204
reconstruction, 201–203
rectification, 202–203
robot navigation, 215–216
trinocular fusion, 214

stop words, see information retrieval
structured light, 422
stuff, 658
submodularity, 213, 663
subtractive matching, see color perception
sum of absolute difference, 207

sum of squared differences, 177
sum-of-squared differences, 330

SSD, 330
summary matching, 334
superpixels, 268
superposition, see linear systems, shift in-

variant
superquadrics, 454
support maps, see layered motion
surface color, see color perception
SVMLight, see classifier
swallowtail, 412
symmetric Gaussian kernel, see smoothing
symmetry, see segmentation
system, see linear systems, shift invariant
system identification, 362

T-junction, 391, 404, 407, 412–416
tangent

crossing, 415
line, 393
plane, 398
vector, 393

template matching
filters as templates, 131

test error, 459
test set, see model selection
texton, 166
texture

examples, 164, 165
isotropy, 188
local representations, 166–171
pooled representations, 171, 173–175
representing with filter outputs, 166

algorithm, 169
example, 169–171
published codes, 170
scheme, 167
typical filters, 168

representing with vector quantization,
172

algorithm, 172
example, 174, 175
scheme, 173

scale, 164
shape from texture, 187

for planes, 187–189
synthesis, 176, 178

algorithm, 177
example, 178, 179

texton, 166



INDEX 758

texture mapping, 559, 569, 585
texture synthesis

for image hole filling, 181
tf-idf weighting, see information retrieval
thick lenses, 10

principal points, 10
thin lenses, 9

equation, 9
focal points, 9

tilt, 188, 189
tilt direction, 188
topics, 634
total least squares, see fitting
total risk, see classifier
tracking

applications
motion capture, 326
recognition, 326
surveillance, 326
targeting, 326

as inference, 339
definition, 326
hidden Markov models

backward variable, 598
dynamic programming, 594
dynamic programming algorithm, 595
dynamic programming figure, 596
example of Markov chain, 592
fitting a model with EM, 595, 597,

598
forward variable, 598
trellis, 592, 593
Viterbi algorithm, 594, 595

Kalman filters, 344
example of tracking a point on a line,

344, 345
forward-backward smoothing, 345, 347,

348
linear dynamic models

all conditional probabilities normal,
344

are tracked using a Kalman filter,
qv, 344

constant acceleration, 342, 343
constant velocity, 341, 342
drift, 341
periodic motion, 343

main problems
correction, 340
data association, 340
prediction, 339

measurement
measurement matrix, 341
observability, 341

particle filtering, 350
practical issues, 360
sampled representations, 351–355
simplest, 355
simplest, algorithm, 356
simplest, correction step, 356
simplest, difficulties with, 357
simplest, prediction step, 355
working, 358–361
working, by resampling, 358

smoothing, 345, 347, 348
tracking by detection, 327
tracking by matching, 327

tracking by detection, see tracking
tracking by matching, see tracking
trademark, see near duplicate detection
trademark evaluation, 628
Training error, 459
training set, see model selection
transformation groups

affine transformations, 231
projective transformations, 241
similarities, 223

tree, see graph
tree-structured models

binary terms, 600
cost-to-go function, 601
unary terms, 600

trellis, see matching on relations
trichromacy, see color perception
trimaps, see segmentation
trinocular fusion, see stereopsis → trinocu-

lar fusion
triple point, 415, 416
tritangent, 415
true positive rate, see classifier
twisted cubic, 25
twisted curves, see differential geometry →

space curves

UCF activity datasets, see datasets
ultra-sound imaging, see medical imaging
umbra, 36
unary terms, see tree-structured models
undirected graph, see graph
undulation, 410
unode, 416

value, see color spaces



INDEX 759

Vector quantization, 172
vector quantization, 586
vergence, 204, 217
viewing

cone, 391
cylinder, 391

viewing sphere, 416
viewpoint

general, 404
vignetting, 12
VIRAT dataset, see datasets
virtual image, 4
visual events, 392, 411

curves, 411
equations, 421
local, 412–413

beak-to-beak, 412
lip, 412
swallowtail, 412

multilocal, 414–416
cusp crossing, 415, 416
tangent crossing, 415
triple point, 415, 416

visual hull, 417, 559–573
visual phrases, see object recognition
visual potential, see aspect graph
visual words, 487, see image classification,

639
recovering suppressed detail, 640

Viterbi algorithm, see hidden Markov mod-
els

see hidden Markov models, 594
voxel, 437

watershed, see segmentation
wavelet shrinkage, 183
weak calibration, 224–226

eight-point algorithm
minimal, 225
normalized, 225
overconstrained, 225

nonlinear, 225
weak learner, see classifier
weak perspective, 7

projection matrix, see projection ma-
trix → affine → weak-perspective

weighted graph, see graph
Weizmann activity, see datasets
wide-baseline, 215
wide-baseline stereopsis, 217, 574
window, see chaff

within-class variance, 495
within-class variation, see image classifica-

tion
word counts, see information retrieval

yellow, see color spaces

zero-skew projection matrix, 19
zippered polygonal mesh, 454



List of Algorithms

2.1 Determining the Lightness of Image Patches. . . . . . . . . . . . . . . . . 45
2.2 Photometric Stereo. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.1 Subsampling an Image by a Factor of Two. . . . . . . . . . . . . . . . . . 129
4.2 Forming a Gaussian Pyramid. . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.1 Gradient-Based Edge Detection. . . . . . . . . . . . . . . . . . . . . . . . . 146
5.2 Obtaining Location, Radius and Orientation of Pattern Elements Using a

Corner Detector. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
5.3 Obtaining Location, Radius, and Orientation of Pattern Elements Using

the Laplacian of Gaussian. . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.4 Computing a SIFT Descriptor in a Patch Using Location, Orientation and

Scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
5.5 Computing a Weighted q Element Histogram for a SIFT Feature. . . . . . 159
6.1 Local Texture Representation Using Filters. . . . . . . . . . . . . . . . . . 172
6.2 Texture Representation Using Vector Quantization. . . . . . . . . . . . . . 173
6.3 Clustering by K-Means. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.4 Non-parametric Texture Synthesis. . . . . . . . . . . . . . . . . . . . . . . 177
7.1 The Marr–Poggio (1979) Multi-Scale Binocular Fusion Algorithm. . . . . . 208
7.2 A Dynamic-Programming Algorithm for Establishing Stereo Correspon-

dences Between Two Corresponding Scanlines. . . . . . . . . . . . . . . . . 212
8.1 The Longuet-Higgins Eight-Point Algorithm for Euclidean Structure and

Motion from Two Views. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
8.2 The Tomasi–Kanade Factorization Algorithm for Affine Shape from Motion. 238
9.1 Background Subtraction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
9.2 Shot Boundary Detection Using Interframe Differences. . . . . . . . . . . . 264
9.3 Agglomerative Clustering or Clustering by Merging. . . . . . . . . . . . . . 269
9.4 Divisive Clustering, or Clustering by Splitting. . . . . . . . . . . . . . . . . 269
9.5 Finding a Mode with Mean Shift. . . . . . . . . . . . . . . . . . . . . . . . 275
9.6 Mean Shift Clustering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
9.7 Mean Shift Segmentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
9.8 Agglomerative Clustering with Graphs. . . . . . . . . . . . . . . . . . . . 280
10.1 Incremental Line Fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
10.2 K-means Line Fitting. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
10.3 Using an M-Estimator to Fit a Least Squares Model. . . . . . . . . . . . . 302
10.4 RANSAC: Fitting Structures Using Random Sample Consensus. . . . . . . 305
11.1 Tracking by Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 330
11.2 Tracking with the Mean Shift Algorithm. . . . . . . . . . . . . . . . . . . . 335
11.3 The Kalman Filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 346
11.4 Forward-Backward Smoothing. . . . . . . . . . . . . . . . . . . . . . . . . . 347
11.5 Obtaining a Sampled Representation of a Probability Distribution. . . . . 352
11.6 Computing an Expectation Using a Set of Samples. . . . . . . . . . . . . . 352
11.7 Obtaining a Sampled Representation of a Posterior from a Prior. . . . . . 355
11.8 A Practical Particle Filter Resamples the Posterior. . . . . . . . . . . . . . 359
11.9 An Alternative Practical Particle Filter. . . . . . . . . . . . . . . . . . . . 360
14.1 The Model-Based Edge-Detection Algorithm of Ponce and Brady (1987). . 427
14.2 The Iterative Closest-Point Algorithm of Besl and McKay (1992). . . . . . . 435
14.3 The Plane-Matching Algorithm of Faugeras and Hebert (1986). . . . . . . 440

760



LIST OF ALGORITHMS 761

14.4 Pointwise Matching of Free-Form Surfaces Using Spin Images, after Johnson
and Hebert (1998, 1999). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445

14.5 Training a Decision Tree. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
14.6 Training a Random Forest. . . . . . . . . . . . . . . . . . . . . . . . . . . . 450
15.1 The Bayes Classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 459
15.2 Cross-Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 464
15.3 Multi-class Classification Assuming Class-Conditional Densities are Normal 468
15.4 (k, l) Nearest Neighbor Classification . . . . . . . . . . . . . . . . . . . . . 470
15.5 Training a Two-Class Decision Stump . . . . . . . . . . . . . . . . . . . . . 476
15.6 Discrete Adaboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
15.7 Real Adaboost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
16.1 Principal Components Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 495
16.2 Canonical Variates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
16.3 Dilation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
16.4 Erosion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 501
17.1 Sliding Window Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
19.1 Visual Hull Construction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 564
19.2 A Curve-Tracing Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . 565
19.3 The Strip Triangulation Algorithm. . . . . . . . . . . . . . . . . . . . . . . 567
19.4 The PMVS Algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 575
19.5 The Feature-Matching Algorithm of PMVS. . . . . . . . . . . . . . . . . . 579
19.6 The Patch-Expansion Algorithm of PMVS. . . . . . . . . . . . . . . . . . . 581
20.1 The Viterbi Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 595
20.2 Fitting Hidden Markov Models with EM . . . . . . . . . . . . . . . . . . . 595
20.3 Computing the Forward Variable for Fitting an HMM . . . . . . . . . . . . 597
20.4 Computing the Backward Variable for Fitting an HMM . . . . . . . . . . . 597
20.5 Updating Parameters for Fitting an HMM . . . . . . . . . . . . . . . . . . 598
21.1 Nearest Neighbor Tagging. . . . . . . . . . . . . . . . . . . . . . . . . . . 647
21.2 Greedy Labeling Using Kernel Similarity Comparisons. . . . . . . . . . . 648
22.1 The Alpha Expansion Algorithm of Boykov et al. (2001). . . . . . . . . . . 681


	Cover
	Computer Vision: A Modern Approach
	©
	Dedication Page 
	Contents
	Preface
	I: IMAGE FORMATION
	1 Geometric Camera Models
	1.1 Image Formation
	1.2 Intrinsic and Extrinsic Parameters
	1.3 Geometric Camera Calibration
	1.4 Notes

	2 Light and Shading
	2.1 Modelling Pixel Brightness
	2.2 Inference from Shading
	2.3 Modelling Interreflection
	2.4 Shape from One Shaded Image
	2.5 Notes

	3 Color
	3.1 Human Color Perception
	3.2 The Physics of Color
	3.3 Representing Color
	3.4 A Model of Image Color
	3.5 Inference from Color
	3.6 Notes


	II: EARLY VISION: JUST ONE IMAGE
	4 Linear Filters
	4.1 Linear Filters and Convolution
	4.2 Shift Invariant Linear Systems
	4.3 Spatial Frequency and Fourier Transforms
	4.4 Sampling and Aliasing
	4.5 Filters as Templates
	4.6 Technique: Normalized Correlation and Finding Patterns
	4.7 Technique: Scale and Image Pyramids
	4.8 Notes

	5 Local Image Features
	5.1 Computing the Image Gradient
	5.2 Representing the Image Gradient
	5.3 Finding Corners and Building Neighborhoods
	5.4 Describing Neighborhoods with SIFT and HOG Features
	5.5 Computing Local Features in Practice
	5.6 Notes

	6 Texture
	6.1 Local Texture Representations Using Filters
	6.2 Pooled Texture Representations by Discovering Textons
	6.3 Synthesizing Textures and Filling Holes in Images
	6.4 Image Denoising
	6.5 Shape from Texture
	6.6 Notes


	III: EARLY VISION: MULTIPLE IMAGES
	7 Stereopsis
	7.1 Binocular Camera Geometry and the Epipolar Constraint
	7.2 Binocular Reconstruction
	7.3 Human Stereopsis
	7.4 Local Methods for Binocular Fusion
	7.5 Global Methods for Binocular Fusion
	7.6 Using More Cameras
	7.7 Application: Robot Navigation
	7.8 Notes

	8 Structure from Motion
	8.1 Internally Calibrated Perspective Cameras
	8.2 Uncalibrated Weak-Perspective Cameras
	8.3 Uncalibrated Perspective Cameras
	8.4 Notes


	IV: MID-LEVEL VISION
	9 Segmentation by Clustering
	9.1 Human Vision: Grouping and Gestalt
	9.2 Important Applications
	9.3 Image Segmentation by Clustering Pixels
	9.4 Segmentation, Clustering, and Graphs
	9.5 Image Segmentation in Practice
	9.6 Notes

	10 Grouping and Model Fitting
	10.1 The Hough Transform
	10.2 Fitting Lines and Planes
	10.3 Fitting Curved Structures
	10.4 Robustness
	10.5 Fitting Using Probabilistic Models
	10.6 Motion Segmentation by Parameter Estimation
	10.7 Model Selection: WhichModel Is the Best Fit?
	10.8 Notes

	11 Tracking
	11.1 Simple Tracking Strategies
	11.2 Tracking Using Matching
	11.3 Tracking Linear Dynamical Models with Kalman Filters
	11.4 Data Association
	11.5 Particle Filtering
	11.6 Notes


	V: HIGH-LEVEL VISION
	12 Registration
	12.1 Registering Rigid Objects
	12.2 Model-based Vision: Registering Rigid Objects with Projection
	12.3 Registering Deformable Objects
	12.4 Notes

	13 Smooth Surfaces and Their Outlines
	13.1 Elements of Differential Geometry
	13.2 Contour Geometry
	13.3 Visual Events: More Differential Geometry
	13.4 Notes

	14 Range Data
	14.1 Active Range Sensors
	14.2 Range Data Segmentation
	14.3 Range Image Registration and Model Acquisition
	14.4 Object Recognition
	14.5 Kinect
	14.6 Notes

	15 Learning to Classify
	15.1 Classification, Error, and Loss
	15.2 Major Classification Strategies
	15.3 Practical Methods for Building Classifiers
	15.4 Notes

	16 Classifying Images
	16.1 Building Good Image Features
	16.2 Classifying Images of Single Objects
	16.3 Image Classification in Practice
	16.4 Notes

	17 Detecting Objects in Images
	17.1 The Sliding Window Method
	17.2 Detecting Deformable Objects
	17.3 The State of the Art of Object Detection
	17.4 Notes

	18 Topics in Object Recognition
	18.1 What Should Object Recognition Do?
	18.2 Feature Questions
	18.3 Geometric Questions
	18.4 Semantic Questions


	VI: APPLICATIONS AND TOPICS
	19 Image-Based Modeling and Rendering
	19.1 Visual Hulls
	19.2 Patch-Based Multi-View Stereopsis
	19.3 The Light Field
	19.4 Notes

	20 Looking at People
	20.1 HMM’s, Dynamic Programming, and Tree-Structured Models
	20.2 Parsing People in Images
	20.3 Tracking People
	20.4: 3D from2D: Lifting
	20.5 Activity Recognition
	20.6 Resources
	20.7 Notes

	21 Image Search and Retrieval
	21.1 The Application Context
	21.2 Basic Technologies from Information Retrieval
	21.3 Images as Documents
	21.4 Predicting Annotations for Pictures
	21.5 The State of the Art of Word Prediction
	21.6 Notes


	VII: BACKGROUND MATERIAL
	22 Optimization Techniques
	22.1 Linear Least-Squares Methods
	22.2 Nonlinear Least-Squares Methods
	22.3 Sparse Coding and Dictionary Learning
	22.4 Min-Cut/Max-Flow Problems and Combinatorial Optimization
	22.5 Notes


	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

	List of Algorithms



