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Preface 

Pattern recognition has a long and respectable history within engineer­
ing, especially for military applications, but the cost of the hardware 
both to acquire the data (signals and images) and to compute the 
answers made it for many years a rather specialist subject. Hardware 
advances have made the concerns of pattern recognition of much wider 
applicability. In essence it covers the following problem: 

'Given some examples of complex signals and the correct 
decisions for them, make decisions automatically for a stream 
of future examples.' 

There are many examples from everyday life: 

N arne the species of a flowering plant. 
Grade bacon rashers from a visual image. 
Classify an X-ray image of a tumour as cancerous or benign. 
Decide to buy or sell a stock option. 
Give or refuse credit to a shopper. 

Many of these are currently performed by human experts, but it is 
increasingly becoming feasible to design automated systems to replace 
the expert and either perform better (as in credit scoring) or 'clone' the 
expert (as in aids to medical diagnosis). 

Neural networks have arisen from analogies with models of the way 
that humans might approach pattern recognition tasks, although they 
have developed a long way from the biological roots. Great claims have 
been made for these procedures, and although few of these claims have 
withstood careful scrutiny, neural network methods have had great 
impact on pattern recognition practice. A theoretical understanding of 
how they work is still under construction, and is attempted here by 
viewing neural networks within a statistical framework, together with 
methods developed in the field of machine learning. 

One of the aims of this book is to be a reference resource, so almost 
all the results used are proved (and the remainder are given references 
to complete proofs). The proofs are often original, short and I believe 
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show insight into why the methods work. Another unusual feature of 
this book is that the methods are illustrated on examples, and those 
examples are either real ones or realistic abstractions. Unlike the proofs, 
the examples are not optional! 

The formal pre-requisites to follow this book are rather few, espe­
cially if no attempt is made to follow the proofs. A background in 
linear algebra is needed, including eigendecompositions. (The singular 
value decomposition is used, but explained.) A knowledge of calculus 
and its use in finding extrema (such as local minima) is needed, as well 
as the simplest notions of asymptotics (Taylor series expansions and 
O(n) notation). Graph theory is used in Chapter 8, but developed from 
scratch. Only a first course in probability and statistics is assumed, but 
considerable experience in manipulations will be needed to follow the 
derivations without writing out the intermediate steps. The glossary 
should help readers with non-technical backgrounds. 

A graduate-course knowledge of statistical concepts will be needed 
to appreciate fully the theoretical developments and proofs. The sections 
on examples need a much less mathematical background; indeed a good 
overview of the state of the subject can be obtained by skimming the 
theoretical sections and concentrating on the examples. The theory and 
the insights it gives are important in understanding the relative merits 
of the methods, and it is often very much harder to show that an idea 
is unsound than to explain the idea. 

Several chapters have been used in graduate courses to statisticians 
and to engineers, computer scientists and physicists. A core of material 
would be Sections 2.1-2.3, 2.6, 2.7, 3.1, 3.5, 3.6, 4.1, 4.2, 5.1-5.4, 6.1-6.4, 
7.1-7.3 and 9.1-9.4, supplemented by material of particular interest to 
the audience. For example, statisticians should cover 2.4, 2.5, 3.3, 3.4, 
5.5, 5.6 and are likely to be interested in Chapter 8, and a fuller view 
of neural networks in pattern recognition will be gained by adding 3.2, 
4.3, 5.5-5.7, 7.6 and 8.4 to the core. 
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Notation 

The notation used generally follows the standard conventions of math­
ematics and statistics. Random variables are usually denoted by capital 
letters; if X is a random variable then x denotes its value. Often 
bold letters denote vectors, so x = (xi) is a vector with components 
xi, i = 1, ... , m, with m being deduced from the context. 

~ 
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!(A) 

Np{,u, :E} 

O(g(n)) 

Op(g(n)) 

((j 

p(x) 

Pr{A} 

Pr{A I B} 

.IRm 

xT 
e 
e,e 
[]+ 

l J 
r 1 

is the 'doubt' report. 

denotes expectation. A suffix denotes the random variable 
or distribution over which the averaging takes place. 

is the indicator function of event A, one if A happens, 
otherwise zero. 

denotes a normal distribution in p dimensions. 

f(n) = O(g(n)) means lf(n)/g(n)l is bounded as n- oo. 

Xn = Op(g(n)) means given E > 0 there is a constant B 

such that Pr{IXn/g(n)l > B} < E for all n. 

is the outlier report. 

denotes a probability density function. 

denotes the probability of an event A. 

denotes the conditional probability of A given B. 

m -dimensional Euclidean space . 

denotes the transpose of a matrix X. 

a parameter or vector of parameters. 

a parameter estimate. 

the positive part, the maximum of the expression and 
zero. 

the integer part (rounding down). The floor function. 

the nearest integer (rounding up). The ceiling function. 
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Introduction and Examples 

This book is primarily about pattern recognition, which covers a wide 
range of activities from many walks of life. It is something which we 
humans are particularly good at; we receive data from our senses and 
are often able, immediately and without conscious effort, to identify the 
source of the data. For example, many of us can 

recognize faces we have not seen for many years, even in disguise, 
recognize voices over a poor telephone line, 
as babies recognize our mothers by smell, 
distinguish the grapes used to make a wine, and sometimes 

even recognize the vineyard and year, 
identify thousands of species of flowers and 
spot an approaching storm. 

Science, technology and business has brought to us many similar tasks, 
including 

diagnosing diseases, 
detecting abnormal cells in cervical smears, 
recognizing dangerous driving conditions, 
identifying types of car, aeroplane, ... , 
identifying suspected criminals by fingerprints and DNA profiles, 
reading Zip codes (US postal codes) on envelopes, 
reading hand-written symbols (on a penpad computer), 
reading maps and circuit diagrams, 
classifying galaxies by shape, 
picking an optimal move or strategy in a game such as chess, 
identifying incoming missiles from radar or sonar signals, 
detecting shoals of fish by sonar, 
checking packets of frozen peas for 'foreign bodies', 
spotting fake 'antique' furniture, 
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deciding which customers will be good credit risks and 
spotting good opportunities on the financial markets. 

Humans can (and do) do some of the tasks quite well, but the techno­
logical pressure is to build machines which can perform such tasks more 
accurately or faster or more cheaply than humans, or even to release 
humans from drudgery. There are also purely technological tasks such 
as reading bar codes at which humans are poor. Pattern recognition is 
the discipline of building such machines: 

'It is felt that the decision-making processes of a human being are 
somewhat related to the recognition of patterns; for example the next 
move in a chess game is based upon the present position on the 
board, and buying or selling stocks is decided by a complex pattern 
of information. The goal of pattern recognition research is to clarify 
these complicated mechanisms of decision-making processes and to 
automate these functions using computers. However, because of the 
complex nature of the problem, most pattern recognition research has 
been concentrated on more realistic problems, such as the recognition 
of Latin characters and the classification of waveforms.' 
(Fukunaga, 1990, p. 1) 

Since the best humans can perform many of these tasks very well, 
even better than the best machines, it has been of great interest to 
understand how we do so, and this is of independent scientific interest. 
So there has for many years been an interchange of ideas between 
engineers building pattern recognition systems and psychologists and 
physiologists studying human and animal brains. Twice this has led to 
great enthusiasm about machines influenced by ideas from psychology 
and biology. The first was in the late 1950s with the perceptron, the 
second in the mid 1980s over neural networks. Both rapidly left their 
biological roots, and were studied by mathematical techniques against 
engineering performance goals as pattern recognizers. This book is 
not about the impact of the study of neural networks as models of 
animal brains, but discusses what are more accurately (but rarely) called 
artificial neural networks which have been developed by a community 
which was originally biologically motivated (although many 'neural 
network' methods were not). Thus for the purposes of this book, a 
neural network is a method which arose or was popularized by the 
neural network community and has been or could be used for pattern 
recognition. Many of the originators of the current wave of interest 
were more careful in their terminology; whereas Hopfield (1982) did 
talk about neural networks, Rumelhart & McClelland (1986) used the 
term 'parallel distributed processing', and 'connectionist' has also been 
popular (for example, see Hinton, 1989a). 

Marginal notes such as 
this replace footnotes 
and offer explanation, 
sidelines, and opinion. 

Many of the ideas had 
arisen earlier in the 
pattern recognition 
context, but without the 
seductive titles had 
made little impact. 



Gooseberries are the 
fruits of the species 
Ribes grossularia. 

We should never 
underestimate the 
power of simply 
remembering some or 
all of the examples and 
comparing test 
examples with our 
memory. 

1 Introduction and Examples 3 

One characteristic of human pattern recognition is that it is mainly 
learnt. We cannot describe the rules we use to recognize a particular 
face, and will probably be unable to describe it well enough for anyone 
else to use the description for recognition. On the other hand, botanists 
can give the rules they use to identify flowering plants. 

Most learning involves a teacher. If we try enough different wines 
from unlabelled bottles, we may well discover that there are common 
groupings, and that one group has the aroma of gooseberries (if the 
latter have been experienced). But we will need a teacher to tell us that 
the common factor is that they were made (in part) from the sauvignon 
blanc grape. The discovery of new groupings is called unsupervised 
pattern recognition. A more common mode of learning both for us and 
for machines is to be given a collection of labelled examples, known 
as the training set, and from these to distil the essence of the grouping. 
This is supervised pattern recognition and is used to classify future 
examples into one of the same set of classes (or say it is none of these). 

There is a subject known as machine learning which has emerged 
from the artificial intelligence and computer science communities. It too 
is concerned with distilling structure from labelled examples, although 
the labels are usually 'true' and 'false'. 

'Machine Learning is generally taken to encompass automatic learning 
procedures based on logical or binary operations, that learn a task 
from a series of examples.' 

'Machine Learning aims to generate classifying expressions simple 
enough to be understood easily by humans. They must mimic human 
reasoning sufficiently well to provide insight into the decision process. 
Like statistical approaches, background knowledge may be exploited 
in development, but operation is assumed without human intervention.' 
(Michie et al., 1994, p. 2) 

This stresses the need for a comprehensible explanation, which is needed 
in some but not all pattern recognition tasks. We have already noted 
that we cannot explain our identification of faces, and to recognize Zip 
codes no explanation is needed, just speed and accuracy. 

This quotation mentions statistical approaches, and statistics is the 
oldest of the disciplines concerned with automatically finding structure 
in examples. As in the quotation, statistics is often thought of as 
being less automatic than the other disciplines, but this is largely an 
artefact of its greater age; its current research frontiers are very much 
concerned with replacing the human choice of methods by computation. 
Furthermore, statistics encompasses what the community of statisticians 
do, of whom your author is one! 



4 1 Introduction and Examples 

1.1 How do neural methods differ? 

Assertions are often made that neural networks provide a new approach 
to computing, involving analog (real-valued) rather than digital signals 
and massively parallel computation. For example, Haykin (1994, p. 2) 
offers a definition of a neural network adapted from Aleksander & 
Morton (1990): 

'A neural network is a massively parallel distributed processor that has 
a natural propensity for storing experiential knowledge and making it 
available for use. It resembles the brain in two respects: 

1. Knowledge is acquired by the network through a learning process. 

2. Interneuron connection strengths known as synaptic weights are 
used to store the knowledge.' 

In practice the vast majority of neural network applications are run on 
single-processor digital computers, although specialist parallel hardware 
is being developed (if not yet massively parallel). However, all the 
other methods we consider use real signals and can be parallelized to a 
considerable extent; it is far from clear that neural network methods will 
have an advantage as parallel computation becomes common, although 
they are frequently so slow that they need a speed-up. (Parallelization 
on real hardware has proved to be non-trivial; see Pitas, 1993 and 
Przytula & Prasanna, 1993.) We will argue that a large speed-up can 
be achieved by designing better learning algorithms using experience 
borrowed from other fields. 

The traditional methods of statistics and pattern recognition are 
either parametric based on a family of models with a small number 
of parameters, or non-parametric in which the models used are totally 
flexible. One of the impacts of neural network methods on pattern 
recognition has been to emphasize the need in large-scale practical 
problems for something in between, families of models with large but 
not unlimited flexibility given by a large number of parameters. The two 
most widely used neural network architectures, multi-layer perceptrons 
and radial basis functions (RBFs ), provide two such families (and several 
others already existed in statistics). 

Another difference in emphasis is on 'on-line' methods, in which the 
data are not stored except through the changes the learning algorithm 
has made. The theory of such algorithms is studied for a very long 
stream of examples, but the practical distinction is less clear, as this 
stream is made up either by repeatedly cycling through the training set 
or by sampling the training examples (with replacement). In contrast, 
methods which use all the examples together are called 'batch' methods. 

Many neural networks 
are excluded by this 
definition, including 
those of Kohonen. One 
could ask how a 
machine comes to have 
'natural' properties. 

The name 'multi-layer 
perceptrons' is 
confusing; they are not 
multiple layers of 
perceptrons. We call 
them feed-forward 
neural nets. 



Someone else may have 
made the measurements 
for us. 

It may help to know 
which classes are 
plausible. 

This might be 
unrealistic for 
hand-written addresses, 
and is well beyond 
current performance 
levels. 
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It is often forgotten that there are intermediate positions, such as using 
small batches chosen from the training set. 

1.2 The pattern recognition task 

Except in Chapter 9 we will be exclusively concerned with supervised 
pattern recognition. Thus we are given a set of K pre-determined 
classes, and assume (in theory) the existence of an oracle that could 
correctly label each example which might be presented to us. When we 
receive an example, some measurements are made, known as features , 
and these data are fed into the pattern recognition machine, known as 
the classifier. This is allowed to report 

'this example is from class t' or 
'this example is from none of these classes' or 
'this example is too hard for me'. 

The second category are called outliers and the third rejects or 'doubt' 
reports. Both can have great importance in applications. Suppose we 
have a medical diagnosis aid. We would want it to report any patient 
who apparently had an unknown disease, and we would also want it 
to ask the opinion of a senior doctor if there was real doubt. Often 
rejects are referred to a more expensive second tier of classification, 
perhaps a human or (as in Zip code recognition) a slower but more 
powerful method or even (as in analytical chemistry) for more expensive 
measurements to be made. Many pattern recognition systems always 
make a firm classification, but this seems to us more often to be bad 
design than a conscious decision that a firm decision was necessary. 

The primary assessment of a system will be by its performance; a 
Zip code recognition system might be required to reject less than 2% of 
the examples and mis-read less than 0.5% of the remainder. In medical 
diagnosis we will be more interested in some errors than others, in 
particular in missing a disease, so the errors will need to be weighted. 
There may be a cost trade-off between rejection and error rate. 

The other aspect of performance stressed in the quote from Michie 
et al. (1994, p. 2) is the power of explanation. Users need to have 
confidence in the system before it will be adopted. No one really cares 
if an odd letter is mis-routed, but patients do care if they mis-diagnosed, 
and when a civilian airliner is mistaken for an enemy aircraft, questions 
are raised. So for some tasks 'black boxes' are unacceptable whatever 
their performance advantage (possibly even if they appear perfect on 
test). The methods of Chapters 7 and 8 are often found to be more 
acceptable for such tasks. 
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Some tasks are slightly different. We (and medics) often think of 
medical diagnosis as deciding which disease a patient has, but this 
ignores the possibility of two or more concurrent diseases; what we 
should really be asking is whether the patient has this disease for each 
of a range of diseases. This can be thought of as a compound decision, 
the classes each being a subset of the diseases, but it is normally helpful 
to make use of special structure within the classes. 

Design issues 

Although most of this book is about designing the pattern recognition 
machine, often the most important aspect of design is to choose the right 
features. If the wrong things are measured (or, more often these days 
with digital data, if the data are condensed too much) the task may be 
unachievable. Much of the enhanced success of Zip-code recognition 
systems has come from better features (for example, Simard et al., 
1993) rather than through more complicated classifiers. Sometimes 
good features can be found by training a classifier on a large number 
of features and extracting good ones (for example, by the methods of 
Chapters 9 and 10), but most often problem-specific insights are used. 

In a few problem domains very specific rules are known which 
can be used to design a classifier; as an extreme example compilers 
can classify C programs as correct or invalid without needing to see 
any previous programs. Such information is often in the form of a 
formal grammar, and systems based on specifying such grammars are 
often called syntactic pattern recognition systems (Fu, 1982; Gonzalez 
& Thomason, 1978), but are of very restricted application. Allowing 
stochastic grammars in which the structure is given but the probabilities 
are learnt allows a little more flexibility. Chou (1989) gives an exam­
ple of recognizing typeset mathematical expressions using a stochastic 
grammar. 

In the vast majority of applications no structural assumptions are 
made, all the structure in the classifier being learnt from data. In the 
pattern recognition literature this is known as statistical pattern recog­
nition. The training set is regarded as a sample from a population of 
possible examples, and the statistical similarities of each class extracted, 
or more precisely the significant differences between classes are found. 
A parametric or non-parametric model is constructed for the distribu­
tion of features for examples from each class, and statistical decision 
theory used to find an optimal classification. This is sometimes known 
(Dawid, 1976) as the sampling paradigm. 



Note that this is not the 
procedure called 
cross-validation, despite 
the misuse of that term 
in the neural networks 
literature. 

1.2 The pattern recognition task 7 

Another view, the diagnostic paradigm, goes back in the statistical 
literature at least to Cox (1958), and was developed in medical ap­
plications by Jerome Cornfield. This said that we were not interested 
in what the classes looked like, but only given an example in what 
the distribution over classes is for similar examples. The main method 
of this approach became known as logistic discrimination (Anderson, 
1982), but was never widely known even in statistics and (as far as 
we could ascertain) appears in no pattern recognition text. This is the 
main approach of the neural network school. 

When humans are learning concepts, we are often able to ask 
questions or to seek the classifications of examples which we synthesize 
(this being a paradigm of experimental science). Alternatively, we 
may describe our understanding to an expert, who will then supply a 
counter-example. Can we allow our machines to do the same? The 
idea has occurred in machine learning (Angluin, 1987, 1988, 1993), but 
apparently only for learning logical concepts. 

We will sometimes have qualitative knowledge about the task in 
hand; we might know that only the sign of one of the features was 
material, or that the probability of a positive outcome was increasing 
in some continuous feature. Of course we should design the classifier to 
agree with such information, which Abu-Mostafa (1990, 1993, 1995a, b, 
c) calls 'hints'. Sometimes this is easy (just use the sign of the feature) 
but it can be very difficult (as in monotonicity). Generally hints (if true) 
help to avoid over-fitting to the training set, and this seems to be the 
real explanation of the gains in exchange-rate performance observed by 
Abu-Mostafa (1995a). 

Method tuning and checking 

All methods have some knobs which can be tweaked. Sometimes 
taking the class of the nearest training-set example is regarded as a 
fully automatic method, but we need to specify the metric used to find 
the nearest. (If the answer is 'use Euclidean distance' we still have to 
specify the units of measurement.) 

How should those knobs be set? The most obvious way is to 
choose them to maximize performance. One thing we should not do 
is to evaluate the performance on a test set and choose the best­
performing classifier, since we will then have no way to measure the 
true performance. We can keep back another test set, called a validation 
set, and use the performance on that to set the knobs. However, to 
obtain a sensitive measure of the performance, the validation set will 
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need to be very large, and this is data which could otherwise be used 
for learning. 

This problem has been ignored for a long time, but now methods to 
use the training set for both learning and knob-setting are beginning to 
be used. These are discussed in Chapter 2 and illustrated on the quite 
small running examples that we chose. 

To see why this is a real issue, consider Figure 1.1. Without knowing 
the true curve, it is hard to tell which of plots (b) and (c) is closer to 
the truth. 

~ ~ .. .. ... . . 
.-·.·:., .. ... ... 

~ 
... .. . ··,: ... .. . . . ... . . . 

~ 

~ 
0.0 0.5 1.0 1.5 2.0 2.S 3.0 0.0 0.5 1.0 1.5 2.0 

(a) (b) 

. :' .-:, 
' .... ·. : ' ~ ' : 

~ 0! . •, ·. :' . ·· ·. :,· 

i. 
~1 

~ 1 . . 
.·.' 

~ ~' --------------------~ ";' 0.0 0.5 1.0 3.0 

(c) (d) 

Performance assessment 

We will often want to choose between different candidate classifiers, 
and it will be usual to check that the performance targets are likely 
to be met. This needs an experimental test of the classifiers on some 
unseen examples. Such experiments are often (usually?) very poorly 
designed, and slanted towards a favourite method. The reader is urged 
to consult a good book on experimental design (such as Box et al., 
1978) before conducting such experiments. 

Many of the experiments reported in the literature are designed to 
compare methods, when there is even more scope for confusion. In 

Figure 1.1 : An 
illustration of model 
selection. Plot (a) shows 
250 points generated by 
from the curve shown 
plus random noise, and 
plots (b-d) show fits by 
a single-hidden-layer 
neural network with 2, 
4 and 8 hidden units. 



This test does not 
consider experimental 
biases nor if an 
evaluation of the 
significance of the 
results was made. 

1.3 Overview of the remaining chapters 9 

medicine, methods (treatments) are compared in double-blind trials so 
there can be no preferential treatment, and in pure science experiments 
must be repeatable. (The large-scale trial of the StatLog project reported 
in Michie et al., 1994, was designed to be run in these ways.) One source 
of confusion is that such trials may confuse the merits of the methods 
with the expertise of the experimenter in using them; this is a particular 
difficulty when the experimenter's own invention is in the trial. Two 
cases are of interest. One is where every method is used by a real expert 
and so assesses the best attainable performance. The other is when all 
methods are used by typical (or even new) users, which might provide 
a basis for recommendations to such users. 

Prechelt (1994) surveyed two le~1.ding neural network journals for 
1993 and half of 1994. He deemed an evaluation of an algorithm ac­
ceptable if it used two or more realistic or real problems and compared 
at least one alternative algorithm. Only 18% passed-in his words 'sad, 
but true'. Note that this book is not about evaluating algorithms, but 
we have used real examples to explore the merits and limitations of the 
methods. Amazingly, almost all books on pattern recognition or neural 
networks include no real or realistic examples. 

1.3 Overview of the remaining chapters 

Our approach to building a classifier will be based on statistical decision 
theory. In Chapter 2 we consider the Bayes rule, the best possible 
classifier if we knew everything about the population of examples, and 
then various approximations we can make if we have to learn from a 
training set. This includes several ways to use parametric models (which 
we assume to be false but perhaps convenient approximations) ; these 
sections include the classic methods based on the multidimensional 
normal distribution but also some improvements which are much less 
well known. 

The next questions are: how complicated do our models need to 
be, and how well do they perform? These are discussed in Sections 2.6 
and 2.7. There is a trade-off between adapting well to complexity of the 
real structure in the examples and fitting the structure of our particular 
training set (Figure 1.1). This explains why we are not interested in the 
usual asymptotics of mathematical statistics; as we receive more data 
we will want to choose more complicated models, and only limit the 
model complexity to avoid over-fitting the current training set. Another 
view of the effect of model flexibility on over-fitting is the study of 
generalization in Section 2.8. 
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Chapters 3 to 5 make weaker assumptions than standard parametric 
models. In Chapter 3 we study how we could use linear methods. Both 
Chapters 4 and 5 discuss how to apply flexible families of functions from 
the feature space !![ to d-dimensional Euclidean space .JRd, building 
on the linear methods, and consider the commonest such families, 
neural networks and radial basis functions, as well as splines and their 
generalizations. 

The sixth chapter is on (nearly) non-parametric methods, where 
minimal assumptions are made about the classes. Most of these methods 
are based on looking at the classes of nearby examples, in some methods 
after designing a set of representative examples to replace the training 
set. That chapter also includes the use of mixtures of densities to model 
very general distributions. 

Chapter 7 is about a rather different class of methods that partition 
the feature space !![ into regions and assign a class to each. This is 
done by splitting along a feature at a time, and then subdividing each 
subregion recursively. Classification trees have been considered in both 
statistics and machine learning; they are often easy to interpret but not 
amongst the highest performers. 

Belief networks, also known as causal probability networks and 
Bayes networks, are not primarily designed for classification, but to 
explain the relationships between all of the observations. They are the 
subject of Chapter 8. They are very good for explanation, but may be 
less good for classification (as the finite amount of training data has to 
be used to learn more structure than just the relationship of the class 
to their features). Their strength is that they can incorporate qualitative 
knowledge about causal relationships amongst the features (an earlier 
and more sophisticated use of 'hints'). Also included in that chapter 
are the methods of Boltzmann machines and hierarchical mixtures of 
experts which can be considered within the framework of belief nets. 

Chapters 9 and 10 are concerned with finding good features and 
choosing which features to use. 

The appendix discusses a number of complements; some are statis­
tical background and some explore issues a little further than is needed 
for pattern recognition. 

1.4 Examples 

The examples have been chosen to illustrate the properties of the 
methods we describe; not every method is used on each. 

. . . and many more 
names beside 



Figure 1.2: Results of 
two diagnostic tests on 
patients with Cushing's 
syndrome. 
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These data are taken from Aitchison & Dunsmore (1975, Tables 11.1-3) 
on diagnostic tests on patients with Cushing's syndrome, a hypersensi­
tive disorder associated with over-secretion of cortisol by the adrenal 
gland. This dataset has three recognized types of the syndrome rep­
resented as a , b, c. (These encode 'adenoma', 'bilateral hyperplasia' 
and 'carcinoma', and represent the underlying cause of over-secretion. 
This can only be determined histopathologically.) The observations are 
urinary excretion rates (mg/24h) of the steroid metabolites tetrahydro­
cortisone and pregnanetriol, and are considered on log scale. 

One of the patients of unknown type (marked u) was later found 
to be of a fourth type, and another was measured faultily. 

Titterington (1976) discusses a different dataset which· had 87 pa­
tients, five types, and fifteen measurements per patient, which suggests 
the current dataset is an abstraction of the full problem. 

Synthetic two-class problem 

This is a 'realistic' problem from Ripley (1994a), used there (and here) 
to illustrate how methods work. There are two features and two 
classes; each class has a bimodal distribution as should be clear from 
Figure 1.3. The class distributions were chosen to allow a best-possible 
error rate of about 8%, and are in fact equal mixtures of two normal 
distributions. The component normal distributions have a common 
covariance matrix. 
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This is a dataset on 61 viruses with rod-shaped particles affecting 
various crops (tobacco, tomato, cucumber and others) described by 
Fauquet et al. (1988) and analysed by Eslava-G6mez (1989). There are 
18 measurements on each virus, the number of amino acid residues per 
molecule of coat protein; the data come from a total of 26 sources. 
There is an existing classification by the number of RNA molecules 
and mode of transmission, into 

39 Tobamoviruses with monopartite genomes spread by contact, 
6 Tobraviruses with bipartite genomes spread by nematodes, 
3 Hordeiviruses with tripartite genomes, transmission mode 
unknown and 
13 'furoviruses', 12 of which are known to be spread fungally. 

Figure 1.3: Two-class 
synthetic data from 
Ripley (1994a). The two 
classes are shown by 
solid circles and open 
squares: there are 125 
points in each class. 

Figure 1.4 : Histogram 
and boxplot by group 
of the viruses dataset. A 
boxplot is a 
representation of the 
distribution; the central 
grey box shows the 
middle 50% of the 
data, with median as a 
white bar. 'Whiskers' go 
out to plausible 
extremes, with outliers 
marked by bars. 

No experimental details 
are provided in the 
source. 
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The question of interest to Fauquet et al. was whether the furoviruses 
form a distinct group, and they performed various multivariate analyses. 

One initial question with this dataset is whether the numbers of 
residues are absolute or relative. The data are counts from 0 to 32, with 
the totals per virus varying from 122 to 231. The average numbers for 
each amino acid range from 1.4 to 20.3. As a classification problem, this 
is very easy as Figure 1.4 shows. The histogram shows a multimodal 
distribution, and the boxplots show an almost complete separation by 
virus type. The only exceptional value is one virus in the furovirus 
group with a total of 170; this is the only virus in that group whose 
mode of transmission is unknown and Fauquet et al. (1988) suggest it 
has been tentatively classified as a Tobamovirus. The other outlier in 
that group (with a total of 198) is the only beet virus. The conclusions 
of Fauquet et al. may be drawn from the totals alone. 

It is interesting to see if there are subgroups within the groups, so 
we will only use this dataset in Chapter 9, principally to investigate 
further the largest group (the Tobamoviruses ). There are two viruses 
with identical scores, of which only one is included in the analyses. (No 
analysis of these data could differentiate between the two.) 

Leptograpsus crabs 

Campbell & Mahon (1974) studied rock crabs of the genus Lepto­
grapsus. One species, L. variegatus, had been split into two new species, 
previously grouped by colour form, orange and blue. Preserved speci­
mens lose their colour, so it was hoped that morphological differences 
would enable museum material to be classified. 

Data are available on 50 specimens of each sex of each species, 
collected on sight at Fremantle, Western Australia. Each specimen has 
measurements on the width of the frontal lip FL, the rear width RW, 
and length along the midline CL and the maximum width CW of the 
carapace, and the body depth BD in mm. 

Forensic glass 

Our next example comes from forensic testing of glass collected by 
B. German on 214 fragments of glass, and taken from Murphy & Aha 
(1995). Each case has a measured refractive index and composition 
(weight percent of oxides of Na, Mg, AI, Si, K, Ca, Ba and Fe). 
The fragments were originally classed as seven types, one of which was 
absent in this dataset. The categories which occur are window float glass 
(70), window non-float glass (76), vehicle window glass (17), containers 
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(13), tableware (9) and vehicle headlamps (29). The composition sums 
to around 100%; what is not anything else is sand. 
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Figure 1.5 shows boxplots of the features. Some discrimination 
between glass types is apparent even from single features; for example 
headlamp glass is high in barium (although some examples have none), 
high in sodium and aluminium and low in iron. The three types of 
window glass appear similar, with one exceptional fragment of window 
non-float glass having a high refractive index, high barium and calcium 
and low magnesium and sodium. The containers group also contains 
a couple of exceptions. Characterizing populations with exceptions 
(especially 2 out of 13) can be difficult, and it may be easier to remove 
the exceptions in the training phase. 

This example is really too small to divide, so methods have been 

Figure 1.5: Boxplots of 
the features of the 
forensic glass data. 

assessed by 10-fold cross-validation using the same random partition This is discussed in 

for each method. The best methods have an estimated error rate of Section 2.7. 

about 24%. 

Diabetes in Pima Indians 

A population of women who were at least 21 years old, of Pima Indian 
heritage and living near Phoenix, Arizona, was tested for diabetes ac­
cording to World Health Organization criteria. The data were collected 
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by the US National Institute of Diabetes and Digestive and Kidney 
Diseases, and are available from Murphy & Aha (1995). A previous 
report by Smith et al. (1988) found an error rate of about 24%. The 
reported variables are 

number of pregnancies 
plasma glucose concentration in an oral glucose tolerance test 
diastolic blood pressure (mm Hg) 
triceps skin fold thickness (mm) 
serum insulin ( f1 U /ml) 
body mass index (weight in kg/(height in m) 2 ) 

diabetes pedigree function 
age m years 

Many of these had zero values where these were impossible, so are taken 
to be missing values. Of the 768 records, 376 were incomplete (most 
prevalently in serum insulin). Most of our illustrations omit serum 
insulin and use the 532 complete records on the remaining variables. 
These were randomly split into a training set of size 200 and a test set 
of size 332. Methods which can deal with missing values were given 
100 of the incomplete cases as part of the training set. 

Note that 33% of the population were reported to have diabetes, 
so an error rate of 33% can be achieved by declaring all test cases to 
be non-diabetic. Our best methods reduce this to about 20%. 

Some aspects of this dataset were considered by Wahba et al. (1995). 

Data availability 

All these datasets are available by anonymous ftp from the Internet site 

ftp.stats.ox.ac.uk IP address 163 .1. 20.1 

in directory /pub/PRNN. The datasets and other material are available 
by pointing your World Wide Web browser at 

http://www.stats.ox.ac.uk/-ripley/PRbook/ 

1.5 Literature 

The classic books on pattern recogmtwn are Duda & Hart (1973), 
Devijver & Kittler (1982) and Fukunaga (2nd edn 1990), all of which 
pre-date the impact of neural networks on the subject. There are 
a small number of introductory texts (James, 1988; Therrien, 1989; 
Schalkoff, 1992) and two specialist monographs on kernel methods 
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(Hand, 1982; Coomans & Broeckaert, 1986). Some conference proceed­
ings, for example Devijver & Kittler (1987), provide a good overview 
of applications. 

Classical statistical techniques are discussed in most texts on multi­
variate analysis such as T. W. Anderson (1984) and Mardia et al. (1979) 
and in slightly more specialized books by Lachenbruch (1975), Gold­
stein & Dillon (1978), Hand (1981) and McLachlan (1992). 

There are now very many books on neural networks, particularly 
on parts of the subject not discussed here. Approaches to modelling 
memory from the point of view of statistical physics are covered by 
Amit (1989), Peretto (1992) and Hertz et al. (1991). Haykin (1994) 
is modern, comprehensive but unselective (and untroubled by real 
applications). Amari (1993) and Ripley (1993) give two statistical views 
of the neural network field, and Bishop (1995a) is slanted towards 
pattern recognition. Arbib (1995) provides many short sketches of 
topics over a very wide range of neural networks. One important area 
of neural network methods which we do not consider is the prediction 
of time series, the subject of a competition analysed by Weigend & 
Gershenfeld (1993), including expository papers. 

There is now one text on general machine learning, Langley (1996), 
and it appears in some artificial intelligence texts (for example, Winston, 
1992; Russell & Norvig, 1995). There are many more aspects than we 
shall consider, including incorporating domain knowledge as illustrated 
by King et al. (1992). Langley & Simon (1995) and Bratko & Muggleton 
(1995) discuss applications of machine learning with claimed real-world 
benefits. 

Books which cover more than one of these three areas are rare. 
Krishnaiah & Kanal (1982) was a very good overview at its time; 
the recent edited volumes by Cherkassky et al. (1994) and Michie et 
al. (1994) contain several good overviews. 

Face recognition is a popular application of pattern recognition sur­
veyed by Samal & Iyengar (1992). Golomb et al. (1991) and Flocchini 
et al. (1992) give two example systems. 

There is a very large literature on character recognition, and non­
European alphabets with at least hundreds of classes provide a severe 
test of pattern recognition methods. The articles by Baird (1993), Cohen 
et al. (1991), Le Cun et al. (1989, 1990a), Gader et al. (1991), Guyon 
et al. (1992), Impedovo et al. (1991), Knerr et al. (1991), Lee (1991), 
Martin & Pitman (1990, 1991), Pavlidis (1993), Simard et al. (1993), 
Singer & Tishby (1994), Suen et al. (1992, 1993) and Wakahara (1993) 
provide some flavours. 
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Statistical Decision Theory 

This chapter presents basic statistical decision theory for classification 
problems with predefined classes. 

The framework in its simplest form is as follows. Certain objects 
are to be classified as coming from one of a fixed number of types, 
or classes, say 1, . .. , K . Each object gives rise to certain measurements 
which together form the feature vector X, belonging to a suitable 
feature space f£. This is typically a subset of .IR..P or perhaps of the 
type f£ 1 x · · · x f£ P with each f£ J either a given finite set or .IR. The 
proportion of class k cases in the population under study is some known 
or unknown nk. Feature vectors from class k are distributed according 
to the density Pk(x). The task is to classify an object, which means 
reaching one of K +2 possible decisions 1, ... , K ,~,(!) on the basis of 
the observed value X = x; decision k corresponds to claiming 'X is 
from class k ', whereas ~ means 'being in doubt', possibly postponing 
the decision until further measurements have been extracted, and (!) 

signifies an outlier, an object definitely not belonging to any of the K 
predefined classes. 

Section 2.1 treats the idealized case when class densities Pk(x) as 
well as class prior probabilities (nk) are known. This gives valuable 
insight and also provides limits for the performance of real-life classifiers 
that in some way must estimate class densities. In Section 2.2 some 
of the most important parametric models for classification are studied. 
The parameters are typically estimated using maximum likelihood, but 
alternatives are discussed in Section 2.3 (assuming less of the model), 
Section 2.4 (taking the variability of the parameters into account) and 
Section 2.5 (bias correction). 

Sections 2.6 and 2.7 discuss how we assess the adequacy of a 
parametric model and estimate the performance of a classification rule. 
The final section considers 'generalization', a more abstract way to find 



18 2 Statistical Decision Theory 

bounds on the expected performance of a class of classifiers. 
Not all of the material here is essential for the later applications. 

The most important sections are Section 2.1, Section 2.2 omitting 'Bayes 
risk consistency' and 'Fitting parametric families when they are wrong', 
Sections 2.3, 2.4, 2.6 and 2.7. 

2.1 Bayes rules for known distributions 

In this present section we assume that the class densities Pk and the 
prior probabilities nk are known. This makes it possible to construct 
classification procedures with well understood optimal properties. Such 
results are not directly applicable since the class densities, at least, are 
unknown in practice, but they will serve as guidelines for the estimated 
rules of Sections 2.2 and 2.3, and have intrinsic theoretical interest. 

Let C denote the class label of a random feature vector X, in 
particular C = k with probability nk. The classification task is to 
estimate the true C after having observed X . Let c: :!C ~ {1, ... ,K, .@} 
be a classification procedure (also known as a classifier). (We will deal 
with outlier decisions in a later subsection.) To determine whether such 
a procedure is 'good' or not one has to agree on reasonable overall 
criteria, for example involving the misclassification probabilities 

pmc(k) = Pr{c(X) =I= k, c(X) E {1, 0 0 0 ,K} I c = k} (2.1) 

and the reject or doubt probabilities pd(k) = Pr{c(X) = .@I C = k}. 
The quantities pmc and pd denote the unconditional misclassifica­
tion probability Pr{c(X) =I= C} and doubt probability Pr{c(X) = .@} 
respectively. 

Minimizing the expected error rate 

The usual way of formalizing a goodness criterion is by means of a 
loss function. Let L(k, l) be the loss incurred by making decision l 
if the true class is C = k. One should have L(k,k) = 0 and maybe 
L(k, .@) = d for all k, whereas the other L(k, l) 's could in principle be 
any set of positive numbers. If every misclassification is equally serious, 
then 

Marginal notes point 
out the less important 
material. 

{ 

0 if l = k (correct decision), 
L(k,l) = 1 if l =I= k and l E {1, ... ,K} (wrong decision), 

d if l = fi2 (being in doubt), 

(2.2) Loss (2.2) is used unless 
otherwise stated. 

for k = 1, ... , K and l = 1, ... , K, .@, is a reasonable choice. In 
what follows we will often employ the loss function (2.2) to illustrate 



A medical example with 
assessed costs is Table 4 
of Titterington et al. 
(1981, p. 154). 
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important concepts; it is often used when there is no way to assign 
more accurate costs. However, we should warn that its use when 
inappropriate can cause difficulties or even be dangerous; the costs of 
failing to spot a disease are usually very much higher than those of a 
false positive in a series of screening tests. 

The risk function for classifier c is the expected loss when using it, 
as a function of the unknown class k : 

R(C,k) = E[L(k,C(X))IC =k] 
K 

= L L(k, l) Pr{c(X) = 11 c = k} + L(k,9&) Pr{c(X) = 9& 1 c = k} 
1=1 

= pmc(k) + d pd(k). 

The total risk is the total expected loss, viewing both the class C and 
the vector X as random; 

K K 

R(c) = ER(c, C)= L nk pmc(k) + d L nk pd(k). (2.3) 
k=l k=l 

This is seen to be the overall misclassification probability plus d times 
the overall doubt (or reject) probability. It is also the long-term average 
loss, the limit of n-1 L.'J=l L(Cj,C(Xj)), where {(Cj,Xj)} is a random 
sample of size n. 

For our first main result, let 

nk pk(x) 
p(klx)=Pr{C=kiX=x}= K (2.4) 

L.l=l n1 PI(x) 

be the posterior probability of class k given X = x. Then the following 
holds. 

Proposition 2.1 The classification rule which minimizes the total risk 
under loss (2.2) is 

c(x) = l,;;K 
{ 

k if p(k I x) = maxp(ll x) and this exceeds 1- d, 

9& if each p(k I x) ~ 1- d, 
(2.5) 

and for a general loss function is 

{ 
k if this attains min L L(j, l)p(j l.x) < d, 

c(x) = I,;;K . 
J 

9& otherwise. 
(2.6) 
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Proof: We have 

R(c) = E [E[L(C,c(X)) I X]] 

= L E[L(C,c(x)) I X= x] p(x)dx 

where p(x) = L::f=l TrkPk(x) is the marginal density for X. It suf­
fices to minimize the conditional expectation, which we can write as 
'L:~= l L(k, c) p(k I x), with respect to c, for each x. For c = ~ we have 
'L:k=l L(k, {J2 ) p(k I x) =d. Under loss (2.2) the minimand becomes 

1 - p( 11 X), ... ' 1 - p(K I X), d 

when c = 1, ... ,K, {J2 respectively. Thus we look for the maximum of 
p( 11 x ), ... , p(K I x ), 1 - d, and find the solution given. D 

Under loss (2.2) another way to write the optimal rule is to choose 
the class with the highest nk Pk(x) provided this exceeds (1 -d) p(x), 
from (2.4). 

This optimal classifier is also referred to as the Bayes rule. When 
two or more classes attain the maximal p(k I x) the tie can be broken 
arbitrarily. The value R(c) of the total risk (2.3) for the Bayes rule 
is called the Bayes risk. This value is the best one can achieve if 
the nk 's and Pk 's are known, and provides a benchmark for all other 
procedures. For two classes and without the doubt option the Bayes 
risk is Emin[p(11x),p(21x)], for any number of classes it is E[1-
maxp(klx)]. Let r(x) = 1-maxkp(klx). Then with the doubt option 

pmc = E{r(X)J[r(X) ~ d]}, pd = Pr{r(X) > d}, 

and the Bayes risk is R = pmc + dpd. The error-reject curve plots pmc 
against pd for varying d. Note (Chow, 1970) that 

pmc(d) = -ld ( dpd(O 

so pd(d) as a function of d determines all the performance quantities. 

Proposition 2.1 highlights the central role of the posterior probabil­
ities. Most of the rest of the theory presented here can be regarded as 
ways to estimate or approximate the posterior probabilities from the 
training set. 

This definition follows 
Lehmann (1986), 
Devijver & Kittler 
(1982) and many 
others; another school, 
represented by 
Berger (1985), calls the 
total risk the Bayes 
risk, and the Bayes risk 
the minimum Bayes 
risk. Fukunaga (1990) 
calls it the Bayes error. 
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Example: Normal classes with common covariance matrix 

The most important distribution in statistical theory is the normal 
distribution, with the familiar density (.j2no-)-1exp[-!(x-,u)2jo-2] in 
the one-dimensional case. We write X "' N{,u, o-2} to signify that X 
has this distribution, with mean parameter ,u and variance parameter 
o-2, and will also say that 'X is normal (,u, o-2)'. In p dimensions the 
density is 

We write X "' Np{,u, L} or say that X is normal (,u, L) when X is a p­

dimensional vector with this distribution. (Thus we omit the qualifying 
'multi' or 'multivariate' that often is included.) The expected value is ,u 
and the covariance matrix is L (Mardia et al., 1979, p. 37). 

Suppose the feature vectors from class k are Np{.Uk. L}. If we 
disregard the doubt option a new feature vector x is allocated to the 
class k with smallest value of <5(x, ,Uk)2 - 2log nk. where 

<5(x,,uk) = [(x- ,uk)TL-1(x- .Uk)]112 

is (the definition of) the Mahalanobis (1936) distance from x to the 
centre of class k. Since the quadratic term xTL-1 x is common to each 
class the optimal rule can be written 

minimize - 2,u[L-1 x + ,u[L-1 ,Uk - 2log nk over k = 1, ... , K. (2.8) 

This is called (the population version of, or the theoretical version of) 
linear discriminant analysis. If the classes are equally likely a priori 
then x is classified as coming from the nearest class, in the sense of 
having the smallest Mahalanobis distance to its mean. If in addition L 
is proportional to the identity matrix then distance can be Euclidean 
distance. 

The error rate for the optimal rule can be computed explicitly in 
the two-class case. One should allocate to class 1 whenever 

This can be reorganized as 

(2.9) 

where Ji = !(,u1 + ,u2). If X comes from class 1 then A"' N{!<5 2,<52}, 
in terms of the Mahalanobis distance 

"' { T -1 )}1/2 u = (,u1 - .U2) L (,u1 - .U2 (2.10) 
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between the two classes. Similarly, if X comes from class 2, then 
A"' N{(-~<52 , <5 2}. Accordingly 

pmc = 1qPr[N{ib2,b2}:::::; log(n2/nl)] 

+ n2Pr[N{ -~<5 2 , <5 2} > log(n2/nt)] 

= n1<1>( -~b +;! log(n2/nd) + n2<1>( -~b-! log(n2/n!)), 

where <I>(·) is the cumulative distribution function for the standard 
normal. Note that the error rate is expressed in terms of the one­
dimensional normal distribution even when the class distributions are 
p-dimensional normal. In the symmetric case with equal prior probabil­
ities both class-wise error rates are equal, and the minimum attainable 
misclassification rate is pmc =<I>( -~b). 

Example: three Poisson groups 

Suppose there are three equally likely groups of Poisson data, with 
mean parameters A.1 = 10, A.2 = 15, A.3 = 20. Then the optimal rule is 
to allocate to class 1 if X :::::; 12, to class 2 if 13 :::::; X :::::; 17, and to class 
3 if X ~ 18. The class-wise success rates, or probabilities of correct 
classification, are 

pcc(1) = Pr{X:::::; 121 C = 1} = 0.792, 

pcc(2) = Pr{13:::::; X:::::; 171 C = 2} = 0.481, 

pcc(3) = Pr{X ~ 181 C = 3} = 0.703. 

The overall error rate is 0.341. 

Suppose next that one can obtain two independent measurements 
X1 and Xz from the object to be classified. How do the allocation 
rules and the error rates change? Some easy calculations show that one 
should allocate to class 1 if X :::::; 12.0, to class 2 if 12.5 :::::; X :::::; 17.0, and 
to class 3 if X ~ 17.5, where X = (X1 + X2)/2. The revised class-wise 
success rates are 

pcc(1) = Pr{X:::::; 12.01 C = 1} = 0.843, 

pcc(2) = Pr{12.5:::::; X:::::; 17.01 C = 2} = 0.640, 

pcc(3) = Pr{X ~ 17.51 C = 3} = 0.806. 

The overall error rate has been reduced to 0.237. 



This technique is 
known as multiple 'hot 
deck ' imputation in 
survey sampling. 
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Remarks 

The constant d in (2.2) acts as a safety threshold, and should in principle 
be specified by the user of the resulting classifier. The inconveniences 
caused by a reject have to be judged against the consequences of a 
misclassification. In a serious application where the classifier is meant 
to work routinely on future examples one would typically try several 
d values on a training set of vectors with known classes, and obtain 
estimates of misclassification and doubt rates (see Section 2.7) before 
a 'final value' is chosen. Plotting misclassification rate against d is 
useful (see Figure 3.5 on page 114). If d is near zero then 'doubt' 
is inexpensive. This will lead to low error rates but on few classified 
vectors and a high doubt rate. If on the other hand d ~ 1 -1/K then 
decision £0 is so expensive that it never will be used. 

There are no restrictions on the type of densities Pl, .. . , PK ; in 
particular they need not be densities with respect to Lebesgue measure. 
(For professional probabilists : as long as Pk = dPk/dJ.l for some a-finite 
measure J.l dominating the class distributions Pt, . .. , Pk both (2.4) and 
(2.5) continue to hold. We may in fact take J.l = I:f=I Pk-) Thus some 
or all of the Pk 's may have discrete components, they may represent 
normal distributions with singular covariance matrices, and so on. 

The small piece of theory presented here is fairly standard, although 
the rigorous derivation of the optimal reject ('doubt') region, by means 
of the loss function, is less known. The most popular special cases 
of the optimal rule are the normal distribution cases with common 
or different covariance matrices; see the example above and those 
discussed in Section 2.2. Indeed, discriminant or classification analysis 
started with a sample version of (2.9), in Fisher (1936). He derived the 
best linear rule in the two-class case but from a different perspective; 
see Section 3.1. 

Missing values 

Some problems (such as the Pima Indians data) have examples with 
missing values for some of the features. In principle these are easily 
accommodated; just compute the posterior probabilities p(c I x*) using 
the observed features x·. However, these may be difficult to calculate. 
One technique is to simulate the missing features from p(x I x*) and 
average p(c I x) over the simulated values. For this to be possible, the 
marginal density p(x) must be known. If there are several missing 
features, the Gibbs sampler (Section A.3) may be used to allow them 
to be sampled one at a time. 
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For normal classes both procedures are easy, as the distribution 
of some of the features is again joint normal, so we find a modified 
linear rule in the observed features. The density p(x I x*) is a mixture 
of normal distributions (one for each class) and so is easy to sample 
from. 

Simpler procedures are often used, such as replacing missing values 
by 'typical' values, for example by the average over observed values. 
This is potentially dangerous, as the conditional density p(y I x*) of 
a feature y may have a very different mean from the unconditional 
density. 

Missing values have been largely ignored in the pattern recognition 
literature. They are common in medical diagnosis, but rare in domains 
where data are collected automatically. It is a subject which has been 
treated most extensively in the literature on sampling surveys (Little 
& Rubin, 1987). There the problem may be that 'missing' actually 
indicates a refusal to respond, and so is informative about the features. 
This can also occur in medical diagnosis, where the medical practitioner 
may not order a test whose outcome appears certain or not relevant 
to the diagnosis. It could also be that a feature is missing because it 
proved to be too difficult to measure. Note that informative missingness 
of y is only a problem if it indicates a departure from the distribution 
p(y I x*). Thus a missing test whose outcome could be predicted from 
the remaining features would not be a difficulty (although the medic 
may be predicting from qualitative data which are not recorded). On 
the other hand, the refusal to answer a test may well be unpredictable 
and so informative. Where this is suspected, often the only possible 
action is to code 'missing' as a value of the feature, and somehow to 
find the densities required using the expanded feature(s). 

Outliers 

The concept of outliers does not fit cleanly into the decision-theory 
framework; one is supposed to have described the whole problem, 
and 'outliers' suggest incorrect specification. So one way forward is to 
anticipate outliers and build them into the specification as a separate 
class, with a specified TC (J) and class density p(J) (x). Where might these 
come from? As outliers express surprise, the class density should 
perhaps reflect ignorance, and so be a suitable uniform distribution 
over PI. This is likely to cause difficulties, as for many feature spaces the 
uniform distribution is not normalizable to a probability distribution. 
These can be circumvented; for example for PI = JRP we could take a 
normal distribution with a very large variance. However, the difficulties 
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persist, as both the 'shape' of the variance (for p > 1) and the scale of 
the variance can affect dramatically the reporting of outliers. 

An alternative to assuming ignorance for the class of outliers is to 
follow the procedure we will use for all the other classes, and estimate 1T.(!) 
and p(!)(x) from the training set. Sometimes this is feasible; for instance 
in reading Zip codes and in object recognition, data are sufficiently 
plentiful to enable a representative sampling of outliers. But such 
training sets are not commonplace, and often training sets are collected 
under carefully controlled circumstances where outliers are less common 
than usual (or even removed entirely). 

Once the outlier distribution is given, under loss (2.2) outliers are 
declared if 

1T. (!) Pm(x) ~ (1- d) p(x), max 1T.k pk(x) 
k 

If PCP is 'uniform' this classifies as an outlier when both p(x) = 
2: 1T.k Pk(x) and each component is small. 

Another way to view an outlier would be as an observation x which 
was implausible under each of the class densities Pk or under all classes, 
that is under p(x) = 2: 1T.k pk(x). Note that these two concepts can be 
very different if the classes have very different prior probabilities; the 
second seems preferable as we would want to report as an outlier a 
mildly-unusual observation for a very rare class. Thus in this approach 
outliers are detected by first screening observations x and declaring 
those with small p(x). How small? This is the same scenario as a pure 
significance test in statistical hypothesis testing (Cox & Hinkley, 1974; 
Lehmann, 1986) and the same ideas apply. Typically we will fix a level 
rx of acceptable false detections of outliers, and fix a level Pc so that 

Pr{p(X) < Pc} ~ rx. 

However, the integration needed here will often be intractable, and in 
the examples we relate p(x) to its average value on the training set. 

The two routes lead to the same practical conclusion; declare an 
outlier when p(x) is small. Note that this is one place where knowledge 
of the posterior probabilities is not sufficient. We have to be very 
careful to ensure that 'uniformity' is an acceptable assumption for PCP; 
as this is a density it will depend on the particular transformation of 
the features used. Often structural constraints on the features will rule 
out uniformity, and some other plausible guess at p(!) will be needed. 

The data on Cushing's syndrome shown in Figure 1.2 on page 11 
provide an illustration of the difficulties of outliers in even a small 
number of dimensions. (Typically there are many more points in 
many more dimensions, so the data may be equally 'sparse'.) One 
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of the unknown results seems a clear outlier, both for all three types 
individually and from the whole distribution, but so does one of the 
results of type c, and the latter is believed to be genuine. (However, 
there are only five patients of type c with known results.) Another ofthe 
unknown results looks like a marginal outlier. In this problem we will 
assume that a uniform distribution over log excretion rates is plausible, 
even though there must be an effective maximum and minimum, and 
we might perhaps expect the two rates to be correlated. 

Ignoring the possibility of outliers can lead to misleading results. 
In the early 1950s anthropologists were discussing recently discovered 
hominoid fossils, and in particular whether Australopithecus africanus 
should be classified as an ape or a human. Bronowski & Long (1951) 
considered a linear discriminant analysis of teeth between chimpanzees 
and Homo sapiens and found agreement with Homo but not chim­
panzees; Rao (1960) pointed out that they thereby overlooked the fact 
that on the full set of variables the sample tooth of A. africanus was 
implausible for either population. 

Sometimes outliers are the main interest in a classification problem, 
in what is known in signal processing as novelty detection. For example 
in detecting tumorous tissue in mammograms, the tumours are so rare See the cover for an 

that what is required is to highlight unusual tissue for further inspection example. 

(Tarassenko et al., 1995). 

2.2 Parametric models 

We have seen in Proposition 2.1 the central role of the posterior proba­
bilities p(k I x), although the consideration of outliers showed that this is 
not universal. Since the posterior probabilities are in general unknown, 
we have to estimate them from the data, and to do so we use models. 
The difference between the parametric models we consider here and 
the non-parametric models we consider in Chapter 6 is less clear-cut 
than the terms would suggest: the real distinction is between families 
of probabilities which are quite constrained by having only a few pa­
rameters, and those which are so flexible that they can approximate 
(almost) any posterior probabilities. 

We first give some general comments about the use of paramet­
ric models in classification, including discussion of what the methods 
actually do when the underlying assumed models are incorrect. We 
then present classification rules based on some of the most important 
parametric models. 

The most theoretically 
satisfying approach 
comes in Section 2.4. 



Figure 2.1: It is not 
always necessary to 
model the 
class-conditional 
densities (upper figure) 
accurately, as the 
posterior probabilities 
in the lower figure are 
effectively unchanged 
by most aspects of 
modelling the right 
peak of the 
class-conditional 
density shown dashed. 
Only the densities in the 
interval [1, 2] matter. 
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Theoretical and practical issues related to debiasing of maximum 
likelihood density estimates, predictive classifiers and robust estimation 
are addressed in later sections. Our first approach is that of classi­
cal statistics, to model either the class densities (this section) or the 
conditional probabilities (discussed in Section 2.3). It will be helpful 
to distinguish clearly these two tasks, which Dawid (1976) calls the 
sampling and diagnostic paradigms. Both give a parametric model of 
the joint density p(x, c; 8) of a random sample (X, C) of a set of 
features and its (reported) classification. In the sampling paradigm, 
interest centres on Pk(x;8), and we have p(x,c;8) = ncPc(x;8), with 
the prior probabilities (nk) for the classes assumed to be either known 
or completely unknown. In the diagnostic paradigm, interest centres on 
the posterior probabilities p(clx;8), with p(x,c;8) = p(clx;8)p(x;8), 
but any information about 8 in the unconditional density p(x; 8) is 
normally discarded by conditioning on the observed x 's. 

In later chapters we will concentrate on the diagnostic paradigm, 
which is illustrated in Section 2.3. The sampling paradigm is considered 
in this section, Sections 2.4 and 2.5 and Chapter 6. In Chapter 8 (X, C) 
is modelled simultaneously without stressing the importance of the class 
C. 

Each of these approaches has strengths and weaknesses. As Figure 
2.1 shows, direct modelling of the posterior probabilities may need fewer 
parameters than modelling via the class-conditional densities, and as the 
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main quantities of interest, p( c I x ), are modelled directly, the procedure 
will often be less sensitive to the modelling assumptions. However, the 
diagnostic paradigm does have some disadvantages. We have already 
seen that we need the marginal density p(x) to handle missing values 
and outliers, and will see that using unclassified observations is much 
easier in the sampling paradigm. Thus although users of the diagnostic 
paradigm almost invariably do not model p(x; 8), it is often wise to do 
so. 

General considerations 

The optimal classification procedure under loss function (2.2) is given 
in (2.5) when the class densities are known. It resulted in the Bayes risk 

K 

R(c) = EL(C, c(X)) = L nk[pmc0(k) + d pd0(k)], (2.11) 
k=l 

featuring misclassification and doubt rates for procedure c. In practice 
the Pk 's are at least partly unknown, and the statistical task becomes 
one of providing good alternative procedures with Bayes risk as close 
to R(c) as possible. 

It is assumed in this section that the prior probabilities nk are 
known and that the class densities are modelled parametrically, say 

pk(x) = Pk(x;8) fork= 1, ... ,K, 

where 8 E E> is the vector of unknown parameters needed to describe 
the K class densities. Suppose a training set of the form 

(2.12) 

is available, with the nk Xk,j 's coming from class k. These give rise to 
an estimate Ok of 8k. A natural proposal is then the classification rule 

~ { k ifp(k I x) = maxp(ll x) and this exceeds 1- d, 
c(x) = I 

g) if each p(k I x) ~ 1- d, 
(2.13) 

where parameter estimates are inserted in class densities to produce 
approximate posterior probabilities 

~(k I ) = nk pk(x; 0) p X K ~. 

Ll=l n1 PI(x; 8) 
(2.14) 

The rule (2.13) is called the plug-in classifier. Some of the most widely 
used classification methods are of this form, as shown in the examples 
below. 

We would estimate 1tk 

by nk = nd L.:: "j· 



Here consistency means 
almost sure 
convergence to the 
'true' value. 
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It remains to decide exactly which estimator should be plugged in. 
The maximum likelihood (ML) estimator has been the most popular 
choice in statistical practice, together with modifications to reduce its 
bias. (It is defined and discussed below.) The widespread use of the 
plug-in rule with the ML estimator has been caused by the good general 
reputation the ML method enjoys and the fact that several pioneers in 
statistical classification theory have directly or implicitly reco!llmended 
it. The use has been rather uncritical, though. Although () may be 
excellent as an estimator of () there is no guarantee that pk(x; 0) is a 
good guess for Pk(x; 0), nor is c(x) necessarily a good approximation 
to c(x). The performance of plug-in rules and other procedures should 
really be judged by the criterion of total risk, R(c) defined in (2.3), if 
(2.2) is still considered to be the appropriate loss function, or by othe_E 
criteria more tied to classification accuracy than to the behaviour of (J 

as an estimator for e. 
For example, to apply Proposition 2.1 we only need to know which 

of the posterior probabilities is the largest (or which of a weighted 
sum is the smallest), which requires high accuracy of modelling only for 
some parts of the feature space. (If one posterior probability dominates, 
it does not matter if it is fitted as 0.999 when it is really 0.85.) We 
know of no work aimed at this aspect of the problem, although some 
approaches are closer than others to its goals. 

These questions and related problems are returned to later, but first 
we give some general comments pertaining to the use of parametric 
models in discriminant analysis. 

Bayes risk consistency 

A reasonably simple observation that has been taken as support for 
the use of plug-in parametric rules is the following: As the training s;:t 
increases, that is each of n1, ... , nK grows, then provided only each ()k 

is consistent and the class densities are continuous in their parameters, 
c of (2.13) becomes identical to the optimal c and its total risk R(c) 
converges to Bayes risk R(c). Many plug-in rules, corresponding to 
a large class of possible estimators 0, have this property; see Van 
Ryzin (1966) and Glick (1972, 1976). 

There is an important assumption behind this argument, that the 
class densities Pl, ... , PK in fact obey the parametric structure in ques­
tion. As statisticians sometimes admit, their parametric models are 
only approximations to reality, implying in the present context that 
even when the size of the training set increases beyond bounds, c of 
(2.13) will become close to only an approximation to c of (2.5), and the 
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total risk R(C) will converge to a number greater than R(c). Expres­
sions for this limit can be found using the theory presented below. It 
is often possible to construct procedures that are Bayes risk consistent 
in the sense that the sequence of total risks converges to the Bayes risk 
R( c) when the training sets grow. Unless one firmly believes in a certain 
parametric model the Bayes risk consistent rules will necessarily involve 
non-parametric or very flexible parametric methods, a topic returned 
to in Chapters 4 and 6. 

These comments are not meant to imply that parametric models are 
useless; they may indeed constitute good and compact approximations 
to more complicated models. Classifiers built on parametric assump­
tions may work excellently. Non-parametric methods often demand 
for their successful application far larger training sets than parametric 
alternatives. Thus there is a trade-off between perhaps simple, easily 
implementable algorithms that work well even for moderately sized 
training sets, and non-parametric ones that may behave awkwardly 
for small to moderate training sets. The non-parametric ones will 
nevertheless (nearly always) win if sufficient training data are available. 

Likelihoods and unclassified observations 

The likelihood for the training set ff is 

K nk 

t(8;ff) = ITITpk(xk ,J;8)nk(8) 
k=1}=1 

and this applies whether the nk were fixed in advance or resulted 
from a random sample taken from the whole population. We will use 
L( 8; ff) = log t'( 8; ff) for most of our calculations. Conventionally 
likelihoods are only defined up to a factor which does not depend on 
8 and hence log-likelihoods up to an additive constant. 

Here we assume that either nk(8) is known, hence does not depend 
on 8 and can be dropped from the likelihood, or completely unknown 
and forms part of the parameter vector, which is then really tp = 
(8, n1, ... , 7rK ). The maximum likelihood estimator of tp is the maximizer 
of the (log-)likelihood. We have 

L(8,(nk);ff) = LLlogpk(xk,J;8) + Lnklognk. 
k j k 

We can maximize first over the second term; after introducing a 
Lagrange multiplier for the condition L 1rk = 1 we find nk = nkf L nj. 
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Plugging this in gives the log profile likelihood 

L( 0, (nk); ff) = L L log Pk(xk,j; 0) + const 
k j 

which is the same as the log-likelihood knowing (nk). 
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In most cases we have to maximize over 0 directly (numerically or 
analytically). Sometimes the parameter 0 divides into separate parts 
for each class, in which case we can fit Pk(x; 0) to each class separately 
by maximum likelihood. 

If some of the features are missing, we replace Pk(Xk,j; 0) by 
pk(xZ,j; 0) for the observed features xk,j" 

There are some problems in which observations X are cheap but 
classifications C are expensive, so we can envisage having a set of 
unclassified observations diJ = {xj} in addition to the training set. 
These must be regarded as independent samples from the mixture 
distribution p(x; 0) = Lk 1tkPk(x; 0), and the log-likelihood (or profile 
likelihood) becomes 

L(O,(nk);ff) = LLlogpk(Xk,j;O) + Llogp(xj;O) (2.15) 
k j j 

which will couple the class densities even if they could previously be 
separated. Note that the extra observations may carry much useful in­
formation; consider classes with Np{Jlb ~k} distributions. Given enough 
unclassified data, we could estimate all the parameters Jib ~b 1tk as pre­
cisely as desired, except we would be unable to say which group applied 
to which class. The classified observations provide the information on 
this matching. 

Fitting parametric families when they are wrong 

We will give a brief discussion of the behaviour of ML estimates when 
the underlying parametric model is not necessarily true. Assume that 
X 1, ... , Xn are independent and identically distributed with a density 
p(x), and that the parametric model p(x; 0) = pe(x) is forced on the 
data, 0 being a q-dimensional parameter belonging to some open 
parameter set. The ML estimator e maximizes the log-likelihood 
function 

n 

(2.16) 
i=1 

with respect to 0. By the law of large numbers n-1 Ln(O) tends to 
J p log Pe dx, the mean of log pe(Xi), with probability 1 (often termed 
'almost surely'). 



32 2 Statistical Decision Theory 

For many important parametric models this function has a unique 
maximum at a parameter value 8 = 8o. This 8o is not necessarily the 
'true value' because we have not assumed that p belongs to the family 
of Po's. In a sense 8o is the value of 8 making Po closest to the true 
p, in that it minimizes the Kullback-Leibler divergence 

I p(x) 
d(p,p0) = p(x) log Po(x) dx. (2.17) 

This measure is not symmetric in its arguments and therefore not a 
distance in the usual sense. It is rather a 'directed' distance from the true 
density to the modelled density, and we think of 80 as_::he 'least false' 
parameter value. Under weak regularity conditions 8 ~ 8o almost 
surely (see for example: Huber, 1967; White, 1982) thus generalizing 
the classical consistency result for ML estimators. If the true density is 
in the parametric family, p(x) = p(x;8o) and d(p,po0 ) = 0. 

Applying this result to each of the parametrically estimated class 
densities we see that the ML plug-in rule c defined in (2.13) and (2.14) 
converges pointwise to a rule c• defined analogously to (2.5) but with 
posterior probabilities of the form 

p(k I x) = ;k pk(x; 8o) . 
Lt=l nt Pt(x; 8o) 

Furthermore, 

R(c) ~ R(c*) almost surely, and R(c*) > R(c). (2.18) 

The classical result on the limiting distribution of Jii(ii- 80 ) may 
also be generalized to the present agnostic state of affairs where the 
parametric family does not necessarily contain the true p (Huber, 1967, 
p. 231; White, 1982, Theorem 3.2). 

Proposition 2.2 Under mild regularity conditions 

(2.19) 

where ~d denotes convergence in distribution and 

d K 
_ V o logp(Xi; 8o) 

an - arp iJ() . 

If the true density belongs to the parametric family, J = K. 



The deviance is defined 
in the glossary. Here 
the reference model is 
the true distribution. 

The second step uses 
the independence of X 
and e. 
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Proof: The ML estimator solves the vector equation un(i)) = 0, where 
Un(O) = 2:::~ 1 fa logp(Xi; 0). A Taylor expansion shows that 

where In(O) is the Hessian of the log-likelihood function and 7J lies on 
the vector between the ML estimator and 00. This implies 

JYt(iJ- Oo) = [-n- 1In(O)r
1
n-112Un(Oo) 

-a J-1Nq{O,K} = Nq{O,J-1KJ-1 }. 

If the family contains the true model that J = K is well known 
(Cox & Hinkley, 1974, p. 108; Lehmann, 1983, p. 118). 0 

The usual definition of the Fisher information matrix is K. The 
regularity conditions needed imply that J and K are positive definite. 

We also need to consider the effect of approximating the log­
likelihood (M. Stone, 1977b; Murata et al., 1991, 1993, 1994). 

Proposition 2.3 Let D = 2 E (logp(X) -logp(X; B)], the expected de­
viance on a single test example. Then 

n x D = E deviance+ 2 q* + 0(1/ y'Yt) (2.20) 

where q trace [K J- 1]. If the parametric family contains the true 
density, q* = q, the number of parameters. 

Proof: Let i(x, 0) be the Hessian of the log-likelihood for just one 
sample. We approximate D via the Taylor expansion about 00 

2logp(x; 0) ~ 2logp(x; Oo) + 2 (0- Oof a logp(x; Oo)jaO 
~ T ~ 

+ (0- Oo) i(x, Oo)(O- Oo) 

= 2logp(x; Oo) + 2 (0- Oo)T a logp(x; Oo)jae 

+ trace[i(x,Oo)(O- Oo)(O- Oo)T]. 

We assume ad(p,p0 )jae = Ealogp(X;O)jae = o at 00, so 

D ~ 2 d(p, Po0 ) - E trace (i(X, Oo)(O- Oo)(O- 00) T] 

= 2d(p,po0 ) + trace[J Var(O)] = 2d(p,po0 ) +! trace(JJ-1KJ-1] 
n 

1 
= 2d(p,po0 ) +- trace(KJ-1]. (2.21) 

n 
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For the training set we expand about (j : 

2 I: log p(~i) 
. p(X; , Oo) 
I 

~ 2 L log p(~;~ - L trace [i(X;, O)(e- Oo)(e- eof] 
i p(X; ,8) i 

""""l p(X;) * d . • ~ 2 ~ og . ~ + q = evtance + q . 
p(X; ,O) 

Checking the error terms shows the error to be 0(1/ Jii). D 

This is the basis of Akaike's (1973, 1974) AIC and Murata et al.'s 
(1991, 1993, 1994) NIC criteria for model selection, which are of the 
form (deviance+2q*), with q* replaced by q for AIC. M. Stone (1977b) 
derived NIC while considering cross-validation and AIC, but did not 
comment that it might provide a better approximation. Moody's (1991, 
1992) Pelf is a more general version which we discuss in Section 4.3. 

To use (2.20) we replace the expectation of the deviance by the 
observed value. The main error comes in the fluctuations of the deviance 
at Oo, 2 I: logp(X;)/p(X; ; 8o), about its mean 2n d(p, po0 ), which by the 
central limit theorem (assumed applicable) will be of order Op(Jii) , 
and we have 

n x D = NIC + 0(1 / Jii) + Op(Jii). (2.22) 

(The notation Op() is explained on page xii.) 
Now consider comparing several models via their values of NIC, 

and choosing the model with the smallest. Equation (2.22) shows that 
for large enough n we will choose one of the models with smallest D. 
Of course, there may be many such models if we have a nested set, so 
NIC will there choose a model which includes the smallest true model, 
but not necessarily the smallest such model. 

One major source of the fluctuations in (2.22) is the variability of 
the training set (X;), and this is common to all models. However, the 
claim by Murata et al. (1994, §5) that for differences in NIC amongst 
nested models this fluctuation term in the differences is Op(1 / Jii) is 
false. Suppose we have nested models with q1 > q2 , 6..q = q1 - q2 and 
the smaller model (and hence both) are true. Then as M. Stone (1977b) 
pointed out, 

AICt- AIC2 = 2(LR test of 1 vs 2)- 26..q "' xiq- 26..q 

for large samples, and the right-hand side has fluctuation Op(1). Even 
asymptotically we might find AICt < AIC2 and so choose the larger 

AI C was named by 
Akaike (1974) as 'An 
Information Criterion', 
although it seems 
commonly believed that 
the A stands for 
Akaike. NI C is an 
abbreviation of 
'Network Information 
Criterion'. Some 
definitions of AIC and 
the definition of NIC 
divide by n, which is 
fixed . 
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model. If the models are not nested and equally good we can have 
a fluctuation term in the difference of Op(.j1i); consider the perverse 
example of two models which choose the true family for the odd 
numbered Xi, fixed e for the even ones and vice versa, so the effective 
training sets are disjoint. 

To make use of these results in practice, we have to be able to esti­
mate J and K. Now J is the expectation of the observed information, 
the Hessian of the negative log-likelihood, with the observed informa­
tion evaluated at e0 and the expectation over the true distribution of 
examples. Thus we can form a reasonable estimate by replacing the 
expectation by the average over a training (or test) set, and replacing 
eo by 0. The same argument suggests estimating K by the variance 
of ologp(X,O)joe over the training or test set. If qjn is not negli­
gible, there is a danger of bias here, especially in estimating K, and 
hence of underestimating q*. To see this, let U(x,e) = ologp(x;e)joe 
denote the scores. Then EU(X, e0 ) = 0 from the definition of e0, so 
K = EU(X, eo)U(X, eof. For a training set .l:::i U(Xi, B) = 0, which 
imposes q constraints on the scores, and the divisor in the variance 
should perhaps be n- q. For a test set it is perhaps best to use the 
variance with divisor n- 1. 

Very little of the argument here depends on using a maximum like­
lihood estimator, and Huber's (1967) results hold much more generally. 
All we need is that 8 maximizes 2::::: tp(Xi; e) for a suitably smooth 
function tp playing the role of log p, and that a unique e0 minimizes 
E tp(X; e). Of course, the definitions of J and K change by replacing 
logp by tp. (We use this freedom on page 140.) 

Example 

Consider the normal distribution Nq{Jl, ~} as an approximation to a 
given density p on 1Rq. The density is given at (2.7). Some analysis 
(Huber, 1985, Lemma 12.4) shows that the parameter values (JLo, ~o) 
that provide the best approximation according to the Kullback-Leibler 
criterion (2.17) are 

Jlo = EpX = j xp(x)dx and 

~o = VarpX = j(x- JLo)(x- JLo)T p(x)dx. 

Thus when the normal model is used to describe data from a density p 
that perhaps is known a priori not to be normal and the ML estimators 
ji, !: are computed, the theory shows that what they really estimate 
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are J-lo, I:o, the population mean and variance. It is worth pointing 
out that this was proved without using any explicit expressions for the 
estimates themselves. These are derived below, after which another and 
more direct proof of /1 ~ J-lo and ~ ~ I:o can be given. 

The normal model and the best linear rule 

Suppose Pk is the Np{J-lb I:} density for k = 1, ... ,K, as defined in 
(2.7). There we saw that the Bayes rule is a linear rule in the sense that 
we choose the maximum of K linear combinations, and for two classes 
we divide the linear combination (J-l2 - J.1I}I:-1x (from (2.9)). 

The total likelihood for a training data set of form (2.12) is 

K nk 

II II II:I-112 exp[-~(Xk,j- }-lk)TI:-1(Xk,j- J-lk}]. 
k=1 j=1 

This is maximized by flk = Xk = nk"1 2::}~ 1 Xk,j and by 

(2.23) 

where N = 2::~= 1 nk is the total training set size (and the maximum will 
be infinity unless N ~ p + K ). See, for example, Mardia et al. (1979, 
§4.2.2). The ML-estimated best linear rule takes the form (2.8) with 
these estimates plugged in: 

. . . 2~T~-1 ~T~-1~ 21 k 1 K (2 24) mm1m1ze - J-lk ~ x + J-lk ~ J-lk- ognk over = , ... , . . 

For two classes this is Fisher's (1936) linear discriminant, derived 
from another criterion; this approach stems from Rao (1948). Often 
the bias-corrected estimator of I: with divisor N - K is preferred 
(and N - 1 appears in at least one computer package). This makes 
no difference to the linear rule unless the prior probabilities differ, in 
which case the effect is to change the constant terms to reduce slightly 
the influence of the data term relative to the prior. 

The best linear rule for the data on Cushing's syndrome on page 11 
is shown in Figure 2.2. The equal-covariance normal model does not 
seem appropriate for this dataset. 

The best quadratic rule 

Now let the model for class k be Np{J-lk, Lk}· The ML estimators can 
be found from a likelihood expression as before, and since there are no 



Figure 2.2: The decision 
regions of the best 
linear rule for the data 
on Cushing's syndrome, 
together with contours 
for p(x) at negative 
powers of 10 of the 
average for the training 
set. 
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parameters common to more than one class, Jik and ~k are found by 
maximizing the likelihood for class k separately. The result is 

nk 

Jik = Xk and ~k = : 'L,(Xk,j- /ik)(Xk,j- Jik)T 
k j=1 

(2.25) 

where we need nk ~ p + 1 for each class for a finite maximum of the 
likelihood. This produces the plug-in version of the best quadratic rule; 

. . . 1 1 I~ I 1 ( ~ )T~-1( ~ ) 1 m1mm1ze 2 og ""'k + 2 x -Ilk ""'k x -Ilk - ognk (2.26) 

over k = 1, ... ,K. The rule goes back to C. A. B. Smith (1947). 
The number of estimated parameters has increased dramatically 

from Kp + p(p + 1)/2 for the best linear rule to Kp + Kp(p + 1)/2, 
so parameter estimates may be rather variable for the quadratic rule. 
Even though this method is guaranteed to outperform the linear rule 
for very large sample sizes, it can very well be outperformed by the 
linear rule for moderate sample sizes. 

Since it may be preferable to use a linear rule, we can ask which 
linear rule produces the smallest error rate. This has been considered 
for two classes by Riffenburgh & Clunies-Ross (1960), Clunies-Ross & 
Riffenburgh (1960) and Anderson & Bahadur (1962). (See Anderson, 
1984, §6.10.2.) The optimal linear rule is not that derived by pooling the 
covariance matrices and using (2.24) (for example, with ~ the MLE or 
the average of ~i ), although the linear combination used does derive 
from a convex combination of the two covariances. In practice it may 
be better to take some intermediate position, and compromise between 
the linear and quadratic rules. This is discussed in Section 3.4. 

The data on Cushing's syndrome look suitable for quadratic dis­
crimination, since although the numbers in the classes are very small, 



the covariance ellipsoids vary very considerably in orientation. The 
results are shown in Figures 2.3 and 2.4. The six unknown types are 
all given quite high posterior probabilities (the lowest is 70%, and the 
two apparent outliers have low values of p(x), roughly w-12 and w- 3 

times the average for the training set. Thus both are rated as outliers 
(and they were medically, the more extreme being due to difficulties in 
the measurement procedure, and the less extreme to another type not 
represented in the training set). 

It is possible that l:k is singular in one or more groups. (This 
happens in the forensic glass data- none of the samples of tableware 
contains any potassium, barium or iron.) A singular covariance matrix 
implies that the population for the class lies in a subspace of f£; 
equivalently it satisfies one or more linear constraints. Then a future 
example which does not satisfy those constraints does not come from 
the class, and one which does will come from this class (or any other 
that has the same constraints). 



These equations follow 
from Huber (1981, 
§8.4). They extend in 
the obvious way to a 
common scale matrix 
for all groups. See also 
Kent et al. (1994) and 
Lange et al. (1989). 

Kent et al. (1994) show 
that the solution is 
unique for v > 1 and 
n~p+l. 
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Multivariate t models 

The univariate normal distribution is well known to have shorter tails 
than distributions which occur in applied problems, and a t distribution 
with a moderate number of degrees of freedom is often regarded as 
a better fit. The multivariate analogue of a t distribution is usually 
described by the analogue of the distribution of Student's t statistic: 
the multivariate t with location vector 1-l and scale matrix ~ is the 
distribution of J-l +X /S where X "' Np{O, ~} and vS2 "' X~ (Johnson 
& Kotz, 1972, §37.3; Mardia et al., 1979, p. 57). (Unfortunately, several 
variant definitions exist in the literature, not all of which are actually 
densities!) 

With this definition, for v > 2 the. mean is 1-l and the covariance 
matrix is v~/(v- 2). The density 

(2.27) 

has elliptical contours with shape determined by ~ but which spread 
out more slowly than a normal distribution. The optimal classifier is 

minimize (v!p) log [1 + ~(x- J-lk)T~k' 1 (x- J-lk)] +!log l~kl-log 1tk. 
(2.28) 

If the prior probabilities are equal and the scale matrix is common to 
all groups we again have the best linear rule. 

The log-likelihood for the multivariate t is similar to that for the 
normal, except that the quadratic term Qi = (xi- l-lf~- 1 (xi - J.l) 
is replaced by (v + p)log(1 + Qifv). Thus the maximum likelihood 
estimators of 1-l and ~ are weighted versions of the mean and scale 
matrix, with weights wi(J-l,~) = 1/(1 + Qi/v): 

The effect of the longer tails of the t distribution is to down-weight 
observations which are far from the mean. The maximum likelihood 
estimators can be found by an iterative algorithm which updates the 
weights, although it would be wise to choose resistant estimates of 
the mean and covariance matrix (see Section 2.5) as starting points. 
Details of existence and convergence are a special case of arguments 
of Maronna (1976) and Huber (1981, §8.6). Note that as llxdl -+ oo 
its effect on the location estimate goes to zero, whereas on the scale 
estimate its effect remains bounded but does not vanish. 



One use of a multivariate t is as an agnostic model for dis­
tributions with elliptical densities with long tails, in the spirit of 
robust statistics (Huber, 1981; Lange et a/., 1989). In that set­
ting it is interesting to consider what the least false parameters are, 
as they indicate what the parameters measure in the population. 
They are weighted versions of the mean and variance, weighted by 
w(,uo, I:o) = 1/ [1 +(X- .uofi:01(X- .uo)/v]. Thus if the true density 
has elliptical contours, .uo will be the centre of the ellipses and I:o will 
be proportional to the moment matrix of the ellipses (with the constant 
of proportionality depending on the true density). 

The decision rule for multivariate t distributions on 5 degrees of 
freedom is shown in Figure 2.5 for the data on Cushing's syndrome. 
The number of degrees of freedom was chosen arbitrarily to give fairly 
'fat' tails; despite this there is little difference from the best quadratic 
rule. Some of the difference is due to different mean and scale estimates, 
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but the differences in the lower right reflect the tail behaviour. The 
much greater uncertainty shown in Figure 2.6 in the lower right also 
reflects the tail behaviour. 

A mixed model for discrete and continuous components 

Suppose X = (A, Yt, ... , Yp) where A is discrete and takes values in 
{ 1, ... , m} and Y = ( Y1, .. . , Yp) T has a continuous distribution. A 
simple and sometimes quite effective model for such feature vectors is 
to postulate Y I {A= a}"" Np{llk,a,L} while Pr{A =a I k} = gk(a) for 
class k (Olkin & Tate, 1961; Krzanowski, 1975). Many variations exist 
around this theme; the L matrix which is assumed common here can be 
taken to vary with either or both of a and k, for example. There is also 
a possibility of modelling gk(a) if the number of possible values for A is 
anything but small. (This is termed a conditional Gaussian distribution; 
see, for example, Edwards, 1995; Lauritzen, 1996, Chapter 6.) We shall 
be content here to illustrate the general principle with the simple model, 
sometimes called the 'location model'. 

The class densities are 

and so from Proposition 2.1 we find the class k maximizing 

when (a, x) is observed. We need to find and plug in the maximum 
likelihood estimators of the parameters. These are straightforward: Jik,a 

is the mean of observed X from class k with A = a, i: is the observed 
covariance matrix (with divisor n) of X -1-Lc,A, and gk(a) is estimated 
by the proportion of examples in class k with A = a. 

Finite mixture distributions 

We can consider larger parametric models, for example mixtures of 
normals which will allow us to model multi-modal class densities. As 
this is a way to fit quite general class densities, we defer the most of the 
details to Chapter 6. However, there is one quite commonly used 'trick' 
to fit class densities by mixtures, and that is to model sub-populations of 
the classes. A rather extreme example is that of Oliver et al. (1979), who 
considered 13 cell types in cervical cytology, 5 normal and 8 abnormal. 

We have experienced several instances of feature distributions with a 
clear bimodal structure. Consequently histograms for even well chosen 
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transformations of data are not well described by fitting a normal 
density. This suggests studying mixtures of two normal distributions as 
a means of describing class densities. The case of three or more normal 
components of a mixture is similar, but the number of parameters 
needed increases quite rapidly. We view the following mixtures of 
two normals for each class density as still being within the realm of 
parametric modelling. 

Let X~, ... ,Xn be a random sample from a density which we intend 
to describe parametrically by 

The important problem of fitting data to this class of densities is a 
difficult one and is perhaps not yet satisfactorily solved in the literature. 
The model is not properly defined until a restriction of the parameter 
set is made to avoid problems of identifiability; we may exchange 
(J.L1, I:l) and (J.l2, I:2) and rename q as 1- q to get two representations 
of the same density. The model is identifiable if one demands q ~ ~ 
or that the first J.ll component should be to the 'left' of the first J.l2 
component, for example. One may check by drawing graphs in the 
one-dimensional case, however, that curves with rather different sets 
of parameters may still come close to each other, making estimation 
of the parameters a more confusing and difficult task than usual. The 
density is not necessarily bimodal even when J.ll and J.l2 are different; 
see Eisenberger (1964). 

The maximum likelihood programme does not work as smoothly 
and automatically as in the earlier examples. First of all it does not 
exist in the usual sense, since the log-likelihood Ln is unbounded, with 
many singularities. For example, Ln ~ oo as J.ll = X1 and I:1 ~ 0, 
corresponding to the 'explanation' q = 1 - ~' X1 "" N{J.ll, 0}, while 
X2, ... , Xn follow N{J.l2, I:2}. Clearly this is not the solution we want. 
The Ln function will usually have several local maxima, and one of 
these corresponds to the nth element in a sequence of stationary points 
that converge almost surely to the true parameter values. 

A one-dimensional example of fitting two normals is given in 
Venables & Ripley (1994, Chapter 9) which illustrates some of the diffi­
culties even in that case. They use direct maximization, with derivatives 
of the log-likelihood being found by automatic symbolic differentiation. 

Updating estimates from unclassified data 

We saw at (2.15) that we could include unclassified observations in the 
likelihood, and this opens the possibility of continuing to estimate the 

For univariate data, 
Hathaway (1985) 
establishes consistency 
for the global minimum 
under a constraint on 
the ratio of the 
variances. 
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parameters (and the prior probabilities (nk)) while the classifier is in 
routine use. This has two important implications: it enables work to 
start with a minimal training set, and it allows the classifier to adapt to 
slow changes in the class distributions over time. 

The log-likelihood (2.15) involves the marginal density p(x; e) which 
is a mixture of the class-conditional densities. Mixtures are discussed 
in more detail in Section 6.4, but we only need the application of the 
EM algorithm (Section A.2). Regard the true classes of the unclassi­
fied observations o/1 as missing data. Then we estimate the posterior 
distribution of the true class k as nk(x; e) oc nkpk(x; e) and nk as the 
average of the nk(x; e) over all observations. Hence e is estimated by 
maximizing a weighted log profile likelihood 

L(e) = L L:logpk(xk,j;e) + L L nk(xj;e)logpk(xj;e). 
k j j k 

The first term comes from the training set !T and the second from the 
unclassified observations o/1. This is an iterative process, in that e and 
(nk) are updated alternately with ( nk(xj; e)). 

We can apply this programme to the best linear and quadratic 
classifiers (Hjort, 1986, §7.2) and to multivariate t distributions. We 
need only keep the means and covariance matrices of the classified data, 
but since nk(x; e) will change as more examples are collected, all the 
unclassified data needs to be retained. Approximations for situations 
where retaining the data is computationally undesirable are discussed 
by Titterington et al. (1985, Chapter 6). 

2.3 Logistic discrimination 

Let us return to the normal model for classes with a common covariance 
matrix given by (2.7) with Jl = Jlj for class j. If we compare class k 
with class 1 we have 

21 
p(klx) 

og p(11 x) 

= (x- JldT~-1 (x- Jld- (x- Jlkf~-1 (x- Jld + 2log nk 
1rl 

= 2(Jlk- JldT~-1x- (Jlk + JldT~-1 (Jlk- Jld + 2log nk 
1rl 

= 2/3[ x + 2rxk 

say, a linear function of x. Thus the posterior probabilities obey a 
log-linear model of the form 

logp(k I x) = logp(11 x) + rxk + f3[ x (2.29) 



44 

8 
,; 

8 

0 

ci 

2 Statistical Decision Theory 

u b b 

b 
b 

10 

Tetrahydrocortisone 

50 

which is also known as a multiple logistic model. The case of two classes 
is much simplified, as 

logitp(k I x) =a+ pT x (2.30) 

for the logit transform logit(x) = log(x/(1- x)). Thus (2.30) gives the 
posterior log-odds of class two versus class one, and is known as a 
logistic regression. 

Equation (2.29) is illuminating, as it expresses the posterior proba­
bilities, the important quantities in a plug-in rule, directly in terms of 
the parameters. This suggests that rather than use maximum-likelihood 
estimation of Jlk, ~ and hence ak. fJk, we should estimate the latter 
directly. As (2.29) and (2.30) only concern the dependence of C on X, 
this is done by conditioning on X. For illustration we consider only 
the case of two classes here, and defer the general case to Section 3.5. 
However, comparing Figures 2.2 and 2.7 shows that the two estimates 
may give quite different classifiers when the common covariance model 
seems inappropriate. 

Conditional on X = x, the class C has a Bernoulli distribution 
with probabilities p(c I x). Thus if were-express the training set as .o7 = 
{ ( Ci, Xi), i = 1, ... , n} the conditional log-likelihood for the parameters 
(}=(a, {J) is given by 

n n 

II p(ci I xi)= II p(21 xJ(c;=2)[1- p(21 Xi)]l-l(c;=2) 

i=l i=l 

and so if YJ = I(C1 = 2) the conditional log-likelihood is given by 

(2.31) 

Figure 2.7 : The decision 
regions based on 
logistic discrimination 
for the data on 
Cushing's syndrome. 



The loss is even higher 
when there is very little 
overlap, but then both 
rules perform well. 

The ARE is the ratio in 
large samples of plug-in 
error rate minus Bayes 
risk; this is more 
relevant than the 
variability of the 
parameter estimate 
itself. 
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Note that maximizing (2.31) will not give the same answer as plugging 
in the maximum-likelihood estimators to give 7J = 2-1(J1k - jll), a = 

log(n2 jn1)- !(J11 + jl2)T2-1(jl2 - jll) as here the likelihood is based on 
the conditional distribution. As they are based on less information, the 
direct estimators should be less efficient (that is more variable) although 
the standard large sample theory applies to show that the estimates are 
consistent and asymptotically normal. Efron (1975) demonstrates that 
this is the case, and the loss of efficiency can be appreciable when 
the class densities overlap, so the classification task is neither easy 
nor hopeless. If there are two classes with equal prior probabilities, 
the asymptotic relative efficiencies are a function of the Mahalanobis 
distance (j between the class means, given by 

0.5 1 1.5 2 2.5 3 3.5 
ARE 1.00 0.99 0.97 0.90 0. 79 0.64 0.49 
pmc% 40.1 30.8 22.7 15.9 10.6 6.68 4.01 

(The values of pmc are computed from the arguments below (2.10).) 
On the other hand, the logistic form (2.30) assumes less and is therefore 
less likely to be biased. (We will see in Chapter 3 that (2.30) can arise 
from other models of the class densities.) 

Logistic discrimination is a very important template for many of 
the generalizations we will consider, much more so than linear dis­
crimination. We take it up in Chapter 3 as a principle in its own 
right. 

2.4 Predictive classification 

Next we discuss the predictive approach towards estimation of paramet­
ric densities and posterior probabilities. It is Bayesian in inspiration 
and flavour even though the 'vague prior' versions of the method can 
be used and motivated outside the Bayesian paradigm. Suppose that 
we have a parametric family p(x, c; e) for the joint distributions of the 
classes and features; this implies parametric models for Pk(x; e), nk(e) 
and p(k I x; e), although of course not all of these need actually de­
pend on e. Assume also that we have a prior distribution p(e) for 
e. Then in principle (and sometimes in practice) we can calculate 
p(k I x) = Pr{k I x;Y}. The predictive approach then acts as if p(k I x) 
were the true posterior probabilities, and uses Proposition 2.1 to calcu­
late the optimal rule, which we will call the predictive classifier. The 
crucial difference between the plug-in and predictive classifiers is that 
the former acts as if the estimated e was the true e whereas predictive 
methods average over the uncertainty in e. 
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The predictive approach gains very little mention in even compre­
hensive texts such as Berger (1985) and McLachlan (1992). This may 
well be because it usually makes little difference within the tightly con­
strained parametric families we are considering in this chapter, but it 
will be important when we consider much larger families. The books 
of Aitchison & Dunsmore (1975) and Geisser (1993) are devoted to the 
approach. Both contain brief accounts of classification, in Aitchison & 
Dunsmore's Chapter 11 under the heading of 'diagnosis'. 

Within the Bayesian paradigm this needs no further justification: 
the prescribed way to handle unknown parameters is to integrate them 
out from the conditional distribution given the data. We may however 
ask whether the predictive classifier has any optimality properties in 
terms of risk. In one sense it cannot, for if we knew the true value of 
e we must do better. Suppose rather that we extend the framework so 
e is an unobserved random variable. Let c(x, 3) be a classifier which 
is allowed to depend on the training set (2.12). Its risk function, the 
expected loss when using it, is 

R(c,k,e) = E [L(k,c(X,3)) 1 c = k,e] 

= pmc(k, e) + d pd(k, e), 

where Ek,8 denotes the expectation for class k and fixed e. As a 
function of e alone the risk function is 

R(c,e) = EeL(C,c(X,3)) = pmc(e)+dpd(e). 

The overall risk in this framework is 

R(C) = EL(C,c(X,3)) 

= j R(c, e) p(e) de= pmc + d pd, 

where pmc = J pmc(O) p(e) de and pd = J pd(O) p(O) de are uncondi­
tional misclassification and reject rates, averaged over the unknown e. 
Note that this criterion makes good sense with any reasonable weight 
function over the parameter space; it does not have to be interpreted 
as a prior density (although it can be). 

Proposition 2.4 The classifier that minimizes the overall risk under loss 
(2.2) is 

-( ) = { k ifp(k I x) = max1 p(llx) and this exceeds 1 - d, 
c x ~ if each p(k I x) ~ 1- d, 

(2.32) 

where p(k I x) = Pr{ C = k I X = x; 3}. This is also the rule that mini­
mizes the conditional risk given the training data. The extension to other 
loss functions follows Proposition 2.1. 
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Proof: We condition on the training set : 

R(c) = EL(C,c(x,.rn = Eg-E[L(C,c(x,.rn 1 .r] 

and the conditional expectation is the total risk in the conditional 
distribution. Now apply Proposition 2.1 to the conditional total risk, to 
show this is minimized by a classifier of the form (2.32). D 

The full expression for the predictive posterior distribution when 
the future observation is independent of the training set is 

p(klx) oc j p(klx;O)p(x;O)p(Oiff)dO (2.33) 

n n 

i=l i= l 

The posterior density and the integral here readily become intractable. 
Explicit expressions are given below for some important special cases, 
and approximations can be provided in other cases. Note that (2.33) 
and (2.34) depend on the parametrized marginal density of X; it is 
at this point that the simplicity of logistic discrimination loses out, 
unless the assumed form of the marginal density does not depend on 
e. Alternative expressions which simplify in that case are 

p(k I x) = j p(k I x;O)p(O I ff,x)dO 

n 

p(O I ff,x) oc p(O)p(x; 0) IIp(ci I xi ; O)p(xi ; 0). 
i=l 

and p(O I ff,x) will not depend on x if p(x; O) does not depend on e. 
If we work with parametrized class densities in the sampling 

paradigm, it is easier to use 

Pk(x) = j pk(x;O)p(Oiff)dO. (2.35) 

It is helpful to remember that p quantities are just conditional densities 
given ff and so can be manipulated as densities. We consider later 
what happens if the prior (nk) is unknown. 

Suppose we have to classify m > 1 future examples with feature 
vectors x~ , ... , x~. The approach so far will not be fully efficient if 
p(x ; 0) really does depend on e, since all the xj can be used to increase 
our knowledge of e (Geisser, 1966). We should use 

n m 

p(O I ff,x~, ... , x~) oc p(O) II p(ci I xi; O)p(xi; 0) II p(x;; 0) 
i=l j=l 
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in the diagnostic paradigm, and use this omitting the current xj in 
(2.35). (This differs from the proposal of Geisser, 1966, 1993, which is 
to maximize the joint predictive probability of the m classifications. The 
latter is optimal under the loss structure that all predictions be correct 
rather than the number of misclassifications be small. The difference is 
important in statistical image analysis; Ripley, 1988, p. 114.) 

Example: Poisson distributed counts 

For a structurally simple example, suppose that a count variable X is 
modelled by Poisson distribution p(x; 8) = exp( -ewx I X!. Let e have 
a gamma (0(, p) prior distribution with density [p(X lf(O()]OIX-l exp( -PO) 
on [O,oo), which has mean rxiP and variance rxlfJ 2• Assume that 
independent counts X1, ... ,Xn have been observed from p(x; 8). Then 
it is not difficult to show that e given the data has a gamma(O(+nO,fJ+n) 
distribution, where 0 = Xn is the ML estimate for e. Hence the 
predictive density is 

1oo ex (p + n )tX+nO , 
p(x) = exp(-8)1 ~ etX+nB-l exp[-(p + n)8] de 

0 X. r(O( +nO) 

1 (p + n)tX+nO f(O( +nO+ x) 

= x! (fJ + n + l)a+nO+x f(rx +nO) 

When 0( and P are sent to zero the expression simplifies to 

0 ~ 

p(x) = _!_ nn , f(n8 ~ x) 
x! (n + 1)n8+x r(n8) 

and when n is large this is close to exp( -0) ex I X!, the ML density 
estimate p(x; 0). The difference is shown in Figure 2.8. 0 

Example: Normal 

Let p(x;J.L,r.) be the Np{J.L,r.} density, (2.7), and assume (at this stage) 
that r. is fixed. Then we can consider each class separately. Choose a 
prior Np{J.lo,A} for the J.l vector. The ML density estimate based on 
data X1, ... ,Xn from p(x;J.L,r.) is p(x;ji,r.) with ji =X. The posterior 
density is 

This follows from the fact that 



Figure 2.8: Plug-in (left) 
and predictive (right) 
probabilities for four 
samples with total 20 
from a Poisson 
distribution. 
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combined with properties of conditional distributions for jointly normal 
vectors; see for example Mardia et al. (1979, §3.2). The predictive density 
(2.35) can be worked out from this, but gives quite lengthy expressions. 
It is usual to use instead the simplified version that comes from the 
uniform (and improper) prior on JRP, and which also corresponds to 
letting the matrix A tend to infinity (in the sense that all its eigenvalues 
tend to infinity). With this flat prior .u Iff is simply Np{/2, I:/n}. 
Calculations (Geisser, 1964) give 

p(x) = (2n)-p/21I:I-l /2(_n_)p/2 exp(-!_n_(x- /l)TI:-I(x- /2)] 
n+1 2 n+1 

= Np{/2, nt1 I:}(x). 

The difference from the plug-in estimate of the density is small when n 
is moderate or large. The optimal rule is still a linear discriminant and 
has the same combinations of the variables, but the slightly increased 
variance will affect the cutpoints if the prior probabilities are unequal. 

Unknown covariance matrix/ ces 

The most important case is when the covariance matrices are also 
unknown. We start with one class and a non-informative prior of the 
type (.Uk , I:k) ,...., II:k 1-ao/2, where the symmetric covariance matrix is 
parametrized by its upper triangle, so this is a density on JRP+P(P+l)/ 2. 
In the quite lengthy calculations that are involved it is more convenient 
to work with Ak = I:;;1 instead; the density for (.Uk.Ak) is IAkl-a/2 

with a = 2(p + 1) - ao. 
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The choice of a non-informative prior here is not clear-cut, but 
the majority view is for ao = a = p + 1 with a minority supporting 
ao = 2p, a = 2. Even for p = 1, Jeffreys' (1961) information principle 
leads to an answer that he rejects, but the choice ao = a = p + 1 
follows from assuming prior independence of J.lk and Lk then seeking 
a non-informative prior for Lk alone (Box & Tiao, 1973, pp. 425-426). 
This is Geisser's (1993) choice, following Geisser & Cornfield (1963), 
and that of Aitchison & Dunsmore (1975) who take a limiting case 
of a Wishart conjugate prior. Berger (1985, §6.6) advocates using 
right invariant Haar measures as non-informative priors, which he 
demonstrates for p = 1 gives ao = 2. For larger p the results do not 
follow directly from his work (since the necessary group isomorphism 
fails). Hjort (1986) was led to ao = 2p and a= 2 by this approach, a 
value Geisser & Cornfield (1963) derived from a Fisher-Cornish fiducial 
distribution. On the other hand Villegas (1969) obtains ao =a= p + 1 
from a fiducial argument, and this was derived by Fraser (1968) from 
structural probability. 

We can see the difficulties by examining p = 2 in more detail. 
Then l: can be specified by K; = (Jf, i = 1, 2 and the correlation p; 

its determinant is K1K2(1- p2). Jeffreys (1961, pp. 176, 187) variously 
advocates the priors d(J1d(J2dp/(J1(J2 and d(J1d(J2dp/(Jw2(1 - p2)312, 

and the latter corresponds to jl:j-312. 

After extensive manipulation (Geisser & Cornfield, 1963; Hjort, 
1986) we find 

- ( ) -p/2( + 1)-p/2 r( !(nk + P- a+ 1)) I~ 1-1 /2 
Pk X = 1t »k 1 "'-'k 

r{:z(nk- a+ 1)) 
1 

[ 
1 T~ 1 ] -:z(nk+p-a+l) 

x 1 + nk + 1 (x- Jlk) 1:;; (x- jlk) . (2.36) 

Here Jlk and i:k are the usual ML estimators defined at (2.23) on 
page 36. Figure 2.9 displays three estimates of a one-dimensional normal 
based on a sample of size 10; the ML plug-in estimate, the estimate 
which is unbiased on log scale, and the predictive estimate. Note that 
these three do not estimate comparable quantities, as the predictive 
estimator takes the uncertainty of the parameters into account in a way 
that the other two do not, but all are potential estimates to be used in 
Proposition 2.1. 

For p = 1 the two approaches to choosing the prior agree. The 
predictive density is a (scaled) t distribution centred on }l.k. The general 
form is known as a multivariate t distribution on (nk + 1- a) degrees 



Figure 2.9 : Estimates of 
the density based on a 
random sample of size 
10 from N{O, 1 }. The 
'plug-in' estimate is 
shown with a solid line, 
the predictive estimate 
(2.36) with a dotted 
line, and the unbiased 
estimate on log scale 
(2.38) with a dashed 
line. 

The multivariate t is 
defined in the glossary 
(see 't distribution') and 
on page 39. Aitchison 
& Dunsmore (1975, 
p. 255) give a different 
parametrization which 
affects the 
interpretation of their 
results. 
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of freedom with location vector Pk and scale matrix 

For the point of view of classification we assume independent non­
informative priors for each class. Then the predictive class densitj_es 
have a larger spread than the normal distribution with variance :Ek, 
but the same shape of contours, and so the optimal classifier is a 
quadratic rule. The difference from the plug-in quadratic rule is to 
move the decision boundaries to be more nearly equidistant from the 
class centres (apart from allowing for unequal prior probabilities of the 
classes). 

Very similar ideas can be applied to the case of a common within­
class covariance matrix, leading to 

which is a multivariate t distribution on N - K - a + 2 degrees of 
freedom with location Pk and scale matrix 

(1 + 1/nk)N ~­
N-K-a+2 
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For equal group sizes and prior probabilities we exactly recover the 
best linear rule. 

The calculations here are from Hjort (1986); versions of these for­
mulae are given by Aitchison & Dunsmore (1975) (up to the differences 
in the meaning of their multivariate t) and Geisser (1993). This ap­
proach is originally due to Geisser (1964, 1966). 

The differences between the predictive and plug-in approaches will 
be small or zero for roughly equally prevalent classes. In other cases, 
for example screening for rare diseases or when very few data are 
available, the differences can be dramatic as shown by the examples in 
Aitchison & Dunsmore (1975, §§11.5-11.6). The latter do have groups 
with nk only slightly greater than p, for example p = 8 and n2 = 11 
when fitting a covariance matrix to each class, which would be seen 
as over-fitting in the plug-in approach. (Indeed, one might choose not 
to use all the variables, or perhaps to restrict the class of covariance 
matrices considered.) 

Aitchison et al. (1977) conducted a small-sample simulation compar­
ison of the plug-in and predictive methods for two multivariate normal 
populations. They were (correctly) criticized by Moran & Murphy 
(1979) for using the accuracy of the estimation of the log-odds as the 
basis of comparison rather than error rates, and for including mainly 
equal sample sizes of the two classes. Moran & Murphy's results show 
very little difference in the error rates, and show that for estimation 
of the log-odds the debiasing methods of Section 2.5 are effective in 
removing the dramatic optimism of the plug-in method where it occurs. 

Vlachonikolos (1990) extended these calculations to some simple 
cases of the 'location model' for mixed discrete and continuous data 
discussed on page 41. 

Figure 2.10: The 
decision regions of the 
predictive quadratic 
rule for the data on 
Cushing's syndrome, 
together with contours 
for p(x) at negative 
powers of 10 of the 
average for the training 
set. 



Figure 2.11 : The 
uncertainty of the 
predictive quadratic 
rule for the data on 
Cushing's syndrome. 
The greyscaJes represent 
the maximum posterior 
probability of a class, 
with light grey as one 
and black as zero. 

The Dirichlet 
distribution is defined 
in the glossary. 
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We return to the data on Cushing's syndrome shown on page 11. 
With the predictive estimates, the classification is less certain, especially 
of the two apparent outliers which are now both classified as c (with 
probabilities 61% and 68%). However, both still seem outliers, with 
values of p(x) roughly 0.2% and 6% of the average for the training 
set. These much less dramatic values and the tendency to classify both 
outliers as c reflect the great uncertainty in the class distribution for 
that class. 

Unknown class prior 

We need to consider the effect of unknown prior class proportions (nk) 
in (2.35) as we would need to justify plugging-in the 'obvious' estimates. 
Under random sampling the observed numbers (nt , ... , nK) follow a 
multinomial (n, p1, ... , PK) distribution. The natural choice for a prior 
is a Dirichlet(a;) distribution. The posterior is a Dirichlet(n; + a1) 

distribution so 

say, since the priors and hence posteriors for e and (nk) are indepen­
dent. Then 

so we act as if we had plugged in the estimate 1ik. The difference 
The MLE is it= nt f N. between this and plugging in the MLE will be negligible unless the 

class sizes are very small or the prior extremely strong. 
For two classes the Dirichlet distribution reduces to the beta distri­

bution with parameters (a1,a2). We can ask how to represent ignorance 
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by the Dirichlet parameter vector a. Three suggestions in the two­
class case are a; = 1 (used by Bayes and Laplace), a; = 0 (which is 
improper) and a; = 1/2 (Berger, 1985, §3.3.4; Geisser, 1984). Good 
arguments can be made for any of these; fortunately in our setting 
they will be very similar. This suggests the simplest choice for the 
Dirichlet of a; = 0 as a vague prior, which gives the simple plug-in 
rule 1ik = nk/ n. 

Hyperparameters 

In some circumstances the prior p( 8) is specified only up to a family 
p;.(8) of priors; 2 is known as a hyperparameter. This occurs most often 
in pattern recognition when the prior is used to express 'smoothness' of 
the posterior probabilities p(k I x; (}) as a function of x, and 2 is then 
the degree of smoothness. (See, for example, Section 4.3.) 

How should 2 be chosen? Within the predictive Bayesian frame­
work, the solution is clear; we give a prior to 2, called a hyperprior. If 
this contains parameters, they too are given a prior, and so on. This 
is sometimes known as hierarchical Bayes (Berger, 1985, §3.6, 4.6) and 
the analysis is in principle obvious, since the effective prior is 

p(8) = J p;.(fJ)p(2)d2. 

This may be awkward to use if p;.(8) has been chosen to simplify 
computation, and the integration over 2 may be postponed to a late 
stage in the calculation. Thus we may find Pr{k I x,ff,2} and then 
integrate this with respect to the density p(21 x, !T). 

Other approaches have been proposed, and in some cases advocated 
strongly. Empirical Bayes methods use the data to choose 2, which 
entails a data-dependent prior which purist Bayesians do not allow, 
but is sometimes seen as an approximation to hierarchical Bayes and 
sometimes as desirable in its own right. (Maritz & Lwin, 1989, is devoted 
to empirical Bayes methods; Berger, 1985, §4.5, gives references to many 
strands.) 

Let us consider empirical Bayes as an approximation to p(k I x) by 
Pr{k I x, 5"",1}. If p(21 x, 5"") is highly concentrated about one value 
1(x, 5""), and if we can estimate this value easily and well, empirical 
Bayes will provide a considerable comp~tational simplification. (Often 
x will not be at all informative, so 2 can be computed once the 
training set is given.) How could we find 1? Good (1965, 1983) 
(the latter a compendium of earlier work) calls one method 'type II 
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maximum likelihood' or 'ML-II'. This is to choose A. to maximize the 
marginal density of the data; if we ignore x this is 

m(§"IA.) = j t(O;§")pJc(O)dO. (2.37) 

Note that ML-II is equivalent to maximizing p(A I§") oc m(§"l A.)p(A.) if 
p(A.) is constant, and so its 1 is likely to be a good estimate of A.o(x, §") if 
m(§"l A.) has a sharp peak. Deely & Lindley (1981) discuss conditions 
for such approximations. In the usual empirical Bayes context the 
assumption is of many problems with different e but the same 2, 
so this condition follows from the asymptotic normality of maximum 
likelihood estimation of A. from independent samples from m(§"l A.). 
This is not the usual situation in pattern recognition applications, where 
a single large training set allows increasingly precise inferences about 
e but provides just one sample to estimate A.. ~ 

The empirical Bayes methods usually ignore the variability in 2; 
PX(O) will be more concentrated than p(O I 3). This may not matter in 
the centre of the distribution, but may be material in applications such 
as ours of finding p(k I x) since p(k I x; 8) is often a highly non-linear 
function of 8 and the empirical Bayes methods often tend to produce 
fitted probabilities which are too extreme. 

2.5 Alternative estimation procedures 

The maximum likelihood estimator ek is not always the very best 
estimator of ek (we habitually use a different estimator of the variance 
of a normal population), and even in ~ses where it is well-chosen 
for ek the plug-in density estimate Pk(x; ek) is not necessarily the best 
estimate of Pk(x; ek). In view of (2.5) and (2.4) our interest lies more 
with the densities themselves than with the parameters that describe 
them, so here we consider alternative estimation procedures, principally 
within the sampling paradigm. 

Debiasing density estimates 

One route is to modify estimators so as to make them unbiased or 
less biased, if they are not unbiased in the first place. For example, 
the ~ estimator of (2.23) has expected value NNK r., and statisticians 
normally use the modified version with denominator N - K instead of 
N. The same remark applies to the modification of ~k of (2.25) which 
uses denominator nk- 1 instead of nk. 
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The densities themselves are more directly involved in the classi­
fication problem. It is possible to find an unbiased estimator of a 
normal density (Ghurye & Olkin, 1969), but it is more natural to find 
an unbiased estimator of the log density, and hence of differences in 
log densities. This is the appropriate plug-in estimator if the interest 
concentrates on the log-odds or on logp(k I x), as in the experi~ents of 
Aitchison et al. (1977) and Moran & Murphy (1979). Suppose ~ is the 
unbiased estimator of ~ based on m degrees of freedom (so m = nk -1 
for group k, or m = N- K if a common covariance is assumed). Then 

logp*(x) = -~plog(2n)- ~[log 11:1 + Bp(m)J 

1 [m- P- 1 r- 1 PJ -2 m (x- J1) ~- (x- ji)- ~ 

is the unique unbiased estimator for log p(x; ,u, ~), where 

p-1 

(2.38) 

Bp(m) = plog(~m)- L tp(~(m- i)) and tp(z) = r'(z)/r(z) 
i=O 

for the digamma function tp (Abramowitz & Stegun, 1965, p. 258). 
When n goes to infinity there is agreement with the plug-in estimator. 
The proof depends on E 1:-1 = m~-1 /(m- p -1) and that jml:!/1~1 = 
IJg-1 Zi where Zi are independent X~-i random variables (Mardia et 
al., 1979, pages 85 and 73 respectively). 

Moran & Murphy (1979) give explicitly the effect of this bias 
correction on the linear and quadratic classifiers. The plug-in version of 
the two-class linear discriminant (2.9) is to allocate to class 1 whenever 
the estimate of logit p( 11 x) is positive, or 

(ji1 - ii2f~-1 (x- ~) + log(n!/n2) > 0. (2.39) 

Using the unbiased estimator of the log density gives the rule 

N- K- p -1 [ r- 1 ~] p [ 1 1] N _ K (ji1- Ji2) ~- (x -71) + 2 n
1 

- n
2 

+ log(n!/n2) > 0. 

(2.40) 
The effect of the data over the prior class probabilities is reduced, but 
the constant term will also be important if the class sizes are very 
different in the training set. 

For the quadratic discriminant, the effect of the debiasing is to 
increase the effective variance by a factor nkf(nk- p-1) over the usual 
nk/(nk- 1), and to add a constant which depends on nk. 

This debiasing is usually unimportant, but can make a difference if 
for some class(es) nk is only a little larger than p + 1, as Figure 2.12 
shows for the data on Cushing's syndrome. 



Figure 2.12 : The 
decision regions of the 
debiased quadratic rule 
for the data on 
Cushing's syndrome, 
together with contours 
for p(x) at negative 
powers of 10 of the 
average for the training 
set. 
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The normal distribution is a convenient abstraction, but all careful 
studies show that real distributions do not quite follow a normal distri­
bution but have slightly heavier tails. In addition we should consider 
the possibility of outliers, that is examples which do not belong to the 
class under consideration (for example, they might be wrongly labelled 
in the training set). This has led to discussion of robust estimators of 
the normal mean and variance for use in 'plug-in' linear and quadratic 
classifiers (for example, McLachlan, 1992, §5.7) 

Our classifiers should be different in the two scenarios. If the 
distributions are non-normal, then we need to take into consideration 
that the tails will be longer, and assuming a t distribution will be more 
appropriate. As we saw on page 39, this leads to robust estimators 
of the means and variances of the t distribution, but with a common 
covariance matrix and equal prior probabilities the Bayes rule is still 
the best linear rule. This suggests that for the linear rule it is reasonable 
to plug in robust estimators, whereas for the quadratic rule the rate of 
decay of the densities in the tails is crucial. 

On the other hand, if we believe that the true class densities are 
close to normal but that we have outliers, it will be desirable to plug in 
robust estimators, since the aim of robust estimation is to characterize 
the uncontaminated populations, and it is the latter we wish to use in 
the Bayes rule. 

Robust estimation in multivariate problems is trickier than appears 
at first sight, since simple extensions of univariate methods (based 
on down-weighting extreme observations as we saw for fitting the 
multivariate t) can fail completely with a fraction 1/p of outliers 
(Huber, 1981, pp. 227-8). The most recent approaches (for example, 



58 2 Statistical Decision Theory 

Rousseeuw & van Zomeren, 1990) start by finding a central 'core' of the 
data, use the shape of this to identify outliers and then take the mean 
and covariance matrix of the 'cleaned' data (adjusting the scale of the 
covariance to compensate for the effect of cleaning). A specific method 
finds the minimum-volume ellipsoid containing L(n + p + 1)/2J data 
points. This ellipsoid is used to define a Mahalanobis distance, and all 
points within the 97.5% point of distance from the ellipsoid centre are 
retained. Finding the ellipsoid (even approximately) is time-consuming. 

Weighted estimation 

It is quite common in medical diagnosis for the abundance of the classes 
in the training set not to reflect their importance in the problem. Often 
when the training data are a random sample from the population, the 
vast majority of cases are 'normals' yet the cost of mis-classifying a 
diseased case as normal is t times higher than that of a false positive. 
In screening problems t can be ten or more. 

For clarity, suppose we have just two classes, 'diseased', d, and 
'normal', n. The effect of differential costs is to move the decision 
threshold, so we will declare a positive result when the odds in favour 
of 'diseased' are not too adverse (better than 1 : t ). If we estimate 
the posterior probabilities p(k I x) from the training data by plug-in 
methods, we would expect to learn p( n I x) much more accurately than 
p(d I x). Under some circumstances this can lead to serious bias in 
the estimators. Consider two normal distributions within the sampling 
paradigm. For the best quadratic rule, we estimate the class-conditional 
density Pk(x ) from the examples from class k. For the best linear rule, 
the common covariance matrix I: is estimated from both populations, 
and hence is principally determined from the sample of 'normals'. This 
is fine if the covariance matrix really is the same in each group, but can 
lead to biased estimates if the covariance matrix in the 'diseased' group 
is somewhat different from that in the 'normal' group. The effect of this 
bias on the posterior probabilities is much more pronounced when the 
classes are unequally represented. 

The biases in the diagnostic paradigm are often more serious. The 
plug-in decision rule is to declare a case 'diseased' if p( d I X; e) > c for 
c = 1/(1 + t ) less than 0.5, often much less. We have already noted that 
plug-in rules tend to produce estimated posterior probabilities which 
are too extreme, and this will result in a bias when c is small. A further 
bias results from the disproportion of the two classes in the training 
set, resulting in underestimation of p(d I x) (since there are many more 
'normal' cases to be fitted). 



The reduction in the 
size of the training set 
can have considerable 
computational benefits, 
so sampling might be 
preferred. 
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There are two ideas to alleviate these biases. A simple idea is to 
use a biased sample in the training set ; this normally means randomly 
subsampling the 'normal' group. Let nk denote the numbers of the 
classes in the training set, and nk the proportions in the population. 
(We assume that these are known, for example estimated from the 
original training set.) The fitted probabilities p(k I X; e) then estimate 
quantities proportional to p(k I x)nk!nk> the posterior probabilities under 
biased sampling. Thus the decision rule is to declare a case 'diseased' if 

p(d I x; 8)ndlnd 1 
--~:---->-

p( n I X; e)nn I nn t 

or p(d I x; e) > 11(1 + tndnnlnnnd). If we under-sample the 'normal' 
group by a factor of t, this declares 'diseased' if the odds exceed one. 
This degree of bias in the training set puts the two groups on an equal 
footing in the parameter estimation, thereby reducing the estimation 
biases. 

When the biased training set is created by subsampling a larger 
training set, it seems wasteful to discard data on the 'normal' group. 
This suggests using weighting rather than sampling. In a weighted 
procedure, all the 'normal' examples are used, but their contributions 
to the log-likelihood are weighted by a factor w and, in the sampling 
paradigm, the size of the 'normal' sample is regarded as wnn. Taking 
w ~ 1lt will minimize the estimation biases, since the decision rule 
declares 'diseased' if p( d I X; e) > 1 I ( 1 + t (J) ). 

These palliatives can also be applied when there are several diseased 
groups. The formulae can be extended quite easily by working with the 
odds of each disease to 'normal'. 

2.6 How complex a model do we need? 

Adequacy of a model is not usually an absolute criterion; rather we ask 
how complex the model needs to be within families of models. For ex­
ample, we can ask how many input features to use for a linear classifier. 
In this section we concentrate on the adequacy of a parametric model 
for the class densities or posterior probabilities. In the next section we 
look more directly at the effect of model inadequacy on performance, 
and in the final section of this chapter we consider absolute bounds on 
performance, averaged over training sets. 

We have seen two distinct modelling problems. In Section 2.2 we 
modelled the class densities Pk(x; 8); in Section 2.3 we modelled the 
posterior probabilities p(k I x; 8). It is important to realize that a model 
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may be adequate for the posterior probabilities without being adequate 
for the class densities (see Figure 2.1 on page 27). 

We will consider the traditional statistical approaches to model 
complexity which are applied to both problems. These fall into two 
camps. 

1 Iterative selection of a model. For example, in choosing the number 
of features to use in a linear discriminant or a logistic discriminant 
there are many variants of stepwise procedures, modelled on those 
used for regression problems. Backward selection starts with all 
possible features, and drops them one at a time. Forward selection 
starts with no features, and adds one at a time. Stepwise procedures 
start somewhere (usually with all features) and at each step consider 
either adding or dropping a feature, and choose the best single 
step before iterating. There are a large number of families of 
models considered in later chapters with direct analogues of this, 
for example selecting centres in radial basis function models, the 
number of hidden units in a feed-forward neural network and the 
number of components in a mixture distribution. 

The distinctive feature of this approach is that the selection is made 
by a series of pairwise comparisons: is the larger model sufficiently 
superior to the smaller one? 

2 Penalizing the fit by a measure of the complexity of the model. In 
this approach the search is in principle over all models within the 
family. Normally we would expect the largest models to fit best, but 
the penalty on size will tend to ensure that the smallest adequate 
model is chosen. In practice we may have to confine the search to 
only some of the models in the family: this could even be done 
by a stepwise search as in 1. The penalty is often motivated by 
predicting the degree of fit on a test set. 

We have left open the measure of fit to be used. The most common 
is the log-likelihood evaluated at the ML estimate. It is often more 
convenient to work with the deviance, minus twice the log-likelihood 
shifted to be zero for the 'perfect' model. In the classification context 
the perfect model has p(k I x) = 0 or 1, with 1 for the class which 
actually occurs. 

In iterative selection we can use likelihood-ratio tests, or equiva­
lently differences in deviances. For a regular problem, the reduction in 
deviance on adding q further parameters has an asymptotic chi-squared 
distribution on q degrees of freedom provided the smaller model is ad­
equate (Lehmann, 1986, §8.8). Iterative selection normally works by 
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choosing some conventional significance level (often 10%) to decide a 
companson. 

The penalization methods themselves have three schools. The most 
common one is based on the idea that the deviance will be smaller on 
the training set than on a test set of comparable size, since we actually 
chose the parameters to minimize the deviance on the training set. How 
large would the difference be on average (over training and test sets)? 
Akaike's (1973, 1974) AIC criterion is based on the answer 2p, where 
p is the number of free parameters. This does assume that the model is 
correct. The criterion NIC of Murata et al. (1991, 1993, 1994) is based 
on the answer 2p* where 

(2.41) 

and J and K are defined in Proposition 2.2. As pointed out there, 
J = K if the model is adequate, so p* = trace(/) = p. Both criteria 
follow from (2.20), and are based on asymptotic normality of the 
parameter estimates. (Moody, 1991, 1992, uses his effective number of 
parameters in the same way.) Note that whereas the deviance plus 
2p* may be a poor estimate of the mean test-set deviance because of 
the variability over training sets, differences of this measure between 
models may be acceptably good estimates of the differences in test-set 
deviances. Note the may in the previous sentence; the fluctuations 
are normally small enough to distinguish models whose mean test-set 
deviances differ appreciably, but they can dominate if the mean test-set 
deviances are nearly the same (see page 34). 

Asymptotically in the size of the training set, the use of AIC may 
choose a model which is at least as large as the correct one with 
probability one (see Shibata, 1976; Hannan & Quinn, 1979; M. Stone, 
1979; this is established for the order of an autoregressive time series, 
for instance). Thus if there is no correct model in the family, AIC 
will tend to choose larger and larger models as more training data 
becomes available. The fact that it tends to overshoot the correct size 
has led to modifications (BIC) which penalize complex models more 
severely (Akaike, 1977, 1978; Schwarz, 1978) and to justifications based 
on allowing the complexity of the true model to depend on n (Shibata, 
1980, 1981). An alternative way to estimate the expected deviance on 
a test set of the same size as the training set is to use cross-validation 
and the other methods of Section 2. 7 on the deviance. 

A general programme for measuring and controlling the complex­
ity of fitted models based on minimum description length (MDL) or 
minimum message length (MML) is given by: Rissanen (1983, 1987, 
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1989); Wallace & Freeman (1987); Barron (1990, 1994); Barron & 
Cover (1991). In this the deviance of a model is penalized via the mini­
mum length of a binary code needed to represent it. Now in most cases 
we can only (over-)estimate this length by providing a specific encoding, 
and the extension to continuous parameters is via discretization. There 
are many variants within this programme. 

Vapnik's (1982) structural risk minimization is a similar idea, using 
a bound on test-set risk based on the work of Section 2.8 and discussed 
further there. 

The third idea is to estimate more directly the performance on a 
test set, by cross-validation and allied methods which we discuss in the 
next section. 

The predictive approach 

Bayesian methods provide an interesting view of these measures, as dis­
cussed by Smith & Spiegelhalter (1980) for linear models (but asymp­
totically most methods are locally linear). In the Bayesian formulation, 
models are compared via Pr{ M I Y}, the posterior probability assigned 
to model M, which requires a prior distribution (p M) over models 
and the ability to integrate out the parameters following the predictive 
approach : 

p(Y I M) = j p(Y I M, 8)p(8) de 

so the ratio in comparing models M1 and M2 is proportional to 
p(Y I M2)/p(Y I MI), known as the Bayes factor. Note that if the 
models are nested, the priors will correspond to a prior over the 
parameters of the larger model which gives positive probabilities to 
zero values of some of the parameters. Then model choice will involve 
the controversial testing of 'precise hypotheses', where classical and 
Bayesian methods are often in conflict (Berger & Delampady, 1987). 

Note that the predictive approach does not actually select a model, 
but averages the predictions of the models, with weights proportional 
to the Bayes factors. This seems not to be widely used, possibly for 
computational reasons, but can be very effective. It is used for simple 
logistic models by Stewart (1987), and in time series prediction by West 
& Harrison (1989). Geisser (1993, §4.1) argues that the only possible 
loss function which would suggest choosing just one model is one which 
embodies an extreme principle of parsimony, that only one model is 
acceptable. Even those who argue for restricting the class of models 
(such as Madigan & Raftery, 1994) show that averaging is much better 
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than any single model. The posterior probability may be spread over 
many models: Moulton (1991) reports an example in which the top 
800 models out of 212 = 4096 are needed to account for 90% of the 
posterior probability. In pattern recognition our sole concern is future 
decision making, but in other applications the use of a single model 
may be more acceptable or desirable (see, for example, the arguments 
of Geisser, 1987 and A. F. M. Smith, 1991). 

These ideas go back at least to Box & Tiao (1962). Bernardo & 
Smith (1994) give an overview of the current philosophical discussion, 
also to be seen in Draper (1995) and its discussion and references. 

We will see other ways to choose combinations of models in the next 
subsection, and examples of using estimated Bayes factors to combine 
posterior probabilities from different models in Section 5.5. Another 
idea is to use Markov chain Monte Carlo ideas such as the Gibbs 
sampler to integrate over both the model space and the parameter 
space, as considered by George & McCulloch (1993) and Madigan & 
York (1995). 

Suppose we just use the Bayes factor as a guide. The difficulty is in 
evaluating p(.r I M). Asymptotics are not useful for Bayesian methods, 
as the prior on (} is often very important in providing smoothing, yet 
asymptotically negligible. We will assume that p((} 1.r) is approximately 
normal with~ mean fJ and covariance matrix V. One approximation 
is to take (} as the mode of the posterior density and V as the 
inverse of the Hessian of -log p(B 1.r) (since for a _p.ormal density 
this is the covariance matrix) ; we can hope to find (} and V from 
the maximization of log p( (} I .r) = L( (}; .r) + log p( 8) + const. Let 
E(8) = -L(8;.r) -logp(8), so this has its minimum at fJ and Hessian 
there of v-1. Then 

p(.r I M) = j p(.r I 8) p(8) de= j exp -E(8) de 

~ exp-E(B) j exp[-~(8- fJ)Tv-1(8- B)] d(} 

= exp -E(B) (2n)P/2 1VI 1
/

2 (2.42) 

from (2.7). (This is sometimes known as a saddle-point approximation 
or Laplace's method: Lindley, 1980; Tierney & Kadane, 1986. This and 
other approximate methods are discussed by Evans & Swartz, 1995.) 
Thus 

log p(.r I M) ~ L(B; .r) +log p(B) + ~log 2n + ~log I VI . (2.43) 

It may be feasible to use this directly for model choice, as was proposed 
for nested models by Kass & Vaidyanathan (1992). 
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If we suppose e has a prior which we may approximate by 
N{Oo, Vo}, we have 

logp(ff I M) ~ L(ii;ff)- i(B- 8o)Tv0-
1(0- 8o)- i log !Vol+ i log lVI 

and v-1 is the sum of v0-
1 and the Hessian H of the log-likelihood 

at B. Thus 

logp(ff I M) ~ L(B; ff)- i(B- 8o)rv0-
1(B- Oo)- i log IHI. 

If we assume that the prior is very diffuse we can neglect the second 
term, so the penalty on the log-likelihood is -!log IHI. For a random 
sample of size n from the assumed model this might be roughly 
proportional to -( i log n) p provided the parameters are identifiable. 
This is the proposal of Schwarz (1978) derived following the ideas of 
Smith & Spiegelhalter (1980, §2.1). Others argue for retaining different 
terms in (2.43); for example Draper (1995, p. 57) retains the second term 
of (2.43), drops the third and replaces log I VI by -log I HI. The latter 
might be damaging (Raftery, 1993) and is often of no computational 
benefit. 

The assumption that the prior can be neglected is a strong one, since 
we may not obtain much information about parameters which are rarely 
effective, even in very large samples. For example, suppose we have 
separate parameters for each class-conditional density Pk(x; 8). Then 
we will learn very little about the parameters of very rare classes, and 
the effective sample size in the expression for BIC for the parameters 
for class k will be nk not n. Since we would expect nk oc n, the leading 
term in n is still -( i log n )p, but as ( i log n) will be quite small for 
practical n ( 5.75 for n = 100 000 ), replacing i log IHI by (!log n)p 
can be quite misleading. We should be interested in comparing different 
models for the same n, and in many problems p will be comparable 
with n. It seems best to use (2.43) directly. 

Kass & Raftery (1995) review many of the approaches to approxi­
mating Bayes factors; Gelfand & Dey (1994) provide one of the clearest 
accounts of the multitude of variations which have been proposed for 
model choice. 

Improper priors over e (those that are not integrable) lead to 
difficulties, since p(ff 1M) will be unknown up to a constant factor, 
and might be infinite. It may be possible to resolve this by taking limits 
of results with proper priors (but often improper priors were chosen 
to make the integrations feasible). Other approaches are discussed 
by Kass & Raftery (1995, §5.3) including the device of an 'imaginary 
training sample' used by Spiegelhalter & Smith (1982). It is not clear 
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however that any of these methods is totally satisfactory, especially 
when the models under consideration have very different numbers of 
parameters with improper priors. The difficulty shows up in (2.43). 
With an improper prior we may treat logp(e) as constant, but there is 
no reason to suppose that it is the same constant for different models, 
although careless workers in the neural networks field often do so. 

We can relate these calculations to the derivations of AIC and NIC. 
The present derivation is less asymptotic and does take account of a 
prior. It produces a factor of log n (for some appropriate n) rather 
than 2 on the penalty for the deviance, which curbs the tendency of 
AIC to overshoot the true model size. (Remember the Bayes factor 
is intended for use in averaging not selecting models.) Note that the 
approach of this subsection necessarily assumes that the model is true 
while calculating p(ffl M). We defer further consideration of NIC to 
Section 4.3, where we consider other methods of parameter estimation. 

Combining models 

We have already mentioned that the full predictive approach 1s to 
average models by 

p(k I x) = LPm(k I x) Pr{m Iff} 
m 

rather than choosing one model (unless our loss function includes costs 
on multiplicity of models). We now consider other ideas for combining 
models, using ideas which are developed in other contexts in Section 2.7. 

M. Stone (1974, pp. 126--7) mentioned the idea of using cross­
validation not to choose between models but to combine them. In 
our context this would amount to combining the posterior probabilities 
(either plug-in or predictive) from a series of M models. The predictive 
viewpoint motivates Stone's suggestion of 

(2.44) 
m 

for .a set of constants ( ocm), perhaps confined to a probability distribution 
and chosen by cross-validation. We could also allow the weights to 
depend on the class k. 

This idea has been developed (independently) and extended by 
Wolpert (1992), under the name of stacked generalization, and applied 
by Breiman (1992) in the regression context. Breiman's work is precisely 
within Stone's setting, and shows that in his simple examples it does 
indeed help to confine attention to non-negative weights (although he 
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seems not to have considered a unit-sum constraint on the weights). 
The idea of averaging (both simple and weighted) for regression neural 
networks has been suggested many times. (A selection of references is 
Baxt, 1992; Benediktsson & Swain, 1992; Bridle & Cox, 1991; Hansen 
& Salamon, 1990; Lincoln & Skrzypek, 1990; Pearlmutter & Rosenfeld, 
1991; Perrone & Cooper, 1993; Srihari, 1992; and Xu et al., 1992.) 

LeBlanc & Tibshirani (1993) took up the same thread, but also 
considered estimation by the bootstrap. Both cross-validation and the 
bootstrap can be seen as methods to correct the bias of the deviance 
(or other measure) on the training set as a function of ( ~Zm), and 
are used exactly as for the apparent error in Section 2.7. The bias­
corrected estimate of the deviance is then minimized over ( ~Zm). Their 
experiments considered non-negativity and unit-sum constraints, but 
not both together! 

Wolpert's ideas were much more general than those picked up by 
later users. Although (2.44) is suggestive, we might only to want to use 
it locally in the feature space, and so could allow the weights to vary 
(slowly) with x. In his general scheme, we use the outputs of all the 'level 
0' models (under leave-one-out cross-validation) and the true response 
as inputs to a 'level 1' procedure which then makes the final decision. 
At its simplest we could take the predictions from M classifiers and 
learn how best to combine them to give a single classification. But 
the outputs of the models can be their posterior probabilities, and we 
can also pass the inputs through a 'do-nothing' level 0 procedure. So 
stacked generalization includes any method of combining the outputs 
of the models, possibly varying with x. 

A similar approach is taken by Jacobs et al. (1991) in which they 
train all the classifiers simultaneously and the level-0 classifiers are not 
required to work well over the whole input space. This approach is 
discussed in Section 8.5. 

2. 7 Performance assessment 

The title of this section begs the question of what is meant by perfor­
mance. Since we have identified the Bayes rule on the basis of total risk 
(expected loss) this seems a suitable basis for performance evaluation. 
When loss (2.2) is used, it is often helpful to plot the expected rate Figure 3.5 on page 114 

of misclassification against the expected rate of 'doubt' classification, is an example. 

usually termed the reject rate. 
To be explicit, the error rate is the probability of making a definite 

erroneous classification (including outlier (!)) for a future randomly 
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chosen sample, previously called pmc, and the reject rate is the prob­
ability of declaring doubt, previously denoted pd. Our discussion will 
concentrate on pmc, but entirely analogous statements follow about 
pd. Also, statements made about error rates can be replaced verba­
tim by ones about average cost for other losses. A later subsection 
on 'confusion matrices' discusses more detailed information on error 
patterns. 

The apparent error rate pjilC is the proportion of errors made when 
classifying either a training or a test set. If the training set is used, pjilC 
will (usually) be biased downwards. 

Error rate estimation 

The easiest way to assess the error rate is to choose a test set independent 
of the training set (and validation set if used), to classify its examples, 
count the errors and divide by the size M of the test set. The reject rate 
is estimated by the proportion of test-set examples which are rejected. 
These measures are clearly unbiased estimates under all circumstances, 
but they can be highly variable, and having to use a test set may waste 
data which could otherwise have been used for training. The idea of a 
test set is sometimes called the hold-out method and goes back at least 
to Highleyman (1962a). 

Simple calculations show that the test set needs to be large for the 
error rate to be estimated at all accurately. The estimate pjilC = R/ M 
for an error count R has a binomial(M, pmc) distribution. Thus pjilC 
has variance pmc(1- pmc)/M ~ 1/4M. Suppose that pmc is around 
5% and we wish to know it to around 1%. Then we will want 

2J0.05 X 0.95/ M ~ 0.01 

or M ~ 1900, which is considerable. (Here we use the normal approxi­
mation to the binomial, which is justified at such sample sizes.) 

Note that the task of comparing the error rates of two classifiers is 
rather easier as they use the same test set, a point often overlooked in 
the literature and taken up in a later subsection. 

We can also calculate the error rates conditionally for each class, 
just by counting within each class. If we know the prior probabilities 
nk, the estimator 

I: 1tk pjile(k) (2.45) 
k 

estimates pmc. This form is important when the test set is a deliberately 
biased sample, which can be a good idea when almost all the errors 
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occur in uncommon classes. In general we would expect it to be less 
variable, but there is a problem that it will be undefined if nk = 0 for 
any class, which complicates the theoretical analysis. 

Risk averaging 

Suppose we knew the posterior probabilities p(k I x) and are using the 
Bayes rule. Consider a random pair (X, C) from the whole population. 
Then 

P(correct I X= x) = P ( C = argmaxp(c I x) I X= x) = maxp(c I x) 
c c 

and so 
1- pmc = P(correct) = E [ maxp(c I X)]. 

c 
(2.46) 

Both I [ C = arg maxc p( c I x)] and maxc p( c I x) are conditionally un­
biased estimators of P(correct I X = x), but the second averages over 
P ( C I X = x) and so has a smaller variance. Let Z = 1-maxc p( c I X) ~ 
1-1/K. Then EZ = pmc and EZ 2 ~ (1-1/K) EZ, so 

Var[maxp(c I X)] = Var(Z) ~ (1 -1/K)pmc- pmc2 
c 

= Var(J [C = argmaxp(c I x)])- pmc/K. 
c 

Note that (2.46) does not depend on knowledge of the true class C, 
which can be useful if the authenticity of the classifications of the test 
set is in doubt. This can also be an advantage if examples are cheap but 
accurate classification is expensive, as in almost any form of automated 
data collection which needs human classification. This approach is 
sometimes known as risk averaging. 

Of course, we only very rarely know the posterior probabilities, but 
(2.46) can be used if we believe we have accurate estimates of them. 
It will be much better to use predictive estimates p(k I x) rather than 
plug-in estimates p(k I x; (i) as the latter ignore the variability of e and 
so tend to underestimate small probabilities, often quite severely. The Compare Figures 2.4 

estimate from (2.46) can be based on either the training or the test set; and 2.11. 

if the training set is used there will be some bias, the size of which 
will depend on the number of parameters. When the probabilities are 
estimated maxc p(c I x) will be biased, both because we cannot usually 
find unbiased estimators of p(c I x) and because the maximum is a 
non-linear operation. We would expect the bias to be small for a test 
set; calculations for one particular classifier are given in Section 6.2. 

If this method is to be used, it would seem desirable to check if the 
estimates p(k I x) are reliable, which is itself a check of the adequacy 
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of the model. The methods are part of the more general methodology 
of verifying if probability forecasters (such as 'the probability of rain 
tomorrow is 60%') are well calibrated (see, for example, Dawid, 1982, 
1986). The basic idea is that if p(k I x) = 11 say, amongst the examples 
for which we predict 17, the proportion which occur should be about 1'7· 
We can apply this either to the posterior probabilities of each class, or 
to the probability maxk p(k I x) of a correct classification. The test set 
then provides a set of independent events Ei and predicted probabilities 
fh We can test the calibration by using a non-linear logistic regression 
on Oi (say by the methods of Chapter 4) and test if the identity is 
adequate. If it is not, we can even use this regression to re-calibrate the 
probabilities (an idea for a linear logistic regression going back to Cox, 
1958). Various methods for fitting such regressions will be described in 
Chapters 4 and 5, and an example is shown in Figure 3.6 on page 115. 

There is also a literature on methods of numerically assessing prob­
ability forecasts. The most common measures are (half- )Brier scores 
(Brier, 1950) which is the sum of squared differences between the pre­
dicted probabilities and the indicator function that the event occurred 
(or, equivalently, the sum of (1- p)2 where p is the forecast probabil­
ity of the positive or negative event which occurred), and logarithmic 
scoring (Good, 1983) which sums the negative log probability of the 
event which occurred. Note that logarithmic scoring computes the 
conditional log-likelihood as used in logistic regression. 

The effect of using risk averaging with inaccurate probability esti­
mates can be severe; on p~ge 228 there is an example in which the 
error rate is underestimated by a factor of more than two. 

Cross-validation 

Often the use of a test set is regarded as too wasteful of scarce classified 
data. Can we avoid this by dividing the training set? If we divide 
the training set into two halves, we could train with one half and test 
with the other. As the halves are independent samples, the resulting 
estimator is unbiased. Furthermore, we can swap the halves and still 
obtain an unbiased estimator, and so the average of the two estimators 
remains unbiased. 

The drawback of this approach is that the estimate is an unbiased 
estimate of the performance using just half the data. Can we do better? 
Yes, at the expense of more computation. Suppose we randomly divide 
the training set into V pieces. Then we can use one piece to test the 
performance of the classifier trained on the remaining (V- 1) pieces. 
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This is again unbiased, and we can average the V such estimates. For 
moderate V such as 5 or 10, the loss of performance from a smaller 
training set will usually be small enough, at the expense of V times 
the computation (although this can be done in parallel if several CPUs 
are available). (A technical nicety is how to do the average; should 
we weight by the size of the pieces if they are unequal? Weighting is 
common practice, as it corresponds to counting the number of errors 
made by the cross-validated classifiers.) 

The extreme version of this strategy is to take V very large. Then 
each test set will contain zero or one examples. This suggests (but does 
not quite justify) the leave-one-out estimator, in which each observation 
is tested on the classifier trained on the remaining (N- 1) observa­
tions, suggested by Mosteller & Wallace (1963), Hills (1966), Lunts 
& Brailovsky (1967) and Lachenbruch & Mickey (1968) and often re­
discovered. The leave-one-out version of cross-validation apparently 
requires a large amount of computation, but for some classifiers this 
computation can be reduced to a similar level to classifying a test set 
of n examples (see pages 100, 184 and 200). 

The leave-one-out estimator is a balanced version of cross-validation 
in that the sets are chosen of exactly equal size. This can be applied 
to the V -fold version as well, and indeed we may choose to balance 
the subsets on other characteristics such as regions of the feature space 
or even the numbers taken from each class. Are these variants valid? 
A test-set error rate is an unbiased estimator of pmc provided that 
C is sampled from its conditional distribution given X, and that X 
is sampled with density p(x); no independence is needed to justify the 
unbiasedness of an average. This justifies all the approaches except 
choosing fixed numbers from each class, but including the leave-one­
out estimator. If we choose fixed numbers from each class, we obtain 
unbiased estimates of the class-conditional error rates pmc(k), and 
hence an unbiased estimate if the prior probabilities are known or 
estimated in the usual unbiased way (from other data). 

Choosing V = N should give the most accurate assessment, as 
the true size of the training set is most closely mimicked; it also 
normally involves the most computation. There is another argument 
in favour of smaller V. Dropping just one observation assesses the 
classifier via 0(1/ N) perturbations from the training set. On the other 
hand the sampling variations in the parameter estimates are (usually) 
0(1/ JN), so for large N we end up extrapolating these from much 
smaller perturbations. Thus cross-validation estimates of performance 
for large V might be expected to be (and are often reported to be) 
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rather variable; taking a smaller V can give a larger bias but smaller 
variance and mean-square error. 

We have concentrated on cross-validation for the error rates, but 
it is also possible to use cross-validation for the 'smoothed' measures 
such as 1- maxc p(c I X) discussed in the previous subsection. 

Estimation and model choice 

Cross-validation is also commonly used for model choice. (Cover, 1969, 
is the first advocate of which we are aware.) This can be used to estimate 
either a measure of performance (such as error rate) or a measure of 
model fit (such as deviance). M. Stone (1974) and Geisser (1975) 
pointed out that cross-validation could also be used for parameter 
estimation; just choose the parameter value which minimizes the cross­
validated measure of performance or fit. Then if we want to assess the 
performance of the resulting classifier by cross-validation, we have to 
do so by a double layer of cross-validation. 

M. Stone (1977a, b) considered various asymptotics for model se­
lection by cross-validation. Consider first cross-validating the deviance 
(under ML estimation). This is a sum of terms D; over examples in 
the training set. We follow the usual notation in which (i) refers to a 
quantity based on the training set with the i th example deleted. From 
Taylor expansions we have 

2: D;(8(i)) = D(8) + I:[8(i)- 8]T v;(e;) 
i 

8(i)- 8 = D"(8;)-1 D'(8(i)) 

for 0;, 7J; convex combinations of 8(i) and 8 (and since L,Ni Dj(8(i)) = 0 
by definition). Under consistency all the estimators converge to Oo, so 

l:D;(8u)) "'D(8) + I:v;(Oo)TD"(Oo)-1D;(Oo) 

= D(8) + trace[D"(Oo)-1 I:v;(Oo)D;(Oo)T] 

and the limit of the second factor on the right-hand side is 2p• by 
the arguments in Section 2.2. Thus leave-one-out cross-validation of 
the deviance is asymptotically equivalent to using NIC to correct the 
deviance. This suggests that model choice by NIC and by leave-one­
out cross-validation are asymptotically equivalent. (For finite classes of 
models this argument will prove so unless two or more models have 
the same D(Oo); all true models have the same value, zero.) 

M. Stone (1977a) gave heuristic arguments and examples for asymp­
totic consistency of cross-validatory assessment (which follows from 
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unbiasedness and a law of large numbers) and asymptotic efficiency of 
cross-validatory estimation. 

Improving on cross-validation 

Cross-validation was used to estimate the performance (error-rate, loss, 
deviance) on a test set by constructing a pseudo test-set from the 
training set. We now take a different viewpoint, of accepting that 
the performance measure on the training set is biased, but trying to 
estimate that bias, and correct it using our estimate. For concreteness 
we will work with error rates (although the principles apply much 
more widely). We need to distinguish between the pmc, the true error 
rate for our classifier trained on this training set, E pmc, its average 
over training sets, and pmc0, the true error rate with the 'least false' 
parameter eo plugged in. We can then aim to correct the bias of pmc 
as an estimator of either pmc or pmc0. The first is most relevant for 
performance assessment of this classifier, the second if we use pmc0 as 
an upper bound for the Bayes risk (which for large parametric families 
may be close to the Bayes risk) or as a lower bound on the achievable 
performance within this parametric family. In either case pmc will be 
biased. The two biases are E[pmc- pmc] and E pmc- pmc0, and 
in each case we will correct pmc by subtracting an estimate of the 
appropriate bias. 

How do we estimate the biases? The method of Quenouille (1949), 
later termed the jackknife by Tukey, is sufficiently similar to leave­
one-out cross-validation to have caused considerable confusion in the 
literature. Suppose en is an estimate of (} based on n observations, 
and that its mean has the expansion 

~ a1 a2 
E (}n = (} + - + 2 + · · · . 

n n 

Then each leave-one-out estimator e( i) has mean 

~ al a2 
E (}(i ) = (} + n- 1 + (n- 1)2 + ... 

as does their average 0. Now consider ne- (n- 1)0. This has mean 

~ ~ 3 
nE (}- (n- 1)E (} = (}- n(n _ 

1
) + O(n- ) 

and so much smaller bias for large n. Thus the jackknife estimator of 
the bias is (n- 1)[0- e] . 

The most obvious application of the jackknife is to reduce the bias 
of pmc as an estimate of pmc0. The expansion needed is valid under 
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very mild regularity assumptions for ML plug-in classifiers, and the 
biased-reduced estimator of pmc0 is 

-- n-1'"'--n pmc- -n- L.....t pmc(i) 
i 

using E pmc = pmc0 + at/n + O(n-2). 

It is less obvious how jackknifing can be used to estimate the bias 
E[pmc- pmc]. Efron (1982, Chapter 7) sketches how to do so. The 
idea is to compare the error in predicting the omitted sample with that 
in predicting the (n- 1) remaining samples. Let ei be the indicator 
of the error of predicting the class of Xi from §{i), and pmc(i) the 
apparent error rate on fitting to §{i)· Then the estimator of the bias is 

(n-1) --
n m~an[pmc(i)- ei] 

where the scale factor is a sample-size adjustment. Under mild regularity 
conditions we would expect E pmc = pmc0 + bjn + O(n-2), and so 
Eei = pmc0 +b/(n-1)+0(n-2) and E pmc-pmc = (al-b)/n+O(n-2). 

Then our bias estimator has mean 

n -1 [ a1 2 b 2] -- pmc0 + -- + O(n- ) - pmc0 - -- - O(n- ) 
n n-1 n-1 

= al - b + O(n-2) 
n 

as required. The complete jackknifed estimate of pmc is 

pmc + (1 - 1/n) m~an [ei- Pri1Cu)1 
! 

which has bias O(n-2). 

In our current notation the leave-one-out cross-validated estimate 
of pmc is 2::: ei/n, and so it implies pmc - meani ei as its estimate of 
the bias. Efron (1982, Chapter 7) gives a suggestive argument why the 
relative difference between the two bias estimates might be Op(1/n), and 
hence there would be little practical difference. Our arguments show 
that if we drop the sample-size correction, thereby making a relative 
error of 0(1/n), the difference between the two bias corrections is 
pmc- meani pmc(i) which has a mean of O(n-2), and is often Op(n-2). 

Note that the computational effort of these two estimators of pmc is 
almost the same. 

The bootstrap is loosely related to the jackknife, and conceptually 
simpler. Suppose we make a new sample of size n by resampling with 
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replacement from our sample, and calculate an estimate e• from the 
bootstrap sample (as it is called). Then the variability of e·-7i should 
mimic that ~ 7i- e, in particular the mean of the first should estimate 
the bias of e. This can be used by actually resampling B times and 
averaging, or sometimes by finding the mean analytically. 

In our problem we can bootstrap pmc to estimate pmc0, or boot­
strap pmc - pmc to estimate the bias correction. This bias is the 
difference between the classifier's apparent error and true error, aver­
aged over training sets. To bootstrap this we replace .r by .r· and the 
mean over x by the average over the points in .r. Thus the bootstrap 
estimate of the bias is the average (over bootstrap samples) of the error 
rate on the training set .r· minus that on the larger set .r. Of course, 
we will evaluate the error rate on the distinct members of .r• using 
weights for multiple members. 

Immediately we see a snag, as the example from .r being predicted 
may be in the bootstrap training set .r•, and if it is we may expect to 
predict it well, for some classifiers far too well. Efron (1983) proposed 
the '.632' bootstrap, which considers only the predictions of those 
members of .r not in .r•; specifically for each point x; estimate the 
error by averaging over those bootstrap samples not including x;, then 
average over points to get eo. The final estimate is then 

0.368 pmG + 0.632 EQ. 

Here 0.632 is shorthand for (1 - 1/e), the limit for large n of the 
probability that a given observation from .r appears in .r·. 

Bootstrap methods may also be used to estimate the precision of 
the apparent error rate pmc, using the variability of pmc • about pmc 
to estimate the variability of pmc about pmc, for example to estimate 
the variance of pmc by the variance of pmt•. But we have to be 
careful, as we should really be interested in the mean square error of 
the bias-corrected estimator, not of pmc, and the bias correction is 
itself an estimate. Efron & Gong (1983) suggest the mean square error 
of the bootstrap samples used to estimate the bias gives a lower bound 
on the mean square error of the bias-corrected estimator. 

Introductions to the bootstrap are given by Efron (1982), Efron & 
Gong (1983) and Efron & Tibshirani (1993); Efron (1983, 1986) contain 
comparisons of error rate estimation methods including those based 
on the bootstrap. Other comparisons within the pattern recognition 
literature are given by Chernick et al. (1985) (for linear classifiers), 
Crawford (1989) (for classification trees) and Jain et al. (1987) and 
Weiss (1991) (for k-nearest neighbour classifiers). These show some 

Note that !T. contains 
some of the members of 
!T more than once, and 
(usually) some not at 
all, so as a set !T• is 
smaller. 
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support for the '.632' estimator, but by no means universal improvement 
over leave-one-out cross-validation. The title of this subsection has been 
chosen in optimism, since the full power of the bootstrap (for example, 
used in conjunction with ideas such as (2.46)) seems not to have been 
fully tested. 

Confusion matrices 

Thus far we have concentrated on a single measure of performance, the 
overall error rate. This is natural within our decision-theory framework, 
but we may want more detail to help understand where a classifier is 
failing. The next level of detail is the class-conditional error rates 
previously termed pmc(k), that is the error rate amongst examples 
of class k. Further, we may want to know which classes are being 
confused, and so we may wish to know 

eiJ = Pr{ decision j I class i} 

which is sometimes called the confusion matrix. Note that the decisions 
can include 'doubt', ~-

The most obvious way to estimate ekj is from the pattern of errors 
on a test set, and sometimes the term 'confusion matrix' refers to the 
matrix of counts of the events 'true class i decided as j'. 

Almost all the methods we have discussed apply equally to the class­
conditional error rates. We just consider only those examples with true 
class k, and in some cases (such as the jackknife) need to take the sample 
size as the number of class-k examples. Although Efron (1986) derived 
the '.632' estimator for the overall error rate for two groups, it extends 
readily to class-conditional rates (Hjort, 1986). Once the conditioning 
on class k is accomplished, estimating the confusion matrix merely 
amounts to accounting for which errors were made. 

The one method that has a less obvious extension is the use of 
the posterior probabilities at (2.46), since this looks at the predicted 
rather than true class. Extensions were considered by Schwemer & 
Dunn (1980), Basford & McLachlan (1985) and McLachlan (1992). As 
at (2.46) we at first assume that the posterior probabilities are known. 
Then 

eij = Pr{ decision j I C = i} = Pr{ C = i, decision j} /ni 

= E{p(i I X)J[c(X) = j]} /rri = L 1tk Ek{p(i I X)J[c(X) = j1}. 
k 1tj 

We can form an unbiased estimator of eij by replacing the expectations 
in the final expression by averages over a test set. If the (rri) are 
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unknown and are estimated as usual by (ni/n), the estimator simplifies 
to 

eij = _!_ :t p(i I X!) I [c(Xl) = j] 
ni 1=1 

which can also be seen to be a ratio of unbiased estimators. This sug­
gested to Basford & McLachlan replacing the conditional probabilities 
and the Bayes classifier c(x) by estimates. Then it may happen that 
L:j eij =I= 1, so their final estimator 

n n 

eij = LP(i 1 Xt)I[C(Xt) = j] / LP(i I Xz) 
~1 ~1 

is formed by re-normalizing the estimator to sum to one. Note that 
unlike the estimator of the unconditional error rate, this may be biased 
even if the posterior probabilities are correct. 

Comparing error rates 

A study to compare the error rates of difference classifiers is an exper­
iment, and should be designed and analysed as such. There is much 
known from many years of theory and experiments in the statistics 
literature; an excellent basic reference is Box et al. (1978). Experiments 
in our field are computer experiments and have much in common with 
work in the field of simulation; Kleijnen & van Groenendaal (1992) 
provide a non-technical introduction in that context which is amplified 
in Kleijnen (1987). Important ideas from that field include importance 
sampling and stratified sampling, both of which can be used to design 
'difficult' test sets and to compensate for the increased difficulty in esti­
mating error rates. For example, we might arrange for rare patterns to 
be well-represented in the test set, but down-weighted (as in the study 
of Candela & Chellappa, 1993, Blue et al., 1994). 

It should always be possible to give some idea of the variability of 
a quoted performance estimate. For test-set error counts we can use 
the binomial distribution or the normal or Poisson approximations to 
it. For other measures such as the smoothed error counts based on 
1-maxc p(x I x) we can use the sample variance, as each example in the 
test set is assumed to be an independent sample from the population 
on which we are trying to predict the error rate. 

However, a crucial observation is that since the same test set is used 
for each method, the comparisons between methods are usually much 
more accurate than the standard errors suggest. (In the terminology of 
the design of experiments we have a paired comparison, or a blocked 



Table 2.1 : Test-set error 
counts (out of 120) for 
the Leptograpsus crabs 
example, from 
Ripley (1994c). 

This uses the variance 
of a binomial 
distribution. 

An exact test has 
precisely the 
distribution claimed 
under the null 
hypothesis. 
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methods 4-way sex only sex only 
colour given yes yes no 

linear discriminant 8 8 8 
linear discriminant on log variables 4 4 4 
quadratic discriminant 11 9 8 
quadratic discriminant on log variables 9 7 7 

experiment if there are more than two methods.) Consider the first 
two lines of Table 2.1. As frequently happens, the 4 errors made in 
the second line are also made in the first line. The standard error of 
the difference between 4/120 and 8/120 assuming separate test sets is 
y'0.01642 + 0.02272 ~ 3.37/120 so a naive comparison would conclude 
that there was no significant difference. 

More appropriate methods are available, such as McNemar's test 
(Fleiss, 1981). Let nA and n8 be the number of errors made by 
method A and not method B, and vice versa, so in our example 
nA = 4 and nB = 0. Then McNemar's test (with continuity correction) 
refers 

InA -nBI-1 

y'nA + nB 

to a N(O, 1) distribution, and an exact test refers nA to a binomial 
(nA + n8 , 1/2) distribution. This suggests that we need nA ~ 5 for 
a significant difference (but this is only sufficient if n8 = 0 ). Thus 
large test sets are needed to distinguish between classifiers of similar 
performance; to detect a 1% difference in error rate needs at least 500 
examples. So although the difference here is suggestive, the sample size 
is too small for a definitive conclusion. 

One pitfall to be avoided is to give too much emphasis to statistically 
significant results. In an experiment in which method A with error rate 
29.8% is significantly better than method B with error rate 30.1 %, it 
is clear that the difference is unlikely to be of practical importance, 
especially if we estimate the Bayes risk as 6% by the methods of 
Chapter 6. 

2.8 Computational learning approaches 

One recent strand of theory looks at what Valiant (1984) called 'the 
theory of the learnable' and has since become known as PAC-learning 
(for probably almost correct). Suppose we have a training set of n 
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samples, and use these to fit a classifier g from a class !#' of possible 
classifiers. If the class !#' is not too large and includes the true classifier, 
we would expect that for large enough n the fitted classifier g would 
be 'close' to the true classifier f. Thus the theory addresses the question 
of how large the training set needs to be. 

How should we measure closeness? The obvious way is to compare 
the decisions made by f and g for a randomly chosen sample from 
g( x rl, where rl is the set of classes, and ask that they agree with high 
probability, that is 

Pr{g(X) -=/= f(X)} < c, (2.47) 

say, for some pre-specified E. (This implies that the true error rate of the 
classifier g exceeds the Bayes risk by less than c.) The left-hand-side 
of this statement is a random variable, as it depends on the training 
set. In PAC-learning we ask that (2.47) be true for a high proportion 
of training sets, say with probability exceeding 1 - b, for a sample 
size no more than polynomial in 1/c, 1/b and that g be fitted in time 
polynomial in n. Here we are more concerned with the sample size 
than the computational complexity of finding g. 

In the 'noise-free' case when there is a f E !#' which correctly 
classifies any training set, Pr{g(X) -=!= f(X)} is the error rate of g, so 
(2.47) corresponds to low error rate. In the 'noisy' case we actually 
study the difference between apparent and true error rates. 

The bounds used in studying PAC-learning are often called worse­
case bounds since they apply to any distribution over g( x rl, provided 
that both the training set and future samples are drawn (independently) 
from the same distribution. Much of the theory currently available 
applies only to two-class problems, and the results are most refined in 
the noise-free case. 

A warning. The results of this section are often misinterpreted. They 
apply over all possible training sets !T, and assert that events occur for 
most (or few) training sets for a given model. As such they are subject 
to the usual criticism of frequentist methods, that we cannot know if 
our particular training set is an exception. But the difficulty here is 
particularly acute, as the model will have been chosen on the basis of 
the training set, indeed often on the basis of the sort of performances 
that these bounds guarantee. A typical claim is 

'If our network can be trained to classify correctly a fraction 1-(1-y )E 
of the n training examples, the probability that its error-a measure 
of its ability to generalize-is less than € is at least 1 - o.' 

However, the probability is in fact guaranteed to be less than 1-b over 
all !T, including those our model will not fit well, not the conditional 



For each g with overall 
error rate at least E, the 
probability of getting n 
correct samples is at 
most (1- E)", and one 
of at most r classifiers 
is chosen. 
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probability asserted. To use these results (correctly!) in performance 
assessment, they have to be applied to the whole procedure including 
model choice for every problem, with any exceptions included in the 
probability b. (This is pointed out by Wolpert, 1994b.) We have never 
seen this done. 

The results are interesting theoretically, and perhaps useful in model 
choice, but are very conservative. Much better bounds should be 
possible using the knowledge of the world gained from the examples to 
fit a class of models. We give examples of the 'dimensions' used in the 
results in later chapters. 

Finite sets of classifiers 

The simplest approach is to assume that there is a finite number r of 
distinct classifiers in ffi' (Blumer et al. , 1987). Then the probability 
that a g chosen consistent with (that is correctly classifying all of) a 
training set of size n yet having overall error rate at least E, is at most 
r(1- E)n. We can invert this bound to show that 

log r + log -} log r + log ! 
----,,----,-:---"- ~ ----"-
-log(1- E) £: 

(2.48) 

training samples are enough to ensure that if we classify the training 
set correctly, the true error rate is less than £: with probability at least 
1-b. 

Now suppose that we cannot find a classifier in our class correctly 
classifying all cases, so the apparent error rate pmc is non-zero. There 
are several possible bounds. The number of errors is a binomial ( n, pmc) 
random variable so the Bienayme-Chebychev inequality gives 

~ pmc(1- pmc) 
Pr{lpmc(g)- pmc(g) l > £:} ~ 2 nE 

which, allowing for the r possible classifiers, gives 

r 
n ~ 4bE2 

which is much worse than the noise-free bound for small £: or large r. 

The bound of Hoeffding (1963) gives for each classifier 

Pr{pmc < pmc- e} ~ exp-2ne2 

and twice this probability for a two-sided bound, so 

logr +log-} 
n ~ 2~:2 
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suffices to bound the optimism in the apparent error rate by E for 
a proportion (1 - <5) of training sets. This is better, but still has 
rate O(c-2). To overcome this we have to look at relative error with 
Chernoff's (1952) bound: 

Pr{pmc < (1-y)pmc} ~ exp-!ny2pmc; 

this gives 
logr +log-} 

n ~ 2 2 y E 

if we confine attention to classifiers with pmc > E. Thus just as for 
the noise-free case we consider the case in which we are doing badly 
and are not aware of it from the fit on the training set. Taking y ---+ 1 
gives double the previous bound on the sample size for a perfectly-fitted 
training set. 

A combination of absolute and relative error is obtained by using 
the metric 

d ( ) 
_ lr- sl 

v r,s - --'-----'----
v+r+s 

used by Pollard (1986) and Haussler (1992). For large v this behaves 
like absolute error, for small v like relative error. Note that for 
arguments in [0, 1] (such as error rates) we have 

lp-ql 
v+ 2 ~dv(p,q)~lp-ql, 

and that de(P, q) > ! implies IP- ql > E, and is equivalent for p = 0. 
We have the bound (Haussler, 1992, Theorem 1) 

Pr{ dv(pmc, pmc) > oc} ~ 2 exp -nvoc2 

which translates into the sample size bound 

Iogr +log~ 
n~ 2 voc 

To compare this bound with the previous ones, note that 

Pr{lpmc-pmcl >c} ~ Pr{dv(pmc,pmc)>c/(v+2)} 

~ 2 exp -nvc2 j(v + 2)2 

which is minimized by v = 2 as 2 exp -nE2 /8. For a Chernoff-like 
bound we have 

Pr{pmc < (1- y) pmc} ~ Pr{ dv(pmc, pmc) > Y pmc } 
v +pmc 

~ 2exp-nv [ ypmc ]
2 

=2exp[-!ny2 pmc] 
v +pmc 

The precise form of the 
bound used here is due 
to Angluin & Valiant 
(1979). In Bather (1996, 
p.340) Chernoff says the 
bound should be named 
after Herman Rubin. 



This concept is 
discussed very clearly 
by Pollard (1984). 

Anthony & Biggs 
(1992) give full but 
opaque versions of the 
proofs of Blumer et al. 
(1989) for the noise-free 
case, except for 
measurability 
conditions. 
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on taking v = pmc. 
Note that none of the bounds in this subsection depend on the 

number of classes, as they work directly with error events. 

Infinite number of two-class classifiers 

A key quantity in the PAC-learning results is the Vapnik-Chervo­
nenkis (or VC) dimension d of :F. Consider the set of functions 
{0, l}n -+ {0, 1} induced by evaluating functions in :F at the n points 
of the training set. (That is, the induced function gives the predicted 
class for each of the possible class assignments to the training set.) Let 
the number of distinct functions be A(n). In many cases this number 
will be 2n for small n, since all possible functions are induced. Let d 
be the largest value of n such that A(n) = 2n for some training set of 
size n, or infinity if there is no such number. Then it turns out that for 
d < oo we have 

(2.49) 

the last inequality holding for n ~ d ~ 1 (Blumer et al., 1989, Propo­
sition A2.1). This result is sometimes called Sauer's lemma; its history 
is traced by Assouad (1983). Note that these bounds apply to all train­
ing sets; from now on we will use A(n) to denote the maximum over 
training sets of size n, and to use the results we will replace it by one 
of the bounds in (2.49). 

We will give the most precise results available for two classes (from 
Blumer et al., 1989) then sketch how they are derived. (There are benign 
measurability conditions which we ignore.) 

As a simple example of the VC dimension, consider [!( c: Rm and 
classifiers of the form 

m 

sign(LaiXi >b) 
i=l 

which we shall meet under the name of perceptrons in Section 3.6. 
Cover (1965) showed that these rules have VC-dimension m + 1 (as 
follows from Proposition 3.1 on page 119). On the other hand, for 
binary inputs, there are between 2m(m-l)/2 and 2m2 different functions 
generated by perceptrons (Muroga, 1971), so the bound given by {2.48) 
is of the form 

m2 log 2 + log t 
n ~ ------"­

€ 

The following proposition usually gives considerably tighter bounds: 
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Proposition 2.5 (Blumer et al., 1989) 
Let d denote the (finite) VC dimension of ff. 

(i) Given 0 < E' < 1, the probability that there is a classifier g E ff 
consistent with n training examples and with true error rate greater than 
E' is bounded above by 

(ii) If 

(4 2 8d 13) 4 [ 2 12] 
n ~max ; log2 b'-; log2-; or n ~; log2 b + dlog2-; 

the bound in (i) is less than (J. 

(iii) For given 0 < E' ~ 1/8, (J ~ 1/100, d ~ 2 and 

(
1-E' 1 d-1) 

n < max -E'-log2 b' 32E' 

fix an algorithm to select a classifier g for each possible training set 
of size n. Then there is a probability distribution on PI x { 0, 1} and a 
function f E ff which correctly classifies examples with probability one, 
but the probability exceeds (J that the algorithm gives a classifier with 
error rate exceeding E'. 

The lower bound in (iii) was shown by Ehrenfeucht et al. (1989) by 
exhibiting a suitably malicious distribution, which concentrates on d 
points and gives probability 1 - 8E" to one of them. The conclusion 
from the proposition is that to achieve a high-probability guarantee 
of an error rate of less than E' we must take the size of the training 
set to be at least of order d/E" log(d/E). This is, however, very much 
a worse-case bound, and such empirical evidence as there is (such as 
Cohn & Tesauro, 1992) suggests that practical performance is closer to 
the lower bound given by (iii), and can even be well below that bound 
for any 'normal' distribution of examples. 

Similar results are known for the case with no perfect classifier: 

Proposition 2.6 Let d denote the (finite) VC dimension of ff. 

(i) (Vapnik & Chervonenkis, 1971) For any E' > 0 

Pr{ sup lpmc(g)- pmc(g)l > E'} ~ 4L\(2n) exp[-nE2 /8] 
gES&' 

and the probability is less than (J if 

16 [ 4 32e] 
n ~ E'2 log b + d log E'2 . 

(2.50) 

The constants in (2.50) 
can be improved. The 
factor 1/8 in the 
exponent can be 
removed (Parrondo & 
Van der Broeck, 1993) 
at the expense of 
increasing the constant: 
the claims of Vapnik 
(1995, pp. 66, 85) are 
not supported by the 
belated proofs in 
Vapnik (1998). 
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(ii) (Vapnik, 1982, with a slight improvement by Anthony & Shawe­
Taylor, 1993) For any 11. > 0 

{ 
pmc(g) - piTie(g) } 

Pr sup > 11. ::( 4Ll{2n) exp -ina2 

g .jpmc(g) 
(2.51) 

and the probability is less than <5 if 

8 [ 4 16e] n ~ 11.2 log J + d log 11.2 . 

(iii) (Blumer et al., 1989) Given 0 < E, y ::( 1, the probability that there is 
a classifier g E ~ with true error rate pmc exceeding E and apparent 
error rate piTiC < (1- y)pmc is bounded above by 

4Ll(2n) exp -h2nE. 

This probability is less than (J if 

n ~max(+ log~, 1~d log 
1
2
6

) or n ~ --:.- [log~+ dlog 
1 ~e] . 

YE u YE YE YE u YE 

(iv) (Haussler, 1992, Theorem 3) For any 11. > 0 

Pr{ sup dv ( piTie(g), pmc(g)) > 11.} ::( 4L'l(2n) exp[-!nva2
]. (2.52) 

gE.?F 

If we can find a classifier g E ~ which fits the training set exactly 
we could apply Proposition 2.5(i) or Proposition 2.6(iii) with y = 1, 
but the bound given by Proposition 2.5 is smaller. Part (iv) implies 
somewhat weaker versions of parts (i) and part (iii) with factors 1/16 
and 1/8 in the exponent (using v = 2,11. = E/4 and v = E,IJ. = y/2 
respectively). 

Proposition 2.6(i) has been used to give upper bounds for PAC­
learning by Pearl (1979) and Abu-Mostafa (1989). This bound can be 
improved for large nE2 ; Devroye (1982) has 

Pr{ sup lpiTie(g)- pmc(g)l > E} ::( 4e4€+4
f"

2 
Ll(n2)exp[-2nE2] (2.53) 

gE.fF 

and Alexander (1984) has 

Pr{ sup lpiTie(g)- pmc(g)l > E} ::( 16(ynE)4096(d+l) exp[-2nE2] (2.54) 
gE.fF 

for nE2 ~ 64, which translates to a guarantee for 

nE2 ~ [log ~6 + 1024(d + 1)log 
2048~ + l)] ,64. 
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So far we have considered these results as bounding the size of the 
training set. It is possible to change our point of view and seek upper 
bounds on the true error rate; in fact given the probability framework 
we will have (conservative) upper confidence limits corresponding to 
probability 1 -!J. From (2.48) we have an upper bound of the form 
(log r -log !J)/n if we can always fit n training cases exactly. From 
part (i) of Proposition 2.5, in the same case the upper bound is 

2d 2ne 2 2 
e ~ -; logz d + n logz b 

which shows convergence at slightly less than 0(1/n). On the other 
hand, if the Bayes risk is non-zero, we obtain convergence at rates 
around 0(1/ ..[ri) from Proposition 2.6 parts (i) and (iii). These give 

lpmc-pmcl ~ - d log - + log -8 [ 2ne 4] 
n d lJ 

-- · 4 [ 2ne 4] pmc - pmc ~ .JPrliC n d log d + log b . 

Devroye (1988) considered the expected maximal difference (over 
classifiers) between pmc and pmc rather than confidence limits for 
pmc, and also looked at the direct calculation of d(m) for practical 
families of classifiers. 

One way to look at these results is in terms of empirical risk min­
imization. In the noise-free case we select a classifier which makes the 
minimum number (zero) of errors on the training set. For the noisy 
case it is convenient to choose a classifier with the same property, as 
then the upper confidence limits are tightest on the true error rate. This 
amounts to a parameter estimation strategy, although often it will not 
lead to a unique parameter estimate. If we then consider families §m 

of models of increasing flexibility, we expect to obtain a lower apparent 
error rate as m increases, but a confidence limit on the error rate which 
will decrease and then increase. Vapnik's (1982, 1992) structural risk 
minimization chooses the model class to minimize this bound. (Note 
that minimizing bounds, especially those as loose as these appear to be, 
may not be a good idea!) 

Outline of proofs 

We will only give the main ideas of the proofs, omitting details of 
measurability. It may be puzzling that d(2n) appears in Propositions 2.5 
and 2.6 since we have only n training samples. The reason is an idea 
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that Pollard (1984) calls symmetrization. Suppose we consider two 
independent training sets of size n. Let 11 be the true error rate and rfi 
be the apparent error rates on the two sets. Then 

Pr{sup 1111-111 > e} ~ 2Pr{sup 1111-1121 > !e} (2.55) 
gE.'F gE.'F 

for n > 2je2. This reduces the computation to comparing two indepen­
dent training sets of size n, thus to events on a training set of size 2n. 
This will be used in the proof of (2.50). 

Proof of (2.55): 
Fix a classifier with true error rate 11 and consider n1Ji> which has a 
binomial (n, 11) distribution. By the Bienayme-Chebychev inequality, for 
n > 2/e2 we have 

Now condition on the first sample and choose a g which maximizes 
the left-hand side of (2.55). Then conditionally we have 

Pr{ I1J2(g)- Yf(g)l ~ !e I g} ~ ! 

since the second sample is independent of the first. Thus unconditionally 

and 

~ Pr{ I1J1 (g)- Yf(g)l > e, I1J2(g)- Yf(g)l ~ !e} 

~ !Pr{l171(g)- Yf(g)l > e} = !Pr{ sup ll11- 111 > e} 
gE.'F 

which suffices. D 

Now consider the class /Fe of classifiers with true error rate 11 at 
least e; we will show 

Pr{1J1 = 0 for some g E /Fe} 

~ 2 Pr { 1J1 = 0, 1J2 ~ 11/2 for some g E /Fe} (2.56) 

for n > 8/e. Again condition on the first sample and choose g E /Fe 
which is consistent with it (if possible). Then conditionally 

(~ 1 I ~ =) p (I~ I 1 ) 4(1- '1) 4 1 Pr '72 < 2'1 g E :#'e ~ r '72- 11 > 2'1 ~ ~ - ~ 2· 
n17 ne 
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Thus as before 

Pr{17t = 0,172 ~ !11 for some g E 37'e} ~ Pr{17t(g) = O,l72(g) ~ !11(g)} 
~ !Pr{17t(g) = 0}. 

Consider the right-hand side of (2.56). We condition on the locations 
of the 2n training points, and consider only their order. Of the 
22n possible assignments by classifiers in 37' of labels to points, at 
most ~(2n) will occur. Suppose there are t erroneous assignments 
of labels by an eligible classifier; we must have t > !n11 ~ !nf'. 
The probability (over permutations) that these all occur in the second 
sample is (;);e;) ~ 2-t ~ 2-ne/2, so the probability of the event 
{17t = 0, ll2 > 1112 for some g E 37'e} is at most ~(2n)2-nef2 , which 
with (2.56) establishes part (i) of Proposition 2.5 for nf' > 8, hence 
~(2n) > 8. The (uninteresting) remaining cases can be proved by 
showing Pr{l72 < !11 }~! actually holds for n > 2/€. 

Part (ii) of Proposition 2.5 follows from part (i) using the second 
bound in (2.49). To cover all the cases, consider a bound of the form 

A~(2n)e-Bn ~A (2~n) d e-Bn ~b. 

Note that logx ~ x-1 can be manipulated to give logx ~ Cx-logCe. 
Take C = r~.Bjd for 0 < r~. < 1. Then 

r~.Be 
rt.Bn ~ dlogn +log d' 

so it suffices to choose n satisfying 

A 2 
(1- r~.)Bn ~log b + dlog r~.B· 

The inequalities come from r~. = 1/2 and 8/ log 2 ~ 12. 
We return to (2.55). We condition on the 2n examples and only 

consider their order. Let ei = I (error on sample i ). Then half the 
right-hand side of (2.55) is 

n 

Pr{ sup I L)ei- ei+n)l > nf'/2}. 
gE§ i=l 

Consider random permutations of the total sample. The terms ei - ei+n 
are bounded by ±1 and have a symmetric distribution with mean zero. 
We need only consider permutations which swap elements between the 
two sets, so consider Yi = ±(ei- ei+n) independently with probability 
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a half for each sign. Hoeffding's (1963) inequality asserts that the 
probability over these permutations is bounded by 

n 

Pr{jl:.::Yij > 1nc} ~2exp-2n(c/2)2/4=2exp-nc2/8 
i=l 

and averaging over the remainder of the permutation distribution does 
not affect the bound. As before, allowing any g E .'F gives rise to at 
most ~(2n) assignments of errors. With (2.55) this gives (2.50). 

Part (iii) of Proposition 2.6 follows immediately from part (ii) on 
taking rx2 = y2c. (The reduction of the constant to 4 is from Anthony 
& Shawe-Taylor, 1993.) We will prove part (ii). Choose g E .'F as 
before, and assume 1J = pmc(g) > rx2 and nrx2 > 4, or the bound 
is trivial. Since i]2 has a binomial (n, 1J) distribution with n1J > 4, 
Pr{ih > 1J} ~ 0.32768 > 1/4. (The worst case occurs with 1J = 
1 - 1/n and n = 5, hence this value.) Now ift < 1J - rxJil and 
if2 > 1J imply if2 - ift > rxJ[1(ift + if2) J. (Show this by minimizing 
[if2- ift]/rxJ[1(ift + if2)] over ift, which is clearly achieved by taking 
this as large as possible, and its bound is least restrictive if 1J = 'h.) 
Thus 

~ Pr{ift < 1J - rxJii} ~ Pr{ift < 1J - rxjii, if2 > 1J} 

~ Pr{if2- ift > rxJ[1(ift + if2)]}. 

As before we consider random swapping permutations. If all Yi are 
zero then if2 = ift and the probability is zero, so suppose there is at 
least one Yi + 0. Hoeffding's inequality (1963, Theorem 2) gives 

n 2n 

Pr{if2- if1 > rxJ[1(ift + if2)]} = Pr{L Yi > rxJ[1n Lei]} 
i=l i=l 

2nrx21 L~~ ei 
S:: exp 2 z-l = exp 
""" 42:¥/ 

2 "'2n 
nrx L....i=l ei s:: exp _lnrx2 

4l:IYil """ 4 

More general problems 

The methods based on VC dimension are confined to two classes, since 
the VC dimension itself is. There are several extensions we might need 
to consider: 

1 more than two classes; 

2 loss functions other than the error rate; 
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3 characterizations other than the VC dimension, since this is either 
unknown or infinite for many of the classifiers we would want to 
consider in practice. 

These are beginning to be addressed, notably by Haussler (1992). An 
alternative approach for multiple classes is to use the VC dimension of 
the graph of the classifier, a subset of [!( x ~. as in Shawe-Taylor & 
Anthony (1991). 

The loss functions we consider will be bounded by 0 and 1. Since 
our decision space is finite, this amounts to a possible re-scaling, but 
excludes working with the deviance, for example, unless probabilities are 
bounded below. Techniques are available for unbounded loss functions 
(Pollard, 1990). 

The general technique to replace the VC dimension is one of ap­
proximating the infinite class of functions by a finite €-cover, that is 
a set of functions such that any function is within distance € of a 
member of that set. Let %(€) be the smallest number of points in 
a €-cover, which is closely related to the maximum number At{€) of 
points at least € apart which can be packed in: in fact 

Jt(2€) ~ %(€) ~ At(€). 

Then the bounds will be in terms of the expected value of % applied 
to the family of functions evaluated at the training set. For example 
(Haussler, 1992, lemmas 13 and 14) 

Pr{ sup dv(R(g), R(g)) > o:} ~ 2E %(o:v /8) exp -o:2vnj8 
gE$' 

where R and R are the risk and estimated risk respectively, and L 1 

distance is used between loss functions. Very similar ideas occur in the 
method of sieves (Grenander, 1981; Geman & Hwang, 1982). 

The concept of pseudo-dimension (Pollard, 1990; Haussler, 1992) 
generalizes the VC dimension and provides a convenient way to bound 
covering numbers. Consider orthants of IR.P, possibly shifted to a new 
origin. The pseudo-dimension is the largest n for which there is a 
training set of n points such that the loss functions evaluated at those 
points meet all the orthants for some origin. Clearly for {0, 1 }-valued 
functions the pseudo-dimension is the VC dimension. If the set of 
loss functions for all rules under consideration has pseudo-dimension 
d then (Pollard, 1984, p. 27; Haussler, 1992, Theorem 6) 

[
2e 2e] d 

.!V(€) ~ At(€) < 2 -;log-; 

Such notions are often 
referred to as metric 
entropy. 

An orthant is specified 
by giving the sign of 
each coordinate. 
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for any training set, where e is measured in an Lt distance. These two 
results combine to give the bound 

8 [ 8 8e] n ~ -
2
- log ~ + 2d log -

0( v u ocv 

to ensure that Pr{dv(R(g),R(g)) > oc} with probability at least 1- ~-





3 

Linear Discriminant Analysis 

In this chapter we discuss methods which arise in statistics and in 
pattern recognition based on linear combinations of the feature vectors 
(so we assume that the feature space f!l is contained in 1lV ). These 
methods provide the templates for generalization to flexible non-linear 
methods discussed in the next two chapters as well as being of interest 
in their own right. 

We can identify three distinct ways in which the idea of approxi­
mating a function f from f!l to IRK can be used to produce a classifier, 
although all have variations on their themes. 

1 Take fk(x) = p(k I x) = E[J(Y =k) I X= x] and f(x) = (fk(x)). The 
Bayes rule chooses a maximizer of fk(x). Define target tk to be the 
kth unit vector. Since 

IIY II denotes the norm llf(x) _ tk11 2 = -2fk(x) + 1 + ll f(x) ll 2 
of a vector y . 

The L1 distance 
between x and y is 
Lilxi - yi[. 

the Bayes rule amounts to choosing the nearest target to f(x). This 
leads to ways to approximate by f(x ; 8) based on choosing e to 
make the predictions for the training set as close as possible to the 
targets. 

2 Dietterich & Bakiri ( 1991, 199 5) consider coding the class targets 
tk to be widely spaced in :!l' = {0, 1 }m for m > k, and learning a 
function f from f!l to [0, l]m. The classifier then chooses the nearest 
target in :!l' to the prediction f(x) for a new example. The actual 
coding is done using error-correcting codes, and the distance is L 1• 

We can view this approach as training a classifier for m pseudo­
classes, and then mapping the distribution over pseudo-classes to 
the K real classes. 

3 We have seen that the Bayes rule maximizes log p(k I x), and the 
multiple logistic model (2.29) is a linear model for these log posterior 
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probabilities. Variants which are less principled but commonly used 
are separate logistic models of each class versus the rest or versus a 
reference class (see Section 3.5). 

We vary slightly our usual notation: there is a training set of n ob­
servations (or examples) ofa p-variate pattern, and these observations 
are classified into g groups. Note that the groups need not coincide 
with the classes, and in the less flexible methods of this chapter it may 
be desirable to split some of the classes. For example, in symbol recog­
nition we might divide the class for sevens into crossed and uncrossed 
sevens. If we let the classifier choose the best group and then assign to 
its class we would be using a cost structure which penalizes the wrong 
choice of group rather than class. The cost structure based on groups 
corresponds to adding posterior probabilities over groups to form the 
posterior probability for the class, then choosing the class with the 
largest posterior probability. 

Let X denote the n x p matrix of examples, and G the n x g 
matrix of indicator functions for the groups (i.e. gij = 1 if and only if 
observation i belongs to group j ). Note that GT G = diag (ni), where 
ni is the number of observations for group i. A typical example will Remember x is a row 

be denoted by x and is a row vector where necessary (as it is a row of vector. 

X ), and T denotes the transpose of a vector or matrix. 

3.1 Classical linear discrimination 

We will normally assume (to ease the notation) in this section and in 
Section 3.2 that X has been centred; each feature variable has had its 
average subtracted. 

We saw on page 36 that if we assume the probability model in which 
the observations for group j are normal with mean l'j and common 
covariance matrix I:, the Bayes rule is to allocate a future observation 
x to the group for which 

-2 logp(j I x) = (x- P.j)I:-1(x- l'jf- 2 log 1tj + const (3.1) 

is smallest. The first term on the right is known as the Mahalanobis 
distance from x to the group mean. Expanding this out we find 

-2logp(jlx) = -2xi:-1p.J +p.ii:-1p.J -2logni+const+xi:-1xT (3.2) 

which is a linear term in x plus a quadratic term which does not 
depend on the class. Since we wish to maximize p(j I x) or equivalently 
to minimize (3.2), we may as well maximize the linear terms 

LDAj = 2xi:-1 p.J- Jlji:-1 p.J + 2 log 1tj. 
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The space f!{ = JR.P is partitioned by hyperplanes, another sense 
in which this is linear discrimination. For the special case of g = 2 
groups, comparing LDA2 with LDA1 amounts to computing the linear 
function LDA2-LDA1 and choosing group 2 if and only if it is positive. 
More generally, the comparison can be done in a space of dimension 
at most g - 1, and the distances computed in such a space, as we shall 
show more formally. 

In practice the population quantities /lj,"f. are estimated by mj, W, 
where W is the within-group covariance matrix defined below, rather 
than the maximum likelihood estimates considered in Section 2.2. 
(Other estimates are considered in Sections 2.4 and 2.5, but very rarely 
used in applied statistics.) 

Fisher's linear discriminant 

The classical method of linear discrimination was described by Fisher 
(1936) for two classes and extended to more by Rao (1948) (but some­
times attributed to Bryan, 1951). It uses a different criterion not based 
on the decision theory of Chapter 2; it seeks a linear combination xa 
of the variables which maximizes the ratio of its between-group vari­
ance to its within-group variance. This is appealing even if multivariate 
normality is implausible. 

These terms come from the analysis of variance and are defined for 
a variable y = (yi) as follows. Let mj denote the mean of y in group 
j, let m = (mj) and let [i) denote the group of observation i. The 
n x g matrix G indicates which group each observation belongs to, so 
gij = I (j = [i] ). Then the within-group variance is defined to be 

W _ Li(Yi- m[iJ)2 IIY- Gmll 2 

y- n-g - n-g 

and the between-group variance is 

B _ Li(m[iJ-:Yf = 
y- g-1 

IIGm-ylf 
g-1 

We can extend these definitions to the multivariate observations X by 
defining M as the g x p matrix of group means and 

W =(X -GMf(X -GM) 
n-g ' 

B = (GM -lxf(GM -lx). 
g-1 

Then the linear combination xa has variances aT W a and aT Ba, and 
total variance 

Ts _ r(n-g)W+(g-1)B 
a ra- a 

1 
a. 

n-
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It may be that the training sample is known not to be a random 
sample from the underlying distribution, but that the numbers nj of 
observations from each group were pre-specified. (This is often done 
to ensure that sufficient information is obtained on rare groups.) Then 
better estimates are obtained by weighting the observations in group 
j by nnj/nj in forming B, W and x. The interpretation remains 
unchanged. (Note that the maximum likelihood estimates are not 
weighted in this circumstance; the weighted versions are thought to be 
more accurate when the group covariance matrices actually differ.) 

The classical computational approach is to seek a rescaling of 
the variables xS such that their within-group covariance matrix is 
the identity matrix I and then perform an eigenvalue decomposition 
of B expressed on these variables. It will suit some of our further 
computations better to rescale the variables so that the total variance 
is nl /(n -1). The rescaling is achieved by taking a matrix S such that 
srxrxs = nl. This can be done in a number of ways: a simple one 
is to use the QR decomposition (Golub & Van Loan, 1989) of X: 

QX = [ ~] 
where Q is a n x n orthogonal matrix and R is a p x p upper triangular 
matrix. Take S as the solution to RS = Jill. Then on the rescaled 
variables X' = X S we have X' T X' = nl. There will be difficulties if 
the covariance matrix does not have full rank, and this can be hard to 
identify numerically. (For example, a column differing only in the fifth 
significant digit could be constant up to rounding error or could be an 
extremely precise measurement of, say, refractance.) 

A fairly safe procedure is first to rescale all variables to unit vari­
ance (and detect any constant variables) then to use the singular value 
decomposition X = U A V T . Then small singular values correspond to 
nearly constant combinations. We would take S = JiiV A - 1, but small 
singular values should cause concern, since they correspond to linear 
combinations which are nearly constant and whose varia·nce is likely to 
be determined inaccurately from the training set. 

We now work with these rescaled variables. The matrix GT G is 
diagonal containing the numbers nj of observations on each group. 
Let T = diag ( y'nlnj) so 

TGTGT = nl. 

The group means are given by the g x p matrix M = (GT G)-1GT X= 
n-1 T 2GT X. Since X has been centred the column sums of M 

See the glossary. 

Modified procedures 
are discussed in 
Section 3.4. 
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(weighted by group size) are zero, hence M has rank r ~ min (p, g- 1 ). 
Consider the singular value decomposition of r-1 M = U A V T. Since 
we do not wish to assume that either g or p is larger, we will assume 
that U is g x r, A is r x r and V is p x r. 

From the singular value decomposition we find 

(g -1)B = (GM)T(GM) = VATuT(TGTGT)UAVT = nVA2vT 

(n-g)W = XTX -(g -1)B = nl -nVA2VT = nV[I -A2]VT 

which incidentally shows that the singular values are at most one. (Note 
that one can occur; it corresponds to a linear combination which is 
constant within the groups but has different values on two groups. If 
so it is the desired linear combination.) The original problem reduces 
to finding a linear combination xa of the rescaled variables which 
maximizes the ratio 

aTV[I -A2]VTa· 

Let b = yT a. The ratio is I: Afhf I l.:(1- Af)bf, which is maximized 
by taking only b1 non-zero. Thus on the original variables a is 
proportional to the first column of SV. The linear combination is 
unique up to a scale factor unless A2 =AI. 

The linear combination found by this process is called the first linear 
discriminant or the first canonical variate. Subsequent columns of S V 
give further linear discriminants which maximally separate the group 
means subject to being uncorrelated with previous linear discriminants 
(since on the variables rescaled by SV both the W and B covariance 
matrices are diagonal). The first J ~ r linear discriminants maximize 
the ratio of the determinants of the between-group to within-group 
covariance matrices for J -dimensional linear transformations of the 
original variables. (This follows immediately since the determinant is 
the product of the eigenvalues.) 

The linear discriminants are usually scaled so that they have within­
group variance one (unless constant on groups). We have only defined 
r of them but a further p- r can be chosen by taking further columns 
which are orthogonal to the columns of V. 

For the linear discriminant variables the group means differ only in 
the first r variables. The quantity (n- g)Af /(g -1)(1- Af) measures the 
ratios of the between- to within-group variances on the i th canonical 
variate. We can show graphically the difference between groups by 
plotting the data on the first few canonical variates, often the first 
two. Although the original probability model corresponds to classifying 
using all r dimensions, it may be better not to use canonical variates 
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which have low discrimination between groups, so we may wish to 
use only those dimensions for which the ratio of between-group to 
within-group variance is appreciable. 

Let A be the matrix whose columns define the linear combinations 
for the canonical variates, specifically 

A = diag ( J(n- g)/n(l - ~1)) S V. 

Then the transformed variables XA minus the appropriate group means 
are uncorrelated with unit variance (since AT W A = I). Thus on the 
canonical variates, Mahalanobis distance is Euclidean distance. Since 
the group means differ only on the first r variates, the Mahalanobis 
distances to the group means can be computed from the distance in the 
first r dimensions plus a quantity from the remaining dimensions which 
does not depend on the group. The Bayes rule minimizes the Euclidean 
distance to the mean in the first r dimensions minus 2log 1tj. With just 
two groups this process does find the linear variable LDA2 - LDA1, 

for it computes distances only in the first dimension, the only one on 
which the means differ. 

So far we have only considered finding the linear combination(s) 
required. Fisher's procedure cannot tell us the threshold between the 
two groups in classification. It seems common practice to classify by 
choosing the group whose mean is nearest in the space of canonical 
variates. Since in that space Euclidean distance is the within-group 
Mahalanobis distance, this corresponds to the Bayes rule if (and only 
if) the prior probabilities are equal. 

The problems of rank-deficiency and various solutions are discussed 
by Cheng et al. (1992); the solutions given here are much simpler and 
more transparent. 

Canonical variates and canonical correlation 

The name 'canonical variate' comes from a connection with canonical 
correlation analysis, which seeks linear combinations xa and yb of 
maximal correlation. Since X is centred we have 

bryrxa 
corr ( xa, yb) = -----,=::=============== 

jbTVar(Y)b aT(XTX)a JbT Var(Y)b nllall 2 

Now if we take Y = G we have 

GTX = (GTG)M = (GTG)TUAVT = nT-1UAVT. (3.3) 

Without loss of generality we can centre Y. Let b' = urr-1b. Then 
Var(yb) = IIGbll 2 = n11T-1bf = nllb'll 2 and bTyTxa = nb'T AVTa, 

This is a form of 
shrinkage: see 
Section 3.4. 



Figure 3.1 : Linear 
discriminant plots for 
the Leptograpsus crab 
data. The left plot is 
from the original 
variables and the right 
plot from variables on 
log10 scale. The blue 
species is shown by 
triangles, the orange 
species by squares, and 
the symbols for females 
are filled. 
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so the correlation is maximized by taking xa as the first canonical 
variate and b' proportional to the first coordinate· vector ( 1, 0, ... ) T. 

Then b is the first column of E> = T U and the correlation achieved 
is ,tt, Subsequent combinations with maximal correlation are given 
by subsequent discriminant variables and columns of E>, and achieve 
correlations A.;. We refer to the columns of e as scores. Note for future 
use that (GE>f(GE>) = nl and so the scores are uncorrelated and have 
sum of squares n over the training set. 

Examples 

The crabs data are shown on the first two linear discriminants in 
Figure 3.1. As the measurements are lengths, we also considered 
taking logarithms, and as the figure shows this does increase slightly 
the separation between the groups. As there are four groups, the 
linear discriminants span three dimensions, and for the variables on 
log scale the ratios of between- to within-group standard deviations 
are 25.5, 16.9 and 2.9 on the three discriminants. Thus the first two 
linear discriminants explain 99.1% of the variance between the groups. 
Clearly the first linear discriminant expresses the difference between the 
species, the second that between the sexes. On log scale they are given 
by 

Lt = 72FL + 22RW + 22CL -151 CW + 41 BD 

L2 = -6 FL - 56 RW + 88 CL - 49 CW + 13 BD 

which shows that the differences between the sexes are principally in the 
ratio of length to width, and that the blue form has a wider carapace 
than the orange form relative to its other measurements. 

Next consider the forensic glass dataset. Figure 3.2 shows the first 
two canonical variates which account for 93.14% of the between-group 
variation. The variables are not on a common scale, but we can rescale 
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each variable to have unit variance. The weights given by the first two 
canonical variates are then 

RI Na Mg Al Si K Ca Ba Fe 
0.95 1.94 1.07 1.67 1.90 1.02 1.43 1.15 -0.05 
0.09 2.58 4.31 0.86 2.33 1.21 3.38 1.71 0.02 

so the amount of iron appears to be unimportant, and the two most 
important variables in the second variate are magnesium and calcium. 
However, as the sum of the compositions is close to 100%, the variables 
are highly collinear which does not help interpretation. The plot is 
dominated by groups 4 to 6, with suspicions that groups 4 (containers) 
and 5 (tableware) are not homogeneous. As the boxplots of Figure 1.5 
on page 14 show, this problem has a far from normal distribution, and 
probably has mixed distributions for some of the composition variables 
(with a positive probability for zero). Linear discriminant analysis has a 
cross-validated error rate of 38%. All of the vehicle glass is misclassified 
as window glass, and there is considerable confusion between float and 
non-float window glass. The cross-validated confusion matrix is 

WinF WinNF Veh Con Tabl Head 
WinF 47 20 3 0 0 0 

WinNF 20 49 0 4 2 1 
Veh 11 6 0 0 0 0 
Con 0 6 0 6 0 1 

Tabl 0 3 0 0 5 1 
Head 1 1 0 2 0 25 

The predictive form of linear discriminant analysis (page 51) gives 
almost identical results. 

Figure 3.2: Linear 
discriminant plots for 
the glass fragments 
data. The coding is 1 = 

window float glass, 2 = 
window non-float glass, 
3 = vehicle window 
glass, 4 = containers, 5 
= tableware and 6 = 

headlamps. 



Figure 3.3: Density 
estimates of the 
non-diabetic (left) and 
diabetic group (right) 
on the canonical variate 
for the Pima Indians 
data. 
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Since the within-group Mahalanobis distance is Euclidean distance 
in the space of canonical variates, it is useful to scale plots so that the 
axes have equal scales. Then circularly symmetric scatter plots for each 
group indicate that the assumptions of normality and equal covariances 
are realistic (or not, as in this example). 

The Pima Indians diabetes data have two groups, so plots of the 
canonical variates are not very useful. The within-group covariance 
matrices are quite similar, although blood pressure and pedigree are 
uncorrelated in the non-diabetics group, and strongly negatively corre­
lated in the diabetics group, which generally has slightly higher vari­
ability. The correlation is due to just one woman, who has the highest 
observed pedigree, and the second-lowest blood pressure. 

Standard linear discrimination makes 67/332 errors on the test 
set. Choosing a subset of variables by cross-validation on the training 
set suggests that no reduction is worthwhile. The predictive version 
makes one fewer error. Both are making most of their errors (42/109) 
on the group reported to have diabetes. In this example quadratic 
discrimination does significantly worse (84/109), making many more 
errors on the non-diabetics group. 

We can see something useful by plotting the first (and only) canon­
ical variate, Figure 3.3, as there is a suspicion of multi-modality in 
the diabetics group, and skewness in the non-diabetics. The density 
estimates used were kernel methods (Section 6.1) with automatically 
chosen bandwidths. 

... 
ci 

"' ci 

"' ci 

ci 

q 

0 ~--------------------------~ 
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Variable selection 

It is sometimes desirable to consider only those variables which make a 
useful contribution to discriminating between the classes. For classifica­
tion it may be desirable not to have to measure unimportant variables. 
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For interpretation it may be easier to concentrate on the important vari­
ables. In either case we need a variable-selection procedure. McKay & 
Campbell (1982a, b) provide a comprehensive introduction to practical 
issues in variable selection. 

Computer programs are widely available to select feature variables 
to be used in linear discrimination. This is an example of our consider­
ations of Section 2.6, and the simplest stepwise methods are commonly 
used. There are two main approaches. One is to use significance tests 
for the value of individual features under the normal model (there are 
many such tests; McLachlan, 1992, §12.2), the other is to use the error 
rate (Hermans et al. , 1982). 

Cross-validation 

Linear discrimination is one of those classifiers for which leave-one-out 
cross-validation can be computed without complete re-fitting (Fukunaga 
& Kessell, 1971; Hjort, 1986, §12.1). Suppose we wish to re-train the 
classifier omitting example Xj which is of class c, and find its predicted 
class. To do so we need to update our estimates of the Mahalanobis 
distances Ll]k from Xj to the group means l'k · We find 

for k i= c. As these formulae do not involve new matrix operations, 
they can be computed relatively quickly. 

For the best quadratic rule, updating is somewhat easier, as we only 
have to update the Mahalanobis distances to the mean of class c plus 
the determinant of fc. We find 

hence 

which can be evaluated with modest additional computation. 



This follows from 
results of Efron (1975) 
discussed in Section 2.3. 
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3.2 Linear discriminants via regression 

Consider first the case of two groups, and let Y be the class indicator 
for class 2. Then the posterior probability for class 2 is 

p(21 x) = E(Y I X = x). 

Remarkably, although the conditional mean is not linear in x, linear 
regression of y on x can be used to find the linear discriminant. With 
equal prior probabilities and group sizes, future observations can be 
classified by predicting via the linear regression and selecting group 2 
if and only if the prediction exceeds 0.5. This was established by Fisher 
(1936) by a direct calculation, reproduced by T. W. Anderson (1984, 
§6.5.4) and Hand (1981). We will take another approach which gives 
greater insight and provides an extension to more than two groups. 
Thus for two groups, if the normal model for the population holds, it is 
more efficient to use linear rather than logistic regression, even though 
the population regression E(Y I X = x) is logistic not linear. 

We can think of the linear regression as the best linear approxima­
tion to the posterior probabilities. As a principle of classifier design 
this has been used (Duda & Hart, 1973; Devijver & Kittler, 1982; 
Fukunaga, 1990) under the name of minimum (mean) square error clas­
sifiers. Unlike the linear discriminant (for more than two groups), that 
procedure classifies by the nearest target or equivalently the largest 
component. An alternative would be to find the linear classifier which 
minimizes the total risk (Highleyman, 1962b). This is much harder, and 
has only been achieved for two general normal populations (when the 
Bayes rule is quadratic); see Section 2.2. 

The manipulations which follow are of some interest, but would 
not be used to actually calculate a linear discriminant in preference to 
the methods of Section 3.1. Their importance lies in the realization 
of Breiman & Ihaka (1984) that non-linear regressions could be used 
in place of linear regression, thus providing one way to use non-linear 
regressions for classification problems. 

Once again we assume that X is centred and that in the algebraic 
formulae we work with the rescaled variables xS, which have covariance 
matrix nl /(n- 1). 

The derivation of the canonical variates via canonical correlations 
shows that the 'scores' for classes given by the columns of E> = T U 
have a special place, as these are best predicted by the corresponding 
canonical variate. However, we can first observe that if we regress the 
class indicators G on X using the rescaled variables we have regression 
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coefficients 

using (3.3 ). Thus the predicted values are of the form x V AA for a full­
rank matrix A and so span the same space as the linear discriminants. 
This implies that the regression will perform the reduction to r ~ 
min(p, g - 1) dimensions. (Since X is centred, the predicted values 
cannot predict a constant term. If g > p+ 1 there will be no reduction.) 
If g = 2 then either r = 1 or the groups have the same mean, and we see 
immediately that linear regression will find Fisher's linear discriminant, 
up to a constant factor that is not needed for classification purposes. 

For more than two groups Breiman & Ihaka (1984) showed how 
to find 0 by minimizing the residual sum of squares over the scores 
as well as the coefficients, but it seems as easy to apply standard 
linear discrimination methods to the predicted values. That is, the 
data are replaced by the fitted values, classification is done by using 
Mahalanobis distances to the group means based on their within-class 
covariance matrix, and lower-dimensional plots can be made after a 
singular value decomposition. 

Note that finding the maximum of the linear functions xp does 
not give the linear discriminant classifier, for Pk = nk/(n - l)S:r1mk 

where ST is the total variance matrix, whereas LDAk uses W, the 
within-group covariance matrix. There are, however, ways to calculate 
the classifier in the space of predicted values of the regression. 

Two groups 

In the case of two groups we can achieve a worthwhile simplification. 
Unless the groups have the same mean, r = 1 and we need only 
consider ). = .A. 1. There are only two possible scores with mean zero 
and sum of squares n over the data; e = ±(-~, vn;Jil2f. The 
coefficients for the regression of the score variable on X are (using 
(3.4)) 

and so the predicted values y are ). times the first column of (xS) V 
and have within-group variance W = nJ2(1 - J..2)/(n- 2). The group 
means are M = TUAVT = 0AVT and these are mapped to MP = 
0AA = ).28. The correlation achieved is J.., so the residual sum of 
squares is 1 - J..2 times the total sum of squares n, and the residual 
mean square s2 = n(1- J..2)j(n- 2). 

A regression package 
will use divisor n - p 
for s2 . 
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The linear discriminant chooses class 2 if and only if 

2 2 
LDF = ~( )m2- ml - m2- ml 1 7r2 0 

Y x W 2 W + og n1 > · 

Now 

(3.5) 

Let us change y from the scores to be the indicator of class 2. This is a 
linear transformation, so we can linearly transform the fitted regression. 
After some manipulation we find 

LDF 
_ y(x)- 1/2 (n- 2)(n2 - nl) 

1 
n2 - - + og-

s2 2n1n2 n1 

which is directly computable from the regression. Note that if we use 
the proportions in the training set to estimate the prior probabilities, the 
constant term has leading terms in an expansion in powers of 1i2 -1/2 
as 

8(7i2- 1/2) - 32 (! - !) (7i2- 1/2)3 
n 3 n 

so the dividing point for two groups on y(x) will differ negligibly 
from 1/2 unless the proportions in the training set are very different. 
(Remember that s2 will often be very small since the targets are zero 
and one and the fit can be very good.) 

More than two groups 

For more than two groups the simplest procedure is to apply standard 
linear discriminant techniques in the space of fitted values. However, 
Breiman & Ihaka (1984) (who appear not to have realized this) extended 
some of the calculations to more than two groups. We work with the 
regression of G0 on X. Remember that we can replace the data X 
by the fitted values F of the regression on G on X, and perform a 
canonical correlation analysis on these to find 0, since the canonical 
variates are linear functions of F as well as of X. 

The predicted values are proportional to the canonical variates, 
so W is diagonal expressed in these variables, and the Mahalanobis 
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distance is a sum of r terms similar to that for the two-group case. Let 
sr = n(1-.A})I(n-g) be the residual mean square for the ith regression. 
The linear discriminant between group t and group s becomes (using 
(3.5)) 

~ [(~·( ) - eis + eit) eit- eis (n- g)(8ft- efs)J 1 1rt 
L.....t Yr X 2 2 + 2 + og 

i si n ns 

= ~ [ll(y(x)- ts)diag(1lsi)ll 2
- n: g 11tsll 2

] 

1 [11 ~ d" I 2 n- g 2] nr -2 (y(x)-tr) mg(1 Si)ll --n-lltrll +logns 

where ts is the row of E> corresponding to group s. Thus we choose 
the group t to minimize 

ll(y(x)-tr)diag(1lsi)f- n-g -2lognt (3.6) 
nr 

since lltrf = nlnr. (This is a formula of Breiman & Ihaka apart from 
a difference in divisor for W.) Since 

diag(1lsd = J(n- g)ln [1- A2r 1
/
2 

the first term is the Mahalanobis distance between the predicted value 
and the target in the space of predicted values for the scores E> (since 
we saw that (n- g)W = nV[I- A 2]VT ). 

Note that (3.6) corresponds to a distance between the predicted 
values and targets (which are the k th unit vector for class k ), with 
quadratic form [(n- g)ln]E>[1- A2]-1E>r. (This is not a metric since 
it ignores variation in the g th coordinate, corresponding to a shift in 
level of all the predicted values.) Thus the linear discriminant chooses 
the nearest target in this distance, adjusted by ( n - g) I nr + 2log nt. 

Breiman & Ihaka noted that the linear combinations E> can be 
found by minimizing the residual sum of squares, since for combination 
e this is 

where ( = ur r-1e, and so is successively minimized subject to II( II = 1 
by taking ( as the coordinate vectors or e as the columns of T U = E>. 
The condition is that II GO II = 1, so that the scores for the groups have 
unit variance over the training set. Let F be the matrix of fitted values. 
Then the problem is to maximize IIF8f subject to II r-1811 = 1, or 
IIFTU(II 2 subject to IIU(II = 1. The solutions are then the columns 
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of TV* where v· is the matrix of right singular vectors of FT. But 
it is simpler to consider the canonical correlations of the fitted values 
directly. 

Hastie et al. (1994) have independently re-interpreted the work of 
Breiman & Ihaka to the same conclusions, via an entirely algebraic 
route. 

3.3 Robustness 

When the crabs data were re-entered by a clerk she made an error in 
row 98 which should have read 

sp sex FL RW CL cw BD 
Bl F 17.4 16.9 38 . 2 44.1 16.6 

but was entered as 

sp sex FL RW CL cw BD 
Bl F 17.4 16.9 438.2 4.1 16.6 

We expected this to be disastrous for the discriminant analysis, but 
in fact it turned out to make rather little difference to the plots on 
the first two canonical variates. The effect of the errors is to inflate 
the within-group variance for the variables CL and CW which are then 
heavily down-weighted in the second canonical variate. It happens that 
in this example there is enough structure for the remaining variables to 
show almost the same discrimination. 

This example does suggest that it would be wise to have a robust 
form of linear discrimination. The choice of canonical variates depends 
on the estimated within-group covariance matrix W and the matrix M 
of group means. Robust estimators of means and covariance matrices 
are discussed in Section 2.5, and our experiments used the minimum­
volume ellipsoid method discussed there. 

The effect of using robust estimators can be seen for the glass 
fragments data by comparing Figures 3.2 and 3.4. Even more of the 
variation (97.83%) is explained by the first two canonical variates (using 
the robust measures of variance) and the central 'core' is more concen­
trated, with one example of class 2 being shown up as a considerable 
outlier, perhaps closer to class 4 (containers). But what this example 
shows is that the groups do not have a common covariance matrix. The 
cross-validated error is much worse at 46.7%. 

We mentioned on page 99 that the covariance matrix for the Pima 
Indians data was influenced by one unusual observation, so we tried 

l 
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robust estimation. This increased the test-set error rate for linear dis­
crimination considerably (but not significantly) to 76/332. For quadratic 
discrimination there is a large increase to 100/332. Using multivariate 
t discrimination gives 77/332, better than any other form of quadratic 
discrimination. 

Robustification of discriminant analysis has been considered a num­
ber of times in the literature; we first saw it in Campbell (1980b, 1982). 
Broffit et al. (1980) used trimmed estimators of mean and covariance, 
but these are less satisfactory (as they are not affinely equivariant). 

3.4 Shrinkage methods 

When discussing the best quadratic rule in Section 2.2 we mentioned 
that if the training set is not large, we might do better to use the 
best linear rule than attempt to estimate all the variance matrices ~k­
There is evidence (for example, Marks & Dunn, 1974) that if the true 
class covariance matrices ~k are similar, a linear discriminant may 
outperform the quadratic discriminant in small samples. This suggests 
other compromises. We might take some convex combination of the 
equal and unequal estimated variance matrices, say 

~ ~ 

~k(a) = (1- a)nk~k +an~ 
(1- a)nk +an 

(3.7) 

with parameter 0 < a < 1 chosen to maximize performance (using a 
validation set or cross-validation). We describe this as shrinking the 
covariance matrices towards a common value, and hope thereby to 
obtain a biased but less variable estimator. 

Figure 3.4: Robustified 
linear discriminant plot 
for the forensic glass 
data. Two points of 
class 4 at (-4.7,33.7) 
have been omitted. 
Compare this to 
Figure 3.2 on page 98. 



Some accounts just 
consider W + ).[, but 
finding the linear 
discriminants is 
unchanged by an 
overall scale change in 
w. 

3.4 Shrinkage methods 107 

We might wish to shrink our estimator of the common covariance 
matrix L. Recall that our algorithm for linear discriminant analysis was 
first to rescale each variable to zero mean and unit variance, and then 
seek a transformation to variables which are uncorrelated (using xS ). 
Suppose we use the singular value decomposition X = U AVT to do 
so; the variables XV are uncorrelated with variances proportional to 
.A.i, ... , A~, and trace(XT X)= L AJ = np. Thus if the original variables 
were positively correlated, there will be some linear combinations of 
high variance and some of low variance. The variance of the latter will 
not be determined at all precisely, so it is conceivable that we will find 
the first canonical variate taken in the direction of a combination of 
features that happens by chance to be nearly constant within groups. 
One way to avoid this is to shrink the .At towards a common value, 
and this is precisely the effect of using the eigendecomposition of 
(1- y)Sr + yi. In linear discrimination it is more usual to shrink W, 
that is to use 

L(y) = (1- y)W + yi. (3.8) 

Of course, this is only appropriate if the variables have been rescaled to 
unit variance. Many accounts (for example, Campbell, 1980a) replace I 
by a diagonal matrix, but this is equivalent to rescaling the variables if 
we use the diagonal matrix of the variances of the variables. Campbell 
(1980a) suggested that finding the first canonical variate to be in a 
direction of low within-group variance was common in applications, 
and that shrinkage was important in interpreting the coefficients of the 
linear discriminants. 

Both aspects of shrinkage were considered by Friedman (1989) 
under the name of regularized discriminant analysis. He took a convex 
combination of the within-group and pooled covariance matrices to 
estimate Lk. and then shrunk that estimate, to obtain a shrunken 
quadratic discriminant analysis. Specifically, he used a plug-in quadratic 
rule with 

I:k(a, y) = (1- y)I:k{a) + 2:. trace[Lk{a)] I 
p 

I:k(a) = (1 - a)nki:k +ani:. 
(1- a)nk +an 

The parameters a and y are chosen to minimize the cross-validated 
error rate; Rayens & Greene (1991) point out that the minimum will 
often occur over a wide range of values of (a, y ). The largest value of 
(a, y) is chosen (in lexicographical order, so first the largest a for any 
y, then the largest y for that a). 
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The idea of shrinkage is better known for regression under the name 
of ridge regression (Hoerl & Kennard, 1970a, b) where the (centred) 
matrix xr X is replaced by xr X + cD where c is an adjustable 
constant and D is a diagonal matrix which will be the identity if the 
variables are on a common scale, and otherwise could be the diagonal 
matrix of the variances of the variables. Given that we have seen 
that the linear discriminant may be computed by regression, we might 
wonder if the connection is exact : it is. Other forms of shrinkage are 
considered in regression (Sen & Srivastava, 1990; Frank & Friedman, 
1993), such as dropping small principal components. 

There are other intermediate positions between linear and quadratic 
discrimination. We can restrict the class of covariance matrices Lk, for 
example to be proportional to each other (Owen, 1984; Flury, 1986; 
Eriksen, 1987) or to have equal correlation matrices (Manly & Rayner, 
1987). More generally, we can parametrize Lk = AkUkDkU[ where Uk 
are the eigenvectors, Ak the sum of the eigenvalues and Dk a diagonal 
matrix of the eigenvalues divided by their sum. The proportionality 
restriction forces equality of Uk and Db and commonality of corre­
lations forces commonality of Uk. Other restrictions which might be 
imposed are commonality of 'shape' (equal Dk) and/or 'size' (equal Ak) 
as discussed by Banfield & Raftery (1993) and Flury et al. (1994). 

Thus far we have only considered shrinking W. We mentioned 
on page 96 using J < r canonical variates when allocating future 
examples, retaining only those dimensions in which the group means 
are well separated, say those for which the ratio of the between-groups 
to within-groups variance is around one or more. This is equivalent to 
setting the difference between the group means to zero in the dropped 
directions, and so is a form of shrinkage to zero of the between-groups 
covariance matrix B; we could use a less extreme form of shrinkage 
in which these directions are down-weighted. However, we can down­
weight by either reducing B or increasing W, so this is merely a 
different perspective. 

The most common sources of strong correlations between the vari­
ables are when features are measuring essentially the same quantity and 
when the features are a discretized signal or image. In both cases we 
may be able to design a better composite feature, and we will certainly 
be able to design a better form of shrinkage. In the regression context 
for a discretized signal, we would assume that the quantity of interest 
was really an integral J {J(t)f(t) dt which is approximated by a sum 
at the reported values of t (Hastie & Mallows, 1993), and so would 
assume that fJ(t) was smooth. There penalized regression could be used 
(as in Section 4.3). In the discrimination context Hastie et al. (1995) 

This is a special case of 
the algebra of Hastie et 
a/. (1995). 



3.5 Logistic discrimination 109 

apply this idea by modifying w to w + n for a pre-specified n and 
finding the equivalence to canonical correlation analysis and to ridge 
regression (for xr X + nn) in the same way as in Section 3.2. 

In practice in these high-dimensional situations it may be preferable 
to re-parametrize the signal, for example by a spline basis, and discard 
the fine detail before any computation is done. After all, these methods 
are still assuming normality, and that is likely to be a serious limitation. 

We will need to be very careful with shrinkage if some i:k is 
singular, since this is likely to make it easy to identify that class, and 
shrinkage may reduce the performance dramatically. 

3.5 Logistic discrimination 

Logistic discrimination is important both as a more direct way of 
estimating posterior probabilities and hence the Bayes rule, and also as 
a method which is much easier to generalize. 

We saw in Section 2.3 that using a normal model for each class (or 
group) density with a common covariance matrix gave rise to (2.29): 

logp(k I x) = logp(11 x) + ak + xfh. 

More generally, we could model log p(k I x) -log p( 11 x) by some para­
metric family of functions, say gk(x; 8) (with g1(x) = 0 ). Then we 
estimate 

p(k I x) = exp gk(x; e)~ . 
L:j exp gj(x; 8) 

(3.9) 

(For the linear model we take the parameter vector e to contain all the 
ak and /h.) In the neural network literature this is known as softmax 
(Bridle, 1990a, b), and in the (earlier) statistical literature as a multiple 
logistic model. Classification is done by using the (estimated) Bayes 
rule, taking the maximum of p(k I x) (under the usual loss function 
(2.2)). This procedure is known as logistic discrimination. 

Several remarks are needed. First, (3.9) can arise from other prob­
ability models, sometimes with transformed x variables. Some of its 
earliest applications were to epidemiological studies where such a direct 
parametrization was very natural, and other models leading to (3.9) are 
considered by J. A. Anderson (1972) and Cox & Snell (1989). Another 
has two classes and independent binary features (Minsky, 1961) with 
probabilities eik under class k, for then 

logp(21 x) -logp(11 x) = L Xi[log ei2 -log On] 
i 

+ (1- Xi)[log(1- 8i2) -log(1- Oil)]. 
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It is normal to fit logistic regressions and log-linear models by 
maximum likelihood, but we have to consider carefully the likelihood 
to be used (as we do below). The standard methods (Cox & Snell, 1989; 
McCullagh & Neider, 1989) regard x as fixed and take the observed 
class y to have a Bernoulli distribution with probability distribution 
(p( 11 x), p(21 x)) for two classes, and a multinomial distribution for 
more. Thus the likelihood of the training set is 

t(8;ff)= rrp(c;lx;)= IT expgcj(x;;~~ (3.10) 
; i L:j exp gj(X;, 8) 

with deviance 
(3.11) 

We note that if gk(x; 8) = ak + xfh, the log-likelihood is concave, so 
any local maximum of the likelihood is a global maximum. 

In the special case of two groups 0 and 1 the log-likelihood is 

L(8; ff) = L c; p(21 x;) + (1- c;) [1 - p(21 x;)] 

and hence the deviance is 

" [ C; (1- C;) ] 
D(8) = 2 ~ C; log p(1 l X;) + (1- c;) log (1 _ p(1 l X;)) · (3.12) 

An alternative way to specify the probabilities p(k I x) is to give 
g - 1 logistic models of the form 

logp(k I x) = logp(11 x) + gk(x; 8) (3.13) 

which is the same model as equation (3.9) (as replacing gk(x; 8) by 
gk(x;8)-gt(x ;8) leaves (3.9) unchanged). However, the models (3.13) 
could be fitted separately comparing each group with group 1, and this 
gives different maximum likelihood parameter estimates. The pairwise 
comparison uses less information and so will be less efficient, but for 
linear models Begg & Gray (1984) show the loss is often negligible. An 
approach which is common in neural networks is to consider a logistic 
model for each p(k I x) against the rest, that is 

~ 

p(k I x) = exp gk{x; 8) ~ . 
1 + exp gk{x; 8) 

(3.14) 

This has the disadvantage that there is no guarantee that the estimated 
probabilities will sum to one, and no compensating advantages. This 
model is however appropriate if the classes are not mutually exclusive, 
for example if they indicate diseases which could conceivably occur 
together. 

This is a special case of 
the computations on 
page 152 which show 
that the Hessian is 
non-positive definite. 
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Likelihoods 

We derived likelihood (3.10) as a conditional likelihood for a training 
set of size n which was a random sample from the whole population. 
It will also be appropriate if the feature vectors are selected rather than 
sampled. We will lose information if we know p(x; 8) as a function of 
8, so we are implicitly assuming that p(x) is completely unknown. 

The issue is more complicated when the numbers of examples 
in each group are fixed, which implies that we will not be able to 
estimate the prior probabilities of the groups. The natural model is for 
Pc(x) = p(x I c) not p(c I x). However 

logp(x I k; 8) = logp(k I x; 8) -log nk + logp(x; 8) 

= logp(11 x) + ock + xpk -log nk + logp(x; 8) 

and it is clear that we can only estimate (k = ock - log nk. The log­
likelihood formed by conditioning on all the observed classes is 

L(8;ff) = L logp(xi I ci; 8) = "L:logp(ci I xi; 8) -log ncj + logp(xi; 8). 

If we assume that p(x; 8) is entirely unknown (apart from normalizing 
to a probability density), we can maximize over this as well as (k and 
Pk· The maximum likelihood estimate of p(x) is then the empirical 
distribution of the observed values (so not a genuine density), leaving 
the maximization of the profile likelihood for pk, 

L logp(xi I ci;O) = L logp(ci I xi; /3) + const. 

This is exactly what we get from the other forms of sampling, and so 
we will obtain the same maximum likelihood estimates of Pk· This 
is a streamlined version of the arguments of J. A. Anderson (1972) 
and Prentice & Pyke (1979). Note that we have maximized over an 
infinite-dimensional parameter p(x), so standard likelihood theory does 
not apply; Anderson avoided this by considering only discrete x, but 
Prentice & Pyke and Cosslett (1981) prove analogues of the standard 
asymptotic results. 

Scott & Wild (1986) also consider a different approach. Suppose the 
sample was chosen to have nk cases of class k, but the prior probability 
is known to be nk. A natural idea is to weight the cases of class k by 
Wk = Nnk/nk. that is to use a weighted log-likelihood of the form 

LWei logp(ci I xi). (3.15) 

This is precisely what we would use if combining identical cases in the 
training set, and is the common practice in survey statistics. Scott & 
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Wild show that the profile likelihood approach is more efficient if the 
logistic model is true, but the weighted form may be preferable for 
estimating the least false parameter if the model is reasonable but not 
precisely true. 

Ordinal logistic models 

The approaches thus far are appropriate if the classifications are purely 
nominal. Some classifications are naturally ordered, such as grades of 
foodstuffs and the severity of a disease. For these a model which takes 
account of the ordering is desirable. McCullagh & Neider (1989, §5.2.2) 
advocate models for Yk = P(Y :( k I x), on logistic (log[yk/(1- Yk)]) 
or complementary log-log (log[-log(1- Yk)]) scales. Suppose there is 
an unobserved variable Z (say the true quality of the foodstuff) of 
which Y is a grouped version, so Y = k if and only if (k-l < Z :( (k. 

Suppose also that Z has a logistic distribution with mean IJ(x); then 

exp[(k - IJ(x)] 
Yk = P(Y :( k I x) = P(Z :( (k I x) = 1 [( ( )] + exp k- 11 x 

which naturally gives rise to a logistic model 

logitP(Y :( k I x) = (k + IJ(X) 

for Yk that differs only in intercept for each category. Giving Z 
the extreme-value (or Gumbel) distribution rather than the logistic 
distribution leads to 

log{ -log[1- P(Y :( k I x)]} = (k + IJ(x). 

In both cases the linear model part is then IJ(x) = xp. 
If we regard the intercepts (k as unknown (but necessarily in­

creasing) this analysis can be extended to grouped versions of </J(Z) 
for an unknown but monotonic transformation ¢(·), since this will be 
equivalent to grouping Z. 

The likelihood for the parameters (which are ((k) and the parame­
ters in 11 ) then follows from our earlier considerations, since a model 
for P(Y :( k I x) implies one for p(k I x) = P(k- 1 < Y :( k I x). In 
numerically maximizing the likelihood we will have to remember the 
ordering constraint on ((k). 

Anderson & Phillips (1981) illustrate the linear ordinal logistic 
model for data on severity of back pain. It does lack flexibility, for 
there must be a linear projection on which the class distributions occur 
in the assumed order for the fit to be adequate. If we allow a non-linear 
function 11 (Mathieson, 1996) this may be much easier to achieve. 

Higher efficiency as 
usual means smaller 
variance in large 
samples. 
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Infinite estimates 

A difficulty which arises with the conditional likelihood is that the 
maximum likelihood estimates may be infinite (or, as some prefer to 
say, fail to exist). Consider just two classes. If there is a direction such 
that the projection pT Xi completely separates the two classes, it should 
be clear that the posterior probabilities can then be made arbitrarily 
close to one for every example by taking fJ -+ oo with the appropriate 
sign. Indeed, the methods of Section 3.6 are designed to find such 
projections where they exist. 

Albert & Anderson (1984), Albert & Lesaffre (1986), Santer & 
Duffy (1986), Silvapulle & Burridge (1986) and Lesaffre & Albert (1989) 
consider this in detail (apparently unaware of the earlier parallel de­
velopment given in Section 3.6). With more than two groups, some 
groups can be completely separable from others on a linear projection, 
or (quasi-complete separation) 

p(j I Xi; 8) ~ p(k I Xj; 8), k -:/= j 

for all xi from class j and some fJ. The maximum likelihood estimate 
has an infinite component. This occurs for the tableware group in the 
forensic glass dataset. 

We feel too much has been made of this. The difficulty is an inap­
propriate parametrization, and the limits for infinite II fJ II of the fitted 
posterior probabilities remain perfectly suitable fits, albeit sometimes 
predicting probability zero or one. 

Predictive approach 

We considered the predictive framework for the diagnostic paradigm at 
(2.33). Suppose we assume that we know nothing about the marginal 
density p(x). Then the posterior density is of the form 

logp(8 I 5") = L(8;§") + logp(8) + const. (3.16) 

Then for large n t~e posterior density p( 8 I 5") will be approximately 
normal with mean 8 and covariance matrix V, say, and we can approx­
imate these by the maximizer and the inverse of the Hessian of (3.16). 
The integration over 8 could be performed approximately (Aitken, 
1978) or by simulation using importance sampling from the approxi­
mate normal distribution (Ripley, 1987, §5.2). Since the approximate 
normal distribution will have short tails, it is better to choose a longer­
tailed distribution, for example by increasing the variance slightly or 
using a multivariate t distribution. 
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If the maximum likelihood estimate is (partially) infinite, the local 
approximation will break down, but with a proper prior the predictive 
approach will give a sensible fit. Indeed, a proper prior which restrains 
the size of the parameter vector is a form of ridge regression (see 
Section 3.4) and has advantages even in non-Bayesian views. For 
example, it avoids the embarrassment of predicting probability zero 
for events that happen (as might happen with the plug-in rule if the 
training set is linearly separable but the populations are not). 

Bias correction of the parameters of a linear logistic discrimination 
has been considered extensively, but Byth & McLachlan (1978) showed 
that the bias of the plug-in estimates of the posterior probabilities 
p(k I x; 0) was of smaller order than 1/n and so much less important 
than for the best linear classifier discussed in Section 2.5. 

Examples 

First we consider the Pima Indians data. The simplest approach is 
a direct logistic regression on the seven explanatory variables. This 
made 66 errors on the test set, an error rate of 19.8%. However, some 
of the features had insignificant coefficients, and a stepwise selection 
procedure to choose the fit with the smallest value of AIC dropped 
blood pressure and skin thickness. Its test set performance was also 66 
errors (but not the same ones). 

The number of pregnancies varies from zero to seventeen, and this 
seems unlikely to enter linearly. To test this, we allowed separate 
coefficients for 0, 1, 2, 3, 4, 5 and 6+ pregnancies, but the fit was little 
better, and the predictions worse (69 errors). If we allow a polynomial 
in age, AIC chooses a cubic; the number of errors is increased to 69. 
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Figure 3.5: Error and 
rejection rates against 
doubt cost d for a 
logistic discrimination 
model for the Pima 
Indians data. 



Figure 3.6: Calibration 
plot for a logistic 
discrimination model 
for the Pima Indians 
data. The 'rug' of ticks 
shows the events which 
occurred in the training 
set against the predicted 
probabilities. The 
smooth curve is a 
kernel regression (see 
Section 6.1). 
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We can use this example to illustrate some of the concepts we saw in 
Chapter 2. If we allow a low enough cost of 'doubt', this will be chosen. 
Figure 3.5 (computed on the test set) shows a fairly small reduction in 
error rate with rejection in this example; if we allow 10% of the patients 
to be rejected, the error rate drops from 19.9% to 15.7%. We can also 
check if the predicted probabilities look well calibrated. Figure 3.6 was 
computed on the training set and shows no serious departures. 

For the forensic glass data the fitting algorithms converge slowly 
because of the partial separation of the classes, but produce satisfactory 
fitted probabilities and an error rate of 26.2% with confusion matrix 

WinF WinNF Veh Con Tabl Head 
WinF 50 17 3 0 0 0 

WinNF 19 55 0 2 0 0 
Veh 6 7 4 0 0 0 
Con 0 2 0 11 0 0 

Tabl 0 0 0 0 9 0 
Head 0 0 0 0 0 29 

The fit is rather better than linear discriminant analysis, not surprising 
given the very non-normal nature of these data. The cross-validated 
estimate of the error rate was 36% with confusion matrix 

WinF 46 19 5 0 0 0 
WinNF 19 47 2 3 3 2 

Veh 7 6 4 0 0 0 
Con 0 3 0 9 0 1 

Tabl 0 2 0 0 7 0 
Head 0 2 0 2 1 24 

since the cross-validation runs did not find the 'right' separation vectors. 
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3.6 Linear separation and perceptrons 

Historically, special attention has been given to situations such as 
Figure 3.1 on page 97 in which the two species are completely separated 
on the first linear discriminant. We say two groups are linearly separable 
if there is a linear function of the variables, say xa + b, which is positive 
on one group and negative on the other. A function which computes 
a linear combination of the variables and returns the sign of the result 
is known as a perceptron after the work of F. Rosenblatt (1957, 1958, 
1962). (There are also publications by Block, 1962 ; Block et al., 1962.) 
Their interest now is in their continuing influence on the thinking in 
the field of neural networks. 

Let us add a column of 1's to x and add b to a. Let z = x/ 1/ xll 
on the first group and z = -x/ llxll on the second group. We then 
seek a linear combination a such that za > 0 for every example in the 
training set. Since the training set is finite, we can choose (j > 0 so 
that za > (j. Indeed, we can achieve this for any (j > 0 by rescaling a. 

One approach to the problem would be to choose a by least squares 
to make za as near one as possible, or to regress y = ±1 on x which as 
we have seen gives the linear discriminant up to a scale factor. (However, 
there is no guarantee that the linear discriminant will linearly separate 
the groups if they are linearly separable, and it is easy to construct 
examples in which it will not, Figure 3.7.) A more direct formulation is 
to minimize the number of errors, but as that is a discrete measure, the 
optimization is difficult. The sum of the degree of error 

will be zero if and only if linear separation can be achieved. This is 
equivalent to solving the linear programming problem zia ~ b, and 
linear programming methods can find a solution or show that none 

+ + 
+ + + 

+ 
+ 

Analytical evidence that 
optimizing the number 
of errors made by a 
perceptron is hard is 
provided by Hoffgen et 
a/. (1995) who showed 
that the problem of 
determining if there is a 
solution with at most 
k ~ 1 misclassifications 
is NP-hard. (For k = 0 
it is reducible to a 
linear programming 
problem, so solvable in 
polynomial time.) 

Figure 3.7: A dataset 
with the least-squares 
line (solid) and a linear 
separator (dashed). 
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exists (Minnick, 1961; Muroga et al., 1961; F. W. Smith, 1968; Grin old, 
1969). (We need to introduce ~ to avoid the trivial solution a = 0.) 
We introduce n artificial variables u; and also split a = a+ -a- into 
positive and negative parts. Then the problem becomes 

subject to 

and 

n 

min 'l:.:u; 
u; ,a+ ,a- i=l 

which can be solved in a finite number of steps, and has a zero solution 
if and only if the classes are linearly separable. 

In the late 1950s a number of researchers were interested in simpler 
but iterative solutions, in which the value of a was adjusted after each 
example was presented. The derivative for the least-squares problem 
lly-Xaf is 2XT(Xa-y) and so a steepest descent procedure would 
be of the form 

(3.17) 

For small enough 11 this process converges to the space of least-squares 
solutions. 

Rather than compute the sum on the right-hand side and update a, 
we could update after each pattern was considered. This gives the rule 

(3.18) 

known as Widrow-Hoff learning (after Widrow & Hoff, 1960) or the 
delta rule. The patterns are presented cyclically until convergence, which 
will need 1J ---+ 0. 

Rosenblatt's perceptron learning rule replaced the term x;a in (3.18) 
by the output of the perceptron, the sign of xa. Thus a is changed only 
if the current pattern is misclassified, and so the rule is of the form 

a+--- a+ 211zT I(z;a:::; 0). 

No generality is lost by taking 11 = 1/2, since we can rescale a. 
Rosenblatt showed that this rule will converge in a finite number of 
steps to a linearly separating combination if one exists. Let a• be a 
suitable combination chosen so that z;a• ~ 1 for all members of the 
training set. If the rule changes a we have z;a :::; 0 so 

!Ia +~a- a·ll 2 = !Ia- a·ll 2 + 2z;(a- a·)+ 1 :::; !Ia- a· f- 1. 

This shows the rule terminates in at most !lao- a•ll 2 steps. 
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This result is known as the perceptron convergence theorem. Its 
limitations were explored by the first edition of Minsky & Papert 
(1988) published in 1969. They showed that the coefficients needed to 
achieve linear separation (with fixed {J) could grow very rapidly with 
the size of the problem and the finite number of steps needed by the 
perceptron rule could become very large. There is after all another rule 
which will terminate in a finite number of steps: try all integer-valued 
a in order of increasing length, and no one would advocate that rule. 

Minsky & Papert also considered the behaviour of the rule when 
the two groups were not linearly separable, and stated that llall would 
remain bounded. (Their proof was completed by Block & Levin, 1970.) 
Thus if the a belong to a fixed-precision set (as they will do in real 
computation) the rule will eventually cycle. In particular there is no 
immediate way to deduce whether the rule will ever terminate, and 
cycling can be hard to detect, as the cycle length is unknown. 

There are a number of variants of the perceptron updating rule. For 
example, 11 can be chosen just large enough to correctly classify the 
current case. Ho & Kashyap (1965) have other algorithms, discussed 
in detail in Duda & Hart (1973, §§5.6- 7). It is also possible to extend 
the procedure to K > 2 categories. In that case the natural classifier 
would be to choose the largest of K linear discriminants xak. Let a 
be the concatenation of the vectors ak. Then correct classification of 
pattern x in class k is equivalent to (0 ... , -x, 0 ... 0, x, ... O)a > 0 with 
the negative element in position j, for each j not equal to k. Thus each 
example x generates g- 1 examples in the Kp-dimensional problem. 
Applying the perceptron updating rule to this problem is equivalent to 
the updating rule 

when pattern x is from class i, and j is a class with a larger value 
of xaj. Since this is the perceptron rule in the transformed problem, 
the convergence proof still holds. F. W. Smith (1969) extends the linear 
programming approach to more than two classes. 

The traditional simplex algorithm for linear programming has ex­
ponential worst-case behaviour, but recently a number of provably 
polynomial algorithms have been devised. Mansfield (1991) has imple­
mented one of these, Khachiyan's algorithm, for perceptron learning. 
The algorithm is quite simple and related to quasi-Newton methods 
of optimization (Gill et al., 1981). It is guaranteed to find a solution, 
if there is one, in (p + 1)3 log(p + 1) + (p + 1)2 log[n(p + 1)] iterations 
with binary inputs, where an iteration involves finding a misclassified 
example and updating the perceptron weights. 

Prior to Minsky & 
Papert, Muroga et a/. 
(1961) had shown that 
the weights in a 
linearly-separating 
perceptron with n 
binary inputs could be 
chosen to be integers 
less than 
(n + l)(n+ l)/22- " , and 
Muroga (1965) showed 
that there were 
problems where integer 
weights of Q(2") are 
required (The Q 

notation is defined on 
page 178.). Hampson & 
Volper (1986) showed 
that in some sense an 
average problem needs 
integer weights of 
Q(2"12

). More recently 
Hastad found an 
example which needs 
integer weights at least 
as large as 
n"12 2-"e0<

20585
1. These 

results are reviewed and 
proved by 
Parberry (1994). 

This bound was 
reduced to O(p2 log p) 
by Maass & Tunin 
(1994) using a more 
recent algorithm. 
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It is possible to extend the ideas of separation by linear planes 
to other surfaces (for example conic sections) or to piecewise linear 
surfaces. These have been considered by Mangarasian (1968) and 
applied to the diagnosis of breast tumours in Mangarasian et al. (1990); 
Wolberg & Mangarasian (1990) and subsequent papers. 

Capacity questions 

We can ask how many random patterns a perceptron with p inputs 
can learn reliably; that is can be classified without error. There will 
be a finite limit since the patterns must be linearly separable; this 
is irrespective of the existence of an algorithm to learn the patterns. 
Cover (1965) showed that the asymptotic answer is 2p patterns. In 
other words, for large p we expect to be able to store most sets of up 
to 2p patterns without error, but attempts to store more than 2p have 
a very low probability of success. 

Proposition 3.1 The probability that N patterns randomly chosen from 
any continuous distribution in RP and randomly divided into two groups 
are linearly separable is one for N ~ p + 1 and in general is 

21-N min~l,p) (N ~ 1) "' <l> (-=-2p___,-=N-) 

i=O l JN 
for large N. 

Proof: Let C(n, p) be the number of assignments of classes 1 and 
2 to n patterns in p variables which are linearly separable. We will 
show by induction that this does not depend on the patterns themselves 
provided they are in general position in R P (that is, not collinear). All 
the assignments (yi) are linearly separable for n ~ p + 1, since we can 
solve the system x;a + b = Yi of n equations in p + 1 unknowns to 
find a separating hyperplane. (This system will be singular only if the 
points are not in general position.) Thus C(n,p) = 2n for n ~ p + 1. 

Now consider adding an example to n linearly separable patterns. 
If the new point lies on the same side of every separating hyperplane, 
only one label for the new point gives a linearly separable set. In 
the other case, by continuity, there must exist a separating hyperplane 
passing through the new point and either label for the new point gives a 
linearly separable set. Of the C(n,p) sets of linearly separable patterns, 
precisely C( n, p- 1) will pass through the new point (since this reduces 
the problem to one of dimension p - 1 ). Thus 

C(n + l,p) = 2C(n,p-1) + [C(n,p)- C(n,p-1)] = C(n,p -1) + C(n,p). 
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By induction we find the probability to be 

min(N-l,p) (N 1) 
C(N,p)/2N = 21-N ~ ~ = P(X ~ min(N- 1,p)) 

where X has a binomial (N- 1, 1/2) distribution. The approximation 
then follows from the normal approximation to the binomial for large 
N-1. D 

The approximation on the right-hand side goes rapidly from 1 to 0 
as N increases through 2p, since for large n a binomial (N - 1, 1/2) 
distribution is tightly concentrated about N /2. 

Support-vector machines 

If two classes are linearly separable, there will be a continuum of weight 
vectors a which give rise to separating hyperplanes. Amongst these we 
can choose a hyperplane with maximal distance to the nearest example, 
achieved by minimizing llall 2 whilst insisting that za ~ 1. Finding 
this hyperplane is a quadratic programming problem, and the usual 
Kuhn-Tucker optimality conditions show that there will be a subset of 
examples Zi (known as support vectors) for which zia = 1 and that the 
optimal a is a linear combination of these zi. 

The advantage is choosing the optimal hyperplane is to reduce 
the VC-dimension of the space of solutions (which is proportional 
to a bound on llaf ). If the two classes are linearly separable then 
(Vapnik, 1995, Theorem 5.2) the expected error rate on future examples 
is bounded by the expected number of support vectors divided by n-1. 
Thus finding a small number of support vectors might indicate good 
generalization properties. 

Of course, linear separation in the original feature space is quite 
rare, but as for generalized linear discrimination (page 121) we can 
expand the feature space by using polynomials or even radial-basis 
function networks and sigmoidal functions. These can give rise to very 
large feature spaces, but generalization may remain acceptable if the 
number of support vectors remains small, which was the case in the 
experiments reported by Vapnik (1995, Section 5.7). 

By jointly minimizing the sum of the degree of error (page 116) and 
II a 11

2 these ideas can be extended to non-separable two-class problems 
(Cortes & Vapnik, 1995). 
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Flexible Discriminants 

Linear combinations of the features will not always suffice to discrim­
inate the groups. It is quite common to include ratios by including 
features on log scale as we did for the Leptograpsus crabs in Chapter 3. 
We can also allow non-linear functions of the features by including 
polynomial terms or dividing the range of the feature and including 
indicator terms for parts of the range. A more sophisticated alternative 
is to expand a feature on a spline basis such as B-splines (see below). 
These all amount to linear discrimination in a larger space of features, 
sometimes called generalized linear discrimination (Duda & Hart, 1973). 

We will continue to assume n cases from g groups, which may or 
may not be the classes. We saw at the beginning of Chapter 3 three 
main ways to use a family of functions f: fl£ ~ lRg to approximate 
the Bayes rule. All these ideas apply equally here, but we will now 
consider much more general and flexible classes of functions. Another 
large class is the subject of Chapter 5. 

The first approach was to estimate f(x) from the training set within 
our parametric family, and choose the class which maximizes f k(x) or 
has nearest target tk. (This includes the Dietterich & Bakiri, 1991, 
1995, approach, which specializes the choice of targets.) As f(x) is 
a regression, it is natural to fit () by least squares. Since in the 
conventional version f represents (p(k I x)), the outputs are sometimes 
re-normalized to sum to one. 

The second approach was to fit f(x) within the parametric family, 
but then to use the predicted values as the variables in a linear discrim­
inant analysis. (This appears to have been the motivation of Breiman 
& Ihaka, 1984.) This amounts to finding the nearest group mean in the 
Mahalanobis distance given by the within-group covariance matrix of 
the fitted values (or, equivalently, of the residuals). Note that this differs 
from the first approach in using a different metric and in minimizing 
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distance to the group means rather than the targets. Formula (3.6) does 
allow us to consider distances to the targets provided the group sizes 
are equal, but the metric there is not the Mahalanobis distance. Thus 
the essential difference is the metric used. 

The second procedure appears preferable to the first if the predicted 
values are approximately normal with a common covariance matrix. 
However, in practice the fit is often very good except at a few points 
which therefore dominate the residuals and the estimate of the common 
covariance matrix. This suggests that it is desirable to use a robust 
discriminant analysis, and it may be better to accept the safe choice of 
the Euclidean metric. 

The third approach is to use the parametric family within a multiple 
logistic model of the form (3.9), which is often the most theoretically 
satisfying but needs the ability to fit by maximum likelihood rather 
than least squares. 

From the predictive viewpoint, these methods are all (in principle) 
parametric, and so we need to average over the uncertainty in the fitted 
parameters. Since there will usually be many more parameters than for 
linear families, it will be more important to average over the greater 
uncertainty. In practice this can be nigh impossible, as in the high­
dimensional parameter space the integration is more difficult and it is 
unlikely that the asymptotics which suggest a normal approximation will 
be appropriate unless n is much larger than the number of parameters. 
We are only aware of such issues having been studied for neural 
networks, so discuss them in that context in Section 5.5. 

4.1 Fitting smooth parametric functions 

We discuss some of the possible ways to describe more general functions 
of the feature variables. We consider first methods using univariate 
functions f : !![ ---+ 1R. 

Additive models and smoothers 

An additive model is of the form 
p 

f(x) = rt + L gJ(XJ) (4.1) 
}=1 

for smooth but unknown functions g1 (Friedman & Silverman, 1989 ; 
Hastie & Tibshirani, 1990), which could encompass the effect of trans­
formations (such as square or log or even an arbitrary polynomial) of 
each feature. 



The notation [y]+ 
means max(y, 0). 

Sometimes the free 
parameters are reduced 
by end conditions ; for 
natural cubic splines the 
second and third 
derivatives vanish at 
the boundaries. 

Smoothing splines are a 
special case of 
regularization, to be 
considered in 
Section 4.3. 
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One choice of the smooth functions g(x) of a single feature is to 
use splines. Splines are defined by M knots ~; which we can consider 
in increasing order. Then within an interval [~;, ~i+d a spline is a 
polynomial of degree d (often three) and at the knots the first ( d - 1) 
derivatives are continuous. This can be written as 

d M 

g(x) = :~::::>x;xi-1 + LfJ;[x- ~;]~ 
i=O i=l 

which shows that there are M + d + 1 free parameters. There are 
other bases which have better numerical properties such as B-splines 
(de Boor, 1978; Green & Silverman, 1994 ). In any basis we can write 

M+d+l 

g(x) = L {J;c/J;(x). (4.2) 
i=l 

It remains to choose the parameters {3;. For a regression spline these 
are chosen by least squares. Cubic smoothing splines are the solution to 
the minimization problem 

M 

L[y;- g( ~; )] 2 +A j g"(u)2 du 
i=l 

and the parameters in (4.2) can be found by solving a sparse system 
of linear equations. Figure 4.1 shows the effect of the smoothness 
constraint on a smoothing spline: however many knots are included, 
over-fitting is prevented by the smoothness term. Thus smoothing 
splines are normally preferable to regression splines, except that the 
choice of A is computationally demanding, and .?. = 0 can be an 
adequate approximation with a small number of knots. 

Other smoothing algorithms are also used, for example the loess 

smoother (Cleveland et al., 1992) which uses robustly-fitted locally­
weighted polynomials. Let h(x; ¢) be a polynomial of degree d (usually 
one or two). Then the fitted value g(x) is found by fitting h(x; ¢) in the 
~eighbourhood of x and reporting the fitted value at x. Specifically, 
cPx is chosen to minimize 

and g(x) = h(x, "¢x). The loss function p(u) could be u2 but might 
penalize large departures less severely, in the spirit of robust statistics. 
Finally, the parameter r controls the smoothness, and is chosen to 
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include a neighbourhood of cxn points at point x. This approach is 
easily extended to smoothing d dimensions, for small d. 

If the smooth functions in an additive model are written in terms 
of basis functions, as for polynomials and splines, we have 

p dfj 

f(x) = ex + L L f3 jk</J jk(x j ). (4.3) 
j=l k=l 

If the smoothing procedure chooses parameters by least squares, we 
have a linear regression in an extended space of features spanned by 
the functions </Yjk(Xj). On the other hand, if as in smoothing splines 
the functions minimize a sum of squares plus a penalty, we will have 
(approximately or exactly) a penalized linear regression. The method 
BRUTO used in the examples is described in Hastie & Tibshirani (1990, 
pp. 262-3). This adaptively chooses the smoothness ofthe splines and 
the number of terms in (4.1), including the possibility of linear functions 
and dropping features completely. 

A general procedure to fit additive models is known as back-fitting 
(Hastie & Tibshirani, 1990). This holds all but one of the additive terms 
constant, removes that term and fits a smooth term to the residuals 
against the feature. In symbols, the model is 

f(x)- ex- L gj(Xj) = g1(x!) (4.4) 
HI 

and any smoothing algorithm (including loess) can be applied to the 
left-hand side. Smoothing is applied a feature at a time until the process 
converges (which it will under mild conditions). 

Figure 4.1: The effect of 
varying the number of 
knots in a smoothing 
spline for fixed A.. 
Based on an example of 
Wahba & Wold (1975). 
For 50 or more knots 
the curves are 
indistinguishable. 
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Thus far we have considered penalized least-squares fitting. Linear 
models can be used to fit a logistic regression by maximum likeli­
hood via local linearization to give a weighted least-squares problem 
(McCullagh & Neider, 1989) and this is often solved iteratively in a 
handful of iterations. The extension to additive models is immediate 
(Gu, 1990; Wahba et al., 1995). 

An extension of this approach is to allow smooth functions of a 
small number of the features as terms in the additive model (for exam­
ple, by C. J. Stone, 1985). Adding pairwise then three-term functions 
(and so on) is common practice in statistics, and these are known as 
interaction functions. Examples including functions of two features are 
given by Hastie & Tibshirani (1990, §9.5), Wahba (1995) and Wahba et 
al. (1995). 

Pima Indians diabetes 

In Section 3.5 we saw that a linear logistic discrimination model worked 
well for the data on diabetes amongst female Pima Indians, and that 
a polynomial in age improved the fit. We could consider if smooth 
non-linear terms in age or other variables such as plasma glucose levels 
and the body mass index might help the fit. 

This was tried with several smoothers. The improvement in fit as 
measured by AIC or NIC was marginal, but the test-set error rate was 
unchanged or increased. BRUTO (which fits by penalized least squares) 
selected only linear terms, dropping blood pressure and skin thickness. 
Wahba et al. (1995) built an additive model including an interaction 
term in glucose concentration and body-mass index and a categorical 
term for the number of pregnancies (0, 1 or 2, 3-5, 6 or more). In our 
experiments this did less well than the linear model. 

Projection pursuit regression 

Additive models do not allow interactions between the features in 
PI'. Perhaps the simplest way to allow interactions is through linear 
combinations (projections) of features: 

r 

f(x) =a+ L gj(tXj + PJ x) 
j=l 

(4.5) 

which is projection pursuit regression (PPR; Friedman & Stuetzle, 1981). 
Sometimes the components of ( 4.5) are called ridge functions because a 
peaked gj gives a topographic ridge in two dimensions. 
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This is a surprisingly general class of functions, as it can approxi­
mate uniformly arbitrary continuous functions over compacta (Diaconis 
& Shahshahani, 1984; L. K. Jones, 1987, 1992; Zhao & Atkeson, 1992). 
(This is sometimes referred to as the 'universal approximation' prop­
erty.) As PPR encompasses feed-forward neural networks, these results 
follow from (but are a little easier than) those of Section 5.7 where the 
functions gj are restricted to one function, the logistic. However, ridge 
functions provide better (in the sense of fewer parameters) approxima­
tions to some functions than others (Donoho & Johnstone, 1989; Zhao 
& Atkeson, 1992), which Zhao & Atkeson express as working better 
for 'angular smooth functions' than for 'Laplacian smooth functions'. 

With multivariate regression we have to decide whether to use 
common non-linear terms for the different independent variables. This 
is usually done, so that for example for projection pursuit regression 
we have 

r 

fk(x) = '1k + LYkjcPj(aj + 13[ x). (4.6) 
j=l 

This shows that the fitted values lie in a (r + 1 )-dimensional space. Since 
the scale of cPj is not otherwise fixed, we can choose cPj(aj + 13[ x) to 
have zero mean and unit variance over the training set. 

Algorithms 

The original algorithm for PPR has been superseded by SMART 
(Friedman, 1984). This constructs the (approximate) least-squares fit 
iteratively. A maximum value M for r is specified, and terms are 
added to ( 4.5) one at a time until M terms are present. Then at each 
step the least effective term is dropped and the model re-fitted, until r 
terms are left (and this process can also be used to help select r by 
looking at the fit). Some of the details can be changed by the user, and 
we only describe the 'highest' level of optimization. 

Backfitting is used to fit the model, and when the j th term is being 
considered, the direction 13j is optimized by a Gauss-Newton procedure 
(see Section A.5). This finds a local minimum of the least-squares 
criterion for a model with r terms. A new term is introduced by an 
initial direction 131, and the process continues until convergence. When 
M terms have been added, the least important (measured by Lk IYkjl) 
is dropped, the reduced model re-fitted and the process continued. 

The precise algorithm for scatterplot smoothing is not intrinsic to 
SMART, and we have also use spline smoothers. Friedman used his 
own 'super-smoother', which uses a local linear fit to k/2 data points 
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each to the left and right of the point x at which g(x) is required. (The 
use of a rectangular window allows fast updating as x scans along.) 
The value of k is chosen from three possibilities by cross-validation 
at x, and then this choice is smoothly interpolated between the three 
smoothers. 

Hwang et al. (1991, 1992a, b, 1994a, b, 1996) replaced the super­
smoother by Hermite polynomials, which tends to produce smoother 
functions, and Roosen & Hastie (1994) have also tried smoothing 
splines. Most of the examples were tried both with Friedman's super­
smoother and our own implementation of smoothing splines. 

Hinging hyperplanes 

Breiman's (1993) hinging hyperplanes are the special case gj(x) = 
[x]+ = max(x, 0) of PPR. These suffice to approximate arbitrary 
continuous functions, by the results of Section 5.7. It is attractive to use 
the same projection direction for both positive and negative versions of 
the function, when we have 

g(a + f3T x) =a max(a + f3T x,O) + b min(a + f3T x,O). 

A little thought shows that this is a linear function plus a multiple of 
max(±(a + f3T x)) , which suggests adding an overall linear function to 
f(x) to avoid a wasteful fit using a projection and two components to 
recover a linear term. 

These have universal approximation properties by the methods of 
Section 5.7, as using two such functions we can approximate a step 
ridge function. Further, we will have rate of convergence results for 
suitable smooth functions of order 0(1 / .jY). (Breiman's Theorem 3 is 
more restrictive than our Proposition 5.3 in assuming a higher degree 
of smoothness although it may thereby use a smaller r.) 

The attraction to Breiman of hinges was a fast way to fit one 
hinged hyperplane by least squares. This is used within the back-fitting 
approach of PPR. His reported CPU times seem comparable with the 
state-of-the-art in fitting neural networks, which have the advantage 
of using smooth (indeed, infinitely differentiable) functions. The fast 
algorithm is based on the idea that once we know which side of the 
hinge the points fall, fitting the hinged hyperplanes is simple (a linear 
least-squares problem, which can be updated as points change sets). 
Thus we choose an initial hinge, divide the points, fit, divide again on 
the fitted hinge and repeat. This gives a local minimum, so may be run 
from several starting hinges. 
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Breiman also considers variable selection, that is restricting {31 to 
pick just some features. This can ease the search (and could also be 
applied to full PPR) but does assume that the features have some 
individual meaning. 

MARS (multivariate adaptive regression splines) 

Friedman's (1991) multivariate adaptive regression splines allow for 
interactions more explicitly by 

M Km 

f(x) = rx + L f3m 11 cf>km(Xv(k,m)) (4.7) 
m=l k=l 

where 
and 

and tkm is an observed value of Xv(k,m)· The degree is the largest Km; 
if this is one the model is additive. The functions were chosen to allow 
fast least-squares fitting algorithms. (Terms cf>km and cf>k,m+l are added 
together.) The components are splines corresponding to a penalty on 
the first rather than second derivative, discussed further in Section 4.3. 
Once again back-fitting is used, and terms are only considered for a 
high-order product if they are interactions of terms which occur in the 
current fit. 

The precise details of the selection of terms are an 'engineering 
detail' discussed at length in Friedman's paper and its discussion. His 
algorithm has a forward phase followed by a backward phase. Terms 
are chosen to add or delete depending on a lack-of-fit criterion, which 
is the residual sum of squares divided by (1- Cjnf. Here n is the 
number of observations, and C is the number of parameters plus a 
multiple (2-4) of the number of terms M. The backwards elimination 
step aims to produce a model with comparable performance but fewer 
terms. In the additive case, over-fitting is avoided by reducing the 
number of knots rather than via a smoothness penalty. 

MARS produces fits which are continuous but not differentiable, 
which can be visually unappealing. Friedman suggests 'smoothing' out 
the piecewise linear functions cf>kJ• for example by replacing them by 
cubics (and re-fitting the coefficients). 

PIMPLE 

Breiman's (1991) IT-method with program PIMPLE is another way to 
include interactions (and we will meet a third as interaction splines). As 

[y]+ means max(y,O). 

However, the splines 
are fitted by least 
squares, that is as 
regression splines rather 
than smoothing splines. 

This is related to the 
GCV penalty discussed 
in Section 4.3. 



Figure 4.2: Non-linear 
discriminants for the 
crabs data via 
projection pursuit 
regression. The left plot 
uses linear 
discrimination on the 
predictions, the right 
plot a robust version. 
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for MARS, Breiman considers a sum of products of splines, this time 
cubic splines, but the method appears to be geared towards small num­
bers of products of quite accurate fits, rather than as in MARS large 
numbers of inaccurate products. Back-fitting is used. The variable­
selection strategy starts with a small number of knots in the splines, 
increases this and then considers deleting individual knots, using gener­
alized cross-validation (Section 4.3) to decide when to stop adding and 
when to delete. 

Breiman suggests that in three or more dimensions the product 
terms will be identifiable (up to their ordering in the model) and so can 
be interpreted; his discussants are less confident. 

Examples 

We first consider the data on Leptograpsus crabs. BRUTO selected FL, 

CL and CW to enter linearly, with a slightly non-linear term for RW but a 
roughly parabolic term for BD. MARS of degree 1 chose a single break 
of slope for each feature (and a small departure from linearity) except 
for BD. If interactions are permitted, several two-term interactions and 
one three-term interaction are chosen. Although the models are quite 
non-linear, the discriminant plots are virtually unchanged. 

A difficulty (Ripley, 1994c) with our second approach (using LDA 
on the fitted values of a regression) is that a small number of outliers 
which are not fitted well can distort the within-group covariance matrix. 
Figure 4.2 shows the first two canonical variates for a projection-pursuit 
regression (with r = 3) for the crabs data, in which a number of outliers 
have appeared, together with bunching of points which are predicted 
particularly well. Sometimes using a robustified discriminant analysis 
will help, as Figure 4.2 shows . 
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Figure 4.3 shows a series of non-linear discriminant plots for the 
forensic glass data. The BRUTO fit is very similar to linear discrim­
ination. When we examine the terms of the additive model, we find 
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that iron oxide has been omitted, and the term in calcium is slightly 
non-linear ; all the other terms are selected to enter linearly. The 
cross-validated error rate was 35%, a little better than the full linear 
discriminant analysis (but not significantly so). 

MARS with maximum degree 1 fits an additive modeL This intro­
duces non-linear terms in RI, Mg, Si, K, Ca and Ba, and drops the 
rest. The fitted functions are shown in Figure 4.4. This achieves a 
cross-validated error rate of 32.2%. 

As more interaction terms are introduced in MARS these principally 
distinguish groups 5 (tableware) and 6 (headlamps) from the rest. As 
Figure 4.3 shows, the linear discrimination model on the transformed 
features becomes much less plausible. The performance improved to 
29% both with pairwise interactions and with unlimited interactions. 

Projection pursuit regression was also used to produce new features 
for use in linear discrimination. There are six classes here, so if we 
choose the number of ridge terms r < 5 there will be collinearity in 
the new features. It does seem desirable to choose at least five ridge 
functions, which must necessarily be rather smooth functions to avoid 
over-fitting. This was borne out by our experiments, which achieved 
a cross-validated error rate of 42% if Friedman's super-smoother was 
used, but 35.5% if smoothing splines were used with a relatively large 
value of A.. Using just three ridge functions made the performance 

Figure 4.3 : Non-linear 
discriminant plots for 
the glass data : 
(a) using BRUTO ; 
(b, c, d) using MARS 
with maximum degree 
1, 2, and unrestricted. 



Figure 4.4: Fitted 
functions for the 
MARS additive model 
for the forensic glass 
data. The y scales are 
arbitrary. 
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considerably worse as the two types of window glass were barely 
separated. 

Pima Indians 

Fitting MARS and PPR models by least squares to the Pima Indians 
diabetes data did not improve the fit over linear methods, with a typical 
test-set error rate of 75/332. 

4.2 Radial basis functions 

We return to ways of parametrizing f or the log probabilities as a linear 
combination of basis functions. For a one-dimensional x splines are a 
natural choice. For higher dimensions we could use multidimensional 
splines (Section 4.3), but radial basis functions or RBFs have been more 
widely advocated (Powell, 1987, 1992; Broomhead & Lowe, 1988; Lee 
& Kil, 1988; Moody & Darken, 1989; Poggio & Girosi, 1990a, b; 
Musavi et al., 1992). 

RBFs are approximations of the form 

y = o: + L /3jG(IIx- Xjll) 
j 

(4.8) 

for centres Xj. Examples of G proposed include the Gaussian G(r) = 
exp -r2 /2, the multiquadric G(r) = J(c2 + r2) (Hardy, 1971, 1990; 
Kansa, 1990) and the thin-plate-spline function G(r) = r2 log r. (The 
RCU network of Reilly et al., 1982, has G(r) = I(r < ro).) It is easy 
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(but not as useful) to extend the definition to general kernels G(x- Xj) 
or G(x,xj)· For multivariate approximations we just take a and /3j to 
be vectors, that is we take different linear combinations of the same 
basis functions. 

When G is Gaussian, (4.8) can be seen as extending the notion of 
approximating a probability density by a mixture of known densities. 
The norm II II is unspecified, and could be Euclidean distance or 
a Mahalanobis distance, when the densities would have a common 
covariance matrix. In general we might want to consider different 
covariance matrices for each component, leading to the form 

y =a+ L /3jG(IIAj[x- Xj] II). 
j 

Girosi et al. (1995) call this form hyper basis functions. 

(4.9) 

A variant of radial basis functions which is sometimes considered 
(Moody & Darken, 1989; Xu et al., 1994) is the normalized form 

2.:: · /3jG(IIx- Xjll) 
y = --===1=--------

l.:jG(IIx-xjll) . 
(4.10) 

Approximation properties 

The class of radial basis functions has similarly good approximation 
properties to those of ridge-function methods (such as projection pursuit 
regression and feed-forward neural networks). There are many possible 
cases to consider, depending on whether the centres and G are fixed or 
adaptive (chosen for each dataset). We will only give a flavour of the 
results. 

Park & Sandberg (1991) studied the subclasses of (4.9), 

Y = a+ Lf3jG(II[x-xj]ll/aj) 
j 

y = a+ L /3jG(II [x- Xj] 11/a) 
j 

(4.11) 

(4.12) 

in which G is fixed but the covariance matrices are proportional, 
including the special case in which the aj are identical. (This is still 
more general than (4.8).) Provided G is continuous, bounded and 
with a finite and non-zero integral, they show that the class (4.12) 
is dense in Lp for every p E [1, oo ), and can uniformly approximate 
continuous functions on compact sets. (This is sometimes referred to 
as the 'universal approximation' property.) Thus for any function f(x) 
there is a set of centres (xj) and a a> 0 such that (4.12) is close to f 



Here H'·2 is the space 
of L2 functions all of 
whose derivatives up to 
order s are in L2 and 
so includes the 
Gaussian. 
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in the appropriate norm ( Lp or the maximum difference on a compact 
set). 

The uniform approximation on compact sets of continuous func­
tions for Gaussian RBFs of the form (4.11) can be shown via the 
Stone-Weierstrass theorem (Girosi & Poggio, 1990; Hartman et al., 
1990). Girosi & Poggio (1990, Appendix C) state a more general result 
for (4.8) and piecewise continuous G arising from (4.14) below, but 
their proof is of pointwise rather than uniform convergence. (The 
proof can be completed by consideration of the discretization error in 
a Riemann integral, using the modulus of (uniform) continuity.) Thus 
we still have uniform approximation with a fixed basis function G. 

Results on the rate of approximation are available for smooth 
enough target functions f (Girosi & Anzellotti, 1993), using the meth­
ods described in Section 5.7. They considered the class (4.8) for 
G E L2(JR.P) and the class of targets f which are in L2(JR.P) (for 
Lebesgue measure) and can be expressed in the form 

f(x) = { G(x- y) d.A.(y) 
JJR.P 

for a signed measure A of bounded total variation (that is, the difference 
between two finite measures). Thus functions in the class are at least as 
smooth as G; for example, for the Gaussian G the sharpness of peaks 
is firmly controlled. Then the L 2 rate of convergence is bounded by 
II.A.II/ J1l for n terms, when G is scaled to II Gil = 1. Further, if G is in 
H8

•
2 for s > p/2, there is uniform convergence at rate 1/ Jll. 
As class (4.12) corresponds to the rescaled kernel G, the results of 

Girosi & Anzellotti also apply to target functions of their class for any 
rescaling of G (although the constant in the bound will vary with the 
target function). This class of functions is, however, strictly smaller 
than L2. (Consider the function x-1/ 4 /(lxl < 1).) 

Fitting 

Finding the coefficients a and {31 in (4.8) to (4.12) is usually done by 
least squares and is easy; for fixed centres x1 and fixed scale parameters 
aJ these are linear regression equations, so least-squares fitting reduces 
to solving linear equations. 

This leaves the issues of finding the centres and any scale factors. 
One possibility is to take every training example as a centre, but this 
can lead to over-fitting. This suggests taking a representative collection 
of training examples, for example a random or stratified sample (e.g. 
Lee, 1991). There are other ways to take a representative collection of 
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points not necessarily within the training set. For example, the k-means 
algorithm (Section 9.3) of cluster analysis chooses k points in P£ to 
minimize the sum of squares from each training point to the nearest of 
the k points. These clustering algorithms do not take the classes of the 
training examples into account. 

Musavi et al. (1992) designed an agglomerative clustering algorithm 
(see Section 9.3) which only merges clusters of points with the same 
class. The cluster means then provide the centres for the basis functions. 
The algorithm will choose the number of clusters and hence the number 
of basis functions, but has a 'clustering parameter' 11 which controls 
the agglomeration process. Other ideas are the SOM (Section 9.4) and 
LVQ (Section 6.3) methods of Kohonen. LVQ aims for cluster centres 
which provide a good set for nearest-neighbour classification. 

Moody & Darken (1989) considered finding centres by k-means 
(using the method of (6.9) on page 202) and this has often been 
used. Note that this (and most other ways of choosing representatives) 
depends on the choice of a metric in P£, and so is most appropriate for 
(4.12) or (4.8) rather than for (4.9). 

Moody & Darken explored choosing the scale functions O'j in 
(4.11) from a heuristic using the P-nearest neighbour distance. Musavi 
et al. (1992) chose the matrices Ai in (4.9) (equivalently the covariance 
matrix of the Gaussian basis function) by fitting a maximal ellipsoid 
around the centre which includes no training examples of another 
class, and taking this as an isodensity surface containing 95% of the 
probability. Note that this procedure is very sensitive to outliers and 
faulty training-set classifications. 

Leonard et al. (1992) extend the Moody-Darken method by adding 
further outputs designed to signal extrapolation and to give confidence 
intervals for the predictions. 

It is of course possible to minimize the least-squares fit over the 
parameters (J or (J j, and even over the centres of the basis functions. 
As the least-squares fitting is partially linear, this will be computation­
ally quite feasible and seems to be the proposal of Poggio & Girosi 
(1990b), although considered and rejected as too demanding by Moody 
& Darken. Wetterschereck & Dietterich (1992) considered optimiz­
ing over both parameters O'j and centres. On their (single) example 
they found that optimizing over centres was particularly important to 
achieve a competitive performance by RBF methods, but that choosing 
the O'j by a local heuristic was counter-productive. 

Yet another idea is to choose cluster centres from a large class of 
candidates (for example, all training examples) by a stepwise regression 
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procedure. This was the idea of Chen et al. (1991). Any sensible 
selection strategy could be used, and the method extended to choosing 
from a small number of scale factors at each candidate centre. 

Poggio & Girosi (1990b, §IV.D) consider alternatives to least-squares 
fitting for 'unreliable data'. They replace the square function in the sum 
of squares or in (4.13) below by 

with E positive and f3 large. This enforces a quadratic penalty only up 
to about ±-JE, and has the same effect as are-descending M-estimator 
in robust regression (Huber, 1981; Hampel et al., 1986; Rousseeuw & 
Leroy, 1987). 

This plethora of methods provides a difficulty in assessing RBF 
methods; no two workers use the same class of RBFs and method of 
fitting. There is a range of compromises being made between speed 
of fitting and accuracy of approximation. RBFs are often claimed 
to be much faster than ridge-function methods on the basis of their 
partial linear fitting, yet if the centres are varied (or regularization 
used; Section 4.3) their computational load seems as large as their 
competitors. However, there is considerable scope for inspired choices 
of centres in specific problems (as in Roberts & Tarassenko, 1995). 

Potential functions 

The concept of potential functions has a variety of meanings within the 
pattern recognition literature. To some users it is synonymous with ker­
nel methods (Section 6.1). Its origins (Bashkirov et al., 1964; Aizerman 
et al., 1964a, b, 1965; Braverman, 1965; Arkedev & Braverman, 1966) 
are close to those of radial basis functions. Suppose we consider each 
observation X; as having some 'charge' q; and measure the 'potential' 
at another point x. It will be of the form 

and this provides another way to approximate by a smooth function 
(except perhaps at the data points). The 'potential' is to be chosen by 
the user, and so could subsume both kernel methods and radial basis 
functions. 

The potential-function classifier is trained to attempt to correctly 
classify all the samples of the training set by adjusting the qi by a 
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perceptron-like procedure. Indeed, it can be seen as applying perceptron 
ideas to generalized discriminant functions. 

Potential functions can also be used to approximate probability 
density functions (Kashyap & Blaydon, 1968; Tsypkin, 1966). 

The method is considered in more detail in books by Meisel (1972) 
and Young & Calvert (1974). It seems to have disappeared from view 
until revived as the study of radial basis functions. 

4.3 Regularization 

An alternative to reducing the number of basis functions in fitting 
RBFs is to allow one per training example, but to control directly the 
smoothness of the fitted function, as is done for smoothing splines in 
one dimension. Indeed, since splines are so useful in one dimension, 
they might appear to be the obvious method in more. In fact they turn 
out to be rather restricted and little used. 

This section is dominated by least-squares fitting, since regulariza­
tion has been most explored in approximation theory. We know of 
no exact solutions (such as smoothing splines) for other forms of our 
problem such as fitting multiple logistic models by maximum likelihood. 

Bishop (1991) considers (4.12) with a centre at every example in the 
training set, but adds a penalty term when fitting. Let f(x) denote the 
approximating RBF. Then the term to be minimized is 

L IIYi- f(x;)ll 2 + AC(f), 
i 

where i refers to the i th training example. This is an example of a 
general process termed regularization in which other penalties C(f) may C(f) is sometimes 

be considered. The parameter A controls the smoothness and degree called a stabilizer. 

of fit. For A = 0 the fits will usually be exact (from interpolation 
properties of RBFs) and as A ---+ oo the fitted function becomes flat. 
Bishop chooses A by trial and error. The sum over .examples can be 
seen as an approximation to an integral over fl£. 

Adding a penalty C(f) has a Bayesian interpretation. The first term 
is proportional to the log-likelihood if we assume that the noise variance 
a} in a regression is known, so if we take a prior over functions f 
which is proportional to exp -2Aa}C(f), minimizing a penalized sum 
of squares is equivalent to maximizing the posterior density over f. 
This is a MAP estimator (see Section A.1) and is widely used in image 
analysis (following Geman & Geman, 1984). However, the warnings 
about MAP estimation given in Section A.1 must be borne in mind. 
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Suppose we add a penalty of the form C(f) = II P f 11 2 for a differ­
ential operator P. We can then consider the function f minimizing the 
penalized sum of squares 

L IIYi- f(xdf + .?ciiP/11 2 (4.13) 

over all (smooth enough) functions f, not just those represented by a 
form of RBFs. Exactly as for smoothing splines, the general solution 
(Poggio & Girosi, 1990b; Wahba, 1990) is of the form 

(4.14) 

where G is the (symmetric) Green's function of P P, P is the adjoint 
differential operator, and n(x) is a function in the null space of P. 
If the operator is translation or rotation equivariant, so will G be. 
Thus equivariance under rigid motions leads to Green's functions of 
the radial basis function form. The coefficients Ci satisfy the linear 
equations 

(4.15) 

and n(x) is chosen by least squares. 
The Gaussian RBF arises from the (non-intuitive) penalty functional 

(Poggio & Girosi, 1990b, pp. 95-96), and the null space gives the 
constant IX. The penalty is more obvious when expressed in the Fourier 
domain, and Girosi et al. (1995) consider the class of penalties 

C(f) = j J~s)J2 ds 
G(s) 

(4.16) 

for some positive symmetric function G that tends to zero as llsll ---+ oo. 
Here the tilde denotes Fourier transformation, and it turns out (Dyn, 
1987; Madych & Nelson, 1990; Girosi et al., 1995) that G is the Fourier 
transform of the function G(x- xi) in (4.14). In this formulation the 
Gaussian RBF arises from G(s) = exp-,BIIsf. 

Although regularization is theoretically interesting, it demands the 
solution of large systems of linear equations (4.15). In the case of 
smoothing splines in one dimension this is a banded system and can 
be solved quickly, but in general it will take O(n3) operations for n 
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examples and so be prohibitively slow. It remains possible to use a 
smaller set of basis functions as in the previous subsection and to use a 
penalty functional to control the smoothness. We could use a general­
purpose optimizer to minimize the penalized measure of fit over all 
parameters rather than solve (4.15) within a loop. 

Although we have considered only least-squares problems in this 
subsection, similar considerations apply to other deviance functions, 
since they can be approximated locally at the optimum by a weighted 
sum of squares function, and this continues to have a solution of the 
form (4.14) with appropriate modifications to (4.15). 

Another approach to regularization is to add noise during training 
(see, for example, Sietsma & Dow, 1991). Suppose we add a moderate 
amount of white noise to the target values Yi· Then (Webb, 1994; 
Bishop, 1995b) a second-order Taylor expansion shows that the effect is 
approximately (despite Bishop's title) the same as using the regularizer 

C(f) = ~ E [ ( 
8~~~)) 

2 

+ H.fi(X)- Yil ;;1~]. 1,] 

Bishop shows that for small added noise and a good fit the first term 
dominates (since E[fi(X) - Yil will be small), so the regularization is 
mainly by the expected squared length of the first derivative. With 
non-least-squares error functions, local linearization gives a weighted 
least-squares approximation and hence an expected weighted sum of 
(ofi(X)/8Xj)

2
. 

Multidimensional splines 

Smoothing splines in one dimension arise from the regularization 
penalty J g"(u)2 du on the sum of squares at the data points. This 
penalty does not generalize immediately to higher dimensions, and a 
suitable generalization took some years to emerge. Thin-plate splines 
use the penalty 

!! a2j(x,y) 282j(x,y) 82f(x,y) d d 
ox2 + oxoy + oy1. X y 

on 1R.2 which is invariant under rigid motions, and 

m! j [ amj(x) ]
2 

a a dx 2: OCJ ! • • • OCn! OX 1 
• • • OXn" 

tXJ+··+an l 

in JR.P. We have to take 2m > p to ensure this is a smoothing 
penalty, since a radially symmetric bump of width h will have penalty 
proportional to h2m-p which should go to infinity as h -+ 0. 
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The solution to the penalized least-squares problem is of the form 

f;.(x) = cp(x) + L c;G(IIx- xdl) 
i 

for a polynomial cp of total degree at most m - 1 and 

G(r) = { r2
m-p log r if 2m-pis even 

r 2m-p otherwise 

(Duchon, 1977; Meinguet, 1979; Wahba, 1990, p. 33). Thus univariate 
smoothing splines and our two-dimensional example correspond to 
m = 2. The higher-dimensional cases lose the computational simplicity 
of smoothing splines since the matrices are no longer banded. Note 
that m = p = 1 gives a penalty of the integrated square of the first 
derivative, and the solution is piecewise linear, as used in MARS. We 
can only use a second-derivative penalty in p ~ 3 dimensions, and 
even in two dimensions there are edge effects to consider (Green & 
Silverman, 1994, Chapter 7). 

Additive models, including those with interaction terms such as 
MARS, can be put within the spline framework by choosing a suitable 
regularizer (Wahba, 1990, Chapter 10). Summing penalties gives an ad­
ditive model, and including terms which involve two or more variables 
gives rise to interaction terms, most simply for m = 1 (since for m > 1 
there are interactions between polynomials and splines to consider). 
These are known as additive and interaction splines respectively; the 
latter are considered by Barry (1986), Gu & Wahba (1991) and Gu et 

al. (1989). 
Tensor product splines are similar to MARS in that the interaction 

terms are products of functions of a single feature. They arise from a 
penalty of the form (4.16) in which G is a product of functions of a 
single feature. 

Fitting additive models with interaction terms via splines gives rise 
to a potentially large number of parameters A to be considered, one 
for each term. For m = 2 there are 22 A's to choose even for p = 4, 
which is beyond current methods to select. 

Asymptotic theory 

Once a regularization term is added to the fitting criterion, for exam­
ple the deviance, the asymptotic distribution theory of the parameter 
estimate will be changed, whether or not the model is true, except in 
the unlikely event that the penalty is completely ineffective. From their 
intended purpose, we would expect the effect of regularization terms to 
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be to introduce bias, even asymptotically, but to decrease the variance. 
This raises the possibility of juggling the amount of the penalty so that 
the bias decreases as n --+ oo but the variance remains under control, 
indeed decreases to zero at a rate close to 0(1/n). 

This general programme is often considered 'non-parametric' since 
arbitrarily complex models will be needed to fit a true model outside 
the assumed class of functions. (For instance, consider Gaussian RBF 
functions with centres at data points, and approximating an exactly 
linear function.) The results of Section 2.8 provide sufficient bounds on 
the complexity of the model needed for n points which can allow the 
penalty to be varied with n, and a heuristic outline is given by Geman 
et al. (1992) with a more detailed account by White & Woolridge (1991) 
and White (1990). As an example of these techniques we can consider 
a projection pursuit regression with the number r of terms growing at 
O(n1-") for E > 0, and control the smoothness of the terms to grow at 
O(log n), thereby achieving risk consistency. 

This asymptotic programme has little to do with the performance 
in realistic situations, since there is not usually a large enough training 
set relative to the complexity of the fitted classifier. For useful results 
we need an approximation, not a limit theorem. Moody (1991, 1992), 
Liu (1993, 1995) and Murata et al. (1993, 1994) attempt to provide this 
in a limited set of circumstances. They assume a regularization penalty 
proportional to n (unrealistic according to the previous paragraph, 
which suggests it should grow less rapidly, but much better than con­
stant regularization). Then we can use the results of Propositions 2.2 
and 2.3 in Section 2.2 with Lt = Et + A.Ct replacing -logp, where E1 

is a term in the fit criterion (for example the contribution of an example 
to the negative log-likelihood) and Ct = C/n. This leads to 

NIC = 2[E(O) + A.C(B) + p*] 

where p• = trace[KJ-1] and 

d K 
_ V oLt(8o;X) 

an - ar o8 . 

If the penalty A.C(O) measures the smoothness of the fitted function, it is 
the same for both the training and test sets, so the expected difference 
in E between test and training sets of size n is also p• (which is 
Moody's formulation). Sometimes if the penalty is an integral over 
the feature space of the form C(8) = Jq- G[f(x ; 8)] dx it is replaced by 
C(l}) = * 2::: G[f(Xi; 8)], which has expectation C( 8) for both training 
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and test sets. Thus a penalty of the form C(O) can also be deleted from 
NIC. 

Moody (1991, 1992) calls 'the effective number of parameters', Pelf, 
the estimate of p• obtained by replacing the expectations in J and K 
by averages over the training set, and ()o by 0. There is a potential 
bias in using the training set to estimate p• since it shows how many 
effective parameters are needed to approximate the true distribution 
over a set of size n, and that could be much smaller than the number 
needed to approximate the whole distribution. Further, as we suggested 
in Section 2.2, a divisor n - p for the estimate of K would be more 
appropriate. 

We now return to the approximation of Bayes factors in Section 2.6. 
We can always regard p(()) oc -.IcC(()) as a prior density for the 
parameters (), although it may well be an improper prior (with infinite 
integral). Then choosing () to minimize the negative log-likelihod plus 
.IcC(()) is equivalent to MAP estimation, and we can use (2.43) as an 
approximation to logp(:Y I M). 

Choosing A. 

To actually use regularization, we have to select all the A's. If they 
are derived from Bayesian priors as in Section 5.5, they are already 
determined, but otherwise they are treated as free parameters (and 
are also so treated in some empirical Bayes schemes). We can use the 
methods of Section 2.6, in particular cross-validation. However, this has 
two disadvantages. The first is computational unless updating schemes 
are known (as for univariate smoothing splines; Silverman, 1985). 
The second is that cross-validation is not invariant under orthogonal 
transformations of the data vector in a regression problem. Generalized 
cross-validation (GCV) computes the average adjustment of the fit on 
leaving each point out, rather than producing the adjustment for each 
point (Craven & Wahba, 1979). Thus in a regression problem we have 

GCV(./c) = _.!._ l:f:t IIYi- JA(xi)ll 2 

N [1- trace(A(.Ic))/ N]2 

where A,t is the matrix mapping the data vector to the vector of 
the fitted values. Where several A's are involved, A and GCV be­
come a function of all of them, and a simultaneous minimization is 
needed; Wahba (1990) reports using up to 10 2 's for additive interaction 
splines. Except for univariate splines, the computation is dominated 
by the computation of A(./c). Hastie & Tibshirani (1990, §9.4.3) suggest 
approximating traceA(./c) by one plus the sum of the traces of the 
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matrices for the individual smoothers minus one, which seems ad hoc 
but is much faster. This is used in BRUTO. 

For non-least-squares problems there seems no general alternative 
to V -fold cross-validation. Hastie & Tibshirani ( 1990, §6.9) propose 
a version of GCV which weights the deviance by the divisor of the 
least-squares form, but this seems unsupported theoretically except as 
a local weighted least-squares approximation (given by Wahba, 1990, 
p. 113). 



What we denote by W;j, 

the weight on the link 
from i to j, is more 
often denoted Wji · 

5 

Feed-forward Neural 
Networks 

A great deal of hyperbole has been devoted to neural networks, both in 
their first wave around 1960 (Widrow & Hoff, 1960; Rosenblatt, 1962) 
and in their renaissance from about 1985 (chiefly inspired by Rumelhart 
& McClelland, 1986), but the ideas of biological relevance seem to us 
to have detracted from the essence of what is being discussed, and are 
certainly not relevant to practical applications in pattern recognition. 
Because 'neural networks' has become a popular subject, it has collected 
many techniques which are only loosely related and were not originally 
biologically motivated. In this chapter we will discuss the core area of 
feed-forward or 'back-propagation' neural networks, which can be seen 
as extensions of the ideas of the perceptron (Section 3.6). From this 
connection, these networks are also known as multi-layer perceptrons. 

A formal definition of a feed-forward network is given in the glos­
sary. Informally, they have units which have one-way connections to 
other units, and the units can be labelled from inputs (low numbers) 
to outputs (high numbers) so that each unit is only connected to units 
with higher numbers. The units can always be arranged in layers so 
that connections go from one layer to a later layer. This is best seen 
graphically; see Figure 5.1. Each unit sums its inputs and adds a con­
stant (the 'bias') to form a total input Xj and applies a function fj to 
Xj to give output Yj· The links have weights Wij which multiply the 
signals travelling along them by that factor. The input units are there 
just to distribute the inputs, so have f = 1. Thus a network such as 
Figure 5.1 represents the function 

Yk = !k ( rxk + L Wjk/j( rxj + L. wijxi)) 
j~k I~] 

(5.1) 
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Bias units 

Hidden 

layer(s) 

from inputs to outputs. The functions fJ are almost invariably taken 
to be linear, logistic (with f(x) = t(x) = ex /(1 +ex)) or threshold 
functions (with f(x) = I(x > 0) ). A variant is to take hyperbolic 
tangent units with f(x) = tanh(x) = (ex- 1)/(ex + 1) = 2t(x)- 1, but 
this only introduces a linear transformation which can be absorbed 
into the weights (except at the output units). Only threshold units give 
a genuine multi-layer extension of the perceptron, and such networks 
were considered in Rosenblatt's work. 

The general definition allows more than one hidden layer, and it 
also allows 'skip-layer' connections from input to output. If all units in 
a layer have the same function fh or f 0 , we have 

Yk = fo ( rxk + L WikXi + L Wjdh ( aj + L WijXi)). (5.2) 
i->k j->k i->j 

The bias terms can be eliminated by introducing a new unit 0 (the 
bias unit) which is permanently at + 1 and connected to all other units. 
We set wo1 = a1. (This is the same idea as incorporating the constant 
term in the design matrix of a regression by including a column of 1's.) 
This is shown in Figure 5.1. The general form is then 

Yk = fo ( L WikXi + L Wjk/h (L WijXi)). (5.3) 
i--->k }->k i-+j 

Note that if we have logistic units in the hidden layer, adding skip-layer 
connections is not really more general, since we can add another unit 
per output in the hidden layer with input weights wik!G and output 
weight G to just unit k. Then for large G we only use the central, 
linear, part of the range of the logistic function. However, skip-layer 
connections can be easier both to implement and to interpret. 

Figure 5.1: A generic 
feed-forward network 
with a single hidden 
layer. To avoid 
over-crowding bias 
units are shown for 
each layer, but they can 
be the same unit. 
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A neural network with a single logistic output unit can be seen as 
a non-linear extension of logistic regression. With many logistic output 
units, it corresponds to linked logistic regressions of each class vs the 
others. 

The terminology of neural networks can be very confusing: Fig­
ure 5.1 is sometimes referred to as having three layers (which seems 
visually correct), two layers (as the input layer does nothing) and one 
hidden layer (as the states of the units in the central layer cannot be 
inspected from outside the 'black box'). We will refer to the inputs, the 
outputs and the hidden layer, since we will almost always have only 
one hidden layer. 

We will extend our notation to allow every unit j to have an input 
Xj and output Yj· The inputs to the whole network are the inputs to 
the input units, and the outputs from the whole network are those of 
the output units. The signal paths through the network are determined 
by the equations 

Xj = LWijYi· 
i-+j 

(5.4) 

We can even drop the condition on the sum by defining W;j to be zero 
for all non-existent links. When programming it is useful to number 
the units by layer, so all units in the first layer precede all those in the 
first hidden layer and so on. Then we know w;j = 0 unless i < j. 

We will briefly consider how such functions came to be suggested, 
and the theory which shows that they form large and flexible classes of 
functions. However, in practice the main issues are how the parameters, 
the weights, should be chosen, and how the architecture (the number 
of layers and the number of units in each, as well as which connections 
to include) is selected. 

5.1 Biological motivation 

The original biological motivation for feed-forward networks stems 
from McCulloch & Pitts (1943) who published a seminal model of a 
neuron as a binary thresholding device in discrete time, specifically that 

nj(t) =I (L Wijn;(t -1) > 8;) 
i-+j 

the sum being over neurons i connected to neuron j. Here n;(t) is 
the output of neuron i at time t and 0 < W;j < 1 are attenuation 
weights. Thus the effect is to threshold a weighted sum of the inputs 
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at value ei. Real neurons are now known to be more complicated; 
they have a graded response rather than the simple thresholding of 
the McCulloch-Pitts model, work in continuous time, and can perform 
more general non-linear functions of their inputs, for example logical 
functions. Readers may worry that this model can only allow non­
negative weights. This is so, but neural systems have both excitatory 
and inhibitory connections, so whereas each connection can effectively 
have a weight of just one sign, it would be possible to envisage both 
an excitatory and an inhibitory connection, to simulate the effects of 
weights of either sign. 

There is also a wider motivation based on human abilities in pattern 
recognition. A driver can recognize that a traffic light has changed to 
red and take the appropriate action (or decide not to) in well under one 
second. Neurons are rather slow devices by the standards of electronic 
computers, with messages travelling at up to 100m/s, and of low 
bandwidth-perhaps 100 bits/s (MacKay & McCulloch, 1952). This 
allows rather few steps in the computation, most famously expressed in 
Feldman's (1985) concept of a 'one hundred step program', since there 
is time for at most 100 steps within a human reaction time. Human 
brains must make up for this lack of speed by massive parallelism, 
and given the speed of messages this parallel computation must be 
highly distributed. Brain scientists currently envisage vision as being 
performed in a series of layers in the brain, which naturally suggests 
a layered architecture for the distributed computation. (There is some 
evidence for feedback from later layers to earlier layers in human vision, 
but this is recent and controversial.) 

Further, human beings can learn tasks such as driving; it seems 
extremely implausible that we are pre-programmed to recognize red 
traffic lights nor (except for advocates of Lamarckian evolution) that 
this is an inherited adaptation. Something in our distributed neural 
computing system changes through experience. This could involve 
adding or removing connections or units, but most emphasis has been 
on exploring the consequences of changes in the strengths of connections 
rather than their topology. 

The book of Hebb (1949) has been very influential in thinking 
about how connection strengths should be changed. His approach is 
not quantitative, and so is all-embracing. He considers that the con­
nection strength between units should be increased if they are activated 
together, and this is often taken to suggest reinforcing the connection 
proportionally to the product of their simultaneous activations, that is 
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This is known as the Hebbian learning rule, widely used in other forms 
of neural network. 

This idea that there could be a simple adaptation rule for connection 
weights used universally in learning found fruit in the experiments of 
Rosenblatt (1957, 1958, 1962) and Widrow (Widrow & Hoff, 1960). As 
discussed in Chapter 3, they used very simple units, in one or few layers, 
with weights expressed by motor-driven potentiometers. Widrow-Hoff 
learning (also known as the delta rule) was an iterative algorithm of the 
reinforcement type to fit a linear regression or discriminant. This seems 
to have been the inspiration for the rules used for 'learning' in neural 
networks in their renaissance. Similar rules were proposed for learning 
in potential function systems by Aizerman et al. (1964a, b, 1965). 

5.2 Theory 

Equations (5.1) and (5.2) are thus far merely suggestive ways to 
parametrize multidimensional input-output relationships. They are 
rather general classes of functions, something which took a long time 
to be appreciated. Cybenko (1989), Funahashi (1989), Hornik et al. 
(1989), Carroll & Dickinson (1989), Stinchcombe & White (1989) and 
many later authors have shown that neural networks with linear out­
put units and a single hidden layer can approximate any continuous 
function f uniformly on compacta, by increasing the size of the hidden 
layer, and this implies many other types of approximation. There are 
also some results on the rate of approximation (how many units are 
needed to approximate to a specified accuracy), but as always with such 
results they are no guide to how many units might be needed in any 
practical problem. These results are in fact rather easy to prove, very 
much easier than most published proofs, so we give complete proofs in 
Section 5.7. 

A heuristic reason why feed-forward networks might work well with 
modest numbers of hidden units is that the first stage allows a projection 
onto a subspace of :!{ of much lower dimensionality, within which the 
approximation can be performed. In this feed-forward neural networks 
share many of the properties of projection pursuit regression (PPR; 
Section 4.1). Indeed, for theoretical purposes the two are essentially 
equivalent. We consider only linear output units, as clearly logistic, 
softmax or other transforms can be applied to the outputs of either 
family. Clearly ( 5.1) is a special case of PPR ( 4.5), taking the smooth 
functions to be logistic functions. Conversely, if we have a general PPR 

Yk = IXk + L gj(!Xj + L /3j;X;) 
j i 
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we can approximate each smooth function gj as a sum of shifted 
logistic functions (a special case of the results of Section 5.7), so 

gj(X) ~ LYjlt(bj[ + (j[X) 
I 

Yk ~ cxk + LYjd(cx}I + L f3}uxi) 
j ,/ i 

and on writing j, l as a single index the right-hand side is seen as a 
special case of (5.1). 

5.3 Learning algorithms 

Knowing that an approximation exists is useless without some way to 
find it, and it was this step which held up research in neural networks 
for many years. The original idea of the Rumelhart-McClelland school 
was to fit the parametrized function by least squares. Suppose we have 
examples (xP, tP), and that the output of the network is y = f(x; w). 
Then the parameter vector w is chosen to minimize 

E(w) = L IW- f(xP;w)ll 2 

p 

(5.5) 

as would be done in non-linear regression (Bates & Watts, 1988; Seber 
& Wild, 1989). (Note that this is a sum of squares over both output 
units and input examples.) As this is a minimization problem, we can 
use general algorithms from unconstrained optimization (Section A.5), 
and we shall see that this seems the most fruitful approach. 

Note that E(w) is a differentiable function only for differentiable 
units, and from now on we assume differentiable units, thereby excluding 
threshold units. Indeed, it was the change from the threshold units of 
genuine multi-layer perceptrons to logistic units which enabled effective 
algorithms to train these networks to be found. These algorithms all 
require the gradient of E(w) with respect to the weights. 

The Rumelhart-McClelland group used a form of steepest descent 
to reduce ( 5.5), with update rule 

(5.6) 

and since the partial derivative can be written in the form (see the next 
subsection) 
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(originally with the sign of <5 reversed) this has become known as 
the generalized delta rule. (Here and later the superfix P refers to 
calculations involving example p.) Further, as the <5 'scan be computed 
from output to input across the network (see the next subsection) both 
the process of calculating the derivatives and the descent algorithm are 
known as back-propagation. 

Alternative discrepancy functions for logistic regressions have been 
considered in Sections 2.3 and 3.5; most ofthese have been re-discovered 
within the neural networks literature. The conditional log-likelihood 
(2.31) for a two-class problem has been widely suggested (Solla et al., 
1988; Bichsel & Seitz, 1989; Hinton, 1989a; Bridle, 1990a, b; Holt & 
Semnani, 1990; Spackman, 1992; van Ooyen & Nienhuis, 1992). This 
is often summed over multiple logistic output units to give 

[ 
tp 1 tp] 

E = L L tf log ~ + ( 1 - tk) log - ~ 
p k Yk 1- Yk 

(5.7) 

the terms in t log t being chosen so that E ~ 0 with equality only for 
a perfect fit. 

The log-linear approach to classification gives rise to what Bridle 
(1990a, b) termed softmax. This is no different from the multiple logistic 
models considered several times in earlier chapters, but for convenience 
we will recap the notation here. We have 

(5.8) 

and 0e classifier chooses the class max1m1zmg p(k I x) and hence 
gk(x; 8). To use this with a neural network, we take the Yk to the 
outputs of a network with linear output units, and compute probabili­
ties by 

expyk 
Pk = · 

l::jexp Yj 
(5.9) 

Minus the log-likelihood for the multinomial distribution is then 

summed as usual over examples. The targets tk will usually be one for 
the correct class, and zero for the others, and the probabilities are given 
by (5.9) computed from (yk). From now on we will assume that exactly 
one of the targets is one, all the others are zero, so L:j tj = 1. The 
outputs (Yk) can all be changed by the same additive constant without 
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changing the probabilities or the fit, so there is a degree of redundancy. 
It is often convenient to take gk(x; 8) = 0 for some preferred class k. 

The error criteria of robust statistics (Huber, 1981; Hampel et al., 
1986) may be used to replace least squares, as in Chen & Jain (1994). 
Liu (1994) uses a t distribution for regression errors, and hence a 
different robust error criterion. 

Back-propagation 

Recall that each unit has input Xj = Ei ..... j WijYi and output Yj = fj(xj). 
Each form of the fit criterion E is a sum over examples, so we calculate 
the derivatives of EP, which can then be summed over examples. For the 
rest of this subsection we consider one example and drop the superfix 
P. 

In these calculations we will take partial derivatives of E with 
respect to weights Wij and with respect to inputs Xi and outputs Yi of 
units. We have to make clear precisely what is kept fixed. (The literature 
with very few exceptions does not. Werbos, 1994, has a concept of 
ordered derivatives for this.) When we take partial derivatives with 
respect to weights, we regard E as a function of all the weights, so 
changes in a weight Wij affect the input and output of unit j and 
all units connected to j, including some output unit(s). When we take 
partial derivatives with respect to an input or output, we allow all other 
signals in the network which depend on the input or output to follow 
their usual dependence. Thus all weights and all inputs (and hence 
outputs) of other units in the same and earlier layers are kept fixed. We 
evaluate 8Ej8xj by noting that Xj only affects the outputs through 
yj, and this only acts through connections to output units. 

For the first derivatives we have 

aE aE axj oE , oE 
-
8

- = -
8 

-
8

- = Yi-
0 

= yJ1·(Xj)-
0 

= y/Jj (5.10) 
Wij Xj Wij Xj Yj 

if we define [Jj = 8Ej8xj. The first equality comes from the dependence Sometimes bj is given 

of E on the weights only through the outputs, the second from Xj = a sign change, to set 

2: Wij Yi ( 5.4 ). We note that w;j .._ wij + 17 L yf bj 

For output units oEjoyj can be calculated directly from the form 
of E. It is customary to express fj(xj) in terms of yj; for logistic units 
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we have f'(x) = y(1- y). For an output unit o we have the expressions 

(jo = 2y0 (1- Yo)(Yo- t0 ), logistic output unit, least squares 

(jo = (Yo - t0 ), logistic output unit, entropy fit 

(jo = 2(yo- to), linear output unit, least squares 

(jo = ( E1 t1) Po- to, softmax 

For units in earlier layers we have 

(jJ = f'/xJ) ~E = fj(xj) L WJk :E = fj(xj) L :: ~x~ 
YJ k:j->k Xk k:j->k k YJ 

= fj(xJ) L WJk(jk. (5.11) 
k:j->k 

the sum being over units k fed by unit j. (The first and last equalities 
follow from definitions; the second traces the effect of the output of an 
internal unit via the units to which it is connected.) Since the formula 
( 5.11) for (); only contains terms in later layers, it is clear that it can 
be calculated from output to input on the network. This simple idea 
has been re-discovered many times, and much credit has been given 
for it. Werbos (1974) had the idea of organizing such computations as 
a recursive computation, but its modern use stems from Rumelhart et 
al. (1986) and Rumelhart & McClelland (1986, Chapter 8). It is often 
discussed as a forward pass to calculate the outputs from the inputs, 
followed by a backward pass to calculate ([J;) and hence oEjow;1. In 
control theory (Bryson & Ho, 1969, §2.2) the idea occurs in a more 
general form if the weights are considered as control inputs to the 
layers. 

Second derivatives 

We can find the Hessian of the fit criterion E with respect to the 
weights by extending the derivation of (5.10). We use the symmetry of 
the Hessian matrix to require that j is never in a later layer than l in 
these expressions. (This ensures that x 1 is changed by w;1 but not by 
Wk/, although Xt could be changed by both.) Then we have 

H(w)iJkl = 82£ = Yi _!__ oE = Yi o(yk[Jl) 
, OWijOWk/ OXj OWkt OXj 

[ 
oyk 8(),] oyk = Yi (jl- + Yk- = Yi (jl- + Yi Yk h11 (5.12) 
OXj OXj OXj 

where hjl = 8[Jif8xj = o2EjoXj0XI = (j{jjjax,. The first term is zero 
unless j = k or there is a path from j to k. 
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For a general network with a single hidden layer (allowing connec­
tions from input to output) the first term must be zero unless j = k is 
a unit in the hidden layer. Thus we have: 

1 If both j and l are output units the first term is zero, and so we 
have 

a2E 
a a 

= Yi Yk hjl· 
Wij Wk[ 

2 If j is in the hidden layer and l in the output layer 

a2E 
-~- = Yi (b1l(j = k)fj(xj) + Yk hjl] 
awijaWki 

(5.13) 

= Ydj(xj) [btl(j = k) + Yk L Wjmhmt] (5.14) 
J-+m 

on differentiating (5.11) with respect to x1• 

3 If j and l are both in the hidden layer 

a
2 
E abt a [ , ] 

a a = Yi Yk -a = Yi Yk -a fL(xt) L W[mbm 
Wij Wk[ Xj Xj 1-+m 

= Yi Yk [l(j = l)fj(xj) ~ Wjmbm 
J-+m 

+ Jj(xj)f/(xt) L L WjmWtnhmn] . (5.15) 
j-+m 1-+n 

These expressions only involve hjt for units in the output layer. If we 
differentiate the expressions given for b0 we find 

hoo = 2yo(1 - Yo)(2Yo -to+ 2toYo- 3y;), 

hoo = Yo(1 -Yo), 

hoo = 2, 

hjt = pjl(j = l)- PjPl, 

logistic output unit, least squares 

logistic output unit, entropy fit 

linear output unit, least squares 

softmax 

In the first three cases the off-diagonal terms of (hjt) are zero. 
The double sum in the third case simplifies for softmax, for if we 

define Hj = L.j-.m WjmPm we have 

= Yi Yk [1(j = l)fj(xj) ~ Wjmbm 
J-+m 

+Jj(xj)f/(xt){~ WjmWtmPm- HjHt}]. 
J-+m 
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Buntine & Weigend (1994) give rules for finding second derivatives 
in more general networks, in particular those with more than one hidden 
layer, but the results here suffice for the networks used in practice. 

Several algorithms use the Hessian H(w) only to compute H(w)v 
for a few directions v (for example as part of a line search along 
direction v, although that only needs vT H(w)v ). Pearlmutter (1994) 
shows how to compute Hv without computing the whole matrix H, 
by a technique he calls 9P-backpropagation (and which also appears in 
Werbos, 1988). Define the operator 

a 
9P[f(w)] = a,f(w + rv) (5.16) 

as the directional derivative in direction v. 
We want to compute Hv = (9l[oEjowiJ]). Let ~i = oE/oYi· We 

compute oE I OWij by 

i-+} 

~} = LWJkbk 
}-+k 

after computing b0 from the formulae above (5.11). Applying the 9l 
operator using the normal rules for a derivative operator, we find 

(Hv)iJ = Yi9l[bj] + 9l[yiJbJ 

9P[bj] = fj(xj)9l[~j] + fj(xj)9l[xj]~J 
9l[~j] = L Vijlh + Wjk9l[bk] 

}---+k 

9P[yi] = J;(x;)9l[xi] 

9P[xj] = L ViJYi + WiJ9l[yi] 
i---+j 

The last two equations then form a forward pass, the first three a 
backward pass (started by 9P[b0 ] for the output units o ). Whether 
these are easier to use than (5.13-5.15) will depend on the application, 
and in particular on how special v is. 

The classic algorithm 

The basic back-propagation algorithm (5.6) has been modified in many 
ways. In the original Rumelhart & McClelland experiments (1986, 
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p. 330) 'momentum' was added, that is exponential smoothing was 
applied to the correction term, so we have 

Wij +- Wij -1} [(1- a):~} + e<(dwij)previous]. (5.17) 

They also considered the 'on-line' version of (5.17), that is 

Wij +- Wij -17'yf b)+ ct'(dWij)previous (5.18) 

and updating the weights after every example. This only makes sense if 
the examples are presented in a random or unstructured order, in which 
case the momentum creates an approximation to (5.6). In contrast, (5.6) 
and ( 5.17) are sometimes known as 'batch' algorithms. 

This algorithm can be implemented by a form of distributed com­
puting on a (two-way) network, with outputs being passed forward and 
then b 's being passed back. 

There seem to be three motivations for the 'on-line' algorithm. One 
is the biological motivation of learning from every experience. Another 
is that it can converge faster than the batch version. Suppose that the 
training set contains large numbers of exact or near duplicate examples. 
Then the average over a small proportion of examples will provide a 
good approximation to E or its derivatives, and we would expect the 
on-line methods with a small momentum term to do well. However, in 
that circumstance the alternative is to use a small sample of examples 
in the batch algorithm, at least in the early stages of training. The third 
is a belief that by introducing 'noise' into the algorithm (the random 
choice of which example to present) local minima in the optimization 
are more likely to be avoided. (We return to this on page 156.) 

Iterative algorithms need both a starting point and a stopping rule. 
The starting point is usually taken to be a random set of weights. Some 
care is needed that they are not taken to be too large, for if all the 
combinations ,E1 wiJxf are initially large, the hidden units start in a 
'saturated' state (with outputs very near zero or one). 

The stopping rule does need a form of central control. The earliest 
idea was to stop when (if) E became small. This is often fine in 
logical problems, where no example is ever mis-classified, but can result 
in poor generalization. Very many ad hoc stopping rules have been 
proposed. One which seems popular is to have a validation set, and 
stop training when the error measure on the validation set starts to rise. 
This is dangerous, as we have often encountered examples in which 
after an initial drop the error on the validation set rises slowly for a 

Exponential smoothing 
is a method of 
smoothing time series, 
taking an exponentially 
decaying weighted 
average over past 
values. We can compute 
Yt = (1-IX}l:::~ IXiXH 
by 
Yt = (1 -1X)Xt + IXYt-1 · 

Generalization is 
defined in the glossary; 
it refers to the test-set 
performance. 
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large number of iterations, then falls dramatically to a small fraction of 
its previous minimum. Thus one can never know if the minimum error 
on the validation set has yet been attained. It is also not uncommon to 
use the test set rather than a validation set, as the use of a validation 
set is thought wasteful. (One example in a textbook is in Thornton, 
1992, p. 199.) 

The issue of when to stop is important, and we know of no sat­
isfactory rule for this algorithm. Folklore suggests that disasters have 
been saved because its convergence is so notoriously slow that users 
cannot afford the computer time to overfit the training set. Much has 
been made of the idea of stopping before convergence (for example by 
Finnoff et a/., 1993). Note that the fitted weights will depend on the 
starting point if early stopping is used. This complicates the analysis of 
early stopping procedures. Wang et a/. (1994) attempt to study early 
stopping of a linear regression problem, which is a neural network 
with no hidden layer and a single linear output unit. The algorithm 
studied is (5.6), batch learning without momentum. (They also allow 
fixed transformations of the inputs, which adds nothing to the analysis.) 
They assume that the data were generated by random samples from 
a linear regression. Then there is an optimal stopping point before 
convergence, but this has a delicate dependence on the size n of the 
training set and the starting point ; their actual results are useful only if 
the starting point is taken to converge to the true value as n increases. 
That the starting point must be critical can be seen by considering 
what happens if the initial weights happen to be the true weights, when 
the expected test-set performance will normally steadily decline during 
training. 

The batch version of the classic algorithm can converge for fixed 1J, 
but the on-line version will continue to wander unless 1J is reduced to 
zero. During training we want 1J to be large to approach the (local) 
minimum rapidly, but small to avoid large excursions about the local 
minimum. Both Amari (1967) and Heskes & Kappen (1991) studied the 
effect of the choice of 1J, specifically finding the covariance matrix of w 
at time t to be proportional to 1J, for large t and small 1J. From this 
various rules have been used to adapt 1J; Amari's original suggestion 
was to increase 1J if successive steps had an angle of less than 90°, and 
to decrease 1J otherwise. White (1989b) uses results from stochastic 
approximation to give conditions under which convergence is bound to 
occur to a local minimizer ( 2:: 1Jn diverges, 1/1Jn - 1/1Jn-1 be bounded 
and 2:: 1J~ < oo for some d > 1 ) which are satisfied by 1Jn oc n-" for 
O<K~l. 
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Variants of the classic algorithm 

A number of ideas have been proposed to speed up the convergence of 
(5.6). Many are reviewed by Jacobs (1988); for example, the constants 
rt and IX in ( 5.17) can be chosen adaptively for each weight Wij · Some 
further references are Schmidhuber (1989), Silva & Almeida (1990), 
Tollenaere (1990), Darken & Moody (1991), Salomon (1991) and Eaton 
& Oliver (1992). One scheme that is popular is Quickprop (Fahlman, 
1989) which uses a crude line-search over rt for each parameter. It 
retains the immediate past value of the weight update, and fits a 
quadratic using the past and current derivatives. If this has its minimum 
at a sensible value the latter is used as the new weight, otherwise a 
number of heuristics are used. The details are given at the end of this 
subsection. 

Analogies have been drawn between the on-line algorithm and 
stochastic approximation (for example by White, 1989a, b, 1992), which 
can be seen as an algorithm of the form 

n s:n 
Wij +- Wij- 1'ln Yi uj 

with rtn ~ 0 for a sequence of randomly chosen examples, and which 
then converges to a local minimum of the least-squares criterion. In­
jecting further noise (Kushner, 1987; White, 1989a; Styblinski & Tang, 
1990; Gelfand & Mitter, 1991), for example 

for independent Gaussian en and rtn oc 1/log(n + 1), can lead to 
a global minimum, analogously to simulated annealing. However, See the glossary for 

stochastic approximation is not a very effective way to solve a least- simulated annealing. 

squares problem, not least because the magnitude of the current f(xP; w) 
is ignored. 

One of the difficulties encountered by the classic algorithms is that 
logistic units may become 'stuck' at the wrong extreme, in which case it 
takes many steps to change them to the opposite extreme, since in (5.10) 
we have f'(x) = y(l- y) which is small if y is very near zero or one. 
Fahlman (1989) has suggested an offset, using say f'(x) = 0.1+y(1-y). 
van Ooyen & Nienhuis (1992) argue for the entropy fit because for the 
output units b0 does not go to zero for Yo tending to the extremes 
unless the fit is correct, and demonstrate that this leads to faster 
convergence in their examples. (However, saturation can still occur 
at the internal units.) This effect has led to a number of claims of 
algorithms reaching local minima when they are merely in very nearly 
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flat regions. Genuine local minima do occur (Section 5.4), and this can 
be checked by considering the Hessian at a supposed minimum. 

One way to avoid saturation is to discourage large weights and 
hence large inputs to units. Weight decay (Hinton, 1986) modifies the 
classic algorithm to 

W;j +-- Wij -17 LYf c5} - 217AWjj 
p 

(5.19) 

which tries to reduces the magnitude of the weights at each step. We 
can see that (5.19) is steepest descent applied to 

E +A L w~ = E + J.C 
ij 

(5.20) 

say, a form of regularization. This will only make sense if the inputs 
and outputs have been (roughly) rescaled to the range [0, 1] to be 
comparable to the outputs of the hidden units. In other problems 
it may make sense to used a weighted sum of weights, and/or to 
use different weight decay parameters for groups of weights. Other 
functions C have been used, for example (5.22) on page 170. 

With linear output units and the least-squares error criterion, the 
selection of the output weights is a linear least-squares problem, and 
as in a regression or an RBF network this can be solved without 
iteration; this also applies to skip-layer weights. (In the parlance of 
non-linear regression we have a 'partially linear' problem.) This has 
been incorporated into a number of variant algorithms, for example by 
Shepanski (1987) and Hrycej (1992, Chapter 9). 

Another approach has been to turn the discrete-time update into 
the system of continuous non-linear differential equations 

dw;i 8E 
-=-17-

dt n awij 
(5.21) 

(Owens & Filkin, 1989; Weiss & Kulikowski, 1991). Then the classic 
algorithm is seen as a very simple fixed-step Euler integrator for this 
system, and much more sophisticated integration schemes can be used, 
especially those which are designed for stiff systems, those in which the 
Hessian has eigenvalues of very different magnitudes. Effectively these 
schemes allow long steps for some linear combinations of the weights, 
and short steps for others. 

A similar approach for the discrete-time update has been to use 
versions of the Kalman filter; see for example Singhal & Wu (1989), 
Ruck et al. (1992) and Chandran (1994). 
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There have been numerous published comparisons of these variants, 
but these must be treated with circumspection, as the effectiveness of 
ad hoc devices can depend on the problem to be treated and how free 
parameters are chosen, as well as on the starting point and the quality 
of the implementation. 

Details of Quickprop 

Fahlman (1989) modifies the gradient 8Ej8wij both by including his 
offset and a small oo-4 ) weight decay; let the modified gradient be 
denoted g(k) at the k th iteration for weight Wij. We take a quadratic 
approximation along the line between the gradients g(k- 1) and g(k) 
and look for its minimum. This amount to finding the zero for a linear 
approximation to the gradient, which occurs at w + a(k)8Ej8w(k -1), 
where 

g(k) 
a(k) = g(k- 1)- g(k) 

This is replaced by 1.75 if it exceeds 1.75 or is uphill along g(k) (when 
the quadratic would give a maximum). A learning rate is needed to 
start, to re-start for a ~ 0 and is also used if the gradient and the last 
update have the same sign. Thus the update rule for WiJ becomes 

WiJ +- Wij- 0.55 I [gij(k)dwij(k- 1) > O]gij(k) + aij(k)dwij(k- 1). 

This can be seen as a combination of a line-search strategy through the 
dependence on the last step, and gradient descent to re-start when the 
the line search is close to a minimum. Beware that both the value of 
17 = 0.55 and the weight decay are not scale-free in E, and so will need 
to be adjusted for regression networks. 

Other algorithms 

Many other algorithms have been proposed, but by far the most 
effective in our experience are those which treat the minimization of the 
fit criterion E or E + A.C as a general optimization problem. Steepest 
descent is generally regarded as a poor strategy for optimization, and 
the most widely used methods for optimizing differentiable functions 
are based on approximations by quadratic functions. 

Introductions to these methods are provided in Section A.5 and by 
Fletcher (1987), Gill et al. (1981), Nash (1990) and Press et al. (1992). 
For realistic numbers of weights (up to thousands) quasi-Newton meth­
ods work well. For larger problems the storage of the approximate 
Hessian can be too demanding, and conjugate gradient methods or 
the limited-memory BFGS quasi-Newton method (see Section A.5) can 

The values of 'I and 
the weight decay are 
taken from Fahlman's 
publicly distributed 
code. 
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as that of feed-forward 
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when conjugate 
gradient algorithms are 
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line searches are done. 

Fefferman & 
Markel (1994) consider 
more hidden layers. 
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be used. Our experience is that these all work well; a quasi-Newton 
algorithm was used for all the examples in this book. There are spe­
cialized algorithms for non-linear least squares, but these are designed 
for exactly-fitting functions and in general use are less effective. 

There are at least two reasons for the superiority of these algorithms. 
One is that they try to solve the original minimization problem, not 
the system of equations setting the derivatives to zero, and so are able 
to use the information provided by the size of the objective which is 
unavailable to equation-solving algorithms. Another is that a Taylor 
expansion will show that locally the objective is well approximated by a 
quadratic function, and this enables the algorithms to have super-linear 
convergence (see Section A.S). In practice this means that once they get 
close to a local minimum, they reach it to machine accuracy in a few 
iterations, this being especially effective with quasi-Newton methods. 

There is much collective wisdom in implementing these methods 
well, and the reader is advised to use a well-tested implementation 
from an expert. They are part of almost every package of numerical 
analysis procedures, and both Nash (1990) and Press et al. (1992) 
publish code. Unfortunately many of the published comparisons in 
the neural networks field have used their own implementations without 
fully understanding the issues nor documenting the precise procedures 
used. 

With algorithms that can actually solve the optimization problem 
to machine accuracy in a modest time, we can explore whether we have 
found a local minimum, by looking at the eigenvalues of the Hessian 
at the solution (which should all be positive, at least up to computing 
tolerances), and also if more than one local minimum exists. We find it 
to be the norm that choosing enough different starting values will lead 
to more than one local minimum being found. Now there will always 
be a number of local minima of the same value, since the hidden 
units are not identifiable, and can be permuted without changing the 
functional form. Further, the signs of all input and output weights to 
a single hidden unit can be reversed, and with suitable changes to the 
biases the fitted function is unchanged. Sussmann (1992) and Albertini 
et al. (1993) consider precisely when different sets of weights can give 
the same fitted function for a single hidden layer. However, we expect 
to find local minima with different values of the objective function. 
(Some simple examples are given by Gori & Tesi, 1992, and we will see 
examples in the next section.) 

Weight decay helps the optimization in several ways. When weight 
decay terms are included, it is normal to find fewer local minima, and 
as the objective function is more nearly quadratic, the quasi-Newton 



160 5 Feed-forward Neural Networks 

and conjugate gradient methods exhibit super-linear convergence from 
much farther from the local minimum and so converge in many fewer 
iterations. There seems no reason ever to exclude a regularizer such 
as weight decay. If no regularizer is used, the Hessian is usually 
almost singular at a local maximum, and this slows the convergence of 
second-order optimization methods (Saarinen et al., 1993). 

The idea of using general-purpose optimization algorithms is a very 
obvious one, much re-discovered for neural network fitting. Some early 
references are Watrous (1987), Battiti & Massuli (1990) and Beigi & Li 
(1990, 1993) for quasi-Newton methods and Kramer & Sangiovanni­
Vincentelli (1989), Makram-Ebeid et al. (1989) and Johansson et al. 
(1991) for conjugate gradient methods; Battiti (1992) gives a review. 

It is very easy to give an algorithm guaranteed to reach a global 
minimum (Baba et al., 1994), for example by taking a random step in 
the weight space from a distribution with positive density (for example, 
any Gaussian) and accepting the step if the new weights are better 
than the old. Such algorithms will not be practical ones in the weight 
space of a non-trivial network. (The proof that this algorithm works is 
simple. Fix e > 0. We assume that there is a minimizing w, say w0, 

and E(w) is continuous. Then there is a ball around w0 with E(w) 
within e of the minimum. The random step will hit that ball with 
positive probability, and in an infinite sequence of steps will hit with 
probability one. The move will be accepted unless the current solution 
has E{w)- E(w0) <e.) 

5.4 Examples 

We start with the data on Cushing's syndrome. If we add just two hidden 
units to direct input-output connections and use a softmax output 
layer, we find many solutions that fit the data exactly (that is, predict There are 21 weights. 

probability one for the observed class for each example). Figure 5.2 
(a) and (b) show two such solutions; the lines are rough because the 
posterior probabilities vary so fast with x that the contouring routine's 
interpolation is inadequate. Adding even a minimal amount of weight 
decay produces a much smoother solution (see Figure 5.2(c)). With a 
weight decay of A.= 0.01 the solutions are quite smooth, but seventeen 
local minima with distinct values of E +A.C were found. Two commonly 
found solutions are shown in the figure, with values of E + A.C :::::: 4.18 
and 5.93. The largest local minimum found had E + A.C :::::: 7.65. The 
Hessian at the minimum showed that in each of the seventeen cases 



Figure 5.2 : Neural 
network fits to the data 
on Cushing's syndrome. 
The network used had 
two hidden units and 
connections from the 
input to output layer. 
Figures (a) and (b) are 
two solutions without 
weight decay which fit 
perfectly. Figures (c) 
and (d) show two local 
minima each, for 
A= 0.001 and A= 0.01 
respectively. The 
dashed lines correspond 
to the local minimum 
that fits less well. 

Figure 5.3: Neural 
network fits to the data 
on Cushing's syndrome 
with A= 0.01. Part (a) 
had five hidden units, 
part (b) twenty. 
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these are well-defined local minima, since it was positive-definite with 
eigenvalues which were well away from zero. 

Adding more hidden units while keeping the weight decay constant 
makes only a little difference to the solution, as Figure 5.3 shows. 
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For the Pima Indians diabetes data we tried fitting a neural network 
with a single logistic output unit, using the conditional likelihood 
(2.31 ). Omitting the hidden layer is equivalent to fitting a logistic 
discriminant. Adding weight decay (up to A = 0.01) changed the 
performance marginally. Adding even one hidden unit increased the 
error rate to the mid 70s/332, and no non-linear neural network fit 
approached the (linear) logistic discrimination. 

Forensic glass 

We have been assessing the performance of classifiers on the forensic 
glass data by 10-fold cross-validation. Since we will expect multiple 
local minima to occur, we will have to be careful to define precisely 



162 5 Feed-forward Neural Networks 

what procedure is to be cross-validated. We could choose to start 
fitting at a random set of weights (the same random set for each 
cross-validation experiment, or a different one for each) or to start 
from the fitted weights to the whole dataset. The latter will bias the 
results slightly, but may mean that the fitting can be done slightly more 
quickly. 

We chose to use the same initial random weights for all the cross­
validation runs, in part so we could explore the effects of different 
starting points. We know that tableware and headlamp glass can be 
linearly separated from the remaining classes, and this leads to very 
slow convergence if weight decay is not used. To avoid this, the 
smallest value of weight decay used was A. = w-4 . The quasi-Newton 
optimization procedure used took around 4 times as many iterations 
(BFGS updates) as the number of weights, and about 1.2 function 
evaluations per iteration. 

With no hidden layer and A. = 0.001 the cross-validated error rate 
was 37.8%, slightly worse than that of multiple logistic regression (the 
same procedure without the weight decay). Adding two hidden units 
reduced this to about 30.4 to 34.1 %, and four and eight hidden units 
gave solutions in the range 24.8 to 29.9% depending on the starting 
point. Clearly the different local minima have quite different perfor­
mances, and in some cases the best fit to the training set corresponds to 
the worst cross-validated performance. The simplest way to overcome 
this is to average across different solutions. We saw in Chapter 2 that 
the best quantities to average are the posterior probabilities, so we 
averaged these across fits from ten separate starting points for each 
cross-validation run. The table shows the error rates (% ). 

0.0001 
0.001 
0.01 

# (hidden units) 

2 4 8 

30.8 23.8 27.1 
30.4 26.2 26.2 
31.8 29.9 29.9 

This hows that only a small amount of regularization by weight de­
cay is needed in this dataset; this is related to the near-linear separation 
of some of the classes. These results are the best for fitting a flexible 
discriminant model (and by far the most time-consuming). The sharp 
variation in performance with A. and the number of hidden units in 
this example is unusual, and can be traced to the success in separating 
the rare classes. 

This averaging is quite 
time-consuming since 
100 fits are required; it 
took about an hour per 
run on a Spare 20 
workstation. 
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This is the best performance found in this example for a flexible 
discriminant method, but it is comparable with the much simpler nearest 
neighbour rule of page 201, which took around a second. The cross-
validated confusion matrix is quite different: 

WinF WinNF Veh Con Tabl Head 
WinF 56 11 3 0 0 0 

WinNF 10 59 3 3 0 1 

Veh 8 1 8 0 0 0 
Con 0 4 0 8 0 1 

Tabl 1 0 0 1 7 0 

Head 1 1 0 1 1 25 

and different decisions were made in 47 examples. This suggests that 
combining the two classifiers might well improve the overall perfor­
mance, but it did not do so appreciably. 

5.5 Bayesian perspectives 

The Bayesian view of decision theory can add considerable insight to 
the fitting of neural networks, although this insight has sometimes been 
clouded in the literature by the confusion of poor approximations with 
exact calculations. 

Setting the weight decay 

An important question when using weight decay is how to set the 
parameter(s) A. A Bayesian perspective (Buntine & Weigend, 1991; 
Ripley, 1994b) helps. Suppose E is the negative log-likelihood, up to a 
constant, or half the deviance. Then if we take a prior distribution over 
weights with density p(w) oc exp -AC(w), the minimizer of (5.20) will 
maximize the posterior density for the weights. For the weight decay 
of (5.20) this prior corresponds to independent Gaussian weights with 
mean zero and variance 1/ 2A. As the logistic function saturates for 
inputs beyond around ±3, the standard deviation of the total input 
might be expected to be around 2. (Remember that one motivation for 
weight decay is to avoid unnecessary saturation of logistic units.) If 
there is a small number of inputs scaled to the range [0, 1], this suggests 
that the standard deviations of the weights should be around 5, which 
corresponds to A = 1/ 50. This argument is rather conservative, as we 
do want some weights to saturate, but suggests the range A~ 0.001-0.1 
as a basis for exploration. Experience shows that A is not critical to 
within a factor of 5. 
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For the sum-of-squares error criterion, E is not half the deviance, 
and must be rescaled. In that case the deviance is of the form 
P log(E/P) for P examples. Suppose u; expresses the value of E/P 
that we expect to achieve. Then 

P log(E/P) = P log(u;) + P log(E/Pu;) ~ P log(u;) + P[E/Pu; -1] 

so an appropriate scaling is E /2u;. This suggests choosing A. in the 
range (0.002-0.2)u;. When least-squares fitting is used with outputs 
in the range [0, 1], this suggests values of u; ~ w-4-10-2 might be 
appropriate. 

With the softmax criterion (5.9) we will lose the symmetry of the 
classes if we set the output for one class to zero, so it usual to include 
all classes in the network. The weight decay resolves the redundancy 
over shifting all outputs, and gives a local minimum of E + A.C (rather 
than a saddle point). 

One criticism of weight decay emerges from this interpretation. 
Because it implies independence and the number of weights is often 
large, the opinion expressed about S(w) = 2: w~ is strong, being a 
rescaled chi-squared distribution with degrees of freedom the number 
of weights. It is therefore potentially dangerous if A. is set incorrectly. 

The predictive approach 

The Bayesian perspective goes much deeper, and has been the subject 
of partial implementations and considerable controversy (Buntine & 
Weigend, 1991; MacKay, 1992a-e; Wolpert, 1993). We will confine 
attention here to classification problems. Our aim is to model p(k I x) 
by a K-output neural network. For K = 2 we will use one logistic 
output unit to model p(21 x), and for K > 2 unordered classes we 
will use a multiple logistic model, also known as softmax. The weights 
are parameters, and are given a prior. It is usual to use the weight­
decay prior. This itself has parameters, one or more A., often called 
hyperparameters. 

The predictive Bayes approach approximates p(k I x) by averaging 
p(k 1 x; w) over the posterior distribution for the weights w. This is of 
the general form (2.34 ), that is 

n 

p(w Iff) oc IT p(yP I xP; w)p(xP; w) p(w), p(w) = j p(w; A.) p(A.) dA.. 
p=l 

Note that we are assuming no model for the marginal distribution 
p(xP; w), and so assume that x carries no information about w. (If this 
is false or unreasonable it can lead to fallacies.) 
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Such formulae can be misleadingly simple. For the moment consider 
fixed A. Fitting a neural network by minimizing E + AC is equivalent 
to maximizing the posterior density over w. Since we normally find 
several quite sharp local minima for E + AC, the posterior density will 
normally be sharply peaked at more than one point. Averaging the 
non-linear function p(k I x; w) over such a density is computationally 
difficult. As we saw in Chapter 2, the 'plug-in' approach ignores this 
difficulty, and uses p(k I x ; w) for one fitted set of weights. A more 
general way to approximate the posterior is to take a multivariate 
Gaussian distribution about each local maximum of p(w Iff) (Buntine 
& Weigend, 1991; Ripley, 1994c). At each local minimum of E +AC we 
can find the Hessian H(w), and take a local Gaussian approximation 
to the likelihood surface, of the form N(w, H(w)-1 ). The total mass of 
that Gaussian is then proportional to 

IH(w)l-1/ 2 exp -E(w) (2ntw12 

where nw is the number of freely-varying weights. Normalizing over 
all the local minima found gives a mixture of Gaussian distributions 
as an approximation to the posterior distribution of w. (This is closely 
related to the single Gaussian approximations discussed in Section 2.6.) 

We can average p(j I x; w) for future x by simulating w from this 
posterior density. (Often the effect of the spread about the peaks is 
so small that it is sufficient to average over the peaks. The weights 
given to the peaks can be radically different from their relative heights.) 
More exactly our mixture of Gaussians can be used as a density for 
importance sampling (Ripley, 1987, §5.2) in integrating p(j I x; w), since 
p(w Iff) can be calculated (up to a constant) from the fit of the network 
at w. Finally, a general approach is Monte Carlo integration which can 
be very inefficient unless the sampling is chosen to 'fill' the space of w 
effectively (as in Neal, 1993, 1996), and only very small examples have 
been demonstrated at a very large computational cost. 

Example 

We can compare the seventeen local minima found for the Cushing's 
syndrome data with two hidden units and A = 0.01. Six of them carry 
5% or more of the total mass, with fitted values and weights 

E+AC 
% 

4.544 
24.4 

5.928 
21.1 

6.198 
17.5 

4.502 
6.9 

4.269 
6.1 

4.180 
5.7 

The second and sixth are shown on Figure 5.2, and the (approximate) 
predictive classifier is shown in Figure 5.4. 
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The choice of priors 

In the last subsection a weight decay prior was used with a A. which 
was assumed known. If we have a hyperprior for A., the extension is 
quite easy: we can sample from this hyperprior, apply the procedure 
for each sample based on p(w; A.), and average over samples. (It may 
be better computationally to use a weighted average over a very coarse 
grid of values of A..) Two other approaches are to use a vague prior for 
A. (Buntine & Weigend, 1991) and to estimate A. by ML-II empirical 
Bayes (Berger, 1985, p. 99) as advocated by MacKay (1992a-e). The 
usual vague prior for a (squared) scale parameter such as A. has a 
uniform density on log scale and so has improper (un-normalizable) 
density 1/ A on (0, oo). This can be integrated out, to give the prior 
density 

[
"""' ] -nw /2 p(w) oc L...t wl 

which is the vague prior on S(w) = I:: wl and is again improper. 
Effectively there is no regularization assumed, since this density for 
S(w) has all its mass at infinity. This makes intuitive sense, since 1/2..1. 
is the prior variance of the parameters, and if we express no opinion 
about it, it will be allowed to be as large as needed. This does not accord 
with our prior beliefs. Whereas fixed A. is a strong opinion, perhaps 
too strong, a vague hyperprior is too weak an opinion. A more sensible 
choice of hyperprior would be a gamma distribution for A. Note that a 
gamma hyperprior for 1/ A. would be a scaled chi-squared distribution 
for the variance of the weights, and so the prior distribution of the 
weights would be a multivariate t distribution centred at zero. 

Although MacKay sometimes claims to use a uniform prior for 
log A., he uses ML-II empirical Bayes (which omits p(A.)) to choose 1 
and so is effectively using a uniform hyperprior on (0, oo) for A. The 
usual asymptotic justification for ML-II empirical Bayes is missing here, 
but the assumed prior independence of Wij may allow the posterior 
for A. to be quite concentrated, since we have nw pieces of information 

Figure 5.4: Predictive 
neural network fit to 
the data on Cushing's 
syndrome with two 
hidden units 
and A. = O.ol . 

This hyperprior was 
also proposed by 
Neal ( 1996). 

nw is the number of 
weights. 
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about A.. However, prior independence is a dubious assumption, and 
if nw is large and comparable with n (which it often is) there is no 
reason to suppose that p(A. I§"") will be highly concentrated about one 
point. Our experiments showed this often not to be so. 

The use of the weight decay prior is convenient, but our prior beliefs 
are really on the functions represented by the network and not on the 
parameters (weights) per se. This is the approach of the regularization 
penalties, which can be alternatively expressed as priors over the family 
of functions realized by the network. These have been most explored 
for regression networks, but Buntine & Weigend (1991) do give a small 
example for a classification network. Bishop (1993) uses the regularizer 
discussed in Section 4.3 for RBFs, 

This is intended for regression networks, with linear output units. (The 
implied prior is exp -A.C(f).) For this choice of regularizer Bishop 
shows that ac 1 awij can be calculated quite easily via the chain rule. 
For classification problems such a regularizer might be appropriate 
when applied to the total inputs to the logistic or softmax output stage. 

Nowlan & Hinton (1992a, b) motivate a prior for the weights which 
is a mixture of Gaussians by its encouragement for similar values of 
the weights. This had proved useful in networks with a hand-tuned 
architecture (but not for arbitrary groupings of weights). They choose 
a fixed number of mixture components (not necessarily centred at zero) 
and optimize the penalized log likelihood over the parameters in the 
prior as well as the weights. 

MAP estimation 

MAP is a common abbreviation for maximum a posteriori, summarizing 
a predictive distribution by its mode. Most of the controversy in this 
area comes from inappropriate use of MAP estimates. The predictive 
approach is quite clear ; we should average over the hyperprior (if any) 
and prior on the weights. This is done by mapping the posterior distri­
bution over weights to one over fk(x) = p(k I x; w), and averaging over 
the weights w and hyperparameters. Finally we maximize the expected 
cost over decisions. As we have seen, this programme is computa­
tionally daunting, and early work (such as Buntine & Weigend, 1991) 
implicitly or explicitly approximated the posterior density p(w I §"") by 
a mode. 



168 5 Feed-forward Neural Networks 

This approximation is often not appropriate and can be misleading. 
It needs to be stressed that plugging in the MAP estimator of the 
weights does not give the MAP estimator of the function f from inputs 
to outputs. If it is really necessary to use MAP as an approximation, it 
would be better to take the MAP estimate off= (fk) rather than that 
of w. Wolpert (1994a) gives a computational programme for finding a 
correction term to the posterior density of w to skew the mode towards 
the MAP estimate off, but the problem of multiple maxima remains, 
and in practice it appears to be easier to average, as well as being 
theoretically correct. 

One difficulty with approximating distributions by their modes is 
that the mode depends on both the underlying measure for the density 
and the parametrization. For example, in the weight-decay regular­
ization log A and 1 /2A. (the implied variance) are equally plausible 
parameters, yet their modes will not map to the mode of A. Indeed, 
approximating by the mode seems safe only when the parameter itself 
has a physical meaning and so a natural scale, or when the posterior 
distribution is so concentrated that the parameter is effectively constant. 

Optimization over both the weights and hyperparameters has been 
advocated by MacKay (1992b) and Nowlan & Hinton (1992b). This 
is further from the full Bayesian procedure, and so seems even more 
likely to mislead. 

5.6 Network complexity 

One of the simplest and most commonly asked questions is 

'How many hidden units should I use? Are there any rules of 
thumb?' 

There are rules of thumb, but these are as unreliable as those for 
the complexity of a multiple or polynomial regression. The answer 
depends on the unknown underlying function f which the neural 
network f(x; w) is approximating. There are three ways to control the 
complexity of the functions represented by a network: to cut out links, 
to change the number of hidden units, and to change the regularization 
(such as weight decay) parameter. We consider each in turn. 

The statistical background in Sections 2.2 and 2.6 is needed to 
appreciate these methods. Many of those results can be extended to 
methods of parameter estimation which minimize some criterion E 
(including any penalty A.C) and so in particular to penalized likelihood 
methods and the Bayes MAP estimate. However, the extensions are not 
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very useful, as asymptotically the criterion E which grows proportion­
ally to n (the size of the training set f7) will swamp any penalty and 
so not alter the results. Since the point of a penalty is to produce better 
behaviour for moderate n, a different asymptotic regime is needed. It 
follows from what we have said about the prevalence of local minima 
that the asymptotic theory is not normally relevant when fitting neural 
networks; n is often not much greater than the number of parameters. 

Neural networks are 'black box' models used for prediction. For 
prediction performance, it is almost always better to make smooth 
changes (shrinkage or regularization) than to select parts of the model: 
it is often computationally preferable too. It is important to remember 
the merits of combining models discussed in Section 2.6. 

Pruning networks 

The usual selection procedures can be used, including stepwise selection 
and AIC. However, it makes little sense to set individual weights to 
zero, and whole internal units and the weights on their connections are 
added or deleted. Often some form of cross-validation (Section 2.6) is 
used to decide how many hidden units to use. 

The neural network community has developed some fanciful names 
for these ideas. Optimal Brain Damage (Le Cun et al., 1990b) and 
Optimal Brain Surgeon (Hassibi & Stork, 1993; Hassibi et al., 1994; 
Buntine & Weigend, 1994) are both methods to 'prune' weights, that 
is to choose to set some of the weights to zero. Both are approximate 
versions of the Wald test, which considers the ratio of a parameter 
to its standard error. (The large-sample theory computes the standard 
error as the appropriate diagonal element of the Fisher information 
matrix K.) The methods differ in how crudely the standard errors are 
estimated. OBD uses just the inverse of the diagonal of the observed 
information matrix. OBS replaces the Fisher information matrix by the 
covariance matrix of the scores oL(fi;Xi)/oe. The empirical covariance 
matrix can then be inverted incrementally by the Sherman-Morrison­
Woodbury formula. It seems simpler to compute and invert the Hessian 
matrix, and Proposition 2.2 gives us more accurate asymptotic formulae 
which do not assume the model to be true. 

Reed (1993) gives a partial survey of pruning algorithms in the 
neural network literature. 

There are well-known difficulties in setting parameters to zero. Near­
collinearities can mean that if one weight is set to zero, the standard 
errors for others are drastically reduced, so it can be unsafe to set more 
than one weight to zero at a time. For classification problems the Wald 
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test is known to have little power when the true weight is large (Hauck 
& Donner, 1977), and so can be most misleading. 

Another approach is to encourage small weights during training, so 
these can subsequently be set to zero, and perhaps hidden units and 
all their connections removed thereby. This is done by an extension of 
weight decay, for example with penalty 

w?.jW 2 

c = L 1 +1~2.jW2 (5.22) 
lj 

(Weigend et al. , 1990, 1991, 1992) (which corresponds to a very improper 
prior with free parameter W ) or to base the penalty on the total squared 
weights reaching a hidden unit (Chauvin, 1989; Hanson & Pratt, 1989). 

Levin et al. (1994) extend the idea of principal components regres­
sion, in which the inputs are first linearly transformed to their principal 
components and then only some of the principal components are used 
in the final regression. Like all pruning methods, this reduces the 
variance of predictions at the expense of bias. This idea is applied to 
the input layer, reducing the inputs to the principal components, and 
then to subsequent layers in the neural network. Thus no weights nor 
units are actually removed, but the weights are restricted to lie in a 
lower-dimensional space. 

Selecting the number of hidden units 

Selecting the number of hidden units in a neural network is in principle 
no different from selecting regressors in a linear regression or the order 
of a polynomial regression. The main ideas that have been developed 
in that field are pruning by small steps (backward selection) discussed 
in the last subsection, incremental construction (forward selection; the 
next subsection), and minimizing some measure of performance over 
the class of possible models. 

All the candidate measures aim to predict the performance on a 
test set, and so to select the model with the best performance on the 
test set. The most general idea is to use cross-validation (Section 2.7). 
There is a particular difficulty in cross-validation for neural nets. How 
do we move from the whole set to a subset for training? Do we start at 
the fitted weights for the whole data? This could bias the procedure. If 
we start at another random starting point, we could end up at a very 
different solution even with the whole data, let alone with a subset. 
This shows that the learning procedure for a neural network is not well 
defined, as there are often multiple local minima of rather different 
performance. 
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Moody & Utans (1992, 1995) suggest viewing each local minimum as 
a separate model. This is appealing, but flawed. Consider a real example 
we encountered of around 100 examples and a binary classification. All 
but two of the examples could be fitted very well by a simple logistic 
regression model with no hidden units, but the other two examples had 
apparently been attributed to the wrong class. Fitting a net with two 
hidden units did much better overall, but had at least ten non-equivalent 
local minima. Now dropping either of the badly-fitted examples changed 
the nature of the fitted function completely. If we cannot track the local 
minimum over dropping just one example, a local minimum cannot be 
sufficiently well defined to be used within a cross-validation procedure. 
The approach taken in Section 5.4 of averaging across the local minima 
is much stabler, and only a little more time-consuming. 

It is important to realize that penalty terms such as weight decay and 
regularization change the problem completely, as they often impose a 
limit on the complexity of the fitted functions irrespective of the number 
of hidden units. The use of splines for smoothing in one dimension 
(Section 4.1) provides graphic evidence of this. The smoothness of the 
fit can be controlled either by restricting the number of knots or the 
degree of regularization; when regularization is •1sed (that is, smoothing 
splines) the fitted function will remain smooth however many knots and 
data points are taken. Figure 5.3 shows a similar phenomenon for fitting 
a neural network with weight decay. 

The NIC penalty of Murata et a/. (1991, 1993, 1994) and Moody's 
(1991, 1992) Pelf discussed in Section 4.3 were developed for this 
application, but do assume a strong single local minimum. For the 
fits of Section 5.4 for the data on Cushing's syndrome this condition 
is not met. The fits shown with weight-decay constant A, = 0.1 have 
Pelf in the range 2-5 depending more on the local minimum than on 
the number of hidden units. There is too much uncertainty in Pelf for 
it to be useful in such a small example. Ripley (1995) found it quite 
effective in a regression problem with one input and a training set of 
100 examples. 

Incremental network construction 

There have been a number of ideas to grow networks incrementally, by 
adding hidden units one at a time in the same or extra layers. Many 
of the ideas were first developed for perceptron (threshold) units and 
are surveyed in Gallant (1993, Chapter 10). The 'pyramid' algorithm of 
Gallant (1990) adds units one at a time in a new layer, each unit being 
connected to all previous units. Frean's (1990) 'upstart' algorithm is 

l 
I 
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for binary outputs. It starts with a perceptron, then adds two hidden 
layer units to attempt to correct (separately) the positive and negative 
mistakes. As these algorithms are of very limited scope (binary outputs, 
threshold units), we refer the reader to the references for detailed 
descriptions. Other early construction algorithms are described by 
Ash (1989) and Moody (1989). 

Moody & Utans (1995) call 'SNC' the heuristic construction algo­
rithm which adds units to the hidden layer in groups of C units, and 
first trains the new units before re-training all the units. They imple­
mented this for C = 1, when it is an example of back-fitting (described 
in Section 4.1). 

Cascade correlation (Fahlman & Lebiere, 1990) is a particular way 
to grow a 'pyramid' network, and seems the only iterative construction 
algorithm that is at all widely used. Initially just input-output connec­
tions are used. At each subsequent stage a new unit is added which has 
as inputs the original inputs and the outputs of all the previous units, so 
effectively a further hidden layer containing just one unit is added, with 
a prescribed set of skip-layer connections. However, only the additional 
weights (the input and output weights of that unit) are fitted at that 
step; weights to hidden units once fitted are never altered. Further units 
are added until some pre-specified measure of fit is achieved. (Their 
examples are of noiseless classification, and units are added until the 
whole training set is correctly classified.) This is called by its authors a 
cascade architecture. 

The 'correlation' in the name of the algorithm comes from the 
way that the new unit's weights are selected, although this involves 
a covariance not a correlation. If there is just one output unit, the 
weights are selected to maximize the absolute value of the covariance 
(over training-set examples) between the output value of the unit and 
the prediction error before that unit is added. If there are multiple 
outputs, the sum of this measure over outputs is used. In what can 
be seen as a means to avoid bad local minima and 'flat spots', several 
attempts are made to maximize this objective from random starting 
points, and the best taken. Then all the weights to the output units 
(including that from the new unit) are re-trained. 

It is illuminating to contrast this algorithm with the SMART algo­
rithm for projection pursuit regression (page 126). Cascade correlation 
uses a layered architecture; SMART uses only the original inputs but 
also fits to the residuals. In cascade correlation no global optimization 
is done, whereas in SMART all the weights are periodically re-fitted, 
and a pruning stage removes units one at a time. This re-fitting of 
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weights will take more CPU time, but is likely to produce a smaller 
network with better generalization properties. This is borne out by the 
empirical comparisons of Hwang et al. (1994b) on the example used 
by Fahlman & Lebiere, which shows that projection pursuit regression 
produces a smoother fit and hence a better generalization. 

Lee et al. (1990) take an approach they term structure-level adapta­
tion. This adds units to the network during training where they appear 
to be most useful, and also removes units which appear not to be ef­
fective. The rules to do so are ad hoc ; for example a new unit is added 
in parallel to one whose input weights appear to fluctuate continually 
during on-line training based on the heuristic idea that that unit is 
trying to follow two (or more) different features. 

Bayesian model choice 

Ripley (1995) found approximate Bayes factors by importance sampling 
using the multiple Gaussian approximation to the posterior density 
p(w Iff) discussed on page 165. This was for a curve-fitting problem 
(one input, one output) selecting both the number of hidden units and 
a single weight decay parameter A.. The results are similar to those 
using NIC. 

5.7 Approximation results 

We first prove the 'universal approximation' result. We are concerned 
with functions f:lR.n ~ JRP for n inputs and p outputs. We wish 
to approximate a given function f by g from some specified class of 
functions, such as (5.1). Uniform approximation on compacta means 
that given a compact set K c 1R n and e > 0 we can find a function 
g within our class such that llf(x)- g(x)ll < e for all x E K. We do 
not write out all the fine details, on the understanding that readers who 
are interested will be familiar with simple arguments in mathematical 
analysis. By 'ramp units' we mean 

g(x) = max(O, min(x, 1)) 

which can be made up of two of Breiman's (1993) hinge functions. 
If we can approximate the posterior probability function fk(x) = 

p(k I x) uniformly on compacta, we certainly will have enough to solve 
any practical classification problem. The restriction to compacta obvi­
ates the need to extrapolate correctly. It is reasonable to assume that 
this f is continuous, but it need not be (consider the task of classifying 
real numbers as rational or irrational). 
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Proposition 5.1 Any continuous function f: 1R n -+ .IRP can approximated 
uniformly on compacta by functions of the form (5.1) with linear output 
units and logistic units in the hidden layer, and also by networks with 
threshold units or ramp units in the hidden layer. 

Proof: Our proof proceeds by building up the class of functions we 
can approximate (uniformly on compacta). 

(a) Our first step is to take n = p = 1. A compact set is contained 
in a bounded interval, say [a, b], and any continuous function f 
can be uniformly approximated on [a, b] by a step function with 
steps of size less than c /2. (For each x E [a, b] define the interval 
I(x) = (t(x), u(x)) where t(x) = max{y < x : lf(y)- f(x)l ~ c/4} 
and u(x) = min{y > x : lf(y)- f(x)l ~ c/4}. The open sets 
I(x) cover [a,b], hence so does a finite collection J(x;). Sort 
the x; into increasing order, and let g take the value f(x;) on 
[t;, u;) = [u(x;_l), u(x;)). Then ldg(t';)l = lf(x;-1- f(x;)l ~ lf(x;-1-
f(t';)l + lf(x;)- f(t;)l ~ 2e/4.) A step function is in class (5.1) 
for threshold units, and sums of logistic or ramp functions can 
approximate a step function arbitrarily closely except at the steps, 
and certainly to within one half of the largest step size. 

(b) We then extend the result to trigonometric functions of the form 
ll?=1 cos(w;x+tp;) for any n. By repeated use of the cos(A+B) for­
mula, this can be written as a sum of the form I:j aj cos(wjx + tpj). 
Each term in this sum is continuous, and so can be approximated 
by step (a) ; hence the whole sum can, as well as linear combinations 
of these functions, including arbitrary trigonometric polynomials on 
.IR". 

(c) Any continuous function f:.IR" -+ 1R can be approximated by a 
trigonometric polynomial. This is a well-known result in Fourier 
theory, but we give an elementary proof as Proposition 5.2. 

(d) Fix the compact set K and c > 0. Each component function fj of 
f is continuous, so we can find functions gj within our class such 
that 

sup 1/j(x)- gj(x)l < c/ JP 
xEK 

and so 
sup llfj(x)- gj(x)ll <c. 
xEK 

The function (g1(x), . . . ,gp(x)) is within the class (5.1), since we can 
take separate groups of hidden units for each coordinate function. 

D 

The idea of this proof is 
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We can easily extend the proof to other types of unit in the hidden 
layer; all we need is the ability to approximate a step function in the 
sense used in the proof. It is clear that, for example, any cumulative 
distribution function could be used. The literature sometimes refers 
to such functions as sigmoidal, particularly if they are continuous, 
although that term is also used for just the logistic and hyperbolic 
tangent functions. 

We now give a probabilistic proof of the only slightly tricky step. 
This is an easy consequence of the (advanced) Stone-Weierstrass theo­
rem (Simmons, 1963, p. 160). 

Proposition 5.2 Any continuous function f: 1R n ~ 1R can be uniformly 
approximated on compacta by trigonometric polynomials. 

Proof: Fix the compact set K. By an affine transformation of the 
coordinate system we may ensure that K c [0, 1]n. Now re-parametrize 
each coordinate invertibly by Pj = sin(xj/max{2,n}), and use the 
result of the second half of the proof to approximate h(p) = f(x) by a 
polynomial hN(P) on the simplex 

9 = {p I Pi ~ 0, PI + · · · + Pn ~ 1} · 

Then f N(x) = hN(P) is a trigonometric polynomial which approximates 
f to the required accuracy. 

Let Y = (Yt, ... , Yn) be a sample of size N from a multinomial 
distribution with parameters p = (Pt •... , Pn) E 9. (As the probabilities 
need not sum to one, we complete the definition by taking a category 
n + 1 which can occur with probability 1- EPi·) Define 

We will show that hN converges uniformly to h on 9. Let M = 
maxpE.9' lh(p)l < oo and choose b > 0 so that 

which we can by continuity and compactness. Then 

hN(P)-h(p) = Ep[{h(Y/N)-h(p)}I(IIY/N-pll <b)] 

+ Ep[{h(Y/N)- h(p)}I(IIY/N- Pll ~b)] 
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gives 

n 
E ""' n ~ 2 +2M~ (j2NPi(1- Pi) 

i=l 
E n 

~ 2 +2M b2N < E 

for large enough N. (The fourth step uses the Bienayme-Chebychev 
inequality.) 0 

Uniform convergence on compacta is a strong form of convergence, and 
implies many others. In particular, it implies L 2(f.l) convergence for any 
probability measure f.l on IR". For the purposes of classification this 
is also sufficient, since it implies that decisions made by the classifiers 
derived from f and from g agree with high probability (except in 
artificial cases where several decisions are equally good). 

Kurkova (1991, 1992) gives uniform approximation results for net­
works with two hidden layers for which only the output weights are 
varied, including bounds on the numbers of units needed. 

Hornik et al. (1990) give approximation results for continuous func­
tions and their derivatives; these would take us too far into approxi­
mation theory even to state. Stinchcombe & White (1990) give approx­
imation results for networks with bounded weights (for a fixed bound 
but using very many hidden units). 

Barron (1993) gives results on the rate of convergence in Lz(f.l) 
for some (but not all) functions f: IR" ---+ IR; this overlaps work by 
L. K. Jones (1992). A typical result is 

Proposition 5.3 (Barron, 1993, Proposition 1) Suppose f:IR"---+ IR has 
a Fourier representation of the form 

with 

Ct = { llwllf(w)dw < oo. }F_n 

This says that the 
variance of the 
difference (f- g)(X) 
goes to zero as g 
approximates f. 
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Thenfor each N , f can be approximated by afunction oftheform (5.1) 
with N hidden units (of logistic, threshold or ramp form) , in L2(J.l) on 

Br = {II x II < r} with error at most (2rC f)/ JN. Further, we can take 
a0 = f(O) and l:j lwjol ~ 2rCJ for the hidden-to-output weights. 

Proof: For rigour, a lot of details are needed in the calculation, for 
which we refer the reader to Barron's paper. However, the main ideas 
are quite simple. By the choice of a0 we can assume f(O) = a0 = 0. 
Since f is real, it can be represented in the form 

f(x) = r [cos(wT X+ b(w))- cos(b(w))] if(w)i dw 
J {wfO} 

and so is a probability integral of functions of the class 

Gcos = {II: II [cos(wT x +b)- cos(b)] j IYI < rCJ} 

(with pdf if(w)illwll/rCJ ). Thus f is in the closure of the convex hull of 
such functions. Each of these is approximated by convex combination 
of single-step functions of height less than 2rC1, and then the step 
may be approximated by a logistic or ramp unit. This shows that the 
approximation is possible. 

The rate of convergence then comes for free, by a lemma attributed 
to Maurey. Our class of approximating functions is the convex hull of 

Gt = {/U(a + bT x) I IPI < 2rCJ} 

and each member has norm at most (2rC1 f . Fix N, and suppose 
7 = 2:;:1 p;g; is a function within the convex hull of Gt within distance 
~ of f. We consider randomly selecting (with replacement) N 
members (say g*) from {g;} with probabilities {p;}, and take their 
(unweighted) average f*. Then Ef* = 7 and 

This shows that there must be a realization f* with 

and b was arbitrary. L. K. Jones (1992) gives a constructive version of 
this lemma. [] 
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This result has often been regarded as surprising in that the rate 
of convergence does not vary with n; typically the rate of convergence 
in approximation theorems is O(N-cfn), with c depending on how 
smooth f is assumed to be. It has been said to break the 'curse of 
dimensionality'. This is not correct; the conditions do depend on n 

and impose increasingly strict smoothness on the class of functions as 
n increases. First, Br becomes much smaller as n increases; the radius 
needed to include the unit hypercube is Jii. (Other forms of the result 
involve L1 norms, but with the same rate of increase.) Second, the 
integral for Ct is dimension-dependent; indeed considering radially 
symmetric functions f(x) = f(llx!l) suggests that normally Ct grows 
exponentially fast in n. Results of DeVore et al. (1989) show that 
to approximate all functions with r bounded derivatives to accuracy 
1/ JN in L2(J.t), at least Q(Nn/2r) units are needed, so the 'curse 
of dimensionality' cannot be broken by neural networks (nor by any 
similar non-linear method). 

The condition Ct < oo is not immediately interpretable. It does 
imply that f is continuously differentiable, with a gradient whose 
Fourier transform is integrable. Inspection of Gcos shows how the 
functions are actually restricted; Girosi & Anzellotti (1993) point out 
that functions with Ct < oo are precisely those which can be expressed 
as a convolution with II x 11

1-n, an increasingly restrictive constraint as 
n increases, and one which Barron (1993, p. 941) shows is satisfied iff 
has ln/2J + 2 continuous derivatives. 

Mhaskar & Micchelli (1992) showed that n(mn/ r+(n+2r)/ r
2

) units 
are needed for n ~ 2 to approximate all continuous functions with 
r bounded derivatives on the unit cube in 1R n uniformly to within 
distance 1/m. 

It is easy to extend the approximation results to functions with a 
bound on b = (wij) for each hidden unit j, just by checking how well 
such functions can approximate step functions. If we impose the limit 
llbll ~ B, we increase the approximation error by less than 

1 + 2log(rB) 
rB 

(Barron, 1993, pp. 936-937). This is an increasingly stringent restriction 
on b as n increases. 

Inverse functions 

The universal approximation results for single-hidden-layer networks 
apply to continuous functions f. In some applications we need to 

Often c is the number 
of continuous 
derivatives of the 
function . 

Here y = Q(x) means 
y / x is bounded below 
for all x > 0. 
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approximate the one-sided inverse of such a function, that is given 
e > 0 and an compact set K within the range of f, we need to find 
a function <J>:JRP -:IR.n such that 11/(<J>(x))- xll < e for all x E K. 
This arises in control theory, where f describes how the plant responds 
to control inputs, and 4> is the control mapping needed to achieve 
(approximately) a feasible output of the plant. 

Sontag (1992) points out that not only may 4> need to be discontin­
uous, but it can be outside the class of functions which can be approxi­
mated by single-hidden-layer networks, even those with threshold units. 
However, networks with two hidden layers and threshold units do suf­
fice, as they can approximate the indicator function of any polyhedral 
region, which cannot be achieved with only one hidden layer. 

Dimension bounds 

To use the results of Section 2.8 we need to know (or bound) the 
'dimension' of families of neural networks. A few results are known. 
First consider threshold units and one output (so we can consider the 
VC dimension). Suppose there are M computational units and W 
weights in toto. Baum & Haussler (1989) showed that for any number 
of hidden layers the VC dimension is bounded by 

d :=:;; 2Wlog2 eM 

and for a single hidden layer of H units we have 

d ~ 2plH /2J ::::::pH= W ___E_
2 p+ 

where p remains the number of inputs. The upper bound follows from 

M 

.1(m) :=:;; IJ .1i(m), 
i=l 

where .1i(m) :=:;; (emjdi)d; refers to unit i with ki inputs and VC 
dimension di = ki + 1. Since W = 2:: di, if m = 2 W log2 eM 

M 

.1(m) :=:;; IJ(em/di; :=:;; (MemjW)w <2m. 
i=l 

The lower bound comes from a construction of Baum (1988) which 
shows that a single-hidden-layer net with 2j hidden units can separate 
2jp vectors in JRP. 
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Shawe-Taylor & Anthony (1991) extend the bound d ~ 2W log2 eM 
to multiple (threshold) output units, where d is now the VC dimen­
sion defined via graphs of functions. Other bounds are given by 
Bartlett (1993). Maass (1994a, b) shows that VC dimensions of order 
Q( W log W) can be achieved with two hidden layers, but it is not 
known if the true order is O(W) or O(W log W) for a single hidden 
layer. (These results apply to networks where both the number of 
input units and the number of hidden units are allowed to increase.) 
Sakurai (1993) has Q(W log W) results for networks with one hidden 
layer and real inputs (whereas Maass considered binary inputs). 

If we allow the units to be logistic, the VC dimension increases, 
but its value is not known; indeed only recently has it been shown to 
be finite (Macintyre & Sontag, 1993), by decidedly advanced methods 
from mathematical logic. Indeed, this result is subtle, since with cos 
units (and hence projection pursuit regression) the VC dimension is 
infinite. For sigmoidal neural networks, Karpinski & Macintyre (1995a, 
b) showed that the VC-dimension is 0( W 4

), and Koiran & Sontag 
(1996) showed Q(W2). 

For more than one output and for non-threshold units, the pseudo­
dimension is more appropriate. Haussler (1992) gives bounds for net­
works with bounded weights. A specialization of his Theorem 11 to 
logistic units (including output units) is: 

Proposition 5.4 Suppose there are d ~ 0 hidden layers and a total of 
W adjustable weights. Suppose that the average of the input (non-bias) 
weights to units in layer i is bounded by bi. Then 

Proof: Haussler (1992, Theorem 11). D 

Bartlett & Williamson (1996) bound the VC-dimension for a single­
hidden-layer network by 2 W log2(24e W D) if the inputs are restricted 
to {-D, ... ,D}. 

Karpinski & Macintyre 
give an explicit bound 
for a single-output 
network which has a 
leading term of 
(W M)2 / 2 where M is 
the number of 
sigmoidal units 
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Non-parametric Methods 

We have seen that the Bayes rule is based on p(k I x) oc nkp(x I C = k). 
We usually estimate the nk from the proportions in the training set, 
and we have considered parametric models for Pk(x) such as the 
multivariate normal distribution, In this chapter we consider non­
parametric estimates of the class distributions. We have also seen that 
classification can be done by choosing the largest of fk(x) = p(k I x), and 
that these can be estimated by regression methods, so in this section we 
also consider, briefly, non-parametric regression methods. We end with 
a discussion of the use of mixture distributions which, while parametric, 
is designed to approximate arbitrary class distributions. 

The methods of this chapter are illustrated on small problems. 
They can be applied to larger problems in many dimensions (and 
nearest neighbour methods are often very successful) but by their very 
nature there is nothing to illustrate except performance figures. Nearest 
neighbour methods are within the diagnostic paradigm; other methods 
which work within the sampling paradigm and aim to model the class­
conditional densities in many dimensions need a very large training set 
to be successful. 

6.1 Non-parametric estimation of class densities 

Most non-parametric methods are based on the idea that a function 
is locally constant, and much of the difficulty in their use is deciding 
what is meant by 'local' in the high-dimensional space q'. We will 
start by considering kernel methods. A kernel K is a bounded function 
on q' with integral one. Suitable examples include probability density 
functions such as the multivariate normal. We assume that K is in 
some sense peaked about 0. We then use K(x- y) as a measure of the 
proximity of x and y. (This suggests that we should take K ( -x) = K (x) 
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and this requirement is commonly imposed.) The empirical distribution 
of x within a group k gives mass 1/nk to each of the examples. This 
suggests that a local estimate of the density Pk(x) can be found by 
summing each of these contributions with weight K (x - x;), that is 

(6.1) 

and this can also be interpreted as an average of kernel functions 
centred on each example from the class. We have 

~(k I ) = 1rkPJ(x) = ~ L[i]=k K(x- x;) 
p X ""' ~ ( ) ::!1 . ( 6.2) 

Ltk 1rJPJ X Li n
1
;
1
K(x- X;) 

When the prior probabilities are estimated by nkfn, (6.2) simplifies to 

""' . K(x- x·) p(k I x) = Lt[z]=k z 

L;K(x-x;) ' 
(6.3) 

the weighted proportion of points around x which have class k. 
The difficulty with kernel methods is the choice of K . Suppose 

we make the very reasonable choice of a multivariate normal density. 
Clearly the mean should be zero. How do we choose the covariance 
matrix? We have seen in discriminant analysis the importance of 
choosing the right metric via the within-group covariance. The case 
of univariate x has been studied in most detail (Silverman, 1986; 
Hardie, 1990; Wand & Jones, 1995), and Scott (1992) also considers 
the multivariate case. Even in one dimension it seems that adaptive 
methods are needed, that is those which change the spread of the kernel 
over the space fl£. In our context we want to identify correctly those 
regions in which p(j I x) is maximal, and near-equality will normally 
occur in the tails of the densities, so it is particularly important to 
estimate the tails correctly. This seems almost completely ignored in 
the density estimation literature. For example, plots of the estimated 
densities on log scale show how rough they are in the tails (e.g. Duda 
& Hart, 1973, Figures 4.1 and 4.2), and discrimination is based on 
differences in log densities. In the two-class case, Hall & Wand (1988) 
suggest estimating 7r2P2(x)-n1Pl(x) directly by a kernel estimate. (With 
estimated prior probabilities this amounts to a kernel estimate for the 
whole sample, but counting samples from class 1 with a negative kernel.) 

Figure 6.1 shows the estimated class densities for the data on Cush­
ing's syndrome, using a normal kernel with bandwidth chosen by a 
standard reference (Venables & Ripley, 1994, Chapter 5). The decision 
regions of the resulting classifier are shown in Figure 6.2. 

Remember that [i] is 
the group of training 
case i. 



Figure 6.1: The class 
densities for the data on 
Cushing's syndrome, 
estimated by kernel 
methods with a 
bivariate normal kernel. 

Figure 6.2: The decision 
regions for the data on 
Cushing's syndrome, 
using the estimated 
class densities shown in 
Figure 6.1. 
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Note that if we consider (6.3) with a normal kernel with covariance 
matrix KL, as K --+ 0 the posterior probabilities concentrate on the 
class of the training-set example nearest to x in Mahalanobis distance. 
On the other hand, the tail behaviour of the kernels is critical in 
determining the relative balance of the prior proportions of the classes 
and the effect of the training data at points x well outside the training 
set. It is quite common practice to use kernels with bounded support, 
so the density estimate at x could be zero for one or even all classes. 

Kernel discriminant analysis is the subject of monographs by Hand 
(1982) and Coomans & Broeckaert (1986). The ALLOC80 computer 
package (Hermans et al., 1982) for kernel discriminant analysis is widely 
used. 

Kernel methods can be used to estimate regression surfaces, by 
averaging the values of y attached to the nearby data points. We 
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obtain the Nadaraya-Watson non-parametric kernel regression 

~( ) 2::::; y;K(x- x;) 
y X = . 

l:;K(x- x;) 
(6.4) 

Now suppose we use (6.4) to estimate fk(x) = p(k I x). Then y IS 

the indicator function for class k, and (6.4) reduces to (6.3). This 
form of classification fits into the framework of Chapter 4. (The non­
parametric kernel regression can also be derived by taking a kernel 
density estimator in the space :1£ x 1R and evaluating E[Y I X= x].) 

Kernel methods are known in the pattern recognition literature as 
Parzen windows after Parzen (1962). There was earlier work on the 
method by M. Rosenblatt (1956) and, in passing, Fix & Hodges (1951). 
The extension to more than one dimension is usually attributed to 
Cacoullos (1966) and Murthy (1966). 

Kernel methods are readily updated for use in leave-one-out cross­
validation if we retain the numerator and denominator of (6.3). To find 
p(k I Xj, ff \ {xj}) we only have to subtract K(O) from the denominator, 
and from the numerator when k is the true class of Xj. 

Specht (1990a, b, 1991) has re-labelled these methods as neural 
networks (without any apparent biological motivation); (6.3) he calls a 
probabilistic neural network and ( 6.4) a general regression neural network. 

Kernel methods require the whole training set to be retained. Meth­
ods which select a smaller set of centres are considered in Section 6.4. 
An alternative approach advocated by Specht (1967a, b) is to approxi­
mate p(x) for Gaussian kernels as the product of a multivariate normal 
density and a polynomial, using a Taylor expansion. (Details are given 
by Duda & Hart, 1973, pp. 106-107, and Wasserman, 1993, pp. 46-51.) 
This is more in the spirit of of the next subsection. 

We stress in Section A.1 that a density is defined with respect to 
an underlying measure, and can be changed by changing that measure. 
Thus if we know that Pj is near some density po, we should choose that 
density as the underlying measure, and so estimate Pj by an estimate 
of the ratio Pj/Po times po. For a kernel estimator this becomes 

pj(x) = Po(x)_!_ LK(x- x;)/po(x;). 
nj i 

We call p0 a fixed start density; p j will not integrate to exactly one. 
We can apply the same procedure with a density Po estimated from a 
parametric family (for example the family of normal distributions) by 
using a parametric start 

(6.5) 

A closer connection to 
neural networks is 
made for rotationally 
symmetric normal 
kernels and features of 
unit length, for then 
K(x- xi)= f(xT x) 
where 
f(t) oc exp(l - t)/ 2a2

. 
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However, the standard theory no longer applies. Hjort & Glad (1995) 
show that the bias and variance are (asymptotically) essentially un­
changed from those of the fixed start estimator using the (unknown) 
best possible fixed start within the parametric class. 

Hjort & Jones (1996) reverse the roles of the parametric and non­
parametric parts of ( 6.5) by estimating the parameters of the parametric 
family locally (as defined by the kernel). More precisely, the density at 
X is estimated by f(x ; fl(x)) for a parametric family f(·; ()),where (}(x) 
is chosen to maximize a local log-likelihood 

~LK(x-xi)logf(xi;{})- I K(t-x)f(t ;())dt. 

In both versions the hope is that the parametric family will capture 
the broad features of the density, and allow a kernel with a much 
larger spread to be used. This may make the methods feasible in 
more dimensions than the simple kernel method, but the issues of the 
choice of kernel remain. These methods will be most effective in a 
small number of dimensions. A more constrained form of correction 
to a parametric start is discussed later under 'projection pursuit density 
estimation'. 

Orthogonal expansion estimators 

A general approach towards non-parametric density estimation is via 
expansions in orthogonal basis functions, estimation of necessary co­
efficients, and a rule to decide when to stop including terms in the 
expansion. The expansion approach has some advantages over ker­
nel methods in statistical pattern recognition problems. This approach 
often yields a compact representation of the estimates of class densi­
ties, with a low number of coefficients describing the estimate. Most 
texts on density estimation mention the approach, whereas Tarter & 
Lock (1993) consider only orthogonal expansions. 

We start with a general orthonormal set of basis functions 1/)k(x ) 
on f!( with respect to a suitable weight function w, that is, 

I 1pj(y)1pk(y)w(y)dy = I{j = k}. 

Examples of such structures abound, see for example Abramowitz & 
Stegun (1965, Chapter 22) or Thisted (1988, §5.3.2). We will exemplify 
the method by Fourier series, for f!( = [0, 1] and 1/)k(x) = exp 2nikx. (It 
is always worth bearing in mind that the feature space may profitably be 
transformed before density estimation; for example the transformation 
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<l>(x) will map JR ~ [0, 1] and turns near standard normal densities into 
near uniform ones.) Other examples we shall meet in Section 9.1 are 
polynomial expansions (Hermite polynomials) orthogonal with respect 
to a uniform weight on [-1,1] and with respect to 4>(x) (the normal 
density) on JR. 

Suppose we wish to approximate a density function f by a series 
expansiOn f(x) = L:k CklJYk(x). The best choice of coefficients q IS 

given by 

ck = j lJYk(Y)f(y)w(y) dy = E 1pj(X)w(X) 

in the sense of minimizing the mean integrated squared error MISE = 
E j(f - f)2w. The infinite series I:;:o q1pk(x) defined in this way 
converges pointwise to f(x) if f is continuous. We estimate Ck by 
ck = I: lJYk(Xi)w(Xi)/n. With estimated coefficients we do have to stop 
the expansion at some term m. More generally, we could use 

00 

f(x) = L bkck1pk(x) 
k=l 

for some suitable tapering sequence (bk). 
Let us explore Fourier series a little. Since the Fourier coefficients 

are defined for both positive and negative integers, our sums should 
extend infinitely in both directions (or be truncated at ±m ). We can 
always write a Fourier series estimator as a kernel estimator on taking 

K( ) L b 2 
.k sinn(2m+ l)x 

x = k exp nz x = --.--­
smnx 

lkl~m 

if we truncate at ±m. This is the Dirichlet kernel shown in Figure 6.3; 
it has a narrow peak and slowly decaying oscillations about zero. Thus 
with this tapering 7 can take negative values, but for the tapering 
sequence bk = max[O, 1- k/(m + 1)], the kernel is the Fejer kernel 

K(x) = _1_ [sinn~m+ 1)x]
2 

m + 1 smnx 

~ 

and so f is non-negative (Figure 6.3). 
A number of stopping rules have been proposed. It is fairly easy to 

show that including term k will decrease MISE if jqj2 > 1/(n + 1) 
(Tarter & Lock, 1993, §4.2) and with a bias-correction argument this 
suggests including term k only if lcki2 > 2/(n + 1). Unfortunately 
this will lead to the inclusion of an infinite number of terms, so it is 



Figure 6.3 : Kernels for 
Fourier series estimator. 
Left: Dirichlet kernel. 
Right: Fejer kernel. 

Ridge functions are 
constant orthogonally 
to one direction. 
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preferable to include terms until this test is failed for 2-4 consecutive 
terms. Diggle & Hall (1986) give a similar but more complex alternative. 

An alternative approach is to allow the data to choose the tapering 
sequence. Tarter & Lock report good results with the choice 

Orthogonal series estimators meet similar difficulties to kernel den­
sity estimators once we move to IR d, d > 1. We can, for example, use 
a multidimensional Fourier series, but these are tied to a particular 
coordinate system, and the stopping rule has to be defined for a d­
tuple index. For Hermite polynomials invariance to rotations can be 
achieved by including all terms up to degree m, but there are many of 
these for moderate m and we will need moderate m to approximate all 
but the simplest functions. Series estimators are particularly useful for 
low-dimensional projections. 

Parametric starts can be used with orthogonal series as well as 
kernel density estimates; for some univariate examples using a normal 
start and Hermite polynomials see Buckland (1992a, b). 

Projection pursuit density estimation 

Projection pursuit density estimation (Friedman et al., 1984) is the ap­
plication of projection-pursuit ideas (Section 9.1) to density estimation, 
and so is appropriate when the variation in the densities is concentrated 
in a linear subspace of f!C. It estimates a density by the formula 

M 

PM(x) = Po(x) IJ qm(a~x) (6.6) 
m=l 

where Po is an initial density (perhaps an appropriate multivariate 
normal distribution) and the qm are multiplicative corrections which 
are ridge functions. We will consider its application to n samples x;, 
perhaps the training samples for a single class. 
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The corrections in (6.6) are chosen recursively. At stage m we 
have Pm-1 and choose am and qm to maximize the goodness-of-fit of 
Pm as measured by the Kullback-Leibler divergence E log Pm(X) for X 
drawn from the true density. Given am = a it is easy to show that 
this is maximized by choosing qm to be the ratio of the densities p 
and Pm-1 projected onto the direction a. This is estimated by the ratio 
of a univariate density estimate for the data points (aT xi) projected 
on a to the projection of Pm-1 (the integration to find the marginal 
distribution along aT x being done by Monte Carlo methods). Rather 
than retain the full density estimates, Friedman et al. approximated the 
estimate of qm by a cubic spline. 

This method gives us an estimate of Pm given a. Since 

Elogpm(X) = Elogqm(aTX) + Elogpm-1(X), 

we choose am = a to maximize E log qm(a rx) and estimate this by its 
sample version ~ 2:: logqm(a T xi). This is maximized numerically. 

It remains to choose the number of terms M. Standard methods 
such as cross-validation can be used. Often examining qm (which shows 
the ratio of the two densities) against the projected data (aT xi) will 
indicate if a worthwhile improvement can be made. 

The density estimation strategy of Friedman (1987, §4) is 'backward' 
rather than 'forward' in flavour. Exploratory projection pursuit is used 
to find a direction a such that a rx is maximally non-normal. We then 
remove the marginal structure in direction a by 

cp(aTx) 
p(x) +- p(x) ( T )' 

Parx a x 
that is by adjusting the marginal density to be standard normal (see 
page 297), and repeat the process. Eventually the exploratory process 
will be unable to find an interesting projection, and the remaining 
density can be fitted by a normal distribution. Reversing the process 
reveals a density for X which is a normal density times a series of 
correction terms, and the corrections are ridge functions. The marginal 
densities can be fitted by any one-dimensional estimation method, in­
cluding splines, kernel and orthogonal series methods, but the compact 
representation of orthogonal series will be especially useful. 

It would be possible to use q-dimensional correction terms, for 
small q. 

Discrete distributions 

Thus far we have implicitly assumed that we have continuous features, 
so !!{ c lR.P. We can consider non-parametric estimation of class 

Friedman et al. (1984) 
use crude histogram 
estimators of the 
densities, but kernel 
methods could be used. 



xc denotes the values 
of X; for i E C 

The empty set 0 is 
included to give a 
constant term. 
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distributions in the discrete case too. For simplicity let us assume that 
we have p discrete features. Then a distribution is specified by a p-way 
table of probabilities of all possible combinations, and the natural non­
parametric estimator is to use the frequencies of the cells of the table 
in the training set !Y. Of course, if p is large and !Y is not enormous, 
most of the cells will be given zero probability. When we come to 
classify future cases, we are likely to find that the estimated class 
probabilities are zero under all classes. Thus it is essential to smooth 
the observed frequencies before using them in a plug-in classifier. We 
will consider how to do so, but point out that it will normally be better 
to use a logistic regression than the methods considered here, as that 
uses the data to model the quantities of direct interest, the posterior 
probabilities. 

The natural idea for statisticians would be to build a contingency 
table model of the joint distribution of the features (McCullagh & 
Nelder, 1989). The most common choice would be a log-linear model, 
in which the log probability 

logPr{Xt = Xt, ... ,Xp = xp} = LA.c(xc) 
c 

(6.7) 

is expanded over subsets C c {1, . .. ,p}. When the terms of (6.7) are 
restricted, for example by omitting A.c(xc) for large C, the family 
of probability distributions is restricted, but the coefficients A.c may 
be fitted by maximum likelihood. Choosing the appropriate restricted 
model is an art, and can be considered within the graphical framework 
of Chapter 8. 

The most extreme restriction of ( 6. 7) is to omit all sets C of two or 
more features, so 

Pr{Xt = Xt, ... ,Xp = Xp} = e;.0 IT e).;(x;) 

i 

which amounts to assuming independence of the features. Thus (6.7) 
can be seen as an expansion away from an independence model. 

Other expansions have been used for binary data. Suppose each 
feature takes the values 0 and 1, and that feature i takes the value 1 
with probability Pi· Let 

and consider the 2P polynomials y~1 
• • • Yl· These are orthogonal with 

respect to the independence model, so we can take an orthogonal series 
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expansion. If we estimate p; by the frequency Pi with which feature 
i takes value 1 in the training set, we have the Bahadur-Lazarsfeld 
expansion (Bahadur, 1961a, b; Lazarsfeld, 1961) 

Pr{Xt = Xt, ... ,Xp = xp} 
p 

= rrg1(1-p;)1-Xj[1+ L:cijYiYj+ I: CijkYiYjYk+ .. l (6.8) 
i=l i<j i<j<k 

The estimates c... are just the sample moments of Yi for the appropriate 
indices. Often just the first correction term is used, which is a correction 
for correlations only. 

Kernel methods 

For binary features, Aitchison & Aitken (1976) proposed the kernel 
smoothing 

where K(x, y) = hP-d(l - h)d and d = llx- yll 2 is the number of 
disagreements between x and y. Here 1/2 < h ~ 1 is a smoothing 
constant; for h = 1 there is no smoothing. The kernel gives weight hP 
to cell x and weight hP-k(l- hl to cells that differ in k features. Note 
that the kernel is a product over the features, since d is a sum over 
features. 

This product kernel can be extended naturally to categorical data 
with ki ~ 2 possible outcomes (give probability h to the observed 
outcome, (1 - h)/(k;- 1) to all others), to ordered categorical data 
(spread the probability 1- h over adjacent outcomes) and to features 
which are counts (Aitken, 1983). For mixed continuous and discrete 
features we can take a product of an appropriate kernel for each feature. 
For binary and categorical features the kernel estimator takes a convex 
combination of the frequencies with a uniform distribution. This has 
been considered in its own right as a method of smoothing (for example, 
Fienberg & Holland, 1973). 

The smoothing constant h can be chosen separately for each fea­
ture. Choosing an appropriate degree of smoothing remains a difficult 
problem (P. Hall, 1981; Tutz, 1986, 1988, 1989). Averaging with a 
uniform distribution gives a different perspective which suggests other 
ways to choose the degree of smoothing (Fienberg & Holland, 1973; 
Titterington, 1980; Brown & Rundell, 1985). 
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6.2 Nearest neighbour methods 

One simple adaptive kernel method is to choose K to be constant over 
the nearest k examples and zero elsewhere. This does not in fact define a 
density as the estimate of p(x) (its integral is infinite) but (6.2) suggests 
a simple estimate of the posterior distribution as the proportions of 
the classes amongst the nearest k data points. This is a piecewise 
constant function over f!l, and gives a classifier known as the k-nearest 
neighbour rule. This differs from using the k-nearest neighbour density 
estimate for each class, as we choose the neighbourhood from the k 
nearest points of any class. If the prior probabilities are known and the 
proportions of the classes in the training set are not proportional to nk, 

the proportions amongst the neighbours need to be weighted (Brown 
& Koplowitz, 1979). (We ignore this in the theory below.) 

The version with k = 1 is often rather successful. This divides 
the space f!l into the cells of the Dirichlet tessellation of the data 
points, and labels each by the class of the data point it contains. We 
can also consider the analogue of (6.4) which gives a locally constant 
non-parametric regression surface, and once again corresponds to the 
k-nearest neighbour estimate of the posterior probabilities. 

Both the k-nn method and kernel discrimination were first given 
in an unpublished report by Fix & Hodges (1951). There is a very 
extensive literature on nearest neighbour classifiers, much of which is 
reviewed or reprinted in Dasarathy (1991). 

Ties in the distances can occur with finite-precision data (or if the 
underlying distribution has a discrete part). One solution is to include 
all patterns as near as or nearer than the k-nearest neighbour, and take 
a majority vote amongst them. 

Nearest neighbour rules can readily be extended to allow a 'doubt' 
option by the so-called (k, t)-rules (Hellman, 1970), called in this field 
a 'reject option'. These take a vote amongst the classes of the k nearest 
patterns in f!l, but only declare the class with the majority if it has t 
or more votes, otherwise declare 'doubt'. Indeed, if there are different 
error costs, we may want to allow the minimum majority to depend on 
the class to be declared. Properties of this class of rules are discussed 
by Devijver & Kittler (1982) and Loizou & Maybank (1987), but for 
large samples. 

The k-nn rule can be critically dependent on the distance used in the 
space f!l, especially if there are few examples or k is large (Figure 6.4). 
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Cover & Hart (1967) gave a famous result on the large-sample be­
haviour of the nearest neighbour rule. Note that the expected error rate 
is always bounded below by E*, by the optimality of the Bayes rule. 

Proposition 6.1 Let E* denote the error rate of the Bayes rule in a K­
class problem. Then the error rate of the nearest neighbour rule averaged 
over training sets converges in L1 as the size of the training set increases, 
to a value E 1 bounded above by 

E* (2-~E·) K-1 . 

Proof: Let X1 be the nearest neighbour to X, a randomly sampled 
pattern with class C. The (rather technical) arguments of C. J. Stone 
(1977) and Devroye (1981a) show that 

Now 

Eip(k I XI)- p(k I X) I ~ 0. 

Pr(C1 -=/= C I X= x) = L p(i I x) E [p(j I XI) I X= x] 
if.j 

Figure 6.4: Decision 
boundaries of the 1-nn 
rule for the Cushing's 
syndrome data. The left 
plot uses Euclidean 
distance on our usual 
plot, the right 
Euclidean distance on 
log10 excretion rates. 
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EIPr(Ct =I= C I X)- L p(i I X) p(j I X) I ~ 0. 
i#j 
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Thus E1 = Eet(X) where e1(x) = L:i-hp(iJx)p(jJx) = 1- "L:;P(ilxf 
The conditional Bayes risk r*(x) is 1 -maxi p(i I x) = 1 - p(k I x), 

say, so by the Cauchy-Schwarz inequality 

and 

(K-l)_Lp(ilx)2 ~ [_Lp(ilx)f =r·(x)2 

i=fk i=fk 

(K- 1) L p(i I x)2 ~ r*(x)2 + (K- 1) (1- r*(x)2) 

i 

1- LP(i I x)2 ~ 2r*(x)- K ~ 
1 

r*(x)2
. 

i 

On taking expectations we obtain 

E ~ 2E*-~E (r*(X)2] ~ 2E*- ~(E*)2 
1

" K-1 " K-1 

using E(Y 2) =VarY+ (E Y)2 ~ (E Y)2 0 

It is easy to see that the upper bound is attained if the densities Pk(x) 
are identical and so the conditional risks are independent of x. 

For the k-th nearest neighbour rule detailed results are only avail­
able for two classes. Intuitively one would expect the 2-nn rule to be no 
improvement over the 1-nn rule, since it will achieve either a majority 
of two or a tie, which we will suppose is broken at random. The 
following result supports that intuition. On the other hand, we could 
report 'doubt' in the case of ties (the (2, 2)-rule). 

Proposition 6.2 Suppose there are two classes, and let Ek denote the 
asymptotic error rate of the k-nn rule with ties broken at random and E£ 
if ties are reported as 'doubt'. Then 

Proof: We rely on L1 convergence results such as those quoted in the 
proof of Proposition 6.1 to show the existence of the asymptotic results 
and to replace p(k I Xr) by p(k I X) in deriving the asymptotic results. 
Let rk(x) denote the (limit of the) probability of misclassifying x. We 
can think of this as taking k + 1 samples from p(·l x) and finding that 
the first belongs to the minority group. 
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Temporarily denote the posterior probabilities of the two classes 
by p = p(11 x) and q = p(21 x), and let ~ = pq. Consider ak. the 
probability that the first of k samples is in a strict minority, and let 
b; = (~;) ~; be the probability of exactly i examples from each class. 
First consider k odd. On adding a point, we can create a tie but not a 
minority, so 

k- 1 (2k- 1) k-1 k k- 1 (2k- 1) k k-1 
alk-1 - alk = P 2k - 1 k p q + q 2k - 1 k p q 

k - 1 (2k - 1) k k - 1 
= 22k -1 k ~ = 2k- 1 bk. 

If k is even, adding a point can create a minority but not a tie so 

a2k+1 = a2k + !bk 
1 k -1 1 

a2k+1 = a2k-1 + 2bk- 2k _ 1 bk = a2k-1 + 2(2k _ 1) bk. 

Clearly a1 = 0, so by induction 

k 1 
a2k+1 = L 2(2i- 1) b;. 

1=1 

In terms of these quantities, we have 

r~dx) = a2k+1 

r2k-1(x) = a2k + bk 

r2k(x) = r~k(x) + !bk = a2k + !bk 

From these formulae r2k+1- r2k-1 = (2~- !)bk ~ 0. Direct calculation 
shows that r1(x) = 2~ and r~(x) = ~ = !r1(x). On taking expectations 
this establishes the hierarchy on each side. Now 

Note that 

lim r2k-1 (x) = lim r~k(x) = ~ 
2

(
2 

.
1 

1
) b;. 

k-HXJ k--+ 00 L.....t l -
i=1 

r(x) = min[p(11 x),p(21 x)] = ! [1- J1- 4~(x)] 

has the Taylor series expansion 

• 

00 

1 (2i - 2) i 
00 

1 
r (x) = L i i -1 ~ = L 2(2i -1)b;. 

1=1 1=1 

The proof is completed by taking expectations and using the monotone 
convergence theorem. D 



Figure 6.5: 
Large-sample risk rk 

( k odd) or rk ( k even) 
of k-nn rules against 
the Bayes risk r' in a 
two-class problem. 
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This result is from Cover & Hart (1967); the formulae are given 
without proof by Devijver & Kittler (1982) and Fukunaga (1990). 
Figure 6.5 shows rk{x) as a function of r*(x); this shows the agreement 
is excellent for moderate r*(x) even for small k (but not k = 1 ). 

Comparable results for the (k, t)-nn rule were first considered by 
Tomek (1976a). Later Loizou & Maybank (1987) showed that for 
t > k/2 we have 

where E*(d) refers to the Bayes rule (if any) with doubt cost d such 
that its doubt rate is equal to the asymptotic doubt rate of the (k, t)-nn 
rule, and c(k,t,K) is a computable constant. Since E*(d) ~ E*, this can 
be used to give asymptotic lower bounds for E*. Clearly the left-hand 
side increases with t. 

Another version of the asymptotics is to allow k to increase with 
the size n of the training set. C. J. Stone (1977) showed that provided 
k --+ oo and kjn --+ 0, the risk for the k-nn rule (not averaged over 
training sets) converges in probability to the Bayes risk. For k/ log n --+ 

oo, Devroye (1981b) strengthened this to almost sure convergence. The 
same methods allow the variance over training sets for fixed k to be 
estimated. 

All these performance measures are asymptotic and they do not 
apply to finite samples; for example the error rate does not decrease 
monotonically with odd k. Notice that the results do not depend on the 
metric, whereas in practice the choice of metric is often very important. 
There are few finite-sample results. Cover (1968) is widely quoted as 
showing that the risk of the 1-nn rule converges to E1 at rate O(n-2), 

but his results only apply to the bias for one-dimensional f£. Fukunaga 
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& Hummels (1987a, b; see also Fukunaga, 1990, §7.3) consider an 
expansion of the mean difference between the error rates of the k-nn 

rule and its asymptotic version. They found a leading term of O(n-21P) 
for p-dimensional f!l', and for the 2-nn with ties reported as 'doubt', the 
rate O(n-41P). These are very slow rates of convergence for moderate 
p, but since that to E~ is faster, they suggest that for two classes it is 
better to estimate £1 by doubling the estimate of E~ (as suggested by 
Fukunaga & Flick, 1985). 

These results only concern the bias of the true error rate based on 
a training set of size n as an estimator of Ek. The variability must 
also be taken into account if these results are to be used to bound the 
Bayes risk. We have seen that for odd k, Ek-l,rk /21 = Ek-1 ~ E*, which r l is defined on 

suggests bounding the Bayes risk by the achieved performance of the page xii. 

(k- 1, fk / 21)-nn rule. However, recall from Section 2.7 that we can 
achieve lower variability by not using the class labels, but averaging 
1 - max p(k I x) over a test or training set. If we observe ki neighbours 
of class i, this suggests estimating the error rate by E, the average of 
min(k1,k2) j k . In Section 2.7 we viewed E as a biased estimate of Ek . 
Under our large-sample assumptions for the training set but averaging 
over a test set, it can be shown that (for k odd) E E = Ek-l,rk/21 , 
but that E has a lower variance than the test-set error rate of the 
(k- 1, fk / 21)-nn rule (Devijver & Kittler, 1982, §10.8). 

These results are confined to two classes. For K ~ 2 we have 

Proposition 6.3 In the large-sample theory the means of the risk-averaged 

(3, 2) -nn rule and the error rate of the (2, 2)-nn rule are equal and provide 
a lower bound for the Bayes risk. The risk-averaged estimator has smaller 

variance. 

Proof: Condition on x, and draw three samples from 1J = p(·l x), as 
the observed point and its two neighbours. Let ( be the probability 
that two are from one class, one from another; unless this occurs both 
rules score zero. The (2, 2)-nn rule scores one if the observed point 
is in the minority, so has conditional mean and mean square of ( /3. 
The risk-averaged 3-nn scores 1/3 under all assignments of the three 
samples, so its conditional mean and mean square are (/3 and (/9. 
Conditionally and hence unconditionally the means are the same and 
the risk-averaged estimator has smaller variance. 

Now (/3 = 'L,k(IJ~-IJt) = Ll, say. We will show that Ll ~ 1-maXIJk 
and average over x to bound the Bayes risk. Suppose IJl ~ IJk for 
k > 1. Consider increasing IJi by [) and decreasing IJj by [) for i, j > 1. 
If IJi + IJj < 2/ 3 we can increase Ll by zeroing the smaller of IJi and Check the derivative. 
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ru; thus we can zero the smallest Y/j > 0 in turn, transferring the mass 
to the next smallest. If rt 1 > 1/3, we can make just one Y/j > 0, which 
shows that d ~ ytf(l - ytt} + (1- rtd2111 = Y/1(1- ytt} < 1 - '11 · If 
yt1 ~ 1/3 we can make just two Y/i, Y/j > 0; if Y/i > 1/3 the case already 
proved applied to (Y/i, Y/1, Y/j) shows d < 1- Y/i < 1- '11· We can show 
that the result holds for three Y/i = 1/3 by direct calculation. 0 

This suggests estimating a lower bound for the Bayes risk by running 
the 3-nn classifier on the training set and reporting 1/3 the number of 
occasions on which the neighbours are two of one class, one of another 
(and of course one of the neighbours will be the training-set example 
itself). If the distances are tied, we can average over ways of breaking 
the tie, since this will be equivalent to averaging over perturbations of 
the points. 

Choice of metric 

We have not avoided the choice of a metric on !!l, and this can again 
cause difficulties. In practice Euclidean distance is normally used, but 
after a suitable scaling of the variables. It may make sense to use 
an (estimated) Mahalanobis distance if the within-class distributions 
are roughly normal and of similar covariance matrix. For two classes, 
Short & Fukunaga (1980, 1981) looked at a local metric with the aim 
of minimizing the mean-square error between the finite-sample risk and 
the asymptotic risk (which we have seen does not depend on the metric 
used). They show the metric should be of the form 

d(x, y) = IP(11 x)- p(11 Y)l, 

expand this about x and estimate the coefficients of the expansion. 
Short & Fukunaga (1980) and Myles & Hand (1990) experiment with 
extensions to several classes. 

Fukunaga & Flick (1984) suggest choosing a global quadratic metric 
with the same aim (and again with two classes). Their metric is a 
Mahalanobis distance and so they choose the inverse covariance A to 
obtain 

d(x, z) = V(x- z)T A(x- z). 

They compute the value of A which approximately minimizes the error 
rate, and then estimate the quantities involved (the underlying densities) 
by k-nn density estimation. 

One of the most important steps in choosing a metric may be 
to exclude features which have little or no relevance. The features 
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selected by classification trees (Chapter 7) can be a very useful guide 
(Ripley, 1993). 

An appealing idea is to combine the features of kernel methods 
and k-nearest neighbour methods by distance-weighting the classes of 
the neighbours in reaching a decision. This has proved controversial 
(Dudani, 1976; Bailey & Jain, 1978; Morin & Raeside, 1981; MacLeod 
et al., 1987; Parthasarthy & Chatterji, 1990) in that asymptotically for 
fixed k the distance-weighting does not help. However, this is not the 
correct basis for the comparison, since using distance-weighting may 
allow a larger value of k to be used for a given size of training set. 

Data editing 

One common complaint about both kernel and k-nn methods is that 
they can take too long to compute and need too much storage for 
the whole training set. The difficulties are sometimes exaggerated, as 
there are fast ways to find near neighbours (for example Friedman et 
al., 1975, 1977; Fukunaga & Narendra, 1975; Kalantari & McDonald, 
1983; Kamgar-Parsi & Kanal, 1985; Preparata & Shamos, 1985; Ruiz, 
1986; Kim & Park, 1986; Niemann & Goppert, 1988; Bryant, 1989; 
Jiang & Zhang, 1993) and fast approximate ways to find kernel density 
estimates by binning (Hardie, 1991; Scott, 1992). However, in many 
problems it is only necessary to retain a small proportion of the training 
set to approximate very well the decision boundary of the k-nn classifier. 
This concept is known as data editing. It can also be used to improve 
the performance of the classifier by removing apparent outliers. 

There are many editing algorithms: the literature on data editing is 
extensive but contains few comparisons. (It is surveyed in Dasarathy, 
1991.) The multiedit algorithm of Devijver & Kittler (1982) can be 
specified as follows (with parameters I and V): 

1 Put all patterns in the current set. 

2 Divide the current set more or less equally into V ~ 3 sets. Use 
pairs cyclically as test and training sets. 

3 For each pair classify the test set using the k-nn rule from the 
training set. 

4 Delete from the current set all those patterns in the test set which 
were incorrectly classified. 

5 If any patterns were deleted in the last I passes return to step 2. 

The edited set is then used with the 1-nn rule (not the original value of 
k ). Devijver & Kittler indicate that (for two classes) asymptotically the 



Figure 6.6: Reduction 
algorithms applied to 
Figure 1.3. The known 
decision boundary of 
the Bayes rule is shown 
with a solid line; the 
decision boundary for 
the 1-nn rule is shown 
dashed. 
(a) multiedit. 
(b) The result of 
retaining only those 
points whose posterior 
probability of the actual 
class exceeds 90% when 
estimated from the 
remaining points. 
(c) condense after 
multiedit. 
(d) reduced nn applied 
after condense to (a). 
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1-nn rule on the edited set out-performs the k-nn rule on the original 
set and approaches the performance of the Bayes rule. (The idea is that 
each edit biases the retained points near x in favour of the class given 
by the Bayes rule at x, so eventually this class dominates the nearest 
neighbours. This applies to any number of classes.) 

Figure 6.6(a) illustrates the multiedit algorithm applied to the syn­
thetic dataset shown in Figure 1.3 on page 12. The Bayes rule is known 
in this example (since it is synthetic). In practice multiediting can 
perform much less well and drop whole classes when applied to mod­
erately sized training sets with more dimensions and classes. Another 
idea (Hand & Batchelor, 1978) is to retain only points whose likelihood 
ratio Py(x)/pi(x) against every class i -=/= y exceeds some threshold t. 
(The densities are estimated non-parametrically.) It make more sense to 
retain points for which p(y I x) is high, for example those which attain 
a majority t in a (k, t)-rule for a larger value of k. This is illustrated 
in Figure 6.6(b) for the synthetic example using the (10,9)-nn. 

Earlier editing algorithms were given by Wilson (1972), Wag­
ner (1973), Tomek (1976b) and Penrod & Wagner (1977). 

The multiedit algorithm aims to form homogeneous clusters in fl£. 
However, only the points on the boundaries of the clusters are really 
effective in defining the classifier boundaries. Condensing algorithms 
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aim to retain only the crucial exterior points in the clusters. For 
example, Hart (1968) gives: 

1 Divide the current patterns into a store and a grabbag. One possible 
partition is to put the first point in the store, the rest in the grabbag. 

2 Classify each sample in the grabbag by the 1-nn rule using the store 
as training set. If the sample is incorrectly classified transfer it to 
the store. 

3 Return to 2 unless no transfers occurred or the grabbag is empty. 

4 Return the store. 

This is illustrated in Figure 6.6(c). 
A refinement, the reduced nearest neighbour rule of Gates (1972), is 

to go back over the condensed training set and drop any patterns (one 
at a time) which are not needed to correctly classify the rest of the 
(edited) training set. As Figure 6.6(d) shows, this can easily go too far 
and drop whole regions of a class. Other attempts at condensing and 
reducing are discussed by Swonger (1972), Ullmann (1974), Ritter et 
al. (1975), Tomek (1976c), Chidananda Gowda & Krishna (1979) and 
Fukunaga & Mantock (1984). 

Nearest neighbour methods will give low apparent error rate (zero 
for 1-nn) so it is essential to use other forms of performance assessment. 
Fortunately the leave-one-out cross-validated error rate can be com­
puted as easily as the apparent error rate by finding the k neighbours 
of x excluding x itself. 

Essentially the same ideas have been considered within the field 
of machine learning, known as 'memory-based learning' (for example, 
Stanfill & Waltz, 1986). In its simplest form this is just a 1-nn classifier 
based on storing all the examples. Editing and condensing techniques 

Figure 6.7 : The result 
of the reduced nearest 
neighbour rule of 
Gates (1972) applied 
after condense to the 
unedited data of 
Figure 1.3. 
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have also been considered (E. E. Smith & Medin, 1981; Kibler & Aha, 
1987). These seem re-discoveries of the simplest such algorithms. 

Examples 

The variables in the Pima Indians diabetes example were on very 
different scales, and so were each scaled to have range about one over 
the training set. The initial choice of k was made by both leave-one-out 
and 10-fold cross validation. For the latter the error rates were 57, 65, 
57, 54, 51 and 55 (out of 200) for k = 1, 3, 5, 7, 9, 11; for leave-one-out 
we obtained 58, 65, 60, 55, 49 and 41. On the test set the numbers of 
errors were 98 for k = 1 and 82 for k = 9, out of 332. This is an 
example in which there is considerable mixing between the classes, and 
local methods will be unable to pick up the broad trends. Using the 
3-nn rule on the training set suggested a lower bound of about 15% 
for the Bayes error in this problem; linear methods achieve about 20%. 

For the forensic glass data, there are many rational ways to choose 
the metric, since the features are eight proportions plus the refractive 
index. We chose to rescale the refractive index to about ±10 but not 
to scale the compositional features. With this metric, risk-averaging 
the 3-nn rule suggests a lower bound of 14% for the Bayes risk. Each 
of the 1-nn, 3-nn and 5-nn rules had a similar level of performance; 
the 1-nn rule had a cross-validated error rate of 23.4% and confusion 
matrix 

WinF WinNF Veh Con Tabl Head 
WinF 59 7 4 0 0 0 

WinNF 12 59 3 2 0 0 
Veh 2 5 10 0 0 0 
Con 0 2 0 8 1 2 

Tabl 1 0 0 2 6 0 
Head 1 3 1 1 1 22 

Comparing this with the confusion matrices for larger values of k 

shows the effect of very different proportions for the six classes; as k 
increases fewer errors are made on the more abundant classes, whereas 
more are made on the rare classes. 

6.3 Learning vector quantization 

The refinements of the k-nn rule aim to choose a subset of the training 
set in such a way that the 1-nn rule based on this subset approximates 
the Bayes classifier. It is not necessary that the modified training set 
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is a subset of the original and an early step to combine examples to 
form prototypes was taken by Chang (1974). The approach taken in 
Kohonen's (1988a, b, 1990a, b, 1995) learning vector quantization is to 
construct a modified training set iteratively. Following Kohonen, we 
call the modified training set the codebook. This procedure tries to 
represent the decision boundaries rather than the class distributions. 
Once again the metric in the space P£ is crucial, so we assume the 
variables have been scaled in such a way that Euclidean distance is 
appropriate (at least locally). 

Vector quantization 

The use of 'vector quantization' is potentially misleading, since it has a 
different aim, but as it motivated Kohonen's algorithm we will digress 
for a brief description. 

Vector quantization is a classical method in signal processing to 
produce an approximation to the distribution of a single class by a 
codebook. Each incoming signal is mapped to the nearest codebook 
vector, and that vector sent instead of the original signal. Of course, 
this can be coded more compactly by first sending the codebook, then 
just the indices in the codebook rather than the whole vectors. One 
way to choose the codebook is to minimize some measure of the 
approximation error averaged over the distribution of the signals (and 
in practice over the training patterns of that class). Taking the measure 
as the squared distance from the signal to the nearest codebook vector 
leads to the k-means algorithm which aims to minimize the sum-of­
squares of distances within clusters (Section 9.3). An 'on-line' iterative 
algorithm for this criterion is to present each pattern x in turn, and 
update the codebook by 

me ~ me+ a(t)[x- me] if me is closest to x (6.9) 

mi ~ mi for the rest of the codebook. 

Update rule (6.9) motivated Kohonen's iterative algorithms. Note 
that this is not a good algorithm for k-means; better algorithms are 
discussed in Section 9.3. 

Max (1960) and Zador (1982) have pointed out that choosing the 
average r th power of the distance as the measure of approximation 
error amounted to choosing the density of the codebook vectors to 
approximate the dj(d + r)th power of the true probability density 
in d dimensions. Thus for d large the k-means procedure codes an 
approximation to p(x). This is an asymptotic result for large codebooks, 

Gersho & Gray (1992) 
is a reference text on 
vector quantization; a 
short introduction is 
given by Gray (1984). 
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but does indicate that a codebook produced by vector quantization for 
each class might be a good initial reduction of a very large training set. 

Iterative algorithms 

Kohonen (1990a) advocated a series of iterative procedures which has 
since been modified; our description follows the implementation known 
as LVQ_PAK documented in Kohonen et al. (1992). A initial set of 
codebook vectors is chosen from the training set. (We discuss later 
precisely how this might be done.) Each of the procedures moves 
codebook vectors to try to achieve better classification of the training 
set by the 1-nn rule based on the codebook. The examples from the 
training set are presented one at a time, and the codebook is updated 
after each presentation. In our experiments the examples were chosen 
randomly from the training set, but one might cycle through the training 
set in some pre-specified order. 

The original procedure LVQ 1 uses the following update rule. A 
example x is presented. The nearest codebook vector to x, me, IS 

updated by 

me - me + et(t)[x- me] 

me - me- et(t)[x- me] 

if x is classified correctly by me 
if x is classified incorrectly (6.10) 

and all other codebook vectors are unchanged. Initially oc(t) is chosen 
smaller than 0.1 (0.03 by default in LVQ_PAK) and it is reduced linearly 
to zero during the fixed number of iterations. The effect of the updating 
rule is to move a codebook vector towards nearby examples of its own 
class, and away from ones of other classes. 'Nearby' here can cover 
quite large regions, as the codebook will typically be small and in any 
case will cover f!l rather sparsely. Kohonen (1990a) motivates this as 
applying vector quantization to the function ln1P1(x)-n2P2(x)l for two 
classes (or the two classes which are locally most relevant). 

A variant, OLVQ1, provides learning rates Cte(t) for each codebook 
vector, with an updating rule for the learning rates of 

Cte(t- 1) 
Ctc(t) = 1 + (-1)/(classification is incorrect) Ctc(t -1)" 

(6.11) 

This decreases the learning rate if the example is correctly classified, 
and · increases it otherwise. Thus code book vectors in the centre of 
classes will have rapidly decreasing learning rates, and those near class 
boundaries will have increasing rates (and so be moved away from 
the boundary quite rapidly). As the learning rates may increase, they 
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are constrained not to exceed an upper bound, often 0.3. Practical 
experience shows that the convergence is usually rapid, and LVQ_PAK 
uses 40 times as many iterations as codebook vectors. 

An explanation of this rule is given by Kohonen et al. (1992) and 
Kohonen (1995, p. 180) which we interpret as follows. At all times 
the codebook vectors are a linear combination of the training set 
vectors (and their initializers, if these are not in the training set). Let 
s(t) = (-1)/(classification is incorrect), so we can rewrite (6.10) as 

mc(t + 1) = mc(t) + s(t)ex(t)[x(t)- me] 

= [1 - s(t)ex(t)]mc(t) + s(t)ex(t)x(t) 

= [1- s(t)ex(t)][1- s(t- 1)ex(t- 1)]mc(t- 1) 

+ [1- s(t)ex(t)]s(t -1)ex(t- 1)x(t -1) + s(t)ex(t)x(t). 

Now suppose x(t- 1) = x(t) and the same codebook vector is closest 
at both times (so s(t- 1) = s(t) ). If we ask that the multiplier of x(t) 
is the same in both terms, we find 

[ 1 - s( t )ex( t)] ex( t - 1) = ex( t) 

which gives (6.11). This adaptive choice of rate seems to work well, as 
in our examples. 

The procedure LVQ2.1 (Kohonen, 1990b) tries harder to approxi­
mate the Bayes rule by pairwise adjustments of the codebook vectors. 
Suppose ms, IDt are the two nearest neighbours to x. They are updated 
simultaneously provided that ms is of the same class as x and the class 
of mt is different, and x falls into a 'window' near the mid-point of 
ms and IDt. Specifically, we must have 

. (d(x,ms) d(x,mt)) 1- w mm , >--
d(x, mt) d(x,ms) 1+w 

Figure 6.8: Results of 
learning vector 
quantization applied to 
Figure 1.3. The initially 
chosen codebook is 
shown by small circles, 
the result of OLVQl by 
+ and subsequently 
applying 25,000 passes 
of L VQ2.1 by triangles. 
The known decision 
boundary of the Bayes 
rule is also shown. 
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for w ::::::: 0.25. (We can interpret this condition geometrically. If x 
is projected onto the vector joining ms and mt, it must fall at least 
(1 - w)/2 of the distance from each end.) If all these conditions are 
satisfied the two vectors are updated by 

ms ~ ms + or:(t)[x- ms], 

mt ~ mt - or:(t)[x- mt]. 

( 6.12) 

This rule may update the codebook only infrequently. It tends to over­
correct, as can be seen in Figure 6.8, where the result of iterating LVQ2.1 
is to push the codebook vectors away from the decision boundary, and 
eventually off the figure. Thus it is recommended that LVQ2.1 only 
be used for a small number of iterations (30--200 times the number of 
codebook vectors). 

The rule LVQ3 tries to overcome over-correction by using LVQ2.1 
if the two closest codebook vectors to x are of different classes, and 

(6.13) 

for E around 0.1-0.5, for each of the two nearest codebook vectors if 
they are of the same class as x. (The window is only used if the two 
codebook vectors are of different classes.) This introduces a second 
element into the iteration, of ensuring that the codebook vectors do 
not become too unrepresentative of their class distribution. It does still 
allow the codebooks to drift to the centre of the class distributions and 
even beyond, as Figure 6.9 shows. 

The recommended procedure is to run OLVQl until convergence 
(usually rapid) and then a moderate number of further steps of LVQ1 
and/or LVQ3. 

de Sa & Ballard (1993) motivate a variant of LVQ2.1 by applying 
stochastic approximation to a kernel regression estimator of ln1P1 (x)-
7!2P2(x)l for two classes. This normalizes the step size (replacing [x-ms] 
by [x- ms]/llx- msll) and reduces the window size as well as or:(t). 

Initialization 

The package LVQ_PAK chooses the initial codebook vectors from 
amongst the training set vectors. It is desirable that the initial vec­
tors lie inside the Bayes boundary for their class, as otherwise they end 
up representing 'islands' in the classification induced by the 1-nn rule 
based on the training set which are merely noise. Thus the candidates 
for initialization are screened to ensure that they are correctly classified 
by a k-nn rule for moderate k (default 7). 
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Kohonen (1990a) advocates a more constructive approach to the 
initial codebook, for example using a vector quantization of the whole 
training set (ignoring class) or his own 'self-organizing map' method 
(Section 9.4). 

A further question is how many codebook vectors to use, and how 
they should be partitioned amongst the classes. The literature seems to 
assume that the larger number the better, as this will enable a better 
piecewise linear approximation to the decision boundaries of the Bayes 
classifier. However, this argument assumes that the iterative algorithms 
can make a good job of distributing the codebook, and as Figures 6.9 
and 6.10 show, this is not necessarily so. We may do better to start with 
a better-designed codebook such as the result of editing procedures. 

It is unclear how many codebooks vectors should be selected for 
each class, since the number needed depends as much on how well 
they are employed as on the proportions of the class. Kohonen et 
al. (1992) suggest using equal numbers per class initially, and altering 

Figure 6.9: Further 
results of LVQ with a 
larger codebook. This 
time the triangles show 
the results from LVQ3. 
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the proportions so that the median of the nearest neighbour distances 
between vectors within a class is roughly similar across classes. 

Examples 

For the Pima Indians data we used OLVQ1 plus LVQ2 or LVQ3 with 
2-4 vectors per class, and found a test-set error rate of around 70/332. 
Increasing this to 10 vectors per class increased the error rate to about 
75/332. 

A procedure consisting of initializing, running OLVQ1 to conver­
gence then 10,000 iterations of LVQ3 was run under the standard 
10-fold cross-validation for the forensic glass data. The estimated error 
rate was 30.4%. Assigning equal numbers of vectors to each class 
(4 each) reduced this slightly, to 29.9%, making less errors in the 
containers and tableware groups, and more for non-float window glass. 

6.4 Mixture representations 

Another way of looking at kernel density estimation with a non-negative 
kernel is that it represents a probability density by 

p(x) = L wif;(x) 
i 

where the densities f;(x) = K (x - x;) and the weights are uniform (or 
mr[i]/n[i] for known class probabilities). Then pj(x) is of the same form, 
but giving weights 1/nj to points from class j and zero to the others. 
Vector quantization uses a somewhat more general uniformly-weighted 
mixture. This suggests representing densities by a mixture of a fixed set 
of densities, so 

p(x) = ~ [ ~ 1tjWij] f;(x) 
I } 

(6.14) 

and 
"( .

1 

) n j 2::::; Wijj;(x) 
p} X = . L; [I:j 1tjWij]f;(x) 

(6.15) 

We may also want to allow parameters within J;, for example the 
means and in the covariance matrix of a normal density, so we will 
write f;(x; 8;). We considered the case of a two-component normal 
mixture in Chapter 2 on pages 41-42. 

Mixture densities of this sort have been considered occasionally as 
general models for density estimation (for example by Roeder, 1990). 
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We could estimate the class-conditional densities PJ by choosing the 
WiJ on the basis of the training samples labelled by class j and then 
use (6.15) for classifying future samples. It is also possible to use 
unclassified cases to assist in the estimation process, as proposed in 
this context by Traven (1991). Sebestyen (1962) proposed an iterative 
process of approximating the class-conditional densities by Gaussian 
mixtures; two recent accounts also using Gaussian mixtures are Chou 
& Chen (1992) and Streit & Luginbuhl (1994), both of which regard 
this as a 'neural network' method. 

There is an extensive literature on the estimation of mixture distri­
butions surveyed by Redner & Walker (1984), Titterington et al. (1985) 
and McLachlan & Basford (1988). It is straightforward to write down 
the likelihood for the observed training patterns (xP, yP) and any un­
classified patterns zu as 

II 1tyP L WjyP fi(xP; (}i) II L n jWijfi(zu; ei) 

p i u i,j 

but finding a maximum may be another matter. Indeed, it is possible 
that the maximum may occur with the components f;(x;8i) degen­
erating around observed points. This can be avoided by suitably 
constraining the parameters e i. One favourite device for numerically 
finding a maximum is the EM algorithm (Section A.2 has the details). 
This pretends the example really did come from one of the compo­
nents fi(x; (}i), say I, but this is unobserved. The posterior probabilities 
of I = i given xP are then used to weight the various components 
in the mixture; for example for a general Gaussian mixture we use 
weighted mean and covariance estimators for each mixture component. 
Of course, the posterior probabilities depend on the parameters, so the 
process must be iterated. 

The convergence of the EM algorithm is notoriously slow (Redner 
& Walker, 1984), and it may be better to use a conventional numerical 
optimization technique. It is unclear whether this reputation is justified, 
as it may be much easier to find a nearly-optimal solution (in the 
sense of high log-likelihood) than to find the maximizing parameters 
precisely. (For pattern recognition purposes, only a good approximation 
to the mixture density is needed.) There are a number of ways to 
find good starting points for the optimization, for example by ad hoc 
partition of the space !!{ and fitting a component to the patterns 
falling in each partition. To emphasize the importance, note that if 
the EM algorithm is applied to each class of the synthetic data of 
Figure 1.3 for a two-component mixture with equal covariance matrices 
(the truth), it becomes trapped in a poor local minimum from starting 
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points which do not separate the group means sufficiently on the x axis. 
Ingrassia (1992) demonstrates that both the standard EM algorithm and 
his implementation of simulated annealing can find an inappropriate 
local minimum in univariate multimodal normal mixture problems with 
quite high probability. 

A Bayesian approach will have a prior on the parameters (8;) 
and on the mixing proportions wij. These are generally taken to 
be independent, and the proportions for each class given a Dirichlet 
distribution. The EM algorithm can be used to find a posterior mode 
for the parameters, but the predictive distributions p(j I x) can only 
be found by the iterative simulation methods discussed in Section A.3 
(Diebolt & Robert, 1994; Gelman et al., 1995). The simplest way 
to apply the Gibbs sampler will be in its 'blocked' form, simulating 
alternately all the components JP for the examples given the component 
parameters, then the component parameters given (JP). 

In the spirit of neural networks, an 'on-line' approach has been 
sought, in which the parameter estimates are adjusted whenever an 
example is presented (and the training set will be presented many times). 
Traven (1991) considers an on-line approximation to the EM algorithm 
for general Gaussian mixtures (with separate covariance matrices). The 
current estimates of the means and variance are found as weighted 
means and variances. Those weights depend on the current parameter 
estimates, so the estimates cannot be updated exactly when a new 
example is presented unless the data are retained. When a new example 
x is observed, Traven uses 

/i; +--- /i; + 1'f;(x- /i;) 
~ ~ T 
~i +--- ~i + q;(x- /i;)(x- ji;) 

for each component, where (q;) = p(i I x)/[p(i I x)+ L.f=l p(i I xP)]. This is 
unavailable, and is approximated by p(i I x)/(N+1)p; on the assumption 
that the xP were a random sample from the class and N is large. Using 
a constant rather than N will allow 'forgetting' of examples. The only 
advantage of this procedure seems to be to avoid storing the data, and 
if the dataset is very large it may well be sufficient to use a smaller 
sample to estimate the parameters. 

An alternative way to estimate p(j I x) would be to regress the 
class indicator on the variables f;(x), which will differ from (6.15) and 
which for radially symmetric component functions has been discussed 
in Section 4.2. As there, we have avoided the question of choosing 
the number of component densities which can in general only be done 
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using knowledge of the complexity of the densities p;(x) or by cross­
validation. 

Vector quantization can be seen as a special case of a finite mixture, 
in which the components are constant densities over the tiles of the 
Dirichlet tessellation formed by the codebook. There have also been 
methods to design modified training sets for use with kernel methods, 
and these can be seen as using finite normal mixtures (or normalized 
Gaussian radial basis functions) with equally weighted components. 
For example, Specht (1991) describes a simple clumping method to 
select cluster centres, and Burrascano (1991) uses LVQ to select a set 
of centres for the normals. 

Hastie & Tibshirani (1996) explore normal mixtures with a common 
covariance matrix :E for all components in all classes. This is a rather 
restrictive assumption, but does allow all the components to be rescaled 
simultaneously to Np{J.l,l} as in linear discriminant analysis. Each class 
is then represented by a distribution over component means rather than 
a single mean, but the between-groups covariance matrix can still be 
decomposed to find 'canonical variates' on which the data may be 
displayed. This model is similar to using LVQ with the Mahalanobis 
distance for :E, as the latter can be considered to be using equally­
weighted mixtures. The LVQ model has the advantage of choosing the 
codebook vectors for good discrimination, and mixture models for the 
classes suffer from modelling the class populations accurately in regions 
where this is not needed. 

Choosing the number of mixture components is notoriously difficult 
(McLachlan & Basford, 1988 ; Peck et al., 1989; Furman & Lindsay, 
1994). 

Examples 

Finding a good local maximum for maximum likelihood fitting of a 
mixture of normals is difficult in practice, and we found a wide range of 
fits from different starting points. The k-means algorithm of Section 9.3 
was used to initialize the means, with the covariance matrices started 
at the within-cluster covariance matrix. However, k-means is itself a 
random algorithm subject to local minima, so the whole procedure was 
run several times and the best fit selected. The k-means procedure 
depends on the distance used in f!l ; Euclidean distance was used after 
careful scaling of the features. 

Figure 6.11 shows the plug-in classifiers for normal mixtures fitted 
to the synthetic dataset (which was generated from a normal mixture). 
In this case unequal mixtures were used (to avoid biasing the fit too 



Figure 6.11: The 
decision boundaries for 
the plug-in Bayes 
classifier for mixture 
models fitted to the 
synthetic dataset. The 
dashed line corresponds 
to fitting two normals 
with unequal 
covariances to each 
class; the dotted line to 
fitting five components 
to each class, whose 
means are shown by +. 
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much to the correct model). Fitting five rather than two components per 
class decreased the deviance by about 20 but used 30 extra parameters. 
The use of AIC strongly suggested two components per class, but the 
presence of many local minima makes this theoretically dubious (and 
we know that the global maximum has infinite log-likelihood). 

For the Pima Indians data we saw a suspicion of bimodal distri­
butions on page 99. Using two normal components per group with a 
common covariance matrix (between as well as within groups) gave a 
test-set error of 64/332, a negligible improvement over linear discrim­
inant analysis. Allowing different common covariance matrices within 
classes achieved 84/332, comparable with quadratic discriminant anal­
ysts. 

For the forensic glass data some of the classes are too small to fit 
even a single normal density, so we need to use a common covariance 
matrix over all the classes and components. Some trials suggested that 
three components per class was a reasonable compromise, for which 
the cross-validated error rate was 30.8%, more than for LVQ. 
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Tree-structured Classifiers 

The use of tree-based methods for classification is relatively unfamiliar 
in both statistics and pattern recognition, yet they are widely used in 
some applications such as botany (Figure 7.1) and medical diagnosis as 
being extremely easy to comprehend (and hence have confidence in). 

The automatic construction of decision trees dates from work in the 
social sciences by Morgan & Sonquist (1963) and Morgan & Messenger 
(1973). (Later work such as Doyle, 1973, and Doyle & Fenwick, 1975, 
commented on the pitfalls of such automated procedures.) In statistics 
Breiman et al. (1984) had a seminal influence both in bringing the work 
to the attention of statisticians and in proposing new algorithms for 
constructing trees. At around the same time decision tree induction was 
beginning to be used in the field of machine learning, which we review 
in Section 7.4, and in engineering (for example, Sethi & Sarvarayudu, 
1982). 

The terminology of trees is graphic, although conventionally trees 
such as Figure 7.2 are shown growing down the page. The root is 
the top node, and examples are passed down the tree, with decisions 
being made at each node until a terminal node or leaf is reached. Each 
non-terminal node contains a question on which a split is based. Each 
leaf contains the label of a classification. A subtree of T is a tree with 
root a node of T ; it is a rooted subtree if its root is the root of T. 

A classification tree partitions the space f£ of possible observations 
into sub-regions corresponding to the leaves, since each example will be 
classified by the label of the leaf it reaches. Thus decision trees can be 
seen as a hierarchical way to describe a partition of f£. We could give 
the botanist a description of each species and ask for the description 
which matches the current specimen. Even in small domains this can 
be too difficult, and a decision tree provides a structured description of 
the knowledge base. Often the same information can be structured in 
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1. Leaves subterete to slightly flattened, plant with bulb 2. 
Leaves flat, plant with rhizome 4. 

2. Perianth-tube > 10mm I. x hoUandica 
Perianth-tube < 10mm 3. 

3. Leaves evergreen I. xiphium 
Leaves dying in winter I. latifolia 

4. Outer tepals bearded I. germanica 
Outer tepals not bearded 5. 

5. Tepals predominately yellow 6. 
Tepals blue, purple, mauve or violet 8. 

6. Leaves evergreen I. foetidissima 
Leaves dying in winter 7. 

7. Inner tepals white I. orientalis 
Tepals yellow all over I. pseudocorus 

8. Leaves evergreen I. foetidissima 
Leaves dying in winter 9. 

9. Stems hollow, perianth-tube 4-7mm I. sibirica 
Stems solid, perianth-tube 7-20mm 10. 

10. Upper part of ovary sterile 11. 
Ovary without sterile apical part 12. 

11. Capsule beak 5-8mm, 1 rib I. enstata 
Capsule beak 8-16mm, 2 ridges I. spuria 

12. Outer tepals glabrous, many seeds I. versicolor 
Outer tepals pubescent, CHew seeds I. x robusta 

other ways. Many botanical trees amount to a set of rules describing 
one class, so each class is eliminated in turn. Another research area in 
machine learning has been to induce sets of rules from a training set, 
either directly or via an induced tree (e.g. Michalski, 1980; Quinlan, 
1987a, b, 1993). 

The idea of tree induction is to construct a decision tree from a 
set of examples, which is how humans construct trees. It is usual to 
do so by growing the tree, that is by successively splitting leaves. Tree 
construction is easiest when there is an exact partition of !!l, that is one 
which classifies every example correctly. The alternative, in which the 
distributions of observations from the classes overlap, is often called a 
noisy classification problem. For the exact case, we need to continue 
to grow the tree until every example is classified correctly. In a noisy 
problem to do so would over-fit the examples at hand, and the two 
possible strategies are to stop growing the tree early, or to prune the 
tree after constructing, closely analogous to forwards and backwards 
selection in regression. 

Figure 7.1: Key to 
British species of the 
genus Iris. Simplified 
from Stace (1991) 
p. 1140, by omitting 
parts of his 
descriptions. 

Confusingly, these 
strategies are sometimes 
called pre- and 
post-pruning. 



Table 7.1: Example 
decisions for the space 
shuttle autolander 
problem, from Michie 
(1989). 

Figure 7.2: Decision 
tree for shuttle 
autolander problem. 
The numbers m/n 
denote the proportion 
of training examples 
reaching that node 
which are misclassified. 
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stability error sign wind magnitude visibility decision 

any any any any any no auto 
xstab any any any any yes noauto 
stab LX any any any yes noauto 
stab XL any any any yes noauto 
stab MM nn tail any yes no auto 
any any any any Out of range yes noauto 
stab ss any any Light yes auto 
stab ss any any Medium yes auto 
stab ss any any Strong yes auto 
stab MM pp head Light yes auto 
stab MM pp head Medium yes auto 
stab MM PP tail Light yes auto 
stab MM pp tail Medium yes auto 
stab MM pp head Strong yes noauto 
stab MM pp tail Strong yes auto 
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The main differences between algorithms for tree construction are 
the pruning strategy used and the exact rule for splitting nodes. Many 
algorithms only allow binary splits, that is to divide a node into two; 
a few allow multi-way splits (for example by flower colour). Note that 
these are just algorithms; there are only very simple models and no 
deep theorems in this field. 

There are two types of optimality to be considered. One is opti­
mality of the partition of fl£, which can be judged by the error rate 
achieved. In principle we could seek an optimal partition amongst all 
prescribed partitions of fl£ , for example those representable by a set of 
decision rules splitting on a single feature. This is a computationally 
infeasible procedure for all but the smallest problems, but the step­
wise construction of a partition by a decision tree can be seen as an 
approximation to finding the optimal partition. 

The other sense of optimality is to represent a partition by a tree in 
the best possible way. The most obvious criterion is to use the minimal 
expected number of tests. Hyafil & Rivest (1976) showed this particular 
problem to be NP-complete; Payne & Meisel (1977) give an algorithm 
to construct optimal trees with respect to fairly general cost functions. 

There are a number of partial surveys of the literature. Diet­
terich (1990) covers 'recent developments in practical learning algo­
rithms'. Safavian & Landgrebe (1991) is wide-.ranging but shallow. 
Quinlan (1986, 1990, 1993) surveys the machine-learning approaches 
within his own school. 

7.1 Splitting rules 

In this section and the next we consider the component pieces of 
currently favoured tree-construction algorithms. Some historical alter­
natives are mentioned in Section 7.4. Note that the number of possible 
trees is vast, so there is no question of an exhaustive search over trees. 

Consider first splitting a leaf. There is a set of features from which 
to construct splitting attributes. For binary features we will clearly 
consider the binary split on that feature. For categorical features with 
L > 2 levels we can either consider an L-way split, or consider binary 
splits dividing the levels into two groups. (There will be 2L-l - 1 non­
empty pairs of groups, so this generates many attributes for large L.) 
For ordered features the natural splits are binary of the form x ~ Xc; 

this applies both to continuous measurements and to ordered categories. 
Some systems also consider linear combinations of continuous features 
and Boolean combinations of logical ones. (See Section 7.5.) 
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Each leaf will have a set of attributes A on which it might be 
split. How should we consider the value of the split? There have 
been many suggestions from several different viewpoints. Consider 
first a population viewpoint. That is, there is a known probability 

rri is the set of classes. distribution over f!£ x '(} of examples which would reach that leaf. 
This gives a marginal probability distribution Pk over '(}. Consider 
splitting on attribute A which has levels a1, ... , am. There is then a 
probability distribution Pik over attributes and classes, and the child leaf 

A · denotes summation corresponding to A= ai would have probability distribution p(k I ai) = 
over that index. Pik/Pi· over classes k. 

We can then ask if the child nodes are on average 'purer' than 
their parent. A measure of impurity should according to Breiman et al. 
(1984, p. 24) be zero if Pj is concentrated on one class, and maximal 
if Pj is uniform. Two commonly used measures of impurity are the 
entropy 

i(p) =- L Pj logpj 
j 

(where 0 log 0 = 0) and the Gini index 

i(p) = LPiPj = 1- LPJ. 
ii=j j 

One interpretation of the Gini index is the expected error rate if the 
label is chosen randomly from the class distribution at the node. (It 
may be better to use this than the error rate from the Bayes rule at the 
node since it gives an element of 'look ahead'. Quite often no feasible 
split reduces the error rate, yet after two or three splits large reductions 
in error rate emerge; see the right-hand branch of Figure 7.2.) 

The decrease in average impurity on splitting by attribute A is then 

m 

i(pc)- L Pi· X i(p(c I ai)). 
i=l 

A common approach is to choose the split that maximizes this. Since 
this will in general favour many-valued attributes, Breiman et al. and 
many others confine attention to binary attributes. (See Section 7.4 for 
adjustments for multi-way splits.) 

Breiman et al. preferred the Gini index. The entropy index has been 
used widely, for example by Sethi & Sarvarayudu (1982) and Quinlan 
(1983) in the engineering and machine learning literature respectively. 

The premise of the following proposition holds for both the entropy 
and Gini measures of impurity. Part (ii) reduces the number of attributes 
which need consideration for two classes from 2L-l- 1 to L- 1, but 
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it has no simple extension to three or more classes. (The result is due 
to Breiman et al., but the very much shorter proof is original.) 

Proposition 7.1 Suppose i(p) is strictly concave. 

(i) The decrease in impurity is non-negative, and zero if and only if the 
the distributions are the same in all children. 

(ii) Suppose there are two classes. For a categorical feature , order 
the levels in increasing p(11 x = x;). Then a split of the form 
{ x1, ... xt}, { Xt+l• ... , xL} maximizes the reduction in average impu­
rity. 

Proof: (i) We have by Jensen's inequality 

L p;.i(p(c I a;)) ~ i(L p;.p(c I ai)) = i(pc) 
i 

with equality if and only if p(c I a;)= p(c) for all i and c. 

(ii) With just two classes we can regard i(p) as a function of p1 

only; it remains strictly concave. Consider dividing into two groups by 
allocating to group 1 with probability a; when x = x;. Then 

(a) the average impurity of the two groups is minimized by taking 
a;= 0 or 1 by concavity, and 

(b) the partial right derivative of the average impurity with respect to 
a; (which exists by concavity) at a; = 0 is of the form 

p(X = x;)[Ap(11 x = x;) + B] 

for constants A and B, and so is positive (when the optimal solution 
is to allocate x; to group 1) for all i ~ t or all i > t for some t. 

and both examples lead to the postulated form of split since which 
group is labelled 1 is arbitrary. D 

Another way to look at this approach IS to define the average 
impurity of the tree as 

I(T) = L qti(p(c It)) 
leaves t 

where qt is the probability an example reaches node t. The decrease in 
I on splitting the node is then qt times the decrease in node impurity 
we considered before, so that strategy is equivalent to splitting the node 
to minimize the average tree impurity. 

See the glossary. 
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Of course, to use this population approach we estimate all the 
probabilities by frequencies in the training-set examples reaching the 
node. Ciampi et al. (1987) and Clark & Pregibon (1992) take another 
approach, viewing the tree as a probability model for the training set. 
For each node t there is a probability 1tte that an example reaches 
that node and is of class c, which can in principle be computed from 
the distribution over f£ x C(} by partitioning. Suppose we condition on 
the features for all the examples in the training set. We then know 
the number nt of examples which will reach leaf t, and the numbers 
nte of each class at that node will have a multinomial distribution 
with probabilities nelt = ntclnt·· The conditional likelihood is then 
proportional to 

II II n,c 
nelt 

leaves t classes e 

and this allows us to write a deviance for the tree probability model as 

D(T) = L Dt' Dt = -2 L nte log 1telt· 
classes e leaves t 

(This is a deviance, since in the perfect model nelt = 1 whenever nte > 0 
at a leaf t.) If we estimate 1tte by the maximum likelihood estimate 
nelt = ntclnt, the maximized deviance is 

D(T) = 2[Lntlognt- Lntelognte]· 
t t,e 

The splitting strategy is to choose the attribute which maximizes the 
deviance. 

Now consider the average tree impurity for the entropy measure. 
When the probabilities are estimated this is 

"'"' nt . "'"' nt net net l(T) = ~ -l(nte!nt) =-~--log-
n n nt nt t t,e 

= - L net lognelt = D(T)/2n 
n t,e 

so the splitting strategies for deviances and for entropy-based impurity 
are identical. 

We can take this duality of approaches further. Many impurity 
measures can be written as a sum over examples: for example the Gini 
index is the sum of (1 - Pe)/n where c is the class of the example. 
Suppose there are nc examples of class c. Then 

e 
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and this is minimized over (pc) by taking Pc: = nc/n. Thus the use 
of the Gini index can be considered as a probability model with a 
different measure of goodness-of-fit. Chou (1991) considers a larger 
class of measures of the form 

I(T) = L i(t) = L ~E [t(Y,p(t)) It] 
leaves t t 

where Y is the class of an example, t is a loss function and p(t) is 
chosen to minimize the conditional expectation. The Gini index then 
arises from t (Y , p) = llind(Y)-pll 2 = 1 + llpf-2py (and ind(Y) is the 
K -tuple of indicators Y = k) and the entropy from t ( Y, p) = -log py . 

Clearly l(T) is always reduced by a split (since there is a p(t) for each 
child to minimize over). Further, let 

d(t,p(t)) = E [t (Y , p(t)) It]- i(t). 

Then if we consider a binary split over values of a categorical split, 
it is optimal only if for each category x assigned to the left child tL 

d(x, p(tL)) ~ d(x, p(tR)), and conversely for the right child tR (Chou, 
1991). This extends Proposition 7.1, at least for impurity indices of 
Chou's form. 

Priors, weights and costs 

There are several assumptions made so far which we may wish to 
relax. Quite often the training set is not a random sample from 
the whole population, but chosen to disproportionally represent the 
classes, especially to over-represent rare classes. Suppose that the classes 
are known to have probabilities (nk) in the population, but have nk 

representatives out of n in the training set. The population approach 
works with (Pk), the population distribution of classes within the node 
t. Clearly n1k/n1 is no longer an appropriate estimate of Pk. and we 
would use the probability vector proportional to n1k/n1 x mrk!nk. 

Another extension is to allow weights to be attached to the examples. 
The most obvious reason is that we have an integer number wi of 
examples like this one, and wish to avoid the overhead of computing 
with many copies. This suggests interpreting nck and n1 as the sum of 
weights, not merely counts of examples. Note that we can incorporate 
priors for the classes via weights, by giving all examples in class k a 
weight nnk!nk (or multiplying the current weight by this factor). 

Suppose we wish to attach costs to different misclassifications, say 
the cost Cij of misclassifying examples of class i as class j. One 
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approach is to say that the tree construction is merely modelling the 
posterior probabilities p(k I x), and the costs should be used to choose 
the classification at each node, but not otherwise. However, differential 
costs suggest that we would like a more accurate model for some 
classes than for others. Breiman et al. (1984, §4.4) suggest that this can 
sometimes be incorporated into the impurity index. For example, the 
interpretation given for the Gini index suggests the modified form 

i(p) = L Cij PiPj­
ifj 

Unfortunately, this effectively symmetrizes the costs (since the coefficient 
of PiPj is Cij + Cji) and so is completely ineffective in two-class 
problems. It can also fail to be concave, and so give rise to splits with 
negative 'decreases' in impurity. 

For two classes there is a simple approach to misclassification costs. 
Each example in class 2 costs a factor C2I!C12 more to misclassify 
than an example in class 1, which suggests weighting the examples in 
class i by Cij for j '/= i. This will also be appropriate for more classes 
if the misclassification costs depends only on i and not on j '/= i. 

How about the deviance approach? We use the weights for each 
example to weight the log-likelihood; the deviance becomes 

D(T) = L De, 
leaves t 

D1 = -2 L nee log 1tcle· 
classes c 

where nee now represents the sum of the weights of examples reaching 
leaf t of class c. (This is certainly appropriate if weights represent 
multiple examples.) We will once again estimate nclt by neclne, but 
this is an estimate of the biased posteriors, and will be adjusted to 
be proportional to n1c/nc x nnkfnk to estimate the posteriors in the 
population. Note that the latter is what we get if we weight examples 
in class k by nnkfnk. 

7.2 Pruning rules 

The number of rooted subtrees of a binary tree is very large so we need 
a way to navigate this family efficiently. 

Cost-complexity pruning 

The best-known procedure for tree pruning is that proposed by Breiman 
et al. (1984). Let R(T) be a measure of a tree formed by adding the 
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contributions from the leaves. One obvious candidate is the number of 
misclassifications on the training set or a test set; another is the entropy 
or deviance of the partition. Let the size of a tree be the number of 
leaves. (For a binary tree the total number of nodes is twice the size 
minus one.) Then Breiman et al. (1984) proposed choosing a rooted 
subtree T of the full tree To which minimizes 

Ra(T) = R(T) + e~:size(T). 

We can also consider Ra(T) as the sum of R(t) + tX over the leaves of 
T. This can be seen as using a Lagrange multiplier for size, so finding 
the minimizing trees for all tX is equivalent to finding the trees with 
minimum R(T) for each size. (Our results are equally valid for other 
measures of size such as the total costs of the tests at the nodes.) 

When using the apparent error rate on the training set we will want 
to choose a positive e~: to penalize size, but our results also apply to 
e~: = 0 which would be appropriate with the error rate on a test set. 
Ciampi et al. (1987) consider pruning with the Akaike Information 
Criterion which corresponds to taking R(T) as the deviance and tX = 
2(K - 1). (The AIC penalizes minus the log-likelihood by the number 
of parameters. Estimating the probability distribution within a leaf 
takes K - 1 parameters. This count ignores parameters in the splitting 
attribute and the selection of the attribute itself; it is unclear how these 
should be counted.) 

Breiman et al. showed that there is a nested family of subtrees Tk 
of To = T such that each is optimal for a range of e~:, and so there are 
values 

-00 = CI:Q < (X t < ... 00 

such that Ti is an optimal tree for e~: E [e~:i, tXi+t). Further, they gave 
an algorithm to construct the tree sequence (Tk). Often tXt ~ 0, for 
example if R(T) is the measure used to grow the tree (such as deviance 
or Gini) or the error rate on the training set (from Proposition 7.5). 
However, tXt = 0 is quite common. 

We will now prove these results. There can be a number of trees 
with the same value of 14( T); we will consider only one which is a 
subtree of all to be optimal, and if this exists we call it T(e~:). Consider 
a non-trivial tree T, and for any non-terminal node t let Tr be the 
subtree rooted at that node. Let 

( T) = R(t)- R(T1) 

g t, size (T1)- size (t) 

If we have weights, we 
would use these in 
calculating R(T). To 
handle missing values 
we will need a modest 
extension, in which 
R(T) also contains 
contributions from all 
nodes. Precisely, R(T) 
is assumed to be a sum 
over leaves plus a sum 
over non-leaves, the 
summands being 
different in the two 
cases. 
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error pruning. It follows 
immediately from 
Theorems 10.7 and 
10.10 of Breiman et 
al. (1984). 

7.2 Pruning rules 223 

which compares the reduction in R by including the subtree with the 
increase in size. Note that g(t, T) > rx if and only if Ra(t) > Ra(Tt). 
The effect of pruning at node t is to replace T1 by t. 

Proposition 7.2 Suppose we number the nodes of a tree T so that each 
node precedes its parent. If we visit the nodes in this order (bottom-up) 
and prune at node t if Ra(t) ~ Ra(T!) for the current tree T' , the result 
is T(rx). 

Proof: We will establish by induction that when node t is considered 
all the branches at t are optimally pruned. This is clearly true for 
the leaves. At node t we either prune with value Ra(t) or not with 
value Ra(T{) = Lbranches B Ra(T~) if this is strictly smaller. If there 
is a subtree T" rooted at t with a smaller value of Ra it must be 
non-trivial, and there must be a branch B with Ra(T~) < Ra(T~) 
and so T~ is not optimally pruned, a contradiction. Now suppose 
there is another subtree with the same value of Ra. Then each of its 
branches (it must have some) will have the same value of Ra as the 
corresponding branch of r: and so include that branch. Thus after 
node t is considered, the current r: is optimally pruned. When the 
root is reached the current tree is optimally pruned, so is T(rx) . D 

This gives an algorithm to find T(rx) for a single rx. We now show 
how to find (rxk) and the tree sequence Tk. From now on we assume 
that size is increasing, that is adding nodes increases (we.akly) the size. 

Proposition 7.3 Let rx1 be the smallest value of g(t, T) for any non­
terminal node t of T. The optimally pruned tree is T for rx < cq, and 
T1 = T(rxt) is obtained by pruning at all nodes t with g(t, T) = rx1. 
Further, g(t, Tt) > rx1 for all non-terminal nodes of Tt. 

Proof: The optimality of T for rx < rx1 is immediate from Ra(t) > 
Ra(Tt) and Proposition 7.2. Consider rx = rx1, and pruning by Propo­
sition 7.2. Whenever the tree is pruned, Ra(Ts) is unchanged for all 
nodes s of the new tree. Thus Ra(t) ~ Ra(T!) for the current tree T' 
if and only if Ra(t) ~ Ra(T1) if and only if g(t, T) ~ rx1. Then for a 
retained node t, 

Ra1(t)- Ra1(Ttt) = Ra1(t)- Ra1(Tc) + [Ra1(Tr)- Ra1((Tt)t)] 

= Ra1 (t)- Ra1 (Tr) = g(t, T)[ size (Tt)- size (t)] 

> rx1 [size(Tt)- size(t)] ~ rx1 [size((Tt)c)- size(t)] 

so g(t, Tt) > rx1. D 
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Proposition 7.4 For f3 > a T(/3) is a subtree of T(a) and is the result 
of {3-pruning of T(a). 

Proof: We will show by induction that Tt(f3) is a subtree of Tt(a) 
and conclude that T(/3) is a subtree of T(a). This is true at the leaves. 
At node t we compare Ra(t) to Ra(Tt(a)) and Rp(t) to Rp(Tc(f3)) and 
in each example prune if the first is (weakly) smaller. We must show 
that if Ra(t) ~ Ra(Tc(a)) then Rp(t) ~ Rp(Tt(f3)). Now since Tc(/3) is a 
candidate for a-pruning of the tree rooted at t, we have 

Rp(t) = Ra(t) + ({3- a)size(t) ~ Ra(Tt(a)) + ({3- a)size(t) 

~ Ra(Tt(f3)) + ({3 - a)size(t) 

= Rp(Tc(f3))- ({3- a)[size (Tc(/3))- size (t)] 

~ Rp(Tc(f3)). 

Since T(/3) minimizes Rp(T') over all rooted subtrees T' of T and 
is a subtree of T(a), it also minimizes Rp(T') over rooted subtrees of 
T(a). 0 

The algorithm of Proposition 7.3 can be applied to the new tree 
T1 = T(al) to find a2 > a1 (since g(t, Tl) > a1 for all non-terminal 
nodes of T1) and T2 = T(rx2) and so on until Tk is the trivial tree, 
the root of To = T. From Propositions 7.3 and 7.4, T(rx) = T1 for 
rx1 ~ rx < rx2 and T(rx2) = T2. Repeating the process gives T(rx) for all 
rx ~ rxk. and Proposition 7.4 shows that the trivial tree is optimal for 
rx ~ rxk. This completes the algorithm to find the tree sequence: 

1 Set k = 0 and write out To= T. 

2 Set a= oo. 

3 Visit the non-terminal nodes t in bottom-up order and calculate 
R(Tt) and size(Tc) by summing over the descendants (and including 
any contribution at t ). Set 

( ) = R(t)- R(Tt) 
g t size (Tt)- size (t) 

and rx =min( a, g(t)). 

4 Visit the nodes in top-down order and prune whenever g(t) =a. 

5 Set k = k + 1 and write out ak = rx and Tk = T. 

6 If T is non-trivial go to 2. 

We could visit the nodes in any order at step 4, but a top-down order 
avoids considering nodes which themselves will be pruned away. 
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It remains to choose the particular tree within this sequence. If we 
have a validation set we can use its error rate with rx = 0. Otherwise 
Breiman et al. propose selecting the value of rx using cross-validation. 
The training set is split into V parts; Breiman et al. (1984, pp. 11-
12) seem to prefer 3 but later users (e.g. Clark & Pregibon, 1992) 
recommend 10. For each of the parts, a tree sequence is constructed 
from the remaining V - 1 parts of the training set, and its measures 
R(Tk) calculated, to give a piecewise constant function for R(T(rx)). 
This is averaged over all V parts, and rx chosen to minimize the 
function. 

Because the training set is disjoint from the test set in each of the 
V cross-validation experiments, we can expect to form a reasonably 
unbiased estimate of R(T(rx)). If V is small we have used a considerably 
smaller training set, and so might expect to overestimate the error rates, 
but this does not necessarily mean that the relative values of R(T(rx)) for 
different rx are seriously biased. In practice the estimates of R(T(rx)) 
are highly variable over the choice of parts of the training set, and 
the estimated function may have no minimum within the range of rx 
considered, or a very broad minimum. Breiman et al. suggest choosing 
the largest value of rx with the cross-validated R(T(rx)) just above the 
minimum (the 'one SE' rule). The standard error can be estimated 
from a binomial distribution for error-count pruning, or a chi-squared 
distribution for deviance pruning. 

There is a difficulty with cross-validating deviance measures R(T) 
not found with error rates nor the Gini measure. Suppose that at 
some leaf t a class c occurs in the test set but not in the training set. 
Then the fitted probability lite = 0 and so the deviance at that leaf 
is infinite. (The other measures give a unit penalty.) This might be 
thought appropriate, and will certainly lead to that leaf being pruned, 
but makes it difficult to average R(T(rx)). There are several ad hoc 
solutions, all of which involve altering the fitted probabilities. One we 
have used successfully is to give a prior of one example per class at 
each node so lite = (ntc + 1)/(n1 + K) for K classes, which is never 
zero, but can approach zero if a class does not occur in a large number 
of examples. 

This is one of a family of shrinking approaches. Bahl et al. (1989), 
Chou (1991) and Buntine (1992) each smooth at all splits, not just the 
leaves, taking the fitted probabilities to be a convex combination of 
those of the parent and the frequencies in the child node. (Clark & 
Pregibon, 1992, also propose this.) It remains to choose the convex 
combination, and indeed to decide if it should be the same at each 
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node. Chou uses leave-one-out cross-validation at each node; Bun tine 
uses a combination which depends on the sample size (see Section 7.7). 
Clark & Pregibon use a constant factor over the tree, chosen by cross­
validation, and see this as an alternative to pruning. 

Another approach to pruning 

Gelfand et al. (1991) and Gelfand & Delp (1991) point out that the 
optimally pruned tree with respect to the true misclassification rate 
R(T), were this available, need not be within the family T(cx) pruned 
with respect to the apparent error rate. We have already seen how to 
prune with respect to an honest measure of error rate. Gelfand et al. 

propose a pruning algorithm based on dividing the training set into 
two and alternating the role of the halves. Initially the tree is grown 
(and nodes labelled) using one half and pruned using the error rate on 
the other half. The tree is then re-grown from the pruned tree using 
the previous test half and pruned using the previous training half to 
estimate the error rate. This is repeated until the tree size is unchanged. 
The pruned subtrees are nested and increasing, and if a node is terminal 
at two successive steps growth from that node can be stopped. 

Long formal proofs are given in Gelfand et al. (1991) for the Gini 
measure of impurity. We can give a short and general argument. It is 
important here that ties are broken consistently when labelling leaves; 
we need to choose the class of the parent node if this is a contender. 

Proposition 7.5 Suppose a training set is partitioned, and the whole set 
and each cell of the partition are labelled by a class with the highest 

frequency within it. Then the apparent error rate is decreased by parti­

tioning, strictly so unless the whole partition is given the same class. 

Proof: Let the frequency of class c within cell i be nci· Then the 
success count before division is maxc nc., maximized by k, say, and 
after division is 2:::::; maxc nci ~ maxc 2:::::; nci = nk· with equality only if 
k maximizes nci for each class. If the error rate is the same, the class 
of the parent is a contender for the class of each cell. D 

Suppose the two halves of the training set are .'T 1 and .'T 2, and let 
R(il(T) denote the number of errors for test set .'T;, using the labels 
assigned when the tree was grown. Let T* denote the tree grown using 
.'T 1 and optimally pruned using R(2l. 

Proposition 7.6 The tree T* is unchanged under optimal pruning using 
R(1l. 
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Proof: From Proposition 7.2 it suffices to show that R(ll(Tt) < R(1l(t) 
for each interior node. Now Tt corresponds to a partition of the 
examples of .r-1 reaching node t, so by Proposition 7.5 R(ll(Tt) ~ 
R(ll(t) with equality only if Tt gives the same partition as t and hence 
R(2l(Tt) = R(2l(t) which would contradict the optimality of the pruning 
ofT*. 0 

Now suppose a tree S is grown starting from T* using §' 2 and 
optimally pruned to s· using R(1l. Since S contains T*, Proposition 7.6 
shows that s· contains T* (since pruning is monotone on trees). If a 
leaf in T* remains a leaf in s· the growing and pruning process to 
form T* will be repeated at the next step, and so that node will always 
remain a leaf. As there are only a finite number of examples and empty 
leaves will never be generated, the process must stop. 

Gelfand et al. (1991) propose reporting an error rate based on 
classifying at each leaf the examples from the half of the training set 
other than the one on which that leaf was labelled (when it was grown). 
They recommend this procedure only for large datasets (since it works 
with half the data at a time), and we have found it unsatisfactory for 
moderately sized datasets, in which T* is often just the root subtree. 

'Pessimistic' and 'error-based' pruning 

Quinlan (1987a, 1993) introduced two much cruder ideas for pruning. 
In the first approach, he proposes a continuity correction for cost­
complexity pruning, so that the number of errors on the training set at 
each node is increased by one half. The idea was to better estimate the 
true rather than apparent error rate. (This idea is exactly equivalent 
to taking rx = 0.5, since R(t) is increased by one half.) He compares 
the error rate of the tree Tt with the error rate at node t (after a 
'continuity correction' adding one half to each error count). Rather 
than prune only if the adjusted error rate for node t is smaller, he 
proposes to prune unless it is somewhat larger, specifically when 

error rate for t < error rate for Tt + std. dev.( error rate for Tt ). 

(Quinlan is vague about how to calculate the last term; his example 
appears to use a binomial formula with a common probability, but it 
would be better to calculate the standard deviation within each leaf.) 
This looks like an approximation to a significance test, except that the 
variability of the left-hand side is not taken into account. Again the 
details are vague, but Quinlan states that all subtrees are considered as 
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candidates for pruning (unlike Proposition 7.2). As there are very many 
such subtrees, this seems unlikely. 

A much larger adjustment of the apparent error rate is proposed 
in his 1993 book. Suppose a leaf t covers N examples, J of which 
are misclassified. Then R(t) is taken to be the 87.5% point of a 
binomial (N, J / N) distribution. This could be calculated exactly (and 
is in the C4.5 program) but given the approximate nature of the justi­
fication, using a normal approximation to the binomial to give 

R(t) = J + 1.15 X J J(1- J I N) 

seems perfectly adequate. Our understanding is that the algorithm of 
Proposition 7.2 is used. 

Examples 

The data on diabetes amongst Pima Indians have provided a difficult 
example for many methods, and is typical of the difficulty of using tree­
based methods. It is easy to grow a tree (using the deviance/entropy 
approach) with many nodes : our initial tree has 22 nodes, shown in 
Figure 7.3. (One of the splits has another attribute with exactly the same 
split.) Four nodes can be pruned without changing the classifications at 
all; the error rate on the test set is 81/332. This is just about significantly 
worse than the logistic regression with 66/332, as the McNemar statistic 
is 1.96. 

Figure 7.4 shows the difficulty in choosing the size by 10-fold cross­
validation of error-rate pruning. There is little variation with the size 
of tree down to size 3, which suggests the latter should be adopted. 
This gives the rule that diabetes should be predicted if the plasma 
glucose level exceeds 123.5 and the diabetes pedigree function exceeds 
0.31. This rule has a test-set error rate of 90/332, worse than the 
unpruned tree. However, the difference is not statistically significant, 
for McNemar's test statistic is [129- 201 - 1]/ ,J29 + 20 ~ 1.14. In this 
circumstance we should not use risk averaging, as most examples are 
predicted with maxp(c I x) = 1, and so the true test-set error rate is 
dramatically underestimated (11 % instead of 24.4%). 

Quinlan's 'pessimistic' pruning removes just 3 nodes, and AIC re­
moves just one. Indeed, if we grow an even larger tree by allowing 
smaller populations within the leaves, both Quinlan and AIC select a 
tree with about 30 nodes. Such large trees have a test-set error rate of 
about 99/332. 

Using the Gini index rather than entropy to grow the tree produced a 
similar but not identical tree, with splits occurring in a slightly different 



Figure 7.3: The 
classification tree grown 
for the Pima Indians 
diabetes data based on 
a training set of size 
200. Growth was 
stopped at leaves with 
10 or fewer examples. 

Figure 7.4: Number of 
errors vs size for 
error-rate pruning of 
the tree of Figure 7.3. 
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order. The Gelfand et al. (1991) procedure depends on the (random) 
division into two sets, but normally produced a tree with around 15 
nodes, and a test-set error rate of around 85/332. 

For the forensic glass data, growing an initial tree using the en­
tropy/deviance measure and using cost-complexity pruning on the 
cross-validated error rate gives the plot shown in Figure 7.5. This 
suggests choosing a tree of size 12, or 9 using the '1 SE' rule as these 
counts are approximately Poisson and so have a standard error of 
about 8. 

alpha 

-lnf 0.0 0.5 1.0 2.5 4.7 8.0 27.0 

20 15 10 5 
size 

It is tedious to cross-validate this choice of tree size within a cross­
validatory assessment of performance, and we introduce a slight bias 
by not doing so here. (The cross-validation partition chosen for cost­
complexity pruning was not the same as that used for assessment.) The 
performance of the trees pruned to size 9 and 12 were almost identical; 
size 9 gave the estimated confusion matrix 

WinF WinNF Veh Con Tabl Head 
WinF 55 13 2 0 0 0 

WinNF 14 50 6 3 2 1 
Veh 5 8 4 0 0 0 
Con 0 3 0 9 0 1 

Tabl 0 1 0 1 5 2 
Head 2 2 0 2 1 22 

and an error rate of 32.2%. 
The whole Gelfand et al. (1991) procedure was cross-validated. On 

the whole dataset it grew a tree with 6 nodes that did not classify 
as container or tableware at all, just using the refractive index and 
magnesium and calcium oxides. Under cross-validation the tree size 

Figure 7.5: 
Cross-validated error 
count us tree size for 
the forensic glass data. 



Figure 7.6: Pruned 
classification tree for 
the forensic glass data. 
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varied widely between subsets; the assessment of the error rate was 
42%. 

The Quinlan pruning procedure tended to prune lightly; its cross­
validated error rate was 31%. 

7.3 Missing values 

One attraction of tree-based methods is the ease with which missing 
values can be handled. Consider the botanical key of Figure 7.1. We 
only need to know about a small subset of the 10 observations to 
classify any example, and part of the art of constructing such trees 
is to avoid observations which will be difficult or missing in some of 
the species (or, as in the case of capsules, for some of the examples). 
However, missing values may be unavoidable, and there are several 
approaches to handling them. 

1 A general strategy is to 'drop' an example down the tree as far as 
it will go. If it reaches a leaf we can predict y for it. Otherwise we 
use the distribution at the node reached to predict y, as shown in 
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Figure 7.2, which has predictions at all nodes. However, examples 
which are stopped high up the tree have little of the available 
information used. 

The pruning algorithms will have to be interpreted carefully, since 
R(T1) must include examples which reach node t but do not reach 
the leaves. This can easily be achieved by summing over both 
children and the examples which are not passed on. 

This strategy can also be used in tree growth. The deviance approach 
will automatically weight the value of a split by the proportion of 
non-missing values in assessing which attribute to use. 

2 An alternative strategy is used by many botanical keys and can be 
seen at nodes 9 and 12 of Figure 7.1. A list of characteristics is 
given, the most important first, and a decision made from those 
observations which are available. This is formalized in the method 
of surrogate splits in which surrogate rules are available at non­
terminal nodes to be used if the splitting attribute is unobserved. 
Breiman et al. (1984, §5.3) choose the attribute which maximizes the 
probability of making the same decision at the node as the primary 
split. 

3 It is possible to split examples with missing values between the 
branches. In principle this should be done using the conditional 
probabilities of left and right splits given all the observed infor­
mation. In general that probability is unavailable. What we can 
estimate easily is the probability of going left or right given the 
attributes used in earlier splits, from the frequencies of complete 
examples at the node. 

In this approach each example is split into a probability distribution 
over leaves; each time a missing value is encountered the current 
fractional example is subdivided. (There is a potential problem 
here, especially if it is the same feature under consideration as a 
higher split, since different conditional distributions will be used 
each time the example is split. If an example has already been 
split, the imputed values at earlier splits also have to go into the 
conditioning.) 

The obvious way to produce a classification for a split example is 
to combine the posterior probabilities in the leaves reached by its 
fractions using the probabilities assigned to leaves, and then assign 
the class with the highest overall posterior probability. However, 
Quinlan's (1993) C4.5 system takes the simpler but less rational 
approach of weighting the leaf classifications, and choosing the 
class with the overall highest probability. 

Quinlan (1986) 
attributes to Alen 
Shapiro the idea of 
building a tree to 
estimate the conditional 
distribution of the 
missing value. 
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4 Another possibility is to take 'missing' as a further level of the 
attribute (e.g. Kass, 1980). For methods which allow multi-way 
splits this has the disadvantage of increasing the number of levels, 
so that making some values missing can increase the gain in impurity 
(Quinlan, 1986). This can be circumvented by allowing only binary 
splits, or by penalizing multi-way splits. 

In most approaches tree construction is based on the examples 
without any missing observations. Where missing values are very 
frequent this may be unacceptable or even impossible. Quinlan (1986) 
suggests replacing missing values by the distribution within the class 
at that node when computing the expected value of a split. On the 
other hand, Quinlan (1993) multiplies the impurity gain calculated on 
known examples by the proportion of missing values (as implied by 
the deviance approach) and his C4.5 system uses fractional examples 
throughout tree construction. However, note that in the deviance 
approach if example splitting is used the partitioning is no longer 
recursive (as the fitted probability for such examples depends on each 
branch). 

All of these ideas have merits and demerits, depending on how 
common missing values are and whether they are missing at random. 
For example, in medical diagnosis the absence of a test might well 
carry information, and examples with the value of an attribute missing 
could be very different from those with a recorded value. On the other 
hand, if missing values are rare, there will not be enough information 
to usefully treat 'missing' as a separate attribute value. 

Sometimes features are not missing but also not known exactly; 
for example a continuous feature may only be known to lie within an 
interval, or a test may indicate a 80% chance of being positive. Such 
information is best handled by splitting examples. 

Example 

The Pima Indians diabetes data has many missing values, so we tried 
out the value of splitting examples, with a training set that had 200 
complete examples and 100 partially missing examples. Growing and 
pruning a tree on this augmented training set led to a slightly larger 
tree shown in Figure 7.7, which makes 74/332 errors on the test set. 

This highlights the role of the plasma glucose level and the body 
mass index. Figure 7.8 shows the training-set examples on those two 
features, which indicates that the separation is rather weak. 
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Figure 7.7: The 
classification tree grown 
and pruned for the 
Pima Indians diabetes 
data based on a 
training set of size 300. 

Figure 7.8: The 
presence or absence of 
diabetes against plasma 
glucose and body mass 
index for the training 
set of the Pima Indians 
data. 
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7.4 Earlier approaches 

Quinlan (1986) provides an historical overview of developments in the 
field of machine learning. He considers the TDIDT family of algorithms 
(Top Down Induction of Decision Trees) to stem from Hunt's Concept 
Learning System (Hunt et al., 1966), via his own ID3 (Quinlan, 1979) 
and the ACLS system of Patterson & Niblett (1983). Another branch 
is the ASSISTANT systems of Kononenko et al. (1984) and Cestnik et 
al. (1987). Quinlan calls his own descendant of ID3 C4.5. Many of the 
later systems are commercial and so not documented in the scientific 
literature. There was a family of CLS systems; the last, CLS-9, chose 
the split which maximized the number of examples correctly classified 
over the new leaves. 

All of these systems (except CLS) are based on the entropy measure 
of impurity. ID3 examines all candidate attributes and chooses that with 
the largest 'information gain', which is what we called the reduction in 
average impurity at the node. All the probabilities are estimated from 
frequencies in the training set. Most of these systems allowed only two 
classes. 

What attributes are allowed? In ID3 only categorical features were 
considered and the split is into all levels of the feature. Both ACLS and 
ASSISTANT use a binary division of the feature. Continuous features 
could in principle be divided into ranges or split as in Figure 7.1. 

If multi-way splits are allowed, they would be expected to have 
greater information gain; indeed they may have a large information 
gain even if the attribute has no predictive power. Quinlan (1986, 1988) 
suggests guarding against this by comparing the information gain to 
what he terms the 'information value' IV of the attribute A, that is the 
entropy of the distribution of attribute values at the node. He suggests 
choosing the attribute which maximizes 

gain (A)/IV 

over attributes 'with average-or-better gain amongst all tests examined' 
(itself a size-biased selection criterion). 

One feature of the original ID3 was that it works with a 'window', 
that is a subset of the training data. This is initially chosen as a random 
subset and the tree grown on it. The rest of the training set is tested, and 
a selection of incorrectly classified examples is added to the window. 
The tree is extended and the process repeated. In a logical domain this 
can reduce the computation, but has not been used in the descendants 
of ID3 (except C4.5). 
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The main differences between these algorithms come in their stop­
ping rules. The original ID3 had no stopping rule. Quinlan (1983) 
proposed a chi-square test for the value of the split on the chosen A, 
that is a test of independence in the ' A cross class' table. Niblett (1987) 
suggested Fisher's exact test for the same purpose. The ASSISTANT 
system compared a cross-validation estimate of the error after splitting 
at the node with the apparent error at the node, and stopped if the 
former was worse. Its successor, ASSISTANT86, computed the node 
size times the information gain divided by the entropy and stopped if 
this was smaller than a preset threshold (for example 4%). 

So far we have assumed that no attributes have missing values. 
ASSISTANT either used the proportions of the attribute amongst 
examples of the same class at that node to fill in the most frequent 
value (as used by CN2, Clark & Niblett, 1989) or used fractional 
examples to express the distribution over values. Many of the general 
schemes discussed above have been used. 

Suppose there are K classes. The Laplacian error estimate replaces 
the error rate ed ni at a leaf by [ei + K -1] I [ni + K], in a crude attempt 
to compensate for the optimistic bias of the re-substitution estimator 
of error. Niblett & Bratko (1986) pruned the tree at node t if the naive 
Laplacian error estimate at that node is less than that for the subtree 
rooted at t. (This is described in detail in Niblett, 1987, and also used 
by Casey & Nagy, 1984.) 

Bratko & Kononenko (1987) give a number of comparisons for 
domains of medical diagnosis. Their results show that binary trees 
are generally smaller and have slightly lower error rates than multi­
way trees, and that stopping early slightly improves the error rate but 
markedly improves comprehension. 

One early strand of work in statistics was given by Kendall & Stuart 
(1966, §44.30-32) and Richards (1972). They consider continuous­
valued attributes and two classes. Suppose for a feature X that one 
class, say class 1, has generally smaller values than the other. The split 
is then ( -oo, min2 Xi) to class 1, (max1 Xi, oo) to class 2 and the overlap 
[min2 Xi, max1 Xd is passed to the next level. The attribute is chosen 
for which this rule decides the most examples, and the process repeated 
at the next level. 

The system THAID of Morgan & Messenger (1973) was one of 
the first statistical applications of decision trees. Its splitting criterion 
was the error rate. A descendant, CHAID (Kass, 1980) chooses the 
split with the highest significance in the A cross class table. However, 
it found the (approximately) most significant table including amalga-
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mating categories of multi-level attributes. The stopping rule was again 
based on significance, with some allowance for selection. Mingers (1987) 
also based the choice of split on the highest statistical significance of 
the contingency table of A cross classes. 

Ciampi et al. (1987) merge leaves in a post-processing step if their 
populations are sufficiently similar. An agglomerative clustering algo­
rithm is applied to the leaves with a dissimilarity measure computed 
from a log-likelihood-ratio test of the difference in within-leaf class 
distributions. We do not see this as preferable to pruning methods. 

The work in the engineering literature is diverse and wide-ranging; 
we will only highlight a few ideas. (Safavian & Landgrebe, 1991, 
catalogue many more.) Henrichon & Fu (1969) set up a tree with 
a linear combination at each node whose range was partitioned into 
positive, negative and undecided; the undecided examples are passed 
to the next layer. The partitioning criterion was to approximately 
minimize the error rate. Swain & Hauska (1977) suggested minimizing 
the sum of measurement and error costs using a 1-step lookahead. 
Again for a two-class problem, Friedman (1977) and Rounds (1980) 
used the Kolmogorov-Smirnov distance between the distributions of 
the two classes to choose the feature, and split at a maximum of the 
distance. Multi-class problems can be considered by building a tree 
contrasting each class with the first, and combining information in the 
leaves of the K - 1 trees to decide between the K classes. Sethi & 
Sarvarayudu (1982) took an information-based approach identical to 
that which was emerging in machine learning. 

Engineers have continued to be active in this field, for example 
Argentiero et al. (1982), Casey & Nagy (1984), Dattatreya & Sarma 
(1981, 1985), Goodman & Smyth (1988), Kurzynski (1983a, b), Li & 
Dubes (1986), Schuermann & Doster (1984) and Wang & Suen (1984, 
1987). 

7.5 Refinements 

A modest amount of progress towards more efficient algorithms has 
been made since Breiman et al. (1984). 

Chan & Bao (1991) and Fayyad & Irani (1992) noticed that we 
can restrict the set of cut-points tried for a continuously-valued at­
tribute A with the entropy measure of impurity or equivalently using 
deviances. The empirical distribution of A jumps only at observed val­
ues, so clearly the optimal cut-point will be one of the observed values. 
What these authors proved is that the cut-point always occurs on the 
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boundary between two classes, so we do not need to consider observed 
values if those to the immediate left and right correspond to examples 
of the same class. How much of a saving this produces depends on the 
number of classes (clearly it is best if this is small) and on the degree of 
overlap of class-conditional distributions of A. The results of Fayyad 
& Irani showed a very modest speed-up (less than two overall), and 
our experiments showed even less. 

Chou (1991) provided a partial extension to part (ii) of Proposi­
tion 7.1 based on the ideas discussed earlier. This result corresponds to 
finding a locally optimal partition of an attribute with L levels in the 
sense of reduction in average impurity or deviance, in linear expected 
time in the number of examples. It is only locally optimal, a point 
Chou glosses over in his title and description. 

Crawford (1989) considered alternative estimators of the error rate 
R(T) to be used in cost-complexity pruning, based on the bootstrap 
(Section 2.7). The idea of the bootstrap is to resample with replacement 
a sample of size n (the original size) from the training set. (Clearly 
each of the original examples will occur an integer number of times 
in the bootstrap sample.) A tree sequence can be grown from each 
bootstrap sample, and the bias in the error rates for the bootstrap 
samples used to estimate the bias of R(T(a)). That is, for each of B 
bootstrap samples we grow and prune a tree to find Tb(a) and evaluate 
the difference between the error rate for the real training set and the 
bootstrap sample. The average of this quantity over the B samples, 
@(a), is the bootstrap estimate of the bias of R(T(a)), so finally a IS 

chosen to minimize 
R(T(a)) +@(a). 

Breiman et al. (1984, p. 312) give some calculations which sug­
gest that the bootstrap estimator of the bias R(T) will systematically 
underestimate the bias. This property is not shared by Efron's (1983) 
.632 bootstrap (Section 2.7). Crawford (1989) reports experiments on 
pruning via both bootstrapped and the .632 bootstrap estimators of the 
error rate, generally preferring the .632 bootstrap to both the ordinary 
bootstrap and cross-validation. 

Incremental learning 

Thus far we have assumed that the whole training set is available 
initially. It is easy to envisage situations in which the training set 
becomes available from an on-line process, and it is desired to maintain 
an up-to-date decision tree. 
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Quinlan (1979) originally envisaged building a decision tree by ID3 
incrementally, but this was as a computational shortcut in a noisefree 
problem where it might be hoped that a small subset of examples would 
induce the broad shape of a suitable tree. 

Incremental tree induction has been taken up by Schlimmer & 
Fisher (1986), Utgoff (1988a, 1989, 1990), Utgoff & Brodley (1990) and 
Van de Weide (1989, 1990). The difficulty with the incremental growth 
of trees is that early decisions on which attribute to split were based 
on few examples and so are likely to be wrong. Utgoff (1988a) allows 
his procedure ID5 to recover by testing the current optimality of a 
split, and if it is sub-optimal to re-order the subtree if the optimal split 
occurs within the sub-tree. Utgoff (1990) gives a modification which is 
guaranteed to recover the tree grown by ID3. Van de Weide's objective 
is to grow the smallest possible tree. 

All this work was for noiseless problems. Crawford (1989) considers 
incremental tree growth for noisy problems, carrying out the whole 
procedure (growth and pruning) on a subtree when a new example 
shows that the split at the root of that subtree is sub-optimal and 
will affect the path of the new example through the existing subtree. 
Subsequently he used bootstrap resampling to estimate if the gain by 
re-growing the subtree was significant. 

Hybrid methods 

We have mentioned that some systems allow linear combinations of 
continuous variates or Boolean combinations of binary ones at each 
node. Some of these have been termed hybrid by Utgoff (1988b), and 
are discussed by Dietterich (1990). 

The STAGGER system of Schlimmer & Granger (1986) combines a 
'Bayesian weight-learning algorithm with a method for constructing 
Boolean expressions'. The FRINGE algorithm of Pagallo (1989), Pagallo 
& Haussler (1989, 1990) builds on STAGGER, and post-processes trees 
constructed by ID3 to include new attributes constructed as Boolean 
combinations of existing ones. 

Soft splits 

A classification tree makes hard splits; for example in Figure 7.1 
completely different paths are taken if we measure the perianth tube as 
longer or shorter than 10 mm. We might be worried if we measured 
9.9 mm, and test both possibilities. An automated system will not do 
that unless it is enhanced by soft splits, of the form 'branch right with 
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probability a(x)'. Hitherto a(x) = l(x > xo), but we can envisage a 
smoother transition, and average the predictions by splitting examples 
as for missing values. Carter & Catlett (1987) used a piecewise linear 
a, linearly interpolating between (xL, 0), (xo, 0.5) and (xR, 1) for XL < 
x0 < XR. They and Quinlan (1993, §8.1.2) suggested choosing XL and 
XR (in various ad hoc ways) after the main cut-point xo has been 
chosen in the usual way. Training set examples can then be divided 
if their value of x falls in the range [xL, XR], and the tree growth 
continued. 

It would not be difficult to choose XL and XR as well as xo to 
maximize the reduction in impurity at the split. We could use a logistic 
a, but an asymmetric smoothing of the split may be desirable. 

7.6 Relationships to neural networks 

Two distinct relationships between neural networks and decision trees 
have been pointed out. The first is that the splitting mechanism invoked 
at a node is a way to split optimally the examples reaching that node 
into two (or more), and a neural network could be used to select 
the attribute to be used. The simplest network would split a linear 
combination of the variates, and this gives the perceptron trees of U tgoff 
(1988b) and neural trees ofSankar & Mammone (1993) (and Stromberg 
et al., 1991). However, Breiman et al. (1984) had already considered 
allowing linear combinations of variates when setting out the list of 
attributes at each node, so this gives no added generality. (The idea 
goes back to at least Henrichon & Fu, 1969.) The growth procedures 
are different, in that both Utgoff and Sankar & Mammone use the 
perceptron learning rule (Section 3.6); Utgoff also used incremental 
induction for a noiseless problem. Breiman et al. used a gradient 
descent method to find a local maximum in the change in average 
impurity. 

An obvious extension is to allow a non-linear discrimination rule 
at each node. Indeed, we can avoid the combinatorial search over the 
set of attribute splits at a node by seeking a non-linear combination of 
the features as a new feature and splitting on that. Many smooth and 
non-linear regression techniques could be used, including feed-forward 
neural networks as considered by Guo & Gelfand (1992). They found 
difficulty in extending minimizing the impurity to non-linear functions, 
and instead used standard least-squares neural network methods to 
train the function to discriminate between two groups of classes. With 
more than two classes they need a rule to choose the partition of the 
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classes; one idea for a moderate number of classes is to compare the 
impurity change for each partition of the classes. 

The other relationship which has been explored is to use the decision 
tree to guide the design of a neural network. Brent (1991) considers 
perceptron trees with t splits and so t + 1 leaves dividing f£ into 
t + 1 regions with piecewise linear boundaries. There is an immediate 
correspondence between such trees and a neural network with threshold 
units and two hidden layers of sizes t and t + 1, the first hidden layer 
corresponding to non-terminal nodes of the tree and the second hidden 
layer to a path from the root to a leaf with weights zero or ±1. This 
can be used as a starting point for optimizing the neural network, 
perhaps with sigmoidal units. Brent minimizes the deviance of a split 
(in fact using a slightly different form similar to Fisher's exact test), 
but also uses the fact that the threshold units can be approximated 
by sigmoidal units of high gain to allow optimization methods on the 
neural network to approximate finding an optimal split in the sense of 
deviance reduction. 

Sethi's (1990, 1991) entropy nets have essentially the same idea. The 
first hidden layer again computes the splitting functions at the nodes. 
The second and third layers are of AND and OR nodes respectively, 
and are wired to produce the same partition as the decision tree. (Note 
that AND and OR can both be produced by a perceptron.) The second 
layer corresponds to ANDing conditions down each path, and the OR 
layer collects paths with the same terminal class. Again, the threshold 
nodes may be relaxed to have sigmoidal response functions. Notice 
that although standard neural-network training algorithms could be 
used, Sethi points out that the derived neural network will be sparsely 
connected and of a special form. He proposes the use of a simple 
reinforcement learning rule. Each node in the AND and OR layers is 
associated with identifying a single class, since it is part of one path 
through the tree, and only the weights to these layers are trained, 
reinforcing the strongest signals amongst nodes associated with the 
same class. 

7.7 Bayesian trees 

A full Bayesian approach to tree construction will be stymied by the 
vast number of possible trees, each of which should appear in the 
posterior average. The best that is possible is to average over a few 
good trees, which is the approach taken by Buntine (1992). 
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The prior has to be given in several steps. A tree is fully specified by 
its topology (hitherto what we have meant by T ) and the specification 
of the conditional probabilities. Buntine chooses independent and 
identical Dirichlet priors at each node, principally for computational 
convenience. For topologies, one can put a uniform distribution over 
all possible trees, or over tree shapes (ignoring the choice of attributes), 
or code for the complexity of the tree. 

Given the prior and a dataset, it is in principle possible to find 
the posterior distribution over trees, and sum out over the topologies, 
giving a posterior distribution over classes for any future example. In 
practice this is impossible, and Buntine uses a variety of heuristics to 
grow trees which look to be of high posterior probability, and then 
averages over those trees. Let B(tiJ, ... ,tiK) = IJr(tij)/r(l::tij) be the 
normalizing constant in the density of the Dirichlet distribution. Then 

P(T I 
. . ) P(T) IT B(ntl + tiJ, ... , ntk + tiK) trammg set oc ( ) 

I B tiJ, ... ,tiK 
eaves t 

(7.1) 

P((ntc) IT, training set) oc IT ( 1 
) IT n~~c+IXc- 1 . 

B tiJ, ... ,tiK 
leaves t classes c 

Then (ntc) has mode at (ntc + tic)/(nt + 2::: tic), which is (for tic= 1) the 
smoothing we proposed earlier. 

Buntine uses (7.1) to suggest an heuristic for measuring the quality 
of a split, 

P( ) IT B(ntl+tiJ, ... ,ntk+tiK) 
test x . 

. d B(tiJ, ... ,tiK) 
chil ren 

Note that this would be appropriate if (7.1) was a product over paths, 
not leaves. Similarly the shrinking proposed is towards the parent node, 
whereas (7.1) suggests a shrinking towards tic/ 2::: tij, and this is set from 
the overall distribution of classes in the training set. 

Perhaps the most interesting heuristic is the use of 'option trees', 
in which more than one attribute at each node can be considered, but 
not simultaneously. Thus not only the best one-step lookahead split 
is chosen, but the best few are kept in play, allowing a range of trees 
with high posterior probability to be generated. An earlier idea along 
similar lines is that of Kwok & Carter (1990). 



8 

Belief Networks 

The supervised methods considered so far have learnt both the structure 
of the probability distributions and the numerical values from the train­
ing set, or in the case of parametric methods, imposed a conventional 
structure for convenience. Other methods incorporate non-numerical 
'real-world' knowledge about the subject domain into the structure of 
the probability distributions. Such knowledge is often about causal re­
lationships, or perhaps the lack of causality as expressed by conditional 
independence. 

These ideas have been most explored within the field of expert 
systems. This is a loosely defined area, and definitions vary: 

'The label "expert system" is, broadly speaking, a program 
intended to make reasoned judgements or to give assistance in 
a complex area in which human skills are fallible or scarce .. . .' 
(Lauritzen & Spiegelhalter, 1988, p. 157) 

'A program designed to solve problems at a level comparable 
to that of a human expert in a given domain.' (Cooper, 1989) 

'An expert system has two parts. The first one is the knowl­
edge base. It usually makes up most of the system. In its simplest 
form it is a list of IF ... THEN rules: each specifies what to 
do, or what conclusions to draw, under a set of well-defined 
circumstances. 

The second part of the expert system often goes under the 
name of "shell". As the name implies, it acts as a receptacle for 
the knowledge base and contains instruments for making effi­
cient use of it. These include a short-term memory, tree-searching 
machinery and a user interface.' (Crevier, 1993, pp. 156-7) 

The last definition is the traditional one in AI, but excludes expert 
systems based on probabilistic knowledge by assuming that the knowl­
edge base is made up of 'if ... then rules'. Another aspect of expert 
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systems which is often stressed is the availability of facilities to provide 
explanations, usually in the form of a chain of deductions which lead 
to the conclusion. 

In the development of probabilistic reasoning by Pearl (1986, 1988, 
1993a), Lauritzen & Spiegelhalter (1988) and co-workers, the structural 
division is slightly different. The knowledge base is represented by a 
qualitative description of the dependencies (more accurately, lack of 
dependence) between the variables in the system, and the quantita­
tive description of the numerical values of those dependencies. The 
role of the 'shell' is taken by the set of algorithms which manipulate 
the probabilities in an automatic way to present conclusions, such as 
the posterior probabilities of the various classes. Systems based on 
these ideas have many names: they have been called Bayesian expert 
systems, Bayes(ian) net(work)s, belief net(work)s, causal (probabilistic) 
networks, probabilistic expert systems and probabilistic reasoning on 
causal graphs. 

A very simple example may help to fix ideas. Suppose the input x 
is a set of m features x1, ... , Xm. As usual, we wish to find the posterior 
probabilities p(k I x) to classify a future case. The rule called naive or 
idiot's Bayes (Warner et al., 1961; Titterington et al., 1981) takes 

m 

p(k I x) oc nk II p(xi I k). 
i=l 

(8.1) 

One derivation of (8.1) is to assume p(x I k) = f1 p(xi I k ), that is that 
the features are conditionally independent given the class, from which 
it is immediate that 

m 

p(k I x)p(x) = p(x, k) = p(x I k )nk = nk II p(xi I k ). 
i=l 

The qualitative part of the knowledge base is then the assumption of 
conditional independence, and the quantitative part is the specification 
of the probabilities nk and Pk(xi) = p(xi I k). The shell is the set of 
rules for manipulating probabilities (essentially Bayes' formula) plus a 

Figure 8.1: The causal 
graph for the idiot's 
Bayes rule. The arrows 
represent causal 
influence. 

This list of names is not 
exhaustive. 



Recent books include 
Almond (1995), Jensen 
(1996) and Shafer 
(1996). 
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user interface. The qualitative part of naive Bayes can be expressed 
graphically as in Figure 8.1. 

In the rest of this chapter we will develop more complex networks 
than Figure 8.1 and corresponding stylized ways to apply Bayes' formula 
to derive the posterior probabilities, and to modify them as more 
information becomes available. 

Overviews of this area with various applications are provided by 
Spiegelhalter et al. (1993), Andreassen et al. (1991), Charniak (1991) and 
Neapolitan (1990), as well as by papers within the collections edited by 
Oliver & Smith (1990), Shafer & Pearl (1990) and Gammerman (1995). 
Applications in computer vision are described by Agosta (1990), Binford 
et al. (1989), Levitt et al. (1990) and Rimey & Brown (1992). Various 
commercial and free shells are available, including BAlES (Cowell, 
1992, 1995), Hugin (Andersen et al., 1989), IDEAL (Srinvas & Breese, 
1990) and PRESS (Gammerman et al., 1995). Although we work with 
probabilities, the same calculations can be applied to other measures of 
belief which satisfy certain axioms (see Section A.4)-see Pearl ( 1988), 
Dempster & Kong (1988), Shafer & Shenoy (1986), Shenoy et al. (1988), 
Shenoy (1989) and Shenoy & Shafer (1990)- and also to consistency 
calculations in computer databases (Fagin, 1977). 

The methods of this chapter are more complicated than, say, clas­
sification trees, so it is worth asking if the ability to feed in qualitative 
knowledge actually improves the accuracy of classification. Several of 
the discussants of Spiegelhalter et al. (1993) asked this, specifically in 
the context of medical diagnosis. Their answer (page 280) is equivocal. 
Belief networks are designed and trained to answer more than just 
the question of classifying future cases. They are able to give a much 
higher level of explanation, including exploring what were important 
input features in reaching the conclusion and whether the input data 
were in some sense in conflict. To do so they model the whole joint 
distribution. Although there will be an advantage in using qualitative 
knowledge (at least if it is a reasonable approximation to reality), the 
need to model the whole distribution makes more demands on limited 
data resources. 

Two restrictions need to be noted. Most of the development of belief 
networks has been restricted to categorical variables, that is discrete 
random variables with a finite (and usually small) number of levels; 
some developments using continuous variables are being made (such 
as Lauritzen, 1992, and Gammerman et al., 1995). Second, the problem 
of conditioning belief networks on observations is in general NP-hard 
(Cooper, 1990) and so the methods described here are potentially 
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prohibitively slow. Fortunately, in many real systems the networks are 
sparsely connected, and the shells do seem to work quite fast enough. 

There has been a parallel (and until recently completely separate) 
development of methods within the field of pedigree analysis in genetics 
(Spiegelhalter, 1990; Cannings et al., 1978; Cannings & Thompson, 
1981; Thompson 1985). 

Belief networks are often associated with notions of causality. Opin­
ions on the usefulness of this vary from complete scepticism (Speed, 
1990) to enthusiasm (Pearl, 1993b, 1995). Since our purpose is predic­
tion of pattern classes, we will avoid discussion of causality except to 
use known causality to help us specify probability models. 

In the past directed graphs were widely used because there was 
perceived to be a problem with zero probabilities in graphical models 
on undirected graphs. This is inaccurate; these problems disappear 
when special distributions or (especially) special graphs are considered. 
Thus we derive most of the methodology in the context of decomposable 
(undirected) graphs after considering the simple case of a directed tree. 

8.1 Graphical models and networks 

Graphs such as Figure 8.1 are used to represent conditional inde­
pendence properties on a collection of random variables. It will be 
important to keep a clear distinction between directed graphs which 
can represent causality, and undirected graphs without arrows which 
represent dependence without specifying a causal direction; some terms 
are used for both with subtly different meanings. 

Throughout this section we will assume we are given a finite col­
lection of random variables Xv , v E V, and we wish to describe qual­
itatively the dependencies between these random variables. In our 
applications these random variables will include the features in the 
pattern x and the class C. However, they may also include unobserved 
features. For example, an important extension to Figure 8.1 is given in 
Figure 8.2 where the class is not assumed to be reported accurately, as 
may be common where diagnosis is difficult. 

To describe dependence we will use the language of graph theory. 
This is usually self-explanatory, but more formal treatments can be 
found in many basic accounts of theoretical computer science, including 
Knuth (1968), Cormen et al. (1990) and Sedgewick (1990), as well as the 
specialist books by Berge (1973) and Golombic (1980). Maier (1983) 
gives a different perspective, that of database theory. 



Figure 8.2: The causal 
graph for the idiot's 
Bayes rule with 
inaccurate reporting of 
classes. 

Another convention is 
to call complete 
subgraphs cliques, when 
a clique is maximal if 
no vertex can be added 
without making the 
subgraph incomplete. 

Pedants will call these 
acyclic directed graphs. 
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A graph is a collection of vertices and edges. The vertices will 
represent the set of random variables (hence the use of V to denote 
the set). The set of edges is a set of unordered pairs of distinct vertices; 
if an edge is present it is indicated on a diagram by a line (without an 
arrow) joining the pair of vertices. A path on a graph is list of vertices 
for which each successive pair is joined by an edge. A subgraph is a 
subset of vertices together with those edges both of whose vertices are 
in the subset. A subgraph is said to be connected if there is a path 
joining every pair of vertices, and complete if every possible edge is 
present. The maximal complete subgraphs of a graph are called its 
cliques. A cycle is a path which returns to its origin and visits no vertex 
more than once. A connected graph with no cycles is called a tree. 

Where necessary, we will refer to graphs as undirected graphs. Di­
rected graphs also have a set of vertices and edges, but the edges are 
ordered pairs of vertices, and are represented on a figure (such as Fig­
ure 8.2) by lines with arrows from the first vertex to the second vertex. 
The first vertex is often called the parent and the second (marked by the 
arrow) the child. The notions of paths and cycles extend immediately to 
directed graphs. We will make frequent use of directed acyclic graphs, 
DAGs, that is directed graphs without cycles. A directed tree has the 
properties that it has one vertex, the root, such that a (directed) path 
leads from the root to any vertex, and any other vertex has precisely 
one incoming arrow. An ancestral subgraph of a directed graph contains 
all the ancestors of its vertices; for a directed tree ancestral subgraphs 
are rooted subtrees. 

A polytree is a singly-connected DAG, that is a DAG in which at 
most one path exists between any two vertices (see Figure 8.3). 
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Markov networks 

The usual way to interpret the (in)dependencies represented by an 
undirected graph f§ is what Pearl (1988) calls an !-map. Given three 
subsets A, B , C of vertices, we say C separates A and B in f§ if every 
path from (a vertex in) A to (a vertex in) B goes through (a vertex 
in) C. For any subset A of V let XA denote the collection of random 
variables associated with the vertices in A. Then we consider whether 
XA and XB are conditionally independent given Xc, which we write 
as 

XA ...JL XB I Xc or sometimes A ...JL B I C. 

We say the graph f§ is an I-map of the distribution if this is true 
whenever A and B are separated by C. We say the distribution 
is global Markov with respect to f§ if separation implies conditional 
independence. 

Note that the complete graph on V will be an · I-map of any 
probability distribution on X v, since then there will never be any 
separating C. This shows that there may be subsets A, B and C 
with the conditional independence property A ...JL B I C, for which not 
every path from A to B goes though C. If it is also true that all 
conditional independencies are represented by separation, Pearl calls 
the representation by this graph a perfect map. An I-map f§ is called 
minimal if removing any edge from f§ makes it no longer an I-map. If 
there is a unique minimal I-map, it is called the Markov network of the 
distribution. 

Markov properties of distributions on graphs have been studied in 
the areas of random fields (Preston, 1974, 1976) and image analysis 
(Geman & Geman, 1984; Geman, 1990; Isham, 1981). Several Markov 

Figure 8.3: An example 
of a polytree. 

The two concepts are 
the same, but the graph 
varies for an 1-map and 
the distribution for 
global Markov. 

Distributions for which 
there is a Markov 
network that is perfect 
are often called 
graphical models, 
although this term is 
also used more loosely. 



This example is from 
Pearl (1988, p. 135). 

The set V \ {a,b} can 
be any pair of vertices, 
and knowledge of any 
pair of random 
variables determines 
which of the three 
outcomes occurs. Thus 
conditionally Xa and 
Xb are constant. 
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properties have been defined. Denote by oA the boundary of A, the 
set of vertices in Ac which have a neighbour in A (so all neighbours 
of points in A are in A U oA ). Then the most important Markov 
properties for a given graph r'§ are 

global For any disjoint subsets A, B and C such that C separates A 
and B (all paths from A to B contain a member of C) we have 
XA ...JLXB I Xc. 

local The conditional distribution of Xa given X V\{a} depends only 
on Xa{a}• or equivalently X a ...JL X V\[{a}uo{a}J I Xa{a}· This is prob­
ably easier to describe in words: the random variables at a and 
those at vertices not connected to a by an edge are conditionally 
independent given those which are so connected. 

pairwise Xa and Xb are conditionally independent given all the other 
random variables if there is no edge from a to b. 

These properties allow us to read off successively weaker conditional 
independence statements from the graph; the global Markov property 
is equivalent to the graph being an I-map. The three properties can 
be strictly different. Consider the four discrete random variables with 
joint distribution 

a b c d Pr 

0 0 0 0 1/3 
0 1 1 1 1/3 
1 1 0 2 1/3 

These are taken as the random variables at the vertices of a graph. 
The pairwise Markov property is satisfied by any graph on the vertices, 
even that with no edges. On the other hand, the four random variables 
are far from independent, and the conditional distribution of Xd given 
Xa, Xb and Xc depends on at least two of the conditioning random 
variables. For the local Markov property to hold we have two possible 
minimal graphs: 

b c 

and for both the global Markov property holds. Thus in this example 
there are two distinct minimal I-maps. 
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An example of a local but not global Markov distribution is given 
by taking the graph a-b c-d and the same non-constant random 
variable at the four vertices. This is trivially local Markov, but { b} and 
{ c} are separated by f/J, and Xb .lL Xc is false. 

Our main example demonstrates the inadequacy of the 'obvious' 
way to construct a minimal I-map, that is to include the edge {a,b} in 
the graph if and only if X a .f.- xb I X V\{a,b} holds. This is clearly the 
minimal graph to satisfy the pairwise Markov property, but need not 
be global Markov. By the following result, if we confine attention to 
discrete random variables and strictly positive probability distributions 
this will be an I-map, and therefore the unique minimal I-map. This 
result has a confusing history; it is often attributed to Hammersley & 
Clifford in 1971, although they did not publish for nearly twenty years 
and gave one of a series of increasingly more general statements. 

Proposition 8.1 Suppose we have a collection of discrete random variables 
defined on the vertices of a graph. 

(i) Suppose the joint distribution is strictly positive. Then the pairwise 
Markov property implies that there are positive functions <Pc, sym­
metric in their arguments, such that 

Pr{Xv = xv} oc II </Jc(xc) 
c 

the product being over cliques of the graph. 

(8.2) 

(ii) A potential representation (8.2) implies the global Markov property 
for any distribution. 

Proof: (i) We may assume (by re-labelling if necessary) that each 
random variable Xs can take the value 0. The proof proceeds by 
induction on the size of A= {s I Xs =/= 0}, and we prove the existence 
of functions <Pc (with <Pc = 1 for non-complete C) such that 

Pr{X = x} = Pr{X = 0} II </Jc(xc). (8.3) 
CcA 

This can be reduced to a product over cliques by assigning <Pc to a 
clique which contains it, and multiplying the original clique function by 
</Jc. 

Define the functions <Pc recursively by 

</Jc(xc) = Pr{Xc = xc,Xcc = 0} / Pr{X = 0} II </Jv(xv) 
D~C 

The 
Hammersley-Clifford 
result relates the local 
Markov property to the 
global property and to 
a potential 
representation. See 
Clifford (1990) for the 
published version and 
historical comment. 

The rest of this section 
is rather technical and 
may be skipped at first 
reading. 

Defining </Jc = 1 for 
non-complete C allows 
us to take products 
over all subsets. 
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where the product is over strict subsets, and cpc(O) = 1. (Note that 
<Pc > 0 which avoids having 0 x p/0 in the manipulations that follow.) 
Clearly (8.3) holds if A is complete, and so holds if A is empty or has 
one element. Now suppose it holds if A has k or fewer elements. Split a 
non-complete A with k + 1 members as B U { s} U { t} where B has k -1 
elements and s and t are not neighbours. Then Xs .lL Xt I XB,XAc, so 

Pr{Xv = Xv} = Pr{Xs = X8,Xt = Xt,XB = XB,XAc = 0} 

= Pr{XB = XB,Xs = X8 ,Xt = O,XAc = 0} 
Pr{Xt = Xt I XB = XB,Xs = X8 ,XAc = 0} 

X--~------------------------~ 
Pr{Xt = 0 I XB = XB,Xs = X8,XAc = 0} 

= Pr{XB = XB,Xs = X8 ,Xt = O,XAc = 0} 
Pr{Xt = Xt I XB = XB,Xs = O,XAc = 0} 

X--7---~~----------~----~ 
Pr{Xt = 0 I XB = XB,Xs = O,XAc = 0} 

= Pr{XB = XB,Xs = X8,Xt = O,XAc = 0} 
Pr{Xt = Xt,XB = XB,Xs = O,XAc = 0} 

X--~----------------------~ 
Pr{Xt = O,XB = XB,Xs = O,XAc = 0} 

= Pr{X = 0} II cpc(xc)ITccBu{t} cpc(xc) 
CcBU{s} ITccB cpc(xc) 

= Pr{X = 0} II cpc(xc) 
CcBU{s}U{t} 

where we use conditional independence at step 3, (8.3) for sets of size 
at most k at step 5 and the fact that a complete subset C c A cannot 
contain both s and t at the last step. This establishes the result for 
any set A of size k + 1 and completes the inductive step of the proof. 

(ii) Suppose a potential representation (8.2) is given. Then 

Pr{Xv} II /"" II Pr{XA I XAc} = Pr{XAc} = cpc(Xc) ~ c/Jc(Xc) 
cliques C XA cliques C 

di!! c </>c(Xc) / t di!! c </Jc(Xc) 
CnA# CnA# 

where we cancel terms for cliques C disjoint from A. A clique with 
C n A=/= 0 is contained in Au 8A, so the right-hand side is a function 
of XAuoA and Pr{XA I XAc} = Pr{XA I XaA}· Some of the potentials 
¢c may take zero values, but these calculations still hold if we take 
0/0 = 0. 

Now suppose A and B are separated by C. Let B' be the set of 
vertices which can be reached by a path from B which does not meet C 
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and let D = (B' U C)c => A; by construction D, B' and C are disjoint 
and C separates D and B', so no neighbour of D is in B'. Then 
Pr{Xv I XB',Xc} = Pr{Xv I Xvc} = Pr{Xv I Xav} does not depend on 
XB' · Thus D JL B' I C and hence A JL B I C as A c D, B c B'. 0 

Some partial relaxation of the positivity condition is possible: see 
Moussouris (1974), Averintsev (1975) and Ripley & Kelly (1977). Our 
counter-example on page 249 also shows (with the minimal I-map 
shown as the right-hand graph) that a distribution can be global Markov 
but not have a potential representation. 

An alternative to imposing strict positivity on the distribution is to 
impose further conditions on the graph. Matus (1992) shows that all 
three Markov properties are equivalent for any distribution if and only 
if every sub graph on three vertices contains two or three edges. A graph 
is said to be triangulated or chordal if every cycle of length four or more 
has a chord (an edge joining two non-consecutive vertices), and we will 
see in Proposition 8.2 that we can construct a potential representation 
for a triangulated I-map. Conversely, if a graph is not triangulated, it 
has a chordless cycle of length four or more, and our counter-example 
(extended if necessary by copies of Xd along the cycle, and constant 
variables elsewhere) shows a distribution on the vertices of the graph 
that is global Markov but does not have a potential representation. 
Thus being global Markov and having a potential representation are 
equivalent for all distributions on a graph if and only if it is triangulated. 

We could ask if all conditional independence properties entailed by 
being global Markov can be read from the graph by separation. Geiger 
& Pearl (1993) show that this is so, by constructing a strictly positive 
distribution such that XA JL XB I Xc if and only if C separates A and 
B on the graph. (The random variables used in this construction do 
take a finite set of values, but not one that can be specified in advance.) 

Markov trees 

If an undirected graph is a tree, any vertex can be declared as the root, 
and a directed tree formed by assigning arrows to point away from the 
root (along the unique path from the root to a vertex). The simplest 
possible tree is one with no branches, that is a chain of vertices. The 
simplest Markov network is a Markov chain, for which the Markov 
property is usually stated symmetrically 

'past and future are independent given the present' 

but the usual calculations on a Markov chain depend heavily on the 
time ordering of the vertices to work either forwards or backwards in 

If there were a potential 
representation, 
Pr{a = O,b = 1, 
c = O,d = 2} = 
</>{a,b j (O, 1)</>{a,cj(O, 0) X 

</>{b,dj(1 , 2)</>{c,dj(O, 2) > 0. 



Here Sv is any set of 
values, possibly all 
possible values. We are 
excluding evidence such 
as x. = xb. 

The rest of this 
subsection is technical 
and not needed 
elsewhere. 
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time. Most of these methods can be extended to trees, with calculations 
proceeding up towards the root or downwards away from the root. 
Although some of the ideas logically belong in the next section, trees 
are so important an idea that we treat this special case here. 

Markov chains are usually specified by the transition probabilities 
Pr{Xt = j I Xt-l = i}, and Markov trees are also commonly specified 
by giving Pr{Xv I Xa, a the parent of v }. This does specify the joint 
distribution, since we can label the vertices in increasing order away 
from the root of the tree so that a vertex is preceded by its parent, and 
then 

Pr{Xv}= IlPr{Xi iXj,j<i}= ITPr{Xi iXa,a theparentofi} 
i i 

(8.4) 
where at the second step we use the separation of v from the rest of 
the graph by its parent. The root has a special role in (8.4) : it has no 
parent and Pr{Xt} appears without conditioning. In a tree the cliques 
each contain just one edge, so (8.4) is a potential representation of the 
distribution (without any positivity condition). 

Figure 8.2 provides a natural example of a directed tree, with the 
true class as the root. The calculation we would wish to perform is 
to condition the distribution by restrictions E = n{ Xv E Sv } on the 
values at some or all of the vertices (which we think of as the 'evidence'), 
specifically to find Pr{Xv IE} for one or more individual vertices. There 
are simple ways to do so making use of the tree structure (Pearl, 1982, 
1988). Conditioning on the value taken by Xv has two effects. One is 
to break the tree at v so we can find the probability distribution of the 
descendants of v independently of all the rest of the tree. The other 
effect is to change the distribution of the ancestors of v and all their 
descendants (that are not direct descendants of v ). We can consider 
both effects by first propagating messages up the tree, then down from 
the root. In the following a vertex is considered to be a descendant of 
itself, but not its own ancestor. 

We suppose that we have calculated the marginal distributions Pv 
at each vertex : this can be done by 

X a 

where a is the parent of v (and we are given the marginal distribution 
of the root vertex). We want p~(xv) = Pr{Xv = Xv IE}. For any vertex 
v let E; denote the conditioning event (if any) on the descendants of 
v, and let E;; denote the condition on the remaining random variables. 
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Then by Bayes' formula 

using the separation by vertex v. 
The first term is only non-trivial if v has some children ui. Partition 

E;; into events concerning the descendants of each child, which are 
conditionally independent given Xv so 

Pr{E;; I Xv} = l(Xv E Sv) II Pr{E;; I Xv} 
child u 

and 

Xu 

which can be computed by a pass over the tree towards the root. Now 
consider the second term of (8.5). Variables in E: can only influence 
Xv through its parent Xa, so 

Pr{Xv I Et} = L Pr{Xv I X a= Xa} Pr{Xa = Xa I Et}. (8.7) 
X a 

Now E: includes the restriction on Xa and E;i, plus Eb" for any 
other children b of a. We have 

Pr{Xa I Et} = Pr{Xa I Xa E Sa,Ed",Eb" for other children b} 

oc I(Xa E Sa) Pr{Xa I Ed"} II Pr{Eb" I Xa}· (8.8) 
b 

The terms in the product will have been found at (8.6) in the inwards 
pass, and so (8.7) and (8.8) can be computed on a subsequent outwards 
pass. 

These computations may also be organized as asynchronous 
message-passing. Each vertex keeps a current version of A.(xv ) = 
ITu Pr{E~ I Xv} as a product over its children (empty products being 
one) and v(xv) = Pr{Xv = Xv IE:}. Then p~(xv) is I(xv E Sv)A.(xv)v(xv) 
normalized to unit sum. When information becomes available at ver­
tex v, it passes Pr{ E;; I Xv E Sv} to its parent a, which is converted 
to Pr{ E;; I X a} by (8.6) and used to update A.(xa). It also passes to 
each child Pr{ Xv I Xv E Sv, E:, Eb"} where that child is excluded from 
the b considered. This message is found from (8.8) by re-normalizing. 
Whenever another vertex receives a message it passes on messages to 
its other neighbours. 

It will be helpful to consider an example. The graph is shown 
in Figure 8.4. There are 12 binary random variables which we label 



Figure 8.4 : An example 
of a directed tree. 

Table 8.1 : Specifications 
of conditional 
probabilities for the 
directed tree of 
Figure 8.4. 

The two values of the 
probability refer to the 
values zero and one of 
the unspecified variable, 
in that order. 
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A 
;l\' 

0 g 8 

Pr{A = 1} = 0.3 

Pr{B = 11 A= 0} = 0.9 
Pr{B=1IA=1}=0.1 

Pr{ C = 11 A = 0} = 0.2 
Pr{ C = 11 A = 1} = 0.8 

Pr{D = 11 B = 0} = 0.5 
Pr{D = 11 B = 1} = 0.4 

Pr{ G = 11 B = 0} = 0.7 
Pr{ G = 11 B = 1} = 0.2 

Pr{K = 11 B = 0} = 0.3 
Pr{K = 11 B = 1} = 0.9 

Pr{L = 11 C = 0} = 0.1 
Pr{L=11C=1}=1.0 

Pr{M = 11 C = 0} = 0.0 
Pr{M = 11 C = 1} = 0.7 

Pr{N = 11 G = 0} = 0.5 
Pr{N = 11G= 1} =0.1 

Pr{P = 11 G = 0} = 0.1 
Pr{P = 11 G = 1} = 0.6 

Pr{S =11M= 0} = 0.8 
Pr{S =11M= 1} = 0.5 

Pr{T =11M= 0} = 0.3 
Pr{T =11M= 1} = 0.7 

255 

by capital letters. Their joint distribution can be specified via the 
probabilities of Table 8.1. 

We first calculate the marginal probabilities by a downwards pass 
in alphabetical order of the vertices. We then are told that C = P = 
S = 1 and N = T = 0, and asked for the conditional probability that 
B = 1 (it was 0.66 before conditioning). The first step is to pass the 
information up to the root, then down to B. Knowledge of S and 
T is actually irrelevant, as we know C which separates B from S , T. 
Propagating N = O,P = 1 to g gives Pr{Eg- I G} = (0.05,0.54), and 
propagating this to b gives Pr{E; I B} = (0.393,0.148). Propagating 
C = 1,S = 1, T = 0 to a gives a term Pr{A I Et} = Pr{A I C = 1,S = 
1, T = 0} = Pr{A I C = 1} = (0.14, 0.24)/0.38. This is passed down to 
b, giving Pr{B I Et} = (0.23,0.15)/0.38 using (8.7). From (8.4) we have 
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Pr{B I C = P = S = 1,N = T = 0} oc (0.393 x 0.23,0.148 x 0.15), and 
finally the desired probability is 0.1972. 

A further question we can ask is 'what is the most likely explanation 
of B = 1 ', that is what values of the remaining variables are most 
likely to have occurred with B = 1. This can be achieved by the same 
updating procedures, merely replacing averaging over children by a 
maximum operation (Pearl, 1988, Chapter 5). We can find the most 
probable configuration with B = 1 by finding both the most probable 
pattern of descendants and the most probable pattern of ancestors and 
their other descendants. In our example we are given B = C = 1, so 
Pr{A I B = C = 1} oc Pr{A}Pr{B = 11 A}Pr{C = 11 A}= (0.126,0.024), 
so A = 0 is the most probable ancestor. Clearly D = 0 and K = 1 
are most probable. Finally Pr{ G I B = 1, N = 0, P = 1} oc Pr{ G I B = 
1} Pr{N = 0 I G} Pr{P = 11 G} = (0.040,0.108) and the most plausible 
explanation is (A= O,C = 1,D = O,G = 1,K = 1,N = O,P = 1). 

Another method to organize these calculations is via the joint 
marginal distributions of each adjacent pair of vertices, which is just 
the marginal distribution of the parent times the transition probability 
to the child. When a condition is ·imposed at a vertex, this alters the 
joint distributions of that vertex and each neighbour. The evidence can 
then be propagated to each neighbour of that neighbour (and hence all 
over the tree) by updating the joint density of Xa,Xb as 

{ } { } 
Prnew{Xa} 

Prnew Xa,Xb = Prold Xa,Xb X { } . 
Prold Xa 

We illustrate this for our example, considering only the vertices abcgnp 
for compactness. (The distributions of the remaining vertices can be 
found conditionally on this set quite easily.) Initially the marginal 
probabilities that Xv = 1 are 

a b c g n p 
0.3 0.66 0.38 0.37 0.352 0.285 

and the joint probabilities on the five edges are 

00 0 1 1 0 1 1 
a-b 0.07 0.63 0.27 0.03 
a-c 0.56 0.14 0.06 0.24 
b-g 0.102 0.238 0.528 0.132 
g-n 0.315 0.315 0.333 0.037 
g-p 0.567 0.063 0.148 0.222 

This mode of reasoning 
is called abductive 
inference. 
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Now we condition on N = 0. This changes the marginal probabilities 
to 

00 0 1 1 0 1 1 
g-n 0.4861 0 0.5139 0 

Vertex g then sends the message Prnew{G}/Proid{G} = (0.7716, 1.3889) 
to its neighbours b and p and updates Pr{ G = 1} = 0.5139. Let us 
consider the effect on p, which is to update the edge marginal to 

00 01 10 11 
g-p 0.4375 0.0486 0.2056 0.3083 

If we now condition on P = 1, we find Pr{ G = 1} = 0.8638. 
We now update the b-g edge by rescaling by the G marginal. We 

have not updated it since Pr{ G} = 0.37, so the result is 

00 01 10 11 
b-g 0.0221 0.5556 0.1141 0.3082 

which gives Pr{B = 1} = 0.4223. Updating the a-b edge we find 
Pr{A = 1} = 0.4780 and 

00 0 1 1 0 1 1 
a-b 0.1189 0.4031 0.4588 0.0192 

Finally, consider conditioning on C = 1. First update the a-c 
edge to produce 

00 01 10 11 
a-c 0.4176 0.1044 0.0956 0.3824 

then set the entries for C = 0 to zero and renormalize to give Pr{A = 
1} = 0.7855. Now we update the a-b edge again to get 

00 01 10 11 
a-b 0.0489 0.1656 0.7539 0.0316 

This gives Pr{B = 1} = 0.1972; which is the conditional probability we 
require. Propagating this ends up with marginal probabilities of 

a b c g n p 

0.7855 0.1972 1 0.916 0 1 



258 8 Belief Networks 

and the joint probabilities of the five edges are 

00 0 1 1 0 1 1 
a-b 0.0489 0.1656 0.7539 0.0316 
a-c 0 0.2145 0 0.7855 
b-g 0.0307 0.7721 0.0533 0.1439 
g-n 0.084 0 0.916 0 
g-p 0 0.084 0 0.916 

The details of such calculations are tedious to do by hand, but lend 
themselves to automated recursive calculations, and have been used by 
Binford et al. (1989). Kim & Pearl (1983) (see also Pearl, 1988) extend 
the principles to polytrees, where a vertex may have more than one 
parent as well as more than one child. The method fails if applied to 
DAGs which would have loops if viewed as undirected graphs. There 
are a few ways to convert such DAGs into polytrees (Pearl, 1988, §4.4): 

1 clustering methods, in which vertices are joined into a composite 
node. For example, if in Figure 8.5 we combine vertices b and c the 
DAG is converted to a chain (which is of course a tree). We will see 
a systematic version of this idea in the next section. 

Increased total 
serum calcium b 

Metastatic cancer 

2 conditioning, in which the values at one or more vertices are fixed, 
and the results averaged over the conditioned variables. If in 
Figure 8.5 we condition on Xa, we have a polytree. 

3 simulation methods which we discuss in the next section. 

Decomposable models 

The Markov network of a strictly positive distribution has a 
parametrization via the clique functions cf>c of (8.2). Computations 
are very much simplified for graphs that have no cycle of four or 
more vertices without a chord (an edge joining two non-consecutive 
vertices). Such graphs are called chordal or triangulated. A probability 
distribution is said to be decomposable with respect to a graph t§ if t§ 

Figure 8.5: A 
hypothetical medical 
belief network (after 
Cooper, 1984, and 
Pearl, 1988). 

This is equivalent to 
another graph property 
called decomposability, 
so these graphs are also 
called decomposable. 



A join tree is also called 
a junction tree. Blair & 
Peyton (1993) give an 
introduction to these 
ideas, and Lauritzen 
(1996, Chapter 2) gives 
a self-contained account 
of the graph-theoretical 
properties based on 
decomposability. 

si c cj(i) follows from 
the definition of a join 
tree:ifvEC1 nC for 
j < i then v E CJ(i)· 
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is an I-map and triangulated. If 'fJ is omitted, the minimal I-map is 
assumed (if it is unique). The undirected version of the directed graph 
in Figure 8.5 is not decomposable, and neither is the right-hand I-map 
for our counter-example on page 249. 

For decomposable distributions there is a natural way to specify 
the joint distribution by 'local' pieces, which we will call a marginal 

representation. These are the marginal distributions over the cliques, and 
are much more easily interpreted than general potential representations. 

Proposition 8.2 A distribution which is decomposable with respect to 'fJ 
can be written as a product of the distributions on the cliques of 'fJ divided 

by the product of the distributions on their intersections. 

To prove this we need a few more concepts. A join tree T of cliques 
is a tree with the cliques as its vertices, such that if we remove all the 
cliques containing a vertex of V, the tree stays connected. Thus if two 
cliques contain a common vertex v E V, so does every clique on the 
path in the tree between them. Every triangulated graph has a join tree 
(Beeri et al., 1983), and triangulatedness can be tested and a join tree 
found by the following procedure (Tarjan & Yannakakis, 1984): 

1 Order the vertices by maximal cardinality search. Start anywhere, 
and number next a vertex with the largest number of already 
numbered neighbours. 

2 Starting with the highest numbered vertex, check for each vertex that 
all its lower-numbered neighbours are themselves neighbours. (By 
adding missing edges here, a triangulated graph will be produced.) 

3 Identify all the cliques, and order them by the highest numbered 
vertex in the clique. 

4 Form the join tree by connecting each clique to a predecessor (in 
the ordering of step 3) which shares the most vertices. 

It can be useful to use the freedom to start anywhere in constructing 
the join tree, and subsequently to take any clique as its root. Incidentally, 
since this algorithm labels cliques by a subset of the vertices, there can 
be no more cliques than vertices in a triangulated graph. 

This construction orders the join tree so that the unique path from 
Ct to CJ has cliques in increasing order. For i ~ 2 let j(i) be the 
number of the predecessor of clique i on the unique path, and let 
Si = Ci n (Ct U · · · u Ci-d· Then Si c CJ(i), which is called the running 
intersection property (Beeri et al., 1983). Let Hi = C1 U · · · U C-t and 
Ri = C \ Si. The clique sequence is also perfect, which means that 
oRin Hi is a complete subgraph for all i ~ 2. 
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Proposition 8.3 The separator Si separates Ri from Hi\ Si. 

Proof: Fix a path from Ri to Hi\ Si, and suppose it has a vertex v 
in RJ for some j > i but none in Uk> J Rt-. Let a and b be the first 
vertices before and after v which are not in R1. Then a and b are 
both in oR1 n H1 and hence neighbours. We can construct a connected 
subset of the path within H1 by omitting the vertices between a and 
b. By repeating this process we find a connected subset of the original 
path wholly in Hi+l, and this path will have an edge from a E Ri to 
bE Hi. We will show that bE Si. Since a and b are neighbours, they 
both belong to some clique Ck, and since a E Ri, k ~ i. Suppose k > i. 
Then a, b E Ck n Hk c Cs for some s < k, and by repeating if necessary 
we find a,b E Cs for some s ~ i. Thus bE Ci n Hi= Si. D 

Proof of Proposition 8.2: 
The sets Ri form an ordered partition of V, with UJ<iRi = UJ<i Ci = 

Hi. so 

Pr{Xv} = IIPr{XR; IXRp···,XR;_1 } = IIPr{XR; IXHJ 
i i 

The separation property shows that XR; _jl_ XH; I Xs;, so Pr{XR; I XH;} = 
Pr{XR; I Xs;} and 

Pr{X v} =II Pr{XR; I Xs;} =II Pr{Xc;} / Pr{Xs;} (8.9) 

known as the set-chain and marginal representations. If any denomina­
tor is zero, the expression is taken as zero. D 

Note that we have not used a positivity condition here, but (8.9) pro­
vides a potential representation. Thus for triangulated graphs we have 
a potential representation if and only if the global Markov property 
holds, by Proposition 8.1(ii). 

The set-chain representation provides a minimal way to specify 
the joint distribution. It is not the same as specifying the transition 
probabilities Pr{Ci I CJ(i)} = Pr{Ri I CJ(i)} of the join tree as a Markov 
tree, since Si = Ci n CJ(i) is strictly smaller than CJ(i)· 

The fill-in produced by the Tarjan-Yannakakis algorithm is fast to 
compute, but it may add more edges than are necessary. Algorithms 
to produce minimal fill-ins are known (Rose et al., 1976), but are 
potentially very slow (this is an NP-complete problem: Yannakakis, 

This is corollary A.8 of 
Dawid & Lauritzen 
(1993), but their proof 
is skeletal. 

1981; Wen, 1990). An approximate algorithm using simulated annealing See the glossary. 

is described by Kjcerulff (1992). 
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The next proposition shows that we can read off conditional inde­
pendence properties from the join tree. 

Proposition 8.4 Suppose CA and CB are sets of cliques in the join tree of 
a decomposable distribution separated by Cc. Then the sets of variables 
A = U CA and B = U CB are conditionally independent given the set 
C = UCc. 

Proof: It will suffice to show that C separates A \ C and B \ C on 
the original graph and then use the global Markov property. We prove 
this by contradiction. Suppose there is a path in V \ C from Yo E A to 
Ym E B via Yt, . . . , Ym-1· Associate Yo with a clique Co E CA and for 
s ~ 1 associate Ys with a clique Cs that contains both it and Ys-1; as 
the vertices are not in C, these cliques cannot belong to Cc. The cliques 
C5 _ 1 and Cs need not be neighbours in the join tree, but because they 
have Ys in common, all cliques on the unique path from C s-1 to Cs 
also contain Ys and so are not members of Cc. In this way we can 
assemble a path in the join tree from Co E CA to Cm avoiding the 
collection Cc. It is not necessarily the case that Cm E CB, but if it is 
not there is another clique in CB containing Ym, and we can adjoin the 
path from Cm to that clique (which again avoids Cc ). This contradicts 
the separation of CA and CB by Cc, so there is no such path (y). 0 

These results show that for decomposable distributions we can work 
with the sets of variables in the join tree, and for trees the local specifi­
cation of the distribution is easy. Further, we can update the marginal 
distributions in cliques by message-passing when conditioning infor­
mation becomes available. This makes it attractive to work not with 
a minimal I-map C§ for a distribution, but with a triangulated I-map 
C§t. formed by triangulating C§. The distribution is decomposable with 
respect to C§t., and this gives us potential and marginal representations 
and allows us to compute using the join tree of C§t.. Of course, some of 
the interpretation is lost, but this does not affect the calculations and 
the original graph may be used for interpretations. What may make 
this procedure unattractive is that C§t. may be very different from C§ ; 

it could even be complete. 

Conditioning on evidence 

Suppose we wish to introduce the evidence E = { X v E Sv} which 
is a restriction on the variable at a single vertex v. We will do so 
by finding the marginal representation of Pr{·, E}. Then summing 
over any clique gives us Pr{E} and we can divide by this to give the 
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marginal representation of Pr{- I E}. Select a clique Ci that contains 
v. Suppose we have a potential representation (c/Jc) (for example, the 
set-chain representation). By setting cpc(xc) = 0 whenever Xv rf. Sv we 
obtain a potential representation of Pr { ·, E}, and we employ the general 
procedure below to turn a potential representation into a marginal one. 

Suppose we have a potential representation (c/Jc). We can allow a 
little more generality by having functions lps on the separators S and 
asking that 

Pr{Xv = xv} =II c/Jc(xc) j II lps(xs) (8.10) 
c s 

where 1/0 is taken as 0 (and so if lps(xs) = 0 we can adjust cpc(xc) to 
be zero). For any neighbouring pair of cliques Ci. Cj with S = Ci n Cj 

consider the operation of replacing lps by the marginal lp~ of c/Jc; 
(formed by summing over the variables in Ci \ S) and replacing c/Jci 
by c/Jci x lJ)s/lJ)s. This step maintains a potential representation. We 
describe lp~ /lJ)s as the message passed over the edge of the join tree. 
(When conditioning a marginal representation, this can be thought of 
as finding the revised marginal distribution of S, and adjusting the 
marginal distribution of the adjoining clique to Pr{ Cj I S}Pr{ S}.) 

Now suppose this step is performed for multiple conditioning events 
and each edge in the join tree until no further progress can be made. 
The steps can be organized in many ways (Jensen et al., 1990; Shenoy 
& Shafer, 1990; Dawid, 1992): an attractive order is to pass messages 
in to the root and then out to the leaves. When this has been done, 
we will have the marginal representation. (Formal proofs are given by 
Dawid, 1992.) 

By replacing averaging by maximizing in forming lp~ we can find the 
most plausible explanation just as for Markov trees (Dawid, 1992). A 
modified averaging (omitting evidence on S ) computes the distribution 
at each variable conditional on the evidence everywhere else (Cowell & 
Dawid, 1992) which is useful in monitoring consistency of information 
(Spiegelhalter et al., 1993). 

8.2 Causal networks 

We now turn to causal networks, which are defined on DAGs (directed 
graphs without cycles). Such graphs can always be numbered so that 
the parent(s) of a vertex have a lower number than the vertex itself. 
(This is called a topological sort of the DAG.) It is always true (for 
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discrete random variables) that 

Pr{Xv} =II Pr{Xv I Xa ,a < v} (8.11) 
v 

but to relate the distribution to the graph we ask that for a recursive 
model 

Pr{X v} =II Pr{Xv I X a, a a parent of v }. (8.12) 
v 

(We will use pa(v) as a shorthand for this condition.) By summing over 
Xv in reverse order of the vertices we find from (8.12) that 

Pr{Xv, v ~ j} =II Pr{Xv I pa(v)} 
v~j 

and so being recursive is equivalent to 

Pr{Xv IXa,a < v} = Pr{Xv lpa(v)}. 

Conversely, if we are given the conditional probabilities of each variable 
given its parents, (8.12) can be used to define the joint distribution. This 
is the main attraction of a causal representation, as the conditional 
distributions given the parents are often easier to supply than clique 
potentials. 

Given a distribution on a set of vertices, we can ask for what 
DAGs it is a recursive model. It is certainly recursive for the DAG 
which makes each vertex a child of all lower-numbered vertices, from 
(8.11), and we can form a smaller DAG by declaring as parents of 
vertex v only a subset of earlier vertices on which Pr{Xv I X a, a < v} 
actually depends. If there are zeroes in the probability distribution 
then this procedure may not be unique. Consider the counter-example 
to a potential representation on page 249 in order (a, b, c, d). We 
find a to be the parent of b, (a, b) to be the parents of c, but for 
d we have the choice of any two from (a, b, c). If the distribution is 
strictly positive we can select as parents those vertices b for which 
Xv ~ XbiXa, a =/= b, a < v (using the equivalence of pairwise and local 
Markov on {a: a~ v} ). 

Note that this construction of a DAG depends on the ordering of 
the vertices, whereas the notion of a recursive model does not: some 
orderings may produce much simpler DAGs than others. It is here that 
causality is used to select a beneficial ordering. (Todd, 1995, illustrates 
this for the example of Lauritzen & Spiegelhalter, 1988, by choosing a 
different set of causalities.) 
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a 

2 

To make use of the machinery for Markov networks (particularly 
on decomposable graphs) we would like to turn a recursive model 
on a DAG into a Markov network. It does not in general suffice 
to use the graph formed by dropping directions; Figure 8.6 will help 
illustrate why. Suppose all the variables are binary, with Pr{Xa = 1} = 
Pr{Xb = 1} = 0.3 + 0.4Xt, Pr{X2 = 1} = 0.3 + 0.4/(Xa = Xb) and 
Pr{X3 = 1} = 0.3 + 0.4X2. Then Xa _jl_ xb I xl, but Xa .t xb I X!,X2, 
whereas on the undirected graph {1,2} separates a and b. Clearly two 
vertices that have a common child need to be joined in the undirected 
graph. This is reflected in the idea of the moral graph (Lauritzen 
& Spiegelhalter, 1988). The steps to convert the DAG to its moral 
(undirected) graph are 

1 replace all the directed edges by undirected ones and 

2 add edges joining the parents (in the DAG) of each vertex if neces-
sary. 

The neighbours of a vertex in the moral graph are its parents and 
children in the original DAG, plus the other parents of those children. 
(Pearl calls the other parents of a vertex's children its mates.) 

Proposition 8.5 A recursive model on a DAG is global Markov and has 
a potential representation on the moral graph of its DAG. 

Proof: We will show the existence of a potential representation; by 
Proposition 8.1(ii) the distribution must be global Markov. 

Start by setting the potential for each clique to one. For each vertex 
v, select a clique which contains it and all its parents and multiply its 
potential by Pr{Xv I Xa, a a parent of v }. (There may be more than 

Figure 8.6: An example 
to illustrate conditional 
independence on a 
DAG. 

There must be such a 
clique: the graph is 
moral. 



This subsection is 
technical and not used 
elsewhere. 

Spirtes et a/. (1993) call 
this causal Markov. We 
can replace nd( v) by 
nd(v) \ pa(v) to give 
disjoint sets of 
variables. 

8.2 Causal networks 265 

one choice of clique, in which case any will do.) This converts (8.12) to 
a potential representation by grouping terms into cliques. D 

Note once again that no positivity condition is required. 
The moral graph is then triangulated by filling in, if necessary, and 

converted to a join tree of its cliques, to which the methods of Markov 
trees can be applied. 

By Proposition 8.2 the joint distribution can be specified by giving 
the marginal probability distributions for each clique. Originally we had 
(8.12), which may seem to be the easiest way to specify the joint distri­
bution. However, having the clique marginals allows us to specify the 
marginal distribution of each random variable. Further, the distribution 
will change as information becomes available. Consider Figure 8.2 on 
page 247. Initially the distribution can be specified conditionally on the 
true class. However, once some of the variables and/or the reported 
class are known, we will wish to find the conditional probability of 
the true class. In this case the moral graph comes from dropping the 
arrows, and any ordering that has the true class first or second may 
be used. The cliques are all the edges individually, and can be in any 
order. In this case the DAG is already a tree and can be used directly. 

Markov properties on DAGs 

We have seen that a recursive model induces a global Markov dis­
tribution on the moral graph. Because there can be some in-filling 
at moralization, the conditional independencies implied by the moral 
graph may not include all those implied by the original recursive model. 
Consider Figure 8.6; its moral graph is the same as that of the DAG 
with a link from a to b, and on the latter DAG Xa ..fl.- Xb I X1 is 
allowed. Of course, the conditional independencies still hold but are 
encoded in the numerical values of the particular representation used. 
In-filling to triangulate the moral graph can produce further mask­
ing of conditional independence properties; this is tolerated for the 
simplification in computation that results. 

This has aroused interest in looking directly at Markov properties 
on a DAG. Several definitions of directed Markov are in use. That of 
Dawid & Lauritzen (1993) is 

Xv .JL nd(v) I pa(v) for all v E V 

where nd( v) is the set of variables whose vertices are not descendants 
of v. (This is called directed local Markov by Lauritzen et al., 1990.) 
The definition of Lauritzen (1989) and Lauritzen et al. (1990) (directed 
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global Markov) is that XA JL XB I Xc whenever C separates A from 
B in the moral graph of the smallest ancestral DAG containing A, 
B and C. This resolves the difficulty with Figure 8.6. We know that 
Xa JL Xb I X1, but a and b are joined in the moral graph. They are 
not however joined in the moral graph of the subgraph on vertices 
{a,b, 1}, which is ancestral. That we have to take an ancestral subgraph 
is shown by noting that Xa _j._ Xb I X3; the dependence arises through 
the ancestor X2 of X3. 

Lauritzen et al. (1990) show that their two definitions of directed 
Markov are equivalent to each other and to being a recursive model. It 
is obvious that directed global Markov implies directed Markov which 
implies recursive. For any moralized ancestral DAG (8.12) provides 
a potential factorization, which by Proposition 8.l(ii) implies the dis­
tribution is global Markov on the moral graph hence XA JL XB I Xc . 
Another proof is given in Propositions 8.6 and 8. 7 which also applies 
to continuous random variables (without assuming a joint density). 

Pearl (1986, 1988) finds conditional independence properties via a 
more complicated notion of separation for DAGs, called d-separation. 
A DAG is said to be an I-map of a distribution if XA JL XB I Xc 
whenever C d-separates A and B. To define d-separation, consider a 
trail from A to B on the DAG, following edges in either direction. At 
each vertex inside the trail there will be two arrows. A trail is blocked 
by C at a vertex v if the two edges at v either 

(i) do not have converging arrows and v E C, or 

(ii) do have converging arrows and neither v nor any of its descendants 
are in C, 

and A and B are said to be d-separated by C if every trail from A 
to B is blocked by C at some internal vertex. Consider once again 
the example of Figure 8.6. Then Xa JL Xb I Xt follows from the d­
separation of {a} and {b} by {1}, but {a} and {b} are not d-separated 
by {1, 2} or {1, 3}, as the trail a-2-b is no longer blocked. 

The d-separation condition for independence (empty C) is that A 
and B have disjoint ancestral sets, which is as we would expect. 

For a DAG to be an I-map for a distribution is equivalent to the 
distribution being directed global Markov by the following proposition, 
and so is equivalent to being a recursive model. 

Proposition 8.6 (Lauritzen et al., 1990) 
For sets A , B and C of vertices, d-separation of A and B by C is 
equivalent to the separation of A and B by C in the moral graph of the 
subgraph of ancestors of A U B U C. 

Kiiveri et al. (1984) 
have other definitions 
of local and global 
Markov properties on a 
DAG. 

Spirtes et al. (1993) call 
a vertex with 
converging arrows a 
collider. 
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Proof: Let d be the moralized ancestral subgraph. Suppose A and B 
are separated by C in d. We will show that A and B are d-separated 
by C. Consider a trail from A to B in the DAG. 

First we show that any trail which is not wholly in d is blocked. 
Follow the trail from A, and let a be the first vertex not in d. By the 
ancestral property, the arrow on the edge leaving d must point to a. 
Only descendants of a can be reached by continuing the trail without 
converging arrows, and these cannot be in d (or their ancestor a 
would also be). To reach B the trail must have a pair of converging 
arrows at a vertex outside d, and will be blocked at that vertex since 
it is not an ancestor of any vertex in C (as all such vertices are in d). 

Second, consider a trail from A to B on the DAG with all vertices 
in d. If this contains a vertex with converging arrows, the predecessor 
and successor will have been 'married' in the moral graph, and so by 
replacing the converging arrows by the added edge we can find a path 
in the moral graph d which avoids vertices with converging arrows. 
This path must contain a vertex from C, and hence the trail on the 
DAG must be blocked at a vertex without converging arrows. 

Conversely, suppose A and B are not separated by C in d. Take 
a path from A to B which does not meet C, and form a trail on the 
DAG by replacing any edges formed at moralization by a diversion 
to their common child (which is in d). Suppose this trail is blocked; 
this can only happen at a vertex a with converging arrows and no 
descendants in C. Since the vertex is in d, it must have a descendant 
in either A or B. Thus we can follow the trail from A to a and then 
follow its descendants to B, or from B to a and then via descendants 
to A. This gives us a trail with strictly fewer blocking vertices. By 
repeating the process we can find an unblocked trail in the DAG from 
A to B. 0 

These results show that for a recursive model on a DAG we can 
read off conditional independence properties by d-separation in the 
DAG or separation in the ancestral moral graph. Can all conditional 
independencies of sets of variables be found in this way? The general 
answer must be 'no', as conditional independencies could be encoded 
in the numerical values of the distribution, but Geiger & Pearl (1990) 
construct a recursive model for which any sets of variables which are 
not d-separated are not conditionally independent. Thus no other 
conditional independencies can be found from the DAG alone. If 
we know that some relations between variables are deterministic (occur 
with probability one) we can extract more information by D-separation, 
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which differs from d-separation by also blocking a trail at a vertex 
whose variable is determined by Xc (Geiger et al., 1990). 

Proposition 8.7 (Verma & Pearl, 1990) 
If a distribution is a recursive model on a DAG, that DAG is an !-map 
for the distribution. 

Proof: The proof is by induction on the size of the DAG ~ : the result 
is trivial if the DAG has only one element. Let w be the last vertex in 
the DAG (and hence has no children), and suppose the result is true 
for the subgraph ~' omitting w. Our distribution is still recursive on 
~'. Let A, B , C be disjoint sets of vertices such that A and B are 
d-separated by C in ~ ; we will show A .JL B 1 C. Any trail with w 
as an internal vertex necessarily has converging arrows at w. Consider 
three exhaustive cases. 

(a) The vertex w f. AU B U C. Every trail including w is blocked, so 
A and B are d-separated by C in ~' and A .JL B I C. 

(b) Suppose that vertex w is in either A or B; we will assume w E A, 
and let A' = A \ { w }. Note that A' is d-separated from B by C in 
~'. Now w has no parents in B (or there would be a one-step trail 
from A to B). Let P be the set of parents of w which are not in 
C; P is also d-separated from B by C in ~' . (Any trail from P to 
B either goes through w and is blocked, or can be extended to a trail 
from w to B which is not blocked at the added internal vertex in P.) 
Thus A' U P .JL B I C and for a recursive model { w} .JL B I A' U C U P 
(since the conditioning set includes all the parents of w ). These imply 
AU P .JL B I C (see (A.4)) hence A .JL B I C. 

(c) We have w E C, so no trail can be blocked at w. It follows that A 
and B are d-separated by C' = C \ { w}. Now w must be d-separated 
from either A or B by C' or there would be an unblocked trail from 
A to B via w. Suppose this is true for B, so A u { w} and B are 
d-separated by C'. We have AU{w} .JL B I C' by case (b), which implies 
A .JL B I C' U {w} = C (see (A.3)). D 

Calculations on moral graphs 

There are several calculations we may wish to perform on the joint 
distribution, but the most common are to condition on observed vari­
ables and to marginalize, especially to find the distribution over the true 
class. As we have seen, it will be normal to start with the conditional 
probability tables (8.12), which give a potential representation (see the 
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proof of Proposition 8.5). This may be converted to a marginal repre­
sentation by the standard message-passing algorithm (page 261), which 
also allows us to condition a marginal representation on evidence of 
the form E = n{xv E Sv}. 

In general finding a marginal distribution of a subset of random 
variables is difficult, but it is immediate from the marginal represen­
tation if the subset is contained in some clique. Fortunately we will 
mostly be interested in marginals of a single variable, and then will 
have at least one clique to choose from. There is a trick (Pearl, 1988, 
§3.5.3; Jensen, 1991) to find the probability of a specific event of the 
form E = n{ Xv E Sv }, as the conditioning procedure in the join tree on 
E without normalization finds Pr{', E}, and this can be summed over 
any clique to find Pr{E}. (This is done in the example which follows.) 

An example 

We give an entirely fictitious example from medical diagnosis with eight 
vertices presented in Figure 8. 7 and Table 8.2. The specification of the 
distribution via the conditional probability tables is 

p(A) p(B) p(C) p(DIA,B) p(EIA) p(FIC) p(GID,E) p(HID,F). 

To form the moral graph (Figure 8.8) we have to join a to b, d to 
e and d to f; this is already a triangulated graph. The cliques are 
abd, ade, cf, deg and dfh. One ordering by maximum cardinality 
search, starting from a, for the vertices is abdegfhc and for the cliques 
is C1 = abd, C2 = ade, C3 = deg, C4 = dfh, Cs = cf. The separators are 
then S2 = ad, S3 = de, S4 = d, Ss = f and so the marginal representation 
lS 

p(A,B,D) p(A,D,E) p(D,E, G) p(D,F,H) p(C, F) 
p(A, D) p(D, E) p(D) p(F) 

In forming the join tree we have considerable freedom, as C4 can 
be linked to any of its predecessors. One choice (joining C4 to C3 ) 
would make the join tree into a chain, but we chose the tree shown in 
Figure 8.9. 

The marginal probabilities may be found from p( CJ) = 
p(D I A, B)p(A)p(B), p(C2) = p(E I A)p(S2), p(C3) = p(G I D, E)p(S3), 

p(Cs) = p(F I C)p(C) and p(C4) = p(H I F,D)p(Ss)p(S4). We find, writ­
ing tables in lexicographic order (false before true, last index varies 
fastest). 
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Smoker Unfit Figure 8.7: The DAG 
a for an artificial medical 

Breathless 
diagnosis problem. 
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Family history 

of heart disease 
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Chest pains 

Poor diet Indigestion 
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Pr{A} = 0.5 Pr{B } = 0.2 Pr{C} = 0.3 
Table 8.2: The Pr{ D IF, F} = 0.05 Pr{D IF, T} = 0.3 Pr{D I T,F} = 0.2 Pr{D IT, T} = 0.5 
conditional probability 

Pr{E IF} = 0.3 Pr{E IT} = 0.5 tables for the DAG of 
Pr{F IF} = 0.1 Pr{F IT} = 0.4 Figure 8.7. For each 
Pr{ G IF, F} = 0.01 Pr{ G IF, T} = 0.5 Pr{ G I D = T} = 1 vertex the condition is 

Pr{H I F,F} = 0 Pr{H IF, T} = 1 Pr{H IT, F} = 0.5 Pr{H IT, T} = 1 on its parents in 
alphabetical order. 
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separators S; are 

d.fh marked on the edges. 
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ABO 0.38 0.02 0.07 0.03 0.32 0.08 0.05 0.05 
AD 0.45 0.05 0.37 0.13 
ADE 0.315 0.135 0.035 0.015 0.185 0.185 0.065 0.065 
DE 0.50 0.32 0.10 0.08 
DEG 0.495 0.005 0.16 0.16 0 0.1 0 0.08 
D 0.82 0.18 
CF 0.63 0.07 0.18 0.12 
F 0.81 0.19 
DFH 0.6642 0 0 0.1558 0.0729 0.0729 0 0.0342 

Note the treatment of clique C5 = cf; we need the marginal for f, and 
this demands that we process C5 before C4. It is natural to think of 
C4 depending on C5, but to produce a tree we have to label the edge 
in the opposite direction. 

We can also find the initial marginal probabilities via a potential rep­
resentation and message-passing. Suppose we take initial potentials as 
p(A)p(B)p(D I A, B), p(E I A), p(G I D, E), p(H I F,D) and p(F I C)p(C). 
Message-passing then multiplies <Pc2 by p(A, D), <Pc3 by p(D, E) and 
<f>c4 by p(D) and by p(F) to form the marginal representation. 

Suppose a patient presents symptoms of breathlessness and chest 
pains, and is a smoker. What is the probability of heart disease? We 
condition on the evidence A = G = H = T. We iilustrate the message­
passing approach by sending messages to C1 = abd at the root of the 
tree. We enter G = H = T at cliques C3 and C4. For A = T we have a 
choice of cliques, and choose Ct. We start at C4 with a message over 
S4 = d to C1, the new-to-old ratio of the separator distributions. 

DFH 0 0 0 0.1558 0 0.0729 0 0.0342 
D 0.1558 0.1071 
msg 0.1558/0.82 = 0.19 0.1071/0.18 = 0.595 

Clique C3 sends a message over S3 = de to C2 : 

DEG 0 0.005 0 0.16 0 0.1 0 0.08 
DE 0.005 0.16 0.1 0.08 
msg 0.005/ 0.5 = 0.01 0.16/0.32 = 0.5 1 

This is then incorporated into clique c2 and a message sent over 
S2 =ad to Ct: 

ADE 0.00315 0.0675 0.035 0.015 0.00185 0.0925 0.065 0.065 
AD 0.07065 0.05 0.09435 0.13 
msg 0.157 1 0.255 1 
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Clique C1 then incorporates two messages and its own constraint. We 
need only give the results for A = T : 

BD 0.32 · 0.19 · 0.255 0.08 · 0.595 · 1 0.05 . 0.19 . 0.255 0.05 . 0.595. 1 
0.015504 0.0476 0.002423 0.02975 

D 0.017927 0.07735 

so Pr{Evidence} = 0.095277 and Pr{D I Evidence}= 0.812. 
As C 1 is the root, we should then pass messages back down the 

tree, but our question has already been answered from the marginal in 
C1. It will be convenient at this stage to normalize, that is to divide the 
marginal distribution C1 by Pr{Evidence}. The messages sent to C2 

and C4 are then approximately 

AD 0 0 0.188/0.09435 0.812/0.13 
D 0.188/0.1558 0.812/0.1071 

This modifies the clique marginals to (approximately) 

ADE 0 0 0 0 0.0037 0.1843 0.406 0.406 
DFH 0 0 0 0.188 0 0.553 0 0.259 

These send messages to C3 and Cs of 

DE 0.00037/ 0.005 0.1843/0.16 0.406/ 0.1 0.406/0.08 
F 0.553/0.81 0.447/0.19 

and those cliques can be updated to 

DEG 0 0.00037 0 0.1843 0 0.406 0 0.406 
CF 0.430 0.165 0.123 0.282 

After these calculations it is often easy to answer further questions. 
Suppose we discover that the patient's family has a history of heart 
disease. This amounts to new . evidence that B = T. Rather than go 
through the full procedure of propagating messages, we can just examine 
the marginal distribution of C1 to see that the conditional probability 
of heart disease is now 0.02975/(0.002423 + 0.02975) ~ 0.925. Similar 
calculations will often allow us to evaluate the value of 'buying' various 
items of new evidence, and so decide which to obtain (Lauritzen & 
Spiegelhalter, 1988, §5.5; Jensen & Liang, 1995). 

Mixed models 

Lauritzen (1989, 1992) and Olesen (1993) consider analogues of these 
procedures for conditional Gaussian distributions (page 41). The dis­
tinction between discrete and continuous variables leads to consider­
ation of marked graphs (with the marks differentiating discrete and 



The connection to the 
Gibbs sampler was 
made by Hrycej (1990), 
Chavez & 
Cooper (1990), 
Shachter & Peot (1990), 
and, more elegantly, by 
York (1992). 

This too has been 
considered in genetics: 
Ott (1989), Ploughman 
& Boehnke (1990) and 
Kong (1991). 
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continuous random variables) and stronger concepts of decomposabil­
ity and moralization. 

There is a considerable literature about multivariate normal belief 
nets, but for pattern recognition we need at least one discrete variable, 
the true class. 

Simulation-based calculations 

The calculations of the previous subsection work well for sparsely­
connected graphs with discrete random variables which take a small 
number of values. The approach can be extended to conditional Gaus­
sian distributions (page 41) when the evidence on continuous variables 
is a precise value (Gammerman et al., 1995), but most attempted ex­
tensions run into overwhelming computational complexity. 

Henrion (1988) (and Henrion et al., 1991) used a stochastic simu­
lation method he called (probabilistic) logic sampling. This uses (8.12) 
for unconditional simulation of the whole collection of random vari­
ables. This is easy; we move through the DAG in vertex order, at each 
stage sampling conditionally on the values at the parents of the current 
vertex (and these values must be already known). To condition, run 
many simulations and only keep those which are consistent with the 
conditions, using these to compute frequencies of any events of interest. 
Provided the evidence has positive probability this will work, although 
if the probability of the evidence is low, only a small proportion of the 
runs will be retained, and so the process may be slow. If we need to 
condition on point values of continuous variables, this approach will 
be impossible (or if we replace the point value with a small interval, 
possible but impracticably slow). 

Pearl (1987) suggested the use of iterative simulation methods such 
as the Gibbs sampler (see Section A.3). This approach had previously 
been used in image analysis and has since become popular in main­
stream Bayesian statistics. These methods are now often called MCMC 
for 'Markov chain Monte Carlo'. We have a collection of random 
variables on a graph; as in the join tree each random variable might 
itself be a collection. For the Gibbs sampler we pick a vertex, and 
sample from Xv conditional on all the random variables at all the 
other vertices. For a local Markov distribution (to which we restrict 
attention) the conditional distribution depends only on the values of 
the random variables at neighbouring vertices. (We have already seen 
that the neighbours in the moral graph consist of the parents, children, 
and other parents of those children.) If the graph is sparsely connected, 
this may be a small enough set for the conditional simulation to be 
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performed quite easily. To actually run the Gibbs sampler, vertices are 
picked sequentially, either at random or in some pre-assigned order. 

Conditioning is easy for the type of evidence we are considering; 
each random variable is simulated conditionally on the event(s) con­
cerning it. 

This seems a very attractive method. If we want some aspect of 
the distribution of a subset of random variables, all we need to do is 
to simulate the whole set, and compute the frequency of the desired 
event(s). By taking a large enough sample we can compute the desired 
probabilities to any accuracy required. The difficulties are 

• we have to run the Gibbs sampler long enough to ensure that we 
have a close enough approximation to the asymptotic distribution, 
and 

• we need independent or close-to-independent samples from the 
distribution, which we can achieve by taking samples sufficiently far 
apart in the run of the Gibbs sampler. 

These can be achieved, but the convergence can be extremely slow; 
Ripley & Kirkland (1990) give a dramatic example in which equilibrium 
has not been approached after each random variable in the system has 
been sampled 10,000 times. In fact the second point is unnecessary in 
our application if we just count to obtain the frequency of events, since 
we are estimating an expectation, and expectations are additive. Thus 

N 

~ LI[X~) E E] 
t=l 

will be an unbiased estimator of Pr{ E} provided the process is started 
in the equilibrium state (by a sample from the correct distribution). 
However, it remains true that the estimator will be very variable unless 
the process has been run many times longer than the interval between 
approximately independent samples, and that we will have to discard 
an initial part of the run to combat the first point. 

The Gibbs sampler step applied to the moral graph obtained from 
a recursive model needs a method to sample from the distribution at 
a vertex conditional on the parents, children and 'mates' of the vertex, 
plus any evidence restriction on the random variable. It is easy to see 
that the conditional density (ignoring any evidence) is of the form 

p(Xv I Xa{v}) oc p(Xv I X a, a a parent of v) 

X IT p(Xc I Xa, a a parent of c). (8.13) 
children c 

For this problem it is 
known that there are 
better MCMC samplers 
than Gibbs (Peskun, 
1973), but the simplicity 
of Gibbs sampling may 
prevail. 
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(Pearl, 1988, p. 218, gives a formal proof, but this is immediate.) This can 
be an awkward distribution to sample by standard rejection sampling 
(Ripley, 1987), but it is easy to sample from the first term, then use 
rejection sampling on each of the child terms separately. (Gammerman 
et al., 1995, derive this by a very indirect route involving auxiliary 
variables; Besag & Green, 1993.) If evidence is involved at the node 
this can be incorporated by conditioning in the simulation given the 
parents. 

An attraction of the Gibbs sampler to computer scientists is its 
intrinsic parallelism. We can update the sample at vertices which are not 
neighbours simultaneously; samples can also be updated by different 
processors asynchronously, at least if we ensure that messages are 
received from neighbours before processing begins. There are message­
passing policies which prevent simultaneous updating of neighbours 
without needing a central controller; some are sketched in Pearl (1988, 
pp. 219-222). 

Simulated annealing (Ripley, 1987; Aarts & Korst, 1989) can be 
used to find the most plausible explanation (the most probable combi­
nation of other variables given those observed) but is likely to be very 
slow to do so. (This method was suggested by Hrycej, 1992, Theorem 
11.2.3.) 

There is no reason why Gibbs sampling should be applied to a 
single variable at a time, and blocked variants have been explored 
in image analysis, in which a group of variables is sampled given 
its neighbours; the idea being that although sampling may be more 
difficult, the process may traverse the sample space more rapidly and 
so converge to equilibrium faster. Choosing suitably sized groups of 
variables is a black art at present. 

8.3 Learning the network structure 

So far we have assumed that the graph or DAG was given by the 
experts. Is there any hope of inducing the network from examples? 
Several approaches have been pursued. 

From the traditional statistical viewpoint an undirected graphical 
model represents a restriction of a full dependence, for example (and 
most commonly) a log-linear model for a contingency table. The model­
building strategy is to move around the space of possible models, and 
eventually to select a small number of simplified models which are 
complex enough to explain the patterns in the examples, yet have 
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comprehensible interpretations. (It is this last point which often leads 
to a consideration of only subsets of graphical models; Edwards & 
Havarnek, 1985; Upton, 1991.) The strategy can involve either a series 
of hypothesis tests or searching to minimize a penalized fit criterion such 
as AI C. (Lauritzen et al., 1994, give a case study of both for the CHILD 
network of Spiegelhalter et al., 1993.) This approach usually involves 
a great deal of user control, although it is beginning to be partially 
automated. Since interpretability is paramount, a domain-expert will 
always be needed to monitor the process. 

A variant on the testing approach is to use a series of tests for 
conditional independence to find the Markov boundary of each vertex 
(those vertices on which Pr{ Xv I X V\{v}} depends), and then construct 
a graph with respect to which the distribution is local Markov (Fung 
& Crawford, 1990). There will be very many tests, some of which will 
give the wrong answer by chance. One way to combat this problem of 
multiple comparisons (suggested by Fung & Crawford, 1990) is to use 
the significance level a of the tests as a parameter of the procedure, and 
select it by cross-validating a relevant measure of performance. Many 
fewer tests would be needed to establish a graph with respect to which 
the distribution is pairwise Markov, since we need only test for each 
pair of vertices. Each test will be a test of conditional independence in a 
many-way contingency table, so there will difficulties with sparse tables 
unless the training set is large. The Fung-Crawford approach has the 
advantage of allowing small sets of neighbours to be considered first. 

Another tradition, from the social sciences, for inferring a causal 
network from data (often in a regression setting) is represented by 
Glymour et al. (1987) and Spirtes et al. (1993). Finding a DAG makes 
the problem considerably harder, although it does allow the specifi­
cation of smaller conditional probability tables, and the deduction of 
causal relationships. An edge between a and b will be absent in the 
DAG if there is a set S such that X a ...JL Xb I Xs, so a search over subsets 
is needed. Since we know that the undirected version of the DAG is 
a subgraph of the moral graph, finding a graph with respect to which 
the distribution is local Markov provides a good starting point. The 
main result of Spirtes et al. (1993), their Theorem 3.4, applies only to 
a subclass of possible distributions (those with some DAG as a perfect 
map) and for the example on page 249 their procedures induce a graph 
with no edges. (They make no attempt to check their condition in 
their examples, but it would be straightforward to check that the data 
distribution is recursive on the induced DAG.) 

There are proposals to 
use these methods in 
insurance, where a 
database of millions of 
cases is available. 

In the regression setting 
this is called path 
analysis. 

If a follows b in the 
order then we can take 
S to be the parents of 
a. 
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Markov trees 

Chow & Liu (1968) (see also Pearl, 1988, Chapter 8) extend the 
contingency-table approach by seeking the belief tree that best approx­
imates (in Kullback-Leibler divergence) a general multi-way discrete 
distribution. They show that: 

• given the tree topology, the conditional distribution of each node 
given its parent in the best approximation is that in the original 
distribution, and 

• the best tree is any minimal spanning tree with distance between a 
and b given by the mutual information of (Xa,Xb), 

Since there are efficient algorithms for finding minimum spanning trees 
(Cormen et al., 1990, Chapter 24; Sedgewick, 1990, Chapter 31) this 
allows a best approximating Markov tree to be constructed. 

The proof of these two properties is easy. We assume for simplicity 
that we have discrete random variables. Given a tree, let p(i) denote 
the parent of vertex i (empty for the root). Any recursive model P' 
can be expressed as 

P'{X} =II P'{XiiXp(i)} 
i 

from (8.12) on specializing to a tree. Now consider the Kullback-Leibler 
divergence between the true distribution P and a recursive model P' : 

d(P,P') = I:P{xv}log [P{xv}/P'{xv}] 
xv 

= I: P{xv} logP{xv}- I:P{xv} I: logP'{xi I Xp(i)} 
xv xv i 

xv j X;, Xp(i) 

= I:P{xv}logP{xv} 
xv 

-I: I: P { Xp(i)} [I: P {xi I Xp(i)} log P' {Xi I Xp(i)} J. 
i Xp(i) X; 

This can be minimized by maximizing each term in square brackets; 
the maximum occurs at P'{xi I Xp(i)} = P{xi I Xp(i)} and the minimized 
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divergence is 

d(P,P') = LP{xv}logP{xv}- LP{xv} L::logP{x;IXp(i)} 
x v xv i 

= Ll(X;,Xp(i)) + LP{xv}logP{xv}- LLP{xi}logP{x;}. 
i X V i Xi 

A tree can always be turned into a causal graph by choosing a root 
and directing edges away from the root. This can be convenient in 
specifying the conditional probabilities, especially if the root is chosen 
judiciously. However, if we are inducing structure from data, the 
conditional probabilities will normally be estimated from the same 
dataset. In that case the unknown true distribution is replaced by 
frequencies in the training set, and the simplest way to specify the 
Markov tree is via a marginal representation, with Pr{Xa, Xb} for 
adjacent vertices estimated by the frequency in the training set. (The 
consistency conditions are automatically satisfied.) This can also be seen 
as fitting an unrestricted Markov tree to the training set by maximum 
likelihood. 

Priors for belief networks 

The full Bayesian procedure is to put a prior on the topology of belief 
networks, and then average the results over belief networks weighted 
by their posterior probabilities. This principle has been pursued by 
Cooper & Herskovits (1992), in tandem with learning the conditional 
probability tables from data. There is an enormous number of different 
networks; for example Cooper & Herskovits (1992, p. 319) quote 
approximately 4.2 x 1018 for ten vertices. Cooper & Herskovits make 
some very strong assumptions on the prior on topologies (such as a 
uniform distribution) to simplify computation. All such assumptions 
are unrealistic, as considering that set of vertices implies a belief in a 
sparsely connected network. (However, the prior may be swamped by 
the data and so be practically irrelevant.) My own prior might often 
be approximated by one on the number of edges. 

The full Bayesian approach is normally computationally impossible 
as we cannot average over all topologies. Full averaging can be replaced 
by averaging over the few most plausible topologies, maybe even just the 
most plausible. This can be considered as the approach of traditional 
model selection and of Chow & Liu (1968), with slightly different 
measures of plausibility. (Cooper & Herskovits suggest how to calculate 
a topology with close to highest posterior probability, given an ordering 
on the vertices and asking that parents precede children.) 

The combinatorics of 
DAGs are considered 
by Robinson (1977). 
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To make use of Bayesian methods we need prior distributions over 
the parameters (in the conditional probability tables for recursive mod­
els or clique marginals for decomposable models) as well as efficient 
means to integrate out those parameters to find the posterior proba­
bilities of models. This is possible for Dirichlet priors for conditional 
probability tables and the hyper-Dirichlet priors introduced by Dawid & 
Lauritzen (1993) for clique marginals (which have a consistency condi­
tion). Indeed, with these priors the posterior distribution of the random 
variables is Markov after integrating out the current distribution of the 
parameters. 

Madigan & Raftery (1994) confine their model averaging, as we 
saw in Chapter 2. They employ a stepwise search procedure through 
the space of models, adding or deleting an edge at a time (and, for 
undirected graphs, staying within the class of decomposable models by 
removing an edge only if it is a member of just one clique, and only 
adding an edge if it does not create a chordless cycle). 

It is possible to use simulation methods, but they will also only 
average over a small subset of the topologies, so the method will 
need to be carefully constructed to give useful results. Madigan & 
York (1995) illustrate the use ofMCMC methods to traverse the model 
space. 

Hidden variables 

A Markov or belief network can have one or more vertices representing 
unobserved latent variables. This device is widely used in medical 
applications, for example to represent the true (rather than reported) test 
result (as in Figure 8.2). They will cause observations to have missing 
values, and so complicate the learning of conditional probability tables. 
Unsurprisingly, the EM algorithm and variations (see Section A.2) have 
been used (Spiegelhalter et al., 1993, Section 7). 

Hidden variables can also be allowed within topologies inferred 
from data, in which case their interpretation is not specified in advance. 
Pearl (1988, Section 8.3) considers hidden vertices in trees, and other 
methods have been developed (Liu et al., 1991; Verma & Pearl, 1991). 

8.4 Boltzmann machines 

One very specific case of our networks, the Boltzmann machine (Hinton 
& Sejnowski, 1983; Ackley et al., 1985; Rumelhart & McClelland, 1986, 
Chapter 7), has a place in the history of neural networks. A Boltzmann 
machine has binary random variables at a finite set of vertices V which 
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are completely connected, and the conditional distribution at each 
vertex given all the other random variables is Bernoulli with 'success' 
parameter ev given by a logistic regression on the other vertices, so 
logit (e;) = w;o + 'L.N=i WijXj. As the network is completely connected, 
the graph properties are trivial; the expressive power comes from the 
restriction on the conditional distributions. The 'connection weights' 
W;j are restricted to be symmetric ( W;j = w ji) and without loss of 
generality we can take w;; = 0. The joint distribution is then 

where Z = L exp L W;j x;x j· 
xv i<j 

Boltzmann machines are used to 'learn' an input-output distribu­
tion, that is the joint distribution of a set of binary random variables, 
some of which are designated inputs I and some outputs 0. There will 
normally also be further units (designated 'hidden', H). Let S =I U 0, 
the variables which are 'visible'. Once the parameters (all the W;j) 

are given, we have a joint distribution over X v, which gives a joint 
distribution over Xs, and hence the conditional distribution Xo I XJ. 

Thus a Boltzmann machine models the full joint distribution of inputs 
and outputs (the latter indicating classes). 

So far the weights have been unspecified; the issue is to choose them 
to best approximate a given joint distribution of inputs and outputs, 
specifically the empirical distribution of a training set fl. This is done 
by maximum likelihood fitting of the parameters. However, since the 
joint distribution is unknown as a function of the weights, the necessary 
quantities are estimated by simulation, by Gibbs sampling. 

The precise procedure used is gradient ascent, which only entails es­
timating the derivative of the log-likelihood with respect to the weights. 
To avoid handling w;o separately, we assume a vertex 0 and implicitly 
condition on Xo = 1. The log-likelihood is 

L = LlogPrw{Xs = xs} = L[log I:exp LWijXiXj -logZ J. 
:T :T XH i<j 

Consider just one summand L1 of the log-likelihood. We have 

and 

aLl 'L-xH X;X j exp 'L.i<j Wij X;X j a log z 

awij 'L-xH exp 'L.i<j Wij x;x j aw;j 
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= E[X;Xjl(Xs = xs)] _ Pr{X; =X · = 1} 
Pr{Xs = xs} 1 

= Pr{X; = Xj = 11Xs = xs}- Pr{X; = Xj = 1}. 

Thus 

aa~ . = L [Pr{X; = Xj = 11 Xs = xs}- Pr{X; = Xj = 1}]. (8.14) 
IJ xsEff 

Each summand in (8.14) is estimated by simulation. Two runs of 
the Gibbs sampler are needed, one for the unconditioned network, 
and one conditioned on Xs. (In the terminology of the field, the 
inputs and outputs are 'clamped'.) A small step is made uphill, the 
gradient re-estimated and so on. Once an approximation to a (local) 
maximum of the likelihood is found, future cases can be 'presented' 
by conditioning on X1 and running the Gibbs sampler to find the 
conditional distribution of Xo. Note that missing or partially observed 
values are easily accommodated by not (fully) conditioning, both during 
training and during prediction. 

Unfortunately, the convergence of the Gibbs sampler has proved 
to be problematic even in toy problems, since at every step of steepest 
ascent the Gibbs sampler has to run to convergence for each example 
in the training set. For example, Kohonen et al. (1988) found that 
Boltzmann machines out-performed feed-forward neural networks on a 
toy problem, but were too slow to use on their real example. 

The mean field approximation (Peterson & Anderson, 1987; Hay kin, 
1994, §8.13) avoids the simulation in performing (8.14) by approximating 
the probabilities. Specifically, the random variables X; are replaced by 
their means, so Pr{X; = Xj = 1} is replaced by the products of the 
means of X; and Xj which, since they are binary, is 8;8j. (This is 
suggested by a saddle-point approximation given in the references.) 
This reduces the problem to calculating (Bv). We also replace the actual 
input variables by their means, so logit (8;) = w;o + ~Ni w;jBj in this 
approximation, and ( Bv) is the solution to this non-linear system of 
equations. If we want the conditional distribution, we know Xs and 
thus solve the mean-field equations with the constraint Bs = Xs . As 
all simulation is avoided, mean-field Boltzmann learning is much faster 
than using Gibbs sampling. It appears to work well even for small 
systems (Peterson & Anderson, 1987; Hinton, 1989b). 

Attempts have been made to improve the performance of the Boltz­
mann machine by abandoning its symmetry; it has every unit connected 
to every other, and each can influence the other. If we consider a DAG 
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there is no immediate feedback of influences. Logistic units have been 
considered in analogues of Boltzmann machines by Apolloni & de 
Falco (1991) and Neal (1992a, b). Assume that the vertices of the DAG 
are labelled so that parents precede children. Then we assume that 

II II 
exp X; 2: .<i wijXJ 

Pr{Xv=xv}= Pr{X11XJ,j<i}= 
1 

i ... (8.15) 
1 + exp J<i w11X1 

and w;1 = 0 unless j is a parent of i. As we saw for Henrion's logic 
sampler, unconditional simulation of a recursive model is very easy, but 
as the joint distribution is known explicitly unconditional simulation is 
not needed. From (8.15) we have 

-
0
-log Pr{X v = xv} = X 1X1 - _j_ log [1 + exp""" wijx1] 

ow·· ow·· ~ v v ~~ 

exp L:J<i WijXJ 
=~~-~ =~~-~~ 

1 + exp LJ<i WijXJ 

where 81 is the 'success' probability for X; conditional on its parents. 
Hence 

a a 
aw .. Pr{Xs = Xs} = L Pr{X v = xv} ow·. log Pr{X v = xv} 

I] XH I] 

= E[(X;-8i}XJI(Xs =Xs)] 

0~iJ log Pr{Xs = xs} = E [(X;- 8;)XJ I Xs = xs J 

so the gradient of the log-likelihood is 

:~. = L E[(X;-8;)X1 I Xs =xs] 
] XsEff 

(8.16) 

where 81 depends on the parents of X;. This is evaluated by Gibbs 
sampling (and we have already seen the form of the Gibbs sampler for 
a belief net). 

A special case of this belief-net Boltzmann machine was considered 
earlier by Yair & Gersho ( 1990a, b), under the name of a Boltzmann 
perceptron network. They have general inputs X1, binary hidden units 
X v and binary outputs X 1. The hidden units depend on the output 
units via individual logistic regressions, and the output units depend 
on the inputs and hidden units via a multiple logistic regression (so 
the outputs are mutually exclusive). The architecture is then very 
similar to a single-hidden-layer neural network, except that the hidden 
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log(l + exp f3h1Jh) R; 

f3hiJJh when lf3hkBhl is 
small. 
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units are randomly on or off with the probability that their output 
value would be in the corresponding neural network. This makes the 
posterior probabilities encoded by a set of weights slightly different, 
for although the average output of a hidden unit is its probability 
(}h, its effect enters non-linearly into the output probabilities via the 
softmax output stage. (This difference disappears in the mean-field 
approximation; Hopfield, 1987.) However, we can average correctly by 
replacing f3hk(}h by log(1 + exp f3hk(}h) in the output multiple logistic 
regression. This gives a slightly different output layer for the neural 
network, but back-propagation can still be applied to find oLjowij 
without simulation. 

Other variants of Boltzmann machines have been proposed. The 
radial basis Boltzmann machines of Kappen (1995) have binary or con­
tinuous input and output units and continuous hidden units with fixed 
inhibiting connections between the hidden units. A stochastic diffusion 
(Langevin) simulation system is used. The inhibition between hidden 
units essentially allows only one of them to be on at a time, and so 
restricts the solution space. This variant appears to be able to solve 
realistically sized problems. 

8.5 Hierarchical mixtures of experts 

Hierarchical 'mixtures of experts' (HMEs; Jordan & Jacobs, 1994) are 
a way to specify the conditional distribution of class c given features x 
that has connections to several topics, and has already been touched on 
in Chapter 2. It is most closely related to belief networks. The mixture 
of experts idea was introduced by Jacobs et al. (1991), and hierarchies 
of experts by Jordan & Jacobs (1992). 

The idea is that there are a number of classifiers Ci, each of which 
produces for an input x a posterior distribution over classes. Each of 
these can be thought of as appropriate for a particular subpopulation 
S of cases, and another 'gating' classifier G tells us the proportions of 
those subpopulations at x. Since the subpopulation is unknown, the 
posterior probabilities over classes is 

p(c I x) = LP(c I x,S = s)Pr{S =sIx}. (8.17) 

Note that this is a model-based approach to stacked generalization. 
In the hierarchical form, (8.17) is used to define a classifier, and the 

process repeated to combine classifiers of this form. Normally only a 
few levels of the hierarchy are used, but Waterhouse & Robinson (1994) 
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use up to ten levels, combining a pair of networks at each stage. The 
terminology is perhaps a little imprecise: there is a single layer of 
'experts' but the mixture is defined hierarchically. Thus (8.17) still holds 
for an HME, but Pr{S =sIx} is parametrized hierarchically. 

The classifiers used in HMEs could be quite general, but in all the 
examples presented in the references they are logistic discriminants. 

We can view a 'mixture of experts' as a belief network. The features 
x provide a set of vertices I which are numbered first and connected 
to all expert and gating vertices. Each 'expert' is represented by a 
vertex which has as inputs all the feature vectors XI and has as its 
state variable a class. The 'gating' classifier has as inputs the features, 
and state variable one of the experts. The output vertex 0 has state 
the actual class, and inputs the states of the experts and the gating 
classifier. This is shown in Figure 8.10. The extension to a hierarchy is 
immediate: at each stage we combine two or more subnets by adding a 
gating classifier with state the label of a subnet connected to the feature 
vectors, and an output node connected to the gate and the outputs of 
the subnets. Despite this representation, the marginal distribution of 
XI is never specified, as we always work conditionally on the feature 
vectors. 

We can then use the methods of belief nets to find the posterior 
probabilities Pr{ SIx, y} given an example and its true class. So far 
we have implicitly assumed that all the classifiers are fully specified, 
but in fact they are logistic discriminants with a vector of parameters. 
These parameters can be chosen by maximum likelihood by a variety 
of algorithms. If parameters (} specify the 'experts' and <P the gating 
process, the log-likelihood is 

L((}, </> ; ff) = L log L Ps(Y I x; (}s)Pr{S = s I x ; </> }. 

(x,y)Eff s 

In many problems this is simple enough to maximize directly. Alter­
natively we can use the EM algorithm (Section A.2), by viewing S, 

Figure 8.10 : The belief 
network for a 'mixture 
of experts'. 



Figure 8.11 : The belief 
network for Bayesian 
inference on a 'mixture 
of experts'. 
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the true subpopulation, as a missing value. The log-likelihood for the 
complete data is 

L(8, ¢; {(x, y, s)}) = 2: logps(Y I x; Bs) +log Pr{S = s I x; 4>} 
(x,y,s) 

and at step i we have to maximize the expectation of this over S 
evaluated at the current parameter estimates, 

Q((8, ¢), (8, ¢)(i)) = 

l:l:Pr{S =s I y,x,¢Ul}[logps(Yix;8s)+logPr{S =sIx;¢}]. 
:T s 

The maximization over Q then splits into separate maximizations over 
the parameters 85 in each expert and over ¢. For Bs we have a 
maximum likelihood estimate with case weights Pr{ S = s 1 y, x; ¢Ul}. 
For 4> we have to maximize the mutual information between Pr{S = 
s I y, x; ¢Ul} and Pr{ S = s I x; 4> }. For a hierarchically specified gate 
this further divides into maximal mutual information problems at each 
level. 

Both Jordan & Jacobs (1994) and Waterhouse & Robinson (1994) 
use variants of this EM algorithm, for example not maximizing fully 
at the M step, and finding 'on-line' versions. Waterhouse & Robin­
son (1994) found a number of difficulties with their version, which 
appeared quite prone to reach a local maximum of the log-likelihood. 
They suggest alleviating this by having a large pool of experts, some of 
which are then effectively ignored. 

An alternative (Peng et al., 1994) is to consider Bayesian inference. 
As in Spiegelhalter & Lauritzen (1990), we can add a parent to each 
classifier which contains its parameter vector. Thus Figure 8.10 becomes 
Figure 8.11. Gibbs sampling can then be used to find the posterior dis­
tribution of the parameters given the training set 5"', and so to integrate 
out the posterior distribution of the parameters to find the predictive 
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posterior distribution. Estimating the parameters by maximum likeli­
hood is essentially the 'plug-in' version, since the maximum likelihood 
parameter values will give the posterior mode if fiat priors are used for 
the parameters (as Peng et al., 1994, did). 



There are differences 
related to sex rather 
than colour, for 
example, but sex is also 
recorded. 

9 

Unsupervised Methods 

Unsupervised methods are used when no classes are defined a priori, or 
when they are but the data are to be used to confirm that these are suit­
able classes. Examples of the latter type are quite common in biology, 
where species are often defined by physical characteristics, and datasets 
of biochemical measurements become available. The interesting ques­
tion is then whether the physical and biochemical measurements define 
the same classification. A variant of this occurs with our Leptograpsus 
crabs data. There the division into species was based on colour, and 
the interesting question is whether this is supported by morphological 
differences. Our analyses hitherto have been to find supporting morpho­
logical differences, but this begs the question of whether there might be 
even more striking differences unrelated to colour. 

Unsupervised methods are generally designed for visualization, either 
to show views of the data which indicate groups, or to show affinities 
between the examples by displaying similar examples close together. 
Dendrograms are a one-dimensional display of similarity, with the height 
of the join indicating (dis)similarity. For example, Figure 9.1 shows a 
dendrogram of the Cushing's syndrome data. Each pair is joined in the 
tree, and the height at which they are joined is an indication of their 
dissimilarity. This plot shows clearly that one point (labelled u) is very 
different from the rest, and does tend to group the diseases together, 
imperfectly. However, this is two-dimensional data, and the data can 
be plotted as in Figure 1.2 on page 11. This shows that we too would 
have difficulty separating the groups. 

Groupings found by unsupervised methods are usually referred to 
as clusters. They are usually taken to be disjoint (we do not allow an 
animal to belong to two species) but sometimes it is helpful to allow 
some overlap (botanical populations may contain hybrids). Finding 
clusters is one of the uses of the word 'classification', and the book 
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9 Unsupervised Methods 

by Gordon (1981) entitled Classification is entirely concerned with 
unsupervised methods, mainly clustering. 

Unsupervised methods are sometimes used to classify. For example, 
we could use Figure 9.1 to select the closest grouping, and take a 
majority vote amongst its true classes. This has been advocated (Fuzzy 
ARTMAP: Carpenter et al., 1992; Carpenter & Grossberg, 1994), but 
is dangerous as the unsupervised groupings may reflect a completely 
different classification of the data (colour vs sex for our Leptograpsus 
crabs, or, as in fact occurs, overall size). 

Our exposition will move from visualization towards finding struc­
ture in the data. We start with methods to show linear or smooth 
non-linear transformations of the dataset which will reveal interesting 
structure in low-dimensional plots (usually two-dimensional scatter­
plots). We then consider the class of methods sometimes known as 
multidimensional scaling which produce low-dimensional plots (again, 
usually in one or two dimensions) in which similar data points are 
plotted close together. 

The last two sections are concerned with clustering. The first covers 
methods to produce a few large clusters, and to produce taxonomic 
hierarchies such as Figure 9.1. The last section concerns methods which 
produce many clusters, but link them in a one- or two-dimensional 
layout wherein nearby clusters are more similar than distant clusters. 

9.1 Projection methods 

Projection methods choose one or more linear combinations of the origi­
nal features to maximize some measure of 'interestingness'. Equivalently, 
the space of features is rotated in IR.P, and the first few dimensions of 
the rotated space are retained. 

Figure 9.1 : Dendrogram 
of the Cushing's 
syndrome data by the 
'single-link' method. 



A is a p x q matrix, 
each column of which 
gives the coefficients of 
a linear combination. 

Proofs are given at the 
end of this section. 

This is the usual 
definition of principal 
components. 
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Principal components 

Principal components occur in a number of problems and by differ­
ent names : they are same thing as the Karhunen-Loeve expansion 
of Watanabe (1969) and Devijver & Kittler (1982), for example. Jol­
liffe (1986) and Jackson (1991) devote whole books to this topic. 

Suppose the data are n ~ p vectors Xi E JRP forming the rows 
of an n x p data matrix X. We will assume that the column means 
are zero, that is that each feature has mean zero in the given sample. 
The idea is to take q < p linear combination XA E 1R q which in 
one of a number of senses best represent the original data. This is 
done by taking the singular value decomposition of the data matrix 
X (Golub & Van Loan, 1989) X = UAVT, where A is a diagonal 
matrix with decreasing non-negative entries (Jci), U is an n x p matrix 
with orthonormal columns, and V is a p x p orthogonal matrix. 
Then the principal components are the columns of XV. Since X and 
A must have the same rank, at most p of the singular values (the 
diagonal elements of A) will be non-zero. Then we have the following 
properties : 

1 The first singular value (the first column of XV) is the linear 
combination aT x for a of unit length with the largest variance, the 
second is the combination of largest variance which is uncorrelated 
with the first, and so on. 

2 The first q < p columns of XV are the linear projection of X into 
q dimensions with the largest variance. (The covariance matrix of a 
q-dimensional projection is a q x q matrix, and this one is largest 
as measured by the trace and also by the determinant.) 

3 Let X = U Aq vT be the matrix formed by setting all but the first q 
singular values (diagonal elements of A) to zero. Then X is the best 
possible rank-q approximation to X in several senses, including 
the Frobenius norm, the square root of the sum of squares of the 
elements. 

4 Another way to express this is that if we project onto the first q 
principal components we have the most accurate rank-q recon­
struction of the original data points. 

5 Yet another way to express this is to say that the points of the 
q-dimensional projection onto the first q principal components lie 
in a q-dimensional space, and this is the best-fitting q-dimensional 
space as measured by the sum of the squares of the distances from 
the data points to their projections into the space. 
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In summary, if you want a reduction to q < p dimensions by linear 
combinations of the features, the principal components have many 
optimality properties. Note that the first two properties show that the 
measure of 'interestingness' that is maximized is the variance. 

The emphasis on variance reveals the Achilles' heel of principal 
components: they depend on the units in which the features are mea­
sured. In a biological problem in which we might have lengths, volumes 
and weights, the principal components will depend critically on the 
units used. Even when all the measurements are lengths, do we want 
to regard variation in the length of a small part as equivalent to vari­
ation in the length of the whole organism? Usually not; in biological 
problems the first principal component will normally be a measure of 
overall size, and be of little interest. So unless we have good a priori 
reasons to regard the variances of the features to be comparable, we 
would normally make them equal by rescaling all the features to have 
vanance one. 

There is an older approach to principal components which is better 
known but numerically less stable. This is to form the covariance 
matrix S of the observations, and take its eigenvalue decomposition 
CDCT. As S is a covariance matrix, hence non-negative definite, the 
eigenvalues will be real and non-negative. Now (for centred data) 
(n- 1)S = XTX = VAUTUAVT = VA2VT, so D = A2 j(n- 1) 
and C = V. Thus the principal components may be found from 
the eigendecomposition of S. It is customary to advocate using the 
eigendecomposition of the correlation matrix rather than the covariance 
matrix, which is the same procedure as rescaling the features to unit 
variance before calculating the covariance matrix. 

Viruses example 

We consider the Tobamovirus group of the viruses example, which has 
n = 38 examples with p = 18 features. Figure 9.2 shows plots of the 
first two principal components with 'raw' and scaled variables. As the 
data here are counts, there are arguments for both, but principally for 
scaling as the counts vary in range quite considerably between variables. 
Virus 11 (Sammon's opuntia virus) stands out on both plots: this is 
the one virus with a much lower total (122 rather than 157-161). Both 
plots suggest three subgroupings. 

In both cases the first two principal components have about equal 
variances, and together contain about 69% and 52% of the variance in 
the raw and scaled plots respectively. 



Figure 9.2: Principal 
component (top row) 
and Sammon mapping 
(bottom row) plots of 
the Tobamovirus group 
of the viruses example. 
The plots in the left 
column are of the raw 
data, those in the right 
column with variables 
rescaled to have unit 
variance. The points are 
labelled by the index 
number of the virus. 

Figure 9.3 : Pairwise 
scatterplots of the first 
three principal 
components of the 
Leptograpsus crabs 
data. Males are coded 
as capitals, females as 
lower case, colours as 
the initial letter of blue 
or orange. 
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Crabs example 

The crabs data are displayed on their first three principal components 
in Figure 9.3. The data were transformed to log scale but not further 
scaled (although that is arguable). Since the groupings (by colour and 
sex) are known, the points in the different groups are distinguished 
on the plots. The figure shows that the first principal component is 
largely unrelated to colour and sex : it is almost an average of the 
measurements on log scale, and so is displaying size. The second 
principal component tends to distinguish sex and the third colour, the 
most interesting grouping. 

Iterative methods 

A consequence of property 4 of the principal components is that the 
best we can do by taking p x q and q x p matrices A and B and 
forming XAB to approximate X in sum-of-squares is to take XA as 
the first q principal components. Now there are many other equally 
good solutions, for XAcc- 1 B will give the same fit for any invertible 
q x q matrix C. We can express this by saying that we can only 
optimize over the subspace spanned by the q linear combinations. 

It is obvious that XAB is the outcome of a feed-forward neural net­
work with no bias unit, all linear units and q units in the hidden layer. 
Thus the best possible fit by least squares of such a network trained 
with output equal to input (an 'auto-encoder' or 'auto-associator') is 
given by the subspace spanned by the first q principal components. 
This is a much-rediscovered fact (Bourlard & Kamp, 1988, and Baldi 
& Hornik, 1989, were amongst the first) and every 'on-line' algorithm 
to fit the neural network leads to an iterative algorithm to find the 
subspace spanned by the principal components. This has led to around 
100 papers on such algorithms. Well-known versions are those of 
Brockett (1991), Oja (1982, 1989, 1992), Oja & Karhunen (1985) and 
Sanger (1989). One of the simplest methods that extracts principal 
components (rather than just the subspace) is the APEX algorithm of 
Kung & Diamantaras (1990). (See Haykin, 1994, §9.8.) 

Although the idea of these algorithms is interesting, they seem 
unnecessary in practice. Singular value decomposition routines can 
handle quite large matrices X , and when they cannot cope, we can 
always find the covariance matrix on a single pass through the data 
and find its eigenvalues. 
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Robustness 

The extraction of principal components is based on variances, and so 
is sensitive to the presence of outliers. Outliers in high-dimensional 
data are notoriously difficult to find, although they often emerge as a 
side-effect from some projection pursuit methods. 

It is highly desirable to use a method of extracting principal com­
ponents which is less sensitive to outliers. This can be achieved by 
taking an eigendecomposition of a robustly estimated covariance or 
correlation matrix. There is a slight catch, in that it is essential to 
robustly estimate the means, and that this must be done by estimating 
the means of all features simultaneously (Rousseeuw & Leroy, 1987, 
p. 250). So the real task is to estimate the vector of means and the 
covariance matrix. There have been many attempts to do this; see 
for example Devlin et al. (1981). Modern approaches are discussed in 
Section 2.5. 

An alternative approach is to find a projection maximizing a robust 
measure of variance in q dimensions. This would have to be done 
iteratively, as for the projection pursuit methods described below. 

Proofs 

As our results depend on various properties of principal components, 
these are proved here for those who are interested in the details. 

Proposition 9.1 Consider an n x p matrix X with singular value decom­
position X = U AVT. The best approximation in Frobenius norm to X 
by a matrix of rank k ~ min( n, p) is given by 

- . T X= Udmg(Al, ... ,Ak, ... ,O)V . 

This is also the best approximation by a projection onto a subspace of 
dimension at most k, the projection onto the space spanned by the first k 
columns of U, and maximizes the Frobenius norm of a projection of X 
onto a subspace of dimension at most k. 

Proof: We have IIX- xf = IIA- Ak11 2 = L~~~(n,p) AT- Now X 

corresponds to a projection onto the space spanned by the first k 
columns of U, say Uk> since that projection gives 

Consider any approximation Y of rank at most k. This can be 
written as Y = AB where A is n x k and B is k x p (for example, via 
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the SVD of Y ). Now consider the best approximation of the form AC 
for any k x p matrix C. Since the squared Frobenius norm is the sum 
of the squared lengths of the columns, this is solved by regressing each 
column of X in turn on A; the optimal choice is C = (AT A)-1 AT X 

and 

where P A = A(A T A)-1 AT is the projection matrix onto span( A). Now 
we choose PA to maximize IIPAX II 2 : 

min(n,p) min(n,p) 

IIPAXII
2 = II PAUA f = L AJIIPAujll

2 = L AJPJ 
1 1 

and Pj ~ 1 (it is the length of a projection of a unit-length vector), 
~ PJ = liP AUf = liP A 11 2 = k. It is then obvious that the maximum is 
attained if and only if the first k Pj 's are one, the rest zero, so 

k min(n,p) 

IIX- y f?: IIXII 2
- IIPAXII 2 ?: IIXII 2

- L AT = L AT = IIX- Xll 2
. 

1 k+l 

Any projection of X onto a subspace of k dimensions has rank at 
most k. D 

Proposition 9.2 Consider n observations of p features forming a matrix 

X. Then the projection of Proposition 9.1 

(a) minimizes the sum of squared lengths from points to their projections 

onto any subspace of dimension at most k , 

(b) maximizes the trace of the covariance matrix of the projected vari­

ables onto any subspace of dimension at most k, and 

(c) maximizes the sum of squared inter-point distances of the projections 

onto any subspace of dimension at most k. 

Proof: Without loss of generality we can centre the observations, 
so each variable has mean zero. Part (a) follows from the squared 
Frobenius norm of X - PAX being the sum of squared lengths of its 
rows. For (b) the squared Frobenius norm of PAX is the sum of squares 
of the projected variables, that is n - 1 times the sum of the variances 
of the variables, which is the trace of the covariance matrix (and is 
invariant to the choice of a basis for that subspace). For (c) consider 
any projection PAX. Let d,5 be the distance between observations r 
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and s, and drs the distance under projection (which is smaller, as it 
is a projection). Let Yr be the- r th projected observation. Then, using 
L::: Yr = 0 (since the projections are still centred), 

r,s r,s r,s 

which is maximized according to Proposition 9.1. 0 

Proposition 9.3 The principal components defined by property I are 
given, in order, by columns of V. The first k principal components span 
a subspace with the properties of Proposition 9.2. 

Proof: Consider a linear combination y =aT x with II all = 1. Then 

where a' = vr a also has unit length (and this corresponds to rotating 
to a new basis for the feature variables). It is clear that the maximum 
occurs when a' is the first coordinate vector, or a the first column 
of V . Now consider the second principal component bT x. It must be 
uncorrelated with the first, so 

and it is obvious that the maximum variance under this constraint 
is given by taking b' as the second coordinate vector. An inductive 
argument gives the remaining principal components. 

Using the principal component variables we have X = U A, so it 
clear that the subspace spanned by the first k columns is the approxi­
mation of Propositions 9.1 and 9.2. 0 

Proposition 9.4 Consider an orthogonal change X B to k new variables. 
Amongst such transformations the first k principal components have max­
imal variance, both in the sense of the trace and of the determinant of 
the covariance matrix. 
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Proof: The trace statement is Proposition 9.2(b ), but we will give an 
alternative proof. Consider the SVD of X B, and let its singular values 
be !J.l, ... ,IJ.k· We will show /.lj ~ Aj,j = 1, ... ,k, which suffices as the 
trace of the variance matrix is proportional to the sum of the squared 
singular values, and the determinant is proportional to their product. 

Consider a variable y = xT a which is a unit-length linear combina­
tion of the first j principal components of the B set, but is orthogonal 
to the first j -1 original principal components. (A dimension argument 
shows that such a variable exists. Since B is orthogonal y is also a 
unit-length combination of the original variables and of their principal 
components.) Thus y has variance at least llJ and at most Jc], hence 
/.lj ~ Aj. D 

Projection pursuit methods 

Projection pursuit methods seek a q-dimensional projection of the data 
that maximizes some measure of 'interestingness', usually for q = 1 or 
2 so that it can be visualized. This measure would not be the variance, 
and would normally be scale-free. Indeed, most proposals are also 
affine invariant, so they do not depend on the correlations in the data 
either. 

The methodology was named by Friedman & Tukey (1974), who 
sought a measure which would reveal groupings in the data. Later 
reviews (Huber, 1985; Friedman, 1987; Jones & Sibson, 1987) have 
used the result ofDiaconis & Freedman (1984) that a randomly selected 
projection of a high-dimensional dataset will appear similar to a sample 
from a multivariate normal distribution to stress that 'interestingness' 
has to mean departures from multivariate normality. Another argument 
is that the multivariate normal distribution is elliptically symmetrical, 
and cannot show clustering or non-linear structure, so all elliptically 
symmetrical distributions should be uninteresting. 

The simplest way to achieve affine invariance is to 'sphere' the data 
before computing the index of 'interestingness'. Since a spherically 
symmetric point distribution has covariance matrix proportional to the 
identity, we transform the data to have identity covariance matrix. This 
can be done by transforming to principal components, discarding any 
components of zero variance (hence constant) and then rescaling each 
component to unit variance. As principal components are uncorrelated, 
the data are sphered. Of course, this process is susceptible to outliers 
and it may be wise to use a robust version of principal components. 

The idea goes back to 
Kruskal (1969, 1972). 
Kruskal (1969) needed 
a snappier title! 



Here <I> is the 
cumulative distribution 
function of a standard 
normal. 
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The discussion of Jones & Sibson (1987) included several powerful 
arguments against sphering, but as in principal component analysis 
something of this sort is needed unless a particular common scale for 
the features can be justified: 

Specific examples of projection pursuit indices are given below. Once 
an index is chosen, a projection is chosen by numerically maximizing 
the index over the choice of projection. A q-dimensional projection is 
determined by a p x q orthogonal matrix and q will be small, so this 
may seem like a simple optimization task. One difficulty is that the 
index is often very sensitive to the projection directions, and good views 
may occur within sharp and well-separated peaks in the optimization 
space. Another is that the index may be very sensitive to small changes 
in the data configuration and so have very many local maxima. Rather 
than use a method which optimizes locally (such as quasi-Newton 
methods) it will be better to use a method which is designed to search 
for isolated peaks and so makes large steps. In the discussion of Jones 
& Sibson (1987), Friedman says 

'It has been my experience that finding the substantive minima of a 
projection index is a difficult problem, and that simple gradient-guided 
methods (such as steepest ascent) are generally inadequate. The power 
of a projection pursuit procedure depends crucially on the reliability 
and thoroughness of the numerical optimizer.' 

and our experience supports Friedman's wisdom. It will normally 
be necessary to try many different starting points, some of which may 
reveal projections with large values of the projection index. Posse (1990, 
1995b) considers an almost random search which Posse (1995a) finds 
to be superior to his implementation of the optimization methods of 
Jones & Sibson and of Friedman. 

Once an interesting projection is found, it is important to remove 
the structure it reveals to allow other interesting views to be found more 
easily. If clusters (or outliers) are revealed, these can be removed, and 
both the clusters and the remainder investigated for further structure. If 
non-linear structures are found, Friedman (1987) suggests non-linearly 
transf-orming the current view towards joint normality, but leaving the 
orthogonal subspace unchanged. This is easy for q = 1; any random 
variable with cumulative distribution function F can be transformed 
to a normal distribution by $-1(F(X)). For q = 2 Friedman suggests 
doing this for randomly selected directions until the two-dimensional 
projection index is small. 
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Projection indices 

A very wide variety of indices have been proposed, as might be expected 
from the many ways a distribution can look non-normal. A projection 
index will be called repeatedly, so needs to be fast to compute. Recent 
attention has shifted towards indices which are rather crude approxi­
mations to desirable ones, but very fast to compute (being based on 
moments). 

For simplicity, most of our discussion will be for one-dimensional 
projections; we return to two-dimensional versions at the end. Thus we 
seek a measure of the non-normality of a univariate random variable 
X. Our discussion will be in terms of the density f even though the 
index will have to be estimated from a finite sample. (This can be done 
by replacing population moments by sample moments or using some 
density estimate for f such as the kernel methods of Section 6.1.) 

The original Friedman-Tukey index had two parts, a 'spread' term 
and a 'local density' term. Once a scale has been established for X 
(including protecting against outliers), the local density term can be 
seen as a kernel estimator of J f 2(x) dx. The choice of bandwidth is 
crucial in any kernel estimation problem; as Friedman & Tukey were 
looking for compact non-linear features (cross-sections of 'rods'-see 
Tukey's contribution to the discussion of Jones & Sibson, 1987) they 
chose a small bandwidth. Even with efficient approximate methods 
to compute kernel estimates, this index remains one of the slowest to 
compute. 

Jones & Sibson (1987) introduced an entropy index J f logf (which 
is also very slow to compute) and indices based on moments such 
as [K~ + 1/4K~]/12, where the K's are cumulants, the skewness and 
kurtosis here. These are fast to compute but sensitive to outliers (Best 
& Rayner, 1988). 

Friedman (1987) motivated an index by first transforming normality 
to uniformity on [-1,1] by Y = 2<I>(X) -1 and using a moment 
measure of non-uniformity, specifically j(fy - 1/2)2 . This can be 
transformed back to the original scale to give the index 

I
L = j [f(x)- ¢(x))2 d 

2¢(x) x. 

This has to be estimated from a sample, and lends itself naturally to an 
orthogonal series expansion, the Legendre series for the transformed 
density. 

The index I L has the unfortunate effect of giving large weight to 
fluctuations in the density f in its tails (where 4> is small), and so 

Here cf> is the standard 
normal density. 
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will display sensitivity to outliers and the precise scaling used for the 
density. This motivated P. Hall (1989) to propose the index 

IH = j [f(x) -l/J(x)]
2 

dx 

and Cook et al. (1993) to propose 

IN= j[f(x)-l/J(x)]
2
4J(x)dx. 

Both of these are naturally computed via an orthogonal series estimator 
of f using Hermite polynomials (Thisted, 1988, §5.3.2). Note that all 
three indices reduce to 2::~ wi(ai- bi)2, where ai are the coefficients in 
the orthogonal series estimator, and bi are constants arising from the 
expansion for a standard normal distribution. 

To make use of these indices, the series expansions have to be 
truncated, and possibly tapered as well (see Section 6.1). Cook et 
al. (1993) make the much more extreme suggestion of keeping only a 
very few terms, maybe the first one or two. These still give indices 
which are zero for the normal distribution, but which are much more 
attuned to large-scale departures from normality. For example, If: is 
formed by keeping the first term of the expansion of IN, (ao -1/2jii)2 

where ao = J l/J(x)f(x) dx = El/J(X), and this is maximized when ao is 
maximal. In this case the most 'interesting' distribution has all its mass 
at 0. The minimal value of ao gives a local maximum, attained by 
giving equal weight to ±1. Now of course a point mass at the origin 
will not meet our scaling conditions, but this indicates that If: is likely 
to respond to distributions with a central clump or a central hole. To 
distinguish between them we can maximize ao (for a clump) or -a0 

(for a central hole). These heuristics are borne out by experiment. 
In principle the extension of these indices to two dimensions is 

simple. Those indices based on density estimation just need a two­
dimensional density estimate and integration (and so are likely to be 
even slower to compute). Those based on moments use bivariate 
moments. For example, the index IN becomes 

IN= J J [f(x,y) -ljJ(x)ljJ(y)]
2
4J(x)ljJ(y)dxdy 

and bivariate Hermite polynomials are used. To maintain rotational 
invariance in the index, the truncation has to include all terms up to a 
given degree of polynomial. 

All the indices described so far are implemented for q = 2 in XGobi, 
a freely available data visualization tool from Bellcore (Swayne et al., 
1991). 
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Eslava & Marriott (1994) defined two indices for q = 2 specifically 
designed to display all clusters; conventional indices have a tendency 
to superimpose clusters in the projection. Suppose the projected points 
(or those not very near the origin) have ordered polar angles ei. 
The polar nearest neighbour index (to be minimized) is the average 
of min( lei- ei-ll, i8i+l- eil), the angular separation from the remaining 
points. Their other criterion maximizes the mean radial distance, or 
equivalently for sphered data, minimizes the variance of the radial 
distance. Posse (1995a, b) has another two-dimensional index also based 
on ideas of radial symmetry, using a chi-squared index of departure 
from normality averaged over univariate projections. 

One of the very few examples of a method which is both bio­
logically motivated and practically useful is the projection index of 
Intrator (1990, 1992) and Intrator & Cooper (1992) based on the BCM 
model of neuron selectivity put forward by Bienenstock et al. (1982). 
The BCM model is based on a one-dimensional projection c = aT x of 
a signal x, which is chosen to maximize 

(9.1) 

where the 'threshold' e = Ec2 is adjusted according to the distribution 
of the population of examples (in practice the training sample). Notice 
that (9.1) is not scale-free, and will be negative for large c and hence a. 
Thus there is no need to normalize a to unit length. There is a natural 
on-line algorithm to minimize (9.1), namely 

where e will also be updated from time to time. (Intrator & 
Cooper, 1992, discuss the stability of the differential equation limit 
of this update.) We can also consider several BCM neurons with lateral 
inhibition, in which case c is replaced by ck -I} L_Hk Cj for neuron k. 

The BCM neuron is itself a projection index, but as it is based 
on moments it will be sensitive to outliers. Intrator replaces c = aT x 
by t(c) for the usual logistic function t; this effectively transforms 
to [0, 1] by the inverse of the logistic cumulative distribution function 
before computing the index. Not only does this give a one-dimensional 
projection index but the lateral inhibition BCM network may be used 
to project onto q > 1 dimensions. Applications are shown by Intra­
tor (1991, 1992) and Intrator & Gold (1993). 

There is no unanimity over the merits of these indices (except the 
moment index, which seems universally poor). Some workers have 
reported that the Legendre index is very sensitive to outliers, and this 

The BCM model 
appears to be very well 
supported by 
experiment. 

The details, especially 
the constants, differ 
from paper to paper. In 
the original BCM paper 
0 = (Ecf. 
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is our experience. Yet Posse (1995a) found it to work well, in a study 
that appears to contain no ·outliers. The natural Hermite index is 
particularly sensitive to a central hole and hence clustering. The best 
advice is to try a variety of indices. 

Viruses example 

Figure 9.4 shows six views of the main group of the viruses dataset 
obtained by (locally) optimizing various projection indices; this is a 
small subset of hundreds of views obtained in interactive experimen­
tation in XGobi. With only 38 points in 18 dimensions, there is a 
lot of scope for finding a view in which an arbitrarily selected point 
appears as an outlier, and there is no clear sense in which this dataset 
contains outliers (except point 11, whose total residue is very much 
less than the others). When viewing rotating views of multidimensional 
datasets (a grand tour in the terminology of Asimov, 1985) true outliers 
are sometimes revealed by the differences in speed and direction which 
they display-certainly point 11 stands out in this dataset. 

Not many views showed clear groupings rather than isolated points. 
The Friedman-Tukey index was most successful in this example. Eslava­
G6mez (1989) studied all three groups (which violates the principle of 
removing known structure). 

This example illustrates a point made by Huber (1985, §21); we 
need a very large number of points in 18 dimensions to be sure that we 
are not finding quirks of the sample but real features of the generating 
proc~ss. Thus projection pursuit may be used for hypothesis formation, 
but we will need independent evidence of the validity of the structure 
suggested by the plots. 

Crabs example 

Various projections of the crabs data are shown in Figure 9.5. This is a 
rather different example, with 200 examples on only five variables, and 
with four groups suspected in advance. The first term of the natural 
Hermite expansion does find other local maxima, but the view shown 
in Figure 9.5(b) is the most commonly found. The other indices are less 
successful. View (b) is close to a local maximum for Friedman's index, 
but more often just the colour forms are separated as shown in view 
(d). The Friedman-Tukey index does not recognize these clusters, and 
instead finds views such as (c) which seem to have no interpretation. 
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Figure 9.4: Projections 
of the Tobamovirus 
group of the viruses 
data found by 
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Figure. 9.5 : Projections 
of the uprQgrapsus 
crabs data found by 
projection pursuit. View 
(a) is a random 
projection. View (b) was 
found using the natural 
Hennite index, view (c) 
by the Friedman- Tukey 
index and view (d) by 
the Friedman (1987) 
index. 
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It is worth noting that the successful projections have ignored the 
most variable direction, size, in favour of a view with more structure, 
unlike all the other methods we illustrate on this example. 

Non-linear feature extraction 

One of the characterizations of the principal components was that if we 
took a linear map F:RP-+ R q and another linear map G: R q -+ R P, 
the most accurate reconstruction G(F(x)) in the sense of least squares 
is given by using tbe first q columns of V to form the first q principal 
components and for the reconstruction map G. 

Can we do better with non-linear mappings F and G ? The answer 
must be yes, for the diagonal Cantor construction can map invertibly 
R P into R ! (Write each of the components X t , .•. , Xp in a binary 
expansion and interleave the expansions to obtain the binary expansion 
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of a number in IR. This F is continuous.) In practice we want F and 
G to be not too far from linear, and in particular very smooth. 

The most common suggestion is to use feed-forward neural net­
works to fit F and G (Kramer, 1991; Usui et al., 1991; Cottrell & 
Metcalfe, 1991; DeMers & Cottrell, 1993). If we model both F and 
G by networks with a single hidden layer, we end up with a five-layer 
network. The input and output layers have linear units, as does the 
middle layer (with q units). The second and fourth layers have sig­
moidal units. Multi-layer networks are notoriously difficult to train, and 
these methods have shown limited success. None appears to have used 
skip-layer connections nor weight decay, and it is not clear whether the 
current lack of success is intrinsic or due to inefficient methods of train­
ing the network. Such networks are often referred to as 'bottlenecks', 
'auto-encoders' or 'auto-associators'. 

Kambhatla & Leen (1994) take another approach, which in their 
examples (and that of DeMers & Cottrell) is at least competitive in 
fit with an auto-encoder, but very much faster to train. Whereas an 
auto-encoding is trained globally, Kambhatla & Leen use principal 
components locally within the partitioning of JRP defined by some 
form of vector quantization of the dataset. This can be seen as an 
approximation to defining a q-dimensional manifold in JRP. Clearly the 
vector quantization should be performed with an eye to the approxima­
tion error, and this is done by measuring the distances from a codebook 
vector to a vector which might be assigned to its cluster orthogonal 
to the local approximation, that is in the space of the omitted p - q 
principal components. 

Principal curves and surfaces 

Principal curves are defined by Hastie & Stuetzle (1989) as a mapping 
of a dataset in JRP to a one-dimensional manifold in JRP. Let f(A.) 
be a smooth curve in JRP parametrized by A. E IR. Then for any data 
point x E JRP we seek the nearest point A.(x) on the curve in Euclidean 
distance. The curve is called a principal curve for a distribution on JRP 
if E[X I A.(x) = A.] = f(A.), that is the mean of those points that project 
to a point on the curve is that point. 

There are many possible parametrizations of a one-dimensional 
curve; the most natural is in terms of arc length A. from a fixed point 
on the curve. 

We have defined a principal curve for a distribution, and the natural 
way to find such a curve is to project a distribution onto a candidate 
curve f(A.), and to take as the next iteration the conditional expectation 

There could be more 
than one nearest point, 
but this will be 
exceptional. For 
definiteness, we choose 
the nearest point with 
largest )., 



These are the distances 
allowed for expense 
claims in bureaucracies. 
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E{X I A.(x) = A.} and re-parametrize this in terms of arc length. There 
are no known guarantees that this algorithm will converge. For a set 
of data, the points only project to a discrete set of values of A., and the 
conditional expectation must be replaced by a smoothing operation. 
We have a set of values (A.i, x;). Whereas we considered scatterplot 
smoothers in Chapter 4 for univariate x, these methods extend readily 
to multidimensional x. In most methods we smooth each coordinate of 
x separately. 

We can think of principal curves as an algorithm to map A. = F(x) 
by projecting to the nearest point and then projecting back by x =((A.). 
As such it is very similar to the method of Kambhatla & Leen (1994), 
but handles the projection step in a smoother way. Tibshirani (1992) 
proposed a variant on the original principal curves idea. 

In principle this technique can be extended to manifolds of q > 1 
dimensions, called principal surfaces, although q-dimensional smooth­
ing is much harder unless data are abundant, even for q = 2. 

As with all projection techniques, principal curves and surfaces 
depend critically on the scaling of the features; current algorithms also 
depend on choosing well the degree of smoothing. 

9.2 Multidimensional scaling 

In multidimensional scaling we are given the distances drs between 
every pair of observations. These could be genuine distances in some 
high-dimensional space, or they could be surrogates for the Euclidean 
distances. For example, some favourite examples use 'official' road 
distances between major towns and the scheduled flight times between 
cities. The latter need not even be symmetric, but we will confine 
attention to symmetric distances. Thus we suppose we are given non­
negative symmetric numbers drs which we will call dissimilarities to 
indicate that they need not be genuine distances. In particular, they 
need not satisfy the triangle inequality 

satisfied if they were produced by a metric. (Gower & Legendre, 1986, 
explore when dissimilarities are metric.) 

Most of the work on multidimensional scaling has been developed 
in the psychological literature, but has also been discussed in ecology 
under the name of ordination. The recent short book by Cox & 
Cox (1994) has considerable detail on the various methods and their 
history. 
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Dissimilarities 

If we are given an n x p matrix X of data to be considered as n 
p-variate continuous observations, there are several ways to measure 
the distance between the pairs of observations. If these observations 
are categorical, there are even more ways. Since many of them produce 
measures of distance which do not satisfy the triangle inequality, the 
more general term dissimilarity is used. A dissimilarity is just a non­
negative symmetric function on pairs of objects; we will usually assume 
that the self-dissimilarities are zero. Kaufman & Rousseeuw (1990, §1.2) 
review many definitions of dissimilarities. 

Exactly the same choices of a distance measure occur when k­
nearest neighbour methods are used in supervised classification. 

For continuous data, the most obvious dissimilarity is Euclidean 
distance computed from d2 = xxr. This does however depend crit­
ically on the scales in which the features are measured. One way out 
we saw for principal component analysis is to rescale the features to 
unit variance, and in projection pursuit we saw the idea of 'sphering' 
the daJa. In this context sphering implies using Mahalanobis distances 
with respect to a covariance matrix I:, which could be the covariance 
matrix of these observations if n > p. Another idea is the Manhattan 
or L1 distance, that sums the absolute differences in features. 

For categorical data, the most commonly used dissimilarity is based 
on the simple matching coefficient, that is the proportion Crs of features 
which are common to the two observations r and s. As this is 
between zero and one, the dissimilarity is found by drs = 1 - Crs· For 
binary features, it might be thought that having a feature present in 
both observations should be considered a more important indication 
of similarity than having it absent in both. (Think of types of pottery 
found in neolithic graves.) The Jaccard coefficient Crs considers the 
proportion of features which are present in one or other observation 
which are found in both. Once again, drs = 1-Crs· Coefficients between 
zero and one which are high for similar observations are quite common, 
and called similarity coefficients. 

For ordinal data, the most appropriate treatment seems to be to 
use the ranks as if they were continuous data, probably after rescaling 
to the range [0, 1] so that every ordinal feature is given equal weight. 
There then arises the question of how to handle mixtures of continuous, 
categorical and ordinal features. The definition of Gower (1971) has 
been widely adopted. For each feature f we define a dissimilarity d{s, 
and an indicator I fs which is one only if feature f is recorded for both 
observations. Further, I/s = 0 if we have a categorical feature and an 
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absence-absence match. Then 

(9.2) 

The classical or metric method 

In the classical or metric method of multidimensional scaling, often 
known as principal coordinate analysis (Gower, 1966) but going back to 
Schoenberg (1935), Young & Householder (1938) and Torgerson (1952, 
1958), we assume that the dissimilarities were derived as Euclidean 
distances between n points in p dimensions, for unknown p. Given 
the distances, we obviously cannot recover the observations themselves, 
since the distances are invariant to rigid motions (translations, rotation 
and reflections) of JRP. It transpires that this is the only freedom 
allowed. 

Proposition 9.5 For any symmetric matrix T, define the matrix 

T' = _! [r _ (Tl)l T _ l(Tl)T + 1 TTl] 
2 n n n2 

by subtracting row and column means and adding back the overall mean, 
or, equivalently, by removing row means then column means. 

(a) Given any configuration X of n points in JRP, the matrix T = (d;s = 
llxr- Xsf) gives a non-negative definite T' = xxT. Such a set of 
distances is called Euclidean. 

(b) Given a symmetric n x n matrix T with non-negative definite T', we 
can find a configuration of points in JR(n-l) such that T = (d;

5
). 

(c) A necessary and sufficient condition for an n x n matrix T to be a 
squared distance matrix is that w T Tw ~ 0 for all w with w T 1 = 0. 

(d) Any two configurations of n points with the same (d;5 ) differ only by 
a shift and a rigid motion of JRP, so lie in (shifted) subs paces of the 
same minimal dimension, the rank of T'. 

Proof: (a) Without loss of generality, centre the data so every column 
of X has zero mean. Then T = (llxr-Xsll 2) = (llxrll 2 +11xsll 2-2x,!xs) = 
ElT +lET -2XXT where E = (llxrll 2). Let e = ET1 so Tl = nE+el 
and 1 TEl= 2ne. Thus 

-2T' = ElT +lET- 2XXT- ElT- e11T /n 

-lET- ell T /n + 2ne11 T jn2 

= -2XXT 
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which is non-positive definite. 

(b) Let T' = CD2CT be the eigendecomposition of T', noting that 
the eigenvalues are non-negative, and by construction T' has zero 
column sums and so has rank r at most (n- 1). Take X as the first 
r columns of CD, so T' = xxr. This configuration is centred, since 
IIX111 2 = lTT'l = 0. Note that (llxrll 2) = diag(XXT) = diag(T'), so 
T' determines T = (d;s) and (under zero means) this gives the same 
T' by result (a). 

(c) Note that [(/ -llT /n)w]TT[(I -llT /n)w] = -2wTT'w which is 
negative if T' is non-negative definite. 

(d) The procedure of (b) constructs a canonical configuration which 
is obtained by a shift (to zero mean) and a rigid motion from either 
configuration. D 

Given a Euclideap dissimilarity on n points, this proposition pro­
duces a data matrix in r ~ n- 1 dimensions with distances equal to 
the dissimilarity, and part (d) shows that this is the minimal number 
of dimensions needed. If we want a lower-dimensional view, Proposi­
tion 9.2 tells us to take the first q principal components of X, and 
this corresponds to taking only the q largest eigenvalues of T' and 
the first q columns of CD. This is the optimal approximation in the 
sense of minimizing the sum of squared dissimilarities minus squared 
distances over projections, and hence gives most weight to representing 
large dissimilarities accurately. 

If the set of dissimilarities is not Euclidean, we can seek an ap­
proximation by a Euclidean set in JRk for small k. We know that 
T' = CDCT cannot be non-negative definite, but we can set all the 
negative elements and the small positive elements of D to zero and use 
the columns of CD corresponding to the large positive eigenvalues. If 
the dissimilarities are close approximations to Euclidean distances in a 
small number of dimensions, we expect to find a small number of large 
positive eigenvalues, the rest being near zero. If this is not the case, 
one of the other techniques may be preferable (but is likely to be much 
more computationally intensive). 

One common mistake with classical scaling is to supply squared 
distances: these are not likely to be simply representable by distances. 

Sammon mapping 

Sammon mapping is a multidimensional scaling technique introduced 
by Sammon (1969) and widely known even where other methods of 
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multidimensional scaling are unheard of. Given a dissimilarity d ~n n 
points it constructs a k-dimensional configuration with distances d to 
(locally) minimize 

Note that this is undefined if there are pairs with zero dissimilarity. In 
contrast to principal coordinate analysis, this gives weight to represent­
ing small dissimilarities accurately, which may be desirable if the plot 
is being used to detect clusters. 

Sammon used a diagonal Newton method to locally optimize E; 

this is a Newton method in which the off-diagonal part of the Hessian 
is ignored, and the step length reduced by a 'magic' factor of 0.3-0.4. 
Details of the algorithm are given in his paper. We have found that 
it is quite often necessary to use a smaller step-length factor (or even 
to use a crude search over step length) to avoid divergence. Most 
implementations seem to use a random starting point, but starting 
from a classical solution can save much CPU time, if it is a good 
approximation. 

The Sammon mapping for the main group of the viruses example 
is shown in Figure 9.2 on page 291. This shows much less compact 
groupings than the principal components plots. As Sammon mapping 
is a more accurate representation of small distances, this should caution 
against over-interpretation of those groups. 

In the viruses example the Sammon algorithm does not converge 
at all unless the 'magic' factor is reduced to around 10-3. This is not 
uncommon behaviour when some points have to move very close to each 
other in the optimization run. Using a random starting configuration 
(as is common practice) produced very much worse local minima, with 
E around 0.3--0.5 rather than 0.07 for the configuration shown. Virus 22 
(sunn-hemp mosaic virus) is clearly separated in the mapping of the 
scaled data. 

Ordinal methods 

What are known as non-metric or ordinal methods of scaling do not 
attempt to match the dissimilarity by a distance, but to choose a 
configuration whose distances have similar order properties, that is 
that points which have larger dissimilarity from a given point should 
be farther away. For such a method it is immaterial whether we 
supply (approximate) distances or squared distances, and the fit will be 
invariant to overall scale of the dataset, as well as to rigid motions. 



310 9 Unsupervised Methods 

A configuration X gives Euclidean distances brs between pairs of 
points. We choose an increasing function e so that O(drs) is close to brs· 
The sum of squares of the differences is used, for then e can be found 
by isotonic regression, for which there are simple algorithms (Barlow et 
al., 1972). This is then minimized over the configuration (standardized 
to have unit sum of squares from the origin) by a gradient descent 
algorithm. Equivalently we minimize 

over e and the configuration of points giving rise to distances (brs). 
This is differentiable with respect to the configuration points (Kruskal, 
1971; de Leeuw, 1984). 

One detail in the implementation of ordinal methods is the treatment 
of tied dissimilarities. Clearly if dij < dk1 we want O(dij) ::::; O(dkl), but 
how should we consider dij ::::; dkl? If we insist that O(dij) ::::; O(dkl), we 
are attempting to preserve the equality of tied dissimilarities, which can 
be a considerable constraint on the solution. It is normal practice to 
allow such ties to be broken. 

The idea of ordinal methods is due to Shepard (1962a, b) and was 
developed into an objective method by Kruskal (1964a, b). 
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Figure 9.6 shows a local mtmmum for ordinal multidimensional 
scaling for the scaled viruses data. This fit is similar to that by Sammon 
mapping in Figure 9.2, but the subgroups are more clearly separated, 
and viruses 10 (frangipani mosaic virus), 17 (cucumber green mottle 
mosaic virus) and 31 (pepper mild mottle virus) have been clearly 

Isotonic regression is 
the name for fitting an 
increasing or decreasing 
function by least 
squares. The solution is 
piecewise constant. 

Figure 9.6: Non-metric 
multidimensional 
scaling plot of the 
Tobamovirus group of 
the viruses example. 
The variables were 
scaled before Euclidean 
distance was used. The 
points are labelled by 
the index number of the 
virus. 

The fit is poor, with 
STRESS~ 17%, and 
we found several local 
minima differing in 
where the outliers were 
placed. 



Figure 9.7: Distortion 
plots of Sammon 
mapping and 
non-metric 
multidimensional 
scaling for the viruses 
data. For the right-hand 
plot the fitted isotonic 
regression is shown as a 
step function. 
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separated. Figure 9.7 shows the distortions of the distances produced 
by the Sammon and ordinal scaling methods. Both show a tendency to 
increase large distances relative to short ones for this dataset, and both 
have considerable scatter. 

Sammon mapping Non-metric scaling 

0 2 4 6 8 10 0 2 4 6 8 10 

observed distances observed distances 

Figure 9.6 shows some interpretable groupings. That on the upper 
left is the cucumber green mottle virus, the upper right group is the 
ribgrass mosaic virus and two others, and a group at bottom centre­
right (16, 18, 19, 30, 33, 34) are the tobacco mild green mosaic and 
odontoglossum ringspot viruses. 

9.3 Clustering algorithms 

Clustering algorithms are methods to divide a set of n observations 
into g groups so that members of the same group are more alike than 
members of different groups. If this is successful, the groups are called 
clusters. The number of groups g may be pre-assigned, or it may 
be decided by the algorithm. Formally, a cluster algorithm produces 
a mapping c: {1, ... , n} ~ {1, ... , g} associating a group with every 
example. Some (but not all) clustering algorithms work by representing 
each group by a representative point (not necessarily an example), and 
these have close links with vector quantization (Section 6.3). 

All of these methods are just algorithms: even those which aim to 
optimize a criterion are not guaranteed to find the global optimum. Like 
all unsupervised methods they are judged by their results; a successful 
clustering produces groups which can be interpreted by domain experts. 

Of the many books on clustering, Kaufman & Rousseeuw (1990) is 
one of the most practically oriented and has example FoRTRAN programs 
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which can be obtained from file servers. Older and more comprehensive 
references are Anderberg (1973), Hartigan (1975), Spath (1985) and Jain 
& Dubes (1988). 

Partitioning methods 

Partitioning methods divide the examples into a pre-assigned number of 
groups. For data in a Euclidean space .JRP we can assign a cluster centre 
m to each group, and then choose the cluster centres and the groups 
so as to minimize the sum of squared distances from each example to 
its cluster centre. Formally, we minimize 

The minimization over the cluster centres is easy; we choose the centre 
of cluster j to be the mean of the examples assigned to cluster j. (Thus 
knowledge of the clustering c is sufficient to define the cluster centres.) 
The hard part is the combinatorial task of minimizing over clusterings. 

This method is sometimes called k-means or c-means, although 
those terms are also used to refer to specific algorithms. Early refer­
ences are Forgy (1965), Jancey (1966) and MacQueen (1967), but the 
ISODATA algorithm of Ball (1965) and Hall & Ball (1965) (and Hall 
& Khanna, 1977) is closely related). All algorithms start with some 
division of the examples into k groups or a set of k cluster centres. In 
Forgy's algorithm all examples are re-assigned simultaneously to their 
nearest cluster centre, each cluster centre moved to the group's mean 
and this process repeated. A group can become empty in this algorithm, 
so it may choose less than k groups. MacQueen's algorithm differs in 
that each example is considered in turn, and the cluster centres are 
updated whenever an example is assigned to a group. Both variants 
always reduce the sum of squared distances, and so must converge. 
The ISODATA algorithm is a variant of Forgy's in which groups are 
split or merged (so k changes dynamically); MacQueen also considered 
splitting and merging. 

A specific algorithm for k-means is given (including FORTRAN code) 
by Hartigan & Wong (1979). This is based on transferring observations 
from one group to another; other algorithms also allow the exchange of 
observations between clusters. Koontz et al. (1975) give a branch-and­
bound algorithm to find the global minimum of the k-means criterion, 
which is feasible for small sets of examples. There are also random 
algorithms based on the idea of simulated annealing (Flanagan et al., 
1989; Zeger et al., 1992). 

This algorithm goes 
back to Lloyd (1957), 
which was unpublished 
until 1982. 
Jancey's algorithm 
doubles the size of the 
moves. 

See the glossary. 



See the glossary. 

Figure 9.8: The clusters 
suggested by k-means 
for k = 6 for the virus 
data displayed on the 
ordinal 
multidimensional 
scaling plot. 
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Note that k-means can assign any future example to one of the 
k clusters, since it defines a partition of the whole feature space by 
the Dirichlet tessellation of the cluster representatives. Most cluster 
methods do not have this predictive aspect. 

Figure 9.8 shows the clusters for 6-means for the virus data. The 
iterative process has to be started somewhere, and in this case was 
initialized from a hierarchical clustering discussed below. The choice of 
6 clusters was by inspection of the visualization plots discussed above 
and the dendrograms shown in Figure 9.9 (on page 320). 
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The k-means algorithm must choose centres in IR.P, and so can only be 
used when the dataset is available and consists of continuous features. 
We can overcome these restrictions by insisting that the cluster centres 
be examples. Then we seek a clustering c and cluster centres Xmi which 
minimize 

since this squared dissimilarity is the squared Euclidean distance for 
(scaled) continuous measurements. This may be dominated by outliers, 
so it is usual to use dissimilarities without squaring. This is known 
as k-median or k-medoid clustering (Vinod, 1969). Once again there 
is a local minimization algorithm which reduces the criterion and so 
must converge (Kaufman & Rousseeuw, 1990, §2.4). This first selects k 
centres, then considers swapping a centre with an example which is not 
a centre and selects the most advantageous such swap. The process is 



314 9 Unsupervised Methods 

repeated until convergence. In general this finds a local minimum, but 
for k = 2 it finds the global minimum. For k > 2 Massart et al. (1983) 
give a branch-and-bound algorithm to find the global minimum which 
is only practicable for small sets of examples. 

Clusters of different size and shape 

A different extension of k-means is to allow the distance measure to 
vary between clusters, that is to allow the size and/or shape of clusters 
to vary. This can be motivated by assuming that the examples from 
each of the groups are drawn independently from densities fj(x;()j), 
but that the labels Si which determined which group was appropriate 
have been lost. Then both the group density parameters ()j and the 
labels are regarded as parameters. (This is hard to justify theoretically, 
and will normally give inconsistent estimates of ()j, as pointed out by 
Marriott, 1975.) Then the likelihood is of the form 

t((()j),(si);Y) = IT!s;(xi;()s;) 
i 

and the 'maximum likelihood' assignment of labels gives the clustering 
of the examples. 

Now specialize to normal distributions for the classes. Once the 
clustering is known we can estimate the means as the sample means for 
each group. Let Wk be the sum of (xi- x)(xi- x)T within group k. 
Then the profile log-likelihood becomes 

L((si);Y) = const- L trace(Wi~::j 1 ) + nj log l~jl 
j 

where nj is the number of observations assigned to group j. 
Next we make some assumptions about the covariance matrices ~j· 

If these are assumed equal to the identity (or to a common multiple 
of the identity) we recover the k-means criterion (since trace Wk is the 
sum of squares to the cluster centre for group j ). If we assume that 
the variances are equal but otherwise unknown, we find ~ = 2::: Wj/n 

and the clustering is chosen to minimize 1~1 or equivalently I WI for 
W = 2::: Wj. (Up to a scale factor, W is the within-group covariance 
matrix we used for linear discriminant analysis in Chapter 3.) This 
criterion was proposed by H. P. Friedman & Rubin (1967). It can be 
thought of as applying k-means while allowing the 'sphering' of the 
data to be adjusted. Thus its view of clusters is as ellipsoids of the same 
size, shape and orientation. Any of these restrictions can be relaxed. 
Scott & Symons (1971) relaxed all, and Banfield & Raftery (1993) 
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discuss intermediate cases. The latter also allow a 'uniform' cluster to 
pick up outliers. 

These criteria can be optimized by algorithms of the types used for 
k-means and k-medoids. 

Adaptive resonance theory 

The adaptive resonance theory of Carpenter & Grossberg (1987a, b, 
1990) and Carpenter et al. (1991a, b, 1992) (see also Moore, 1989; 
Georgiopoulos et al., 1990, 1991; Huang et al., 1995) is closely related 
to adaptive versions of k-means such as ISODATA and MacQueen's 
algorithm, but was expressed in a pseudo-biological language that 
clouds its simplicity. There are a variety of on-line algorithms that 
group the input examples in up to a pre-specified number k of clusters. 

The first algorithm, ART 1, works with binary inputs. Let llxll = 
2:: lxd be the Lt norm, for binary vectors the number of non-zero 
elements. For each of k groups there is a prototype w j which is 
initially set to the vector of all ones (and is called 'uncommitted'). 
When an example x is presented, it is compared in turn with each w j 
in order of decreasing wJ xj(€ + llwjll) until a prototype is found with 
wJ x > plixll. If such a Wj is found, the example is assigned to cluster 
j and Wj is updated by the bitwise operation 

Wj +-- Wj AND X. 

This algorithm has two parameters. The tolerance € is infinitesimal, 
serving to break ties in favour of prototypes with more positive ele­
ments. The parameter p < 1 is called the vigilance, and controls the 
diffuseness of the clusters. Note that the first uncommitted prototype 
to be considered will be selected. Once all prototypes are committed it 
is possible that none will be selected and the input is then rejected. 

ART 1 is restricted to binary inputs and is highly sensitive to noise, 
since Wj can only be made smaller during updating. We can extend the 
process to inputs in [0, 1] by replacing the AND operation by a bitwise 
minimum. Adding 'momentum' (Moore, 1989) changes the update rule 
to 

Wj +-- (1- ,B)min(wj,X) + ,Bwj 

for ,8 E [0, 1 ). Complement coding includes both a feature y and 
its 'complement' 1 - y, so that llxll = p for all examples. With all 
these changes we have 'fuzzy ART'. It is often assumed that ,B = 1 if 
the prototype is uncommitted: this is called 'fast-commit slow-recode' 
learning. 
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Adaptive resonance theory provides a large family of algorithms, 
but only a little analysis has been performed on their properties. It 
is unclear if they have any advantages over the earlier adaptive k­
means algorithms. It is clear that they have a major disadvantage 
originally pointed out by Moore (1989), of sensitivity to noise. The 
update rule can only reduce the coordinates of the prototypes, so if 
a large number of examples are presented, each having added noise, 
the prototypes will shrink towards the zero vector. Prototypes which 
are close to the zero vector will fail the vigilance test, since wJ x = 
2:::::: WjiXi ~ max[wj;] llxll- Thus for large enough training sets true clusters 
will be divided repeatedly into groups which depend on the order of 
presentation of the examples. 

Methods based on mixtures 

Suppose we believe that the examples come from a mixture of sources, 
and each has a parametrized density fi(x; 8i). The proportions Wi of 
the mixtures are also unknown. The fitting of such mixture densities 
to data is discussed in Section 6.4. Once the mixture density has been 
fitted, we can ask for any future observation x what is the posterior 
probability that it belongs to component i; this is 

Now if we view this as a classification problem, we would assign 
the observation to the component with highest posterior probability. 
This can be applied to the training examples to produce a clustering 
method, which partitions the data into a group (possibly empty) for 
each component (Wolfe, 1970). 

This method is often confused with the likelihood-based partitioning 
method. Both employ models which are mixtures of components. How­
ever, the maximum likelihood method estimates the parameters in the 
components from classified data, then optimizes over the classifications, 
whereas the mixture method fits the parameters in the components and 
the mixing proportions from unclassified data. 

Fuzzy clustering 

In partitioning methods, each example is definitely assigned to one 
cluster. Fuzzy logic allows degrees of membership of sets, so would 
allow us to divide the membership of example i into proportions Uiv 

for group v. These membership proportions must be non-negative 

We assume that the 
noise allows each 
coordinate to take 
values smaller than p. 
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and sum to one. From the perspective of probability theory, Uiv can 
be interpreted as a posterior probability of having been generated 
by component v of a mixture, although in the interpretation below, 
perhaps Ufv is closer to a posterior probability. 

The earliest and best-known fuzzy clustering technique is the fuzzy 
k-means method of Dunn (1974) and Bezdek (1974). This minimizes 

min L L Ufv II xi- mv 11
2

. 
(U;v) . . 

l 1 

Here the cluster centre is found as the weighted mean of the whole set 
of examples with weights Ufv· 

This method has the same disadvantages as k-means of being 
restricted to continuous data with X available. Kaufman & Rousseeuw 
(1990, §4.4) construct a fuzzy equivalent of k-medoids, to minimize 

It can be shown that the variant of this with squared dissimilarities 
reduces to fuzzy k-means. 

Auto Class 

AutoClass (Cheeseman et al., 1988a, b) is a widely-used 'Bayesian clas­
sification system' which is based on mixtures. There are J unknown 
classes. The major simplifying assumption made is that called idiot's 
Bayes in Chapter 8, that within each class the features are independent. 
(For a multivariate normal distribution this corresponds to assuming a 
diagonal covariance matrix.) A normal distribution is used for contin­
uous features, and a general discrete distribution for discrete features. 
Conjugate priors are used for the parameters in the component models. 

Under this assumption it claims a full Bayesian solution, including 
a random number J of classes. In practice the integration over the 
parameters for each class density is too difficult, and the usual approx­
imations (expansions about MAP estimators) are used. The value of J 
is set to a large quantity by trial-and-error, and classes with negligible 
posterior estimates of proportions are omitted. 

Mode separation 

Earlier methods of partitioning were based on the idea of separating 
the modes of a multimodal density, implicitly assumed to be a mixture. 
For example, Henrichon & Fu (1968) considered projecting onto the 
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first principal component, forming a density estimate (by a kernel 
estimator or just a histogram), and splitting at each local minimum of 
the density estimate. Such a procedure is highly sensitive to the precise 
density estimate used, much more so than would have been realized in 
1968. Further procedures are described by Devijver & Kittler (1982, 
Chapter 11), but all suffer from the need to estimate densities in a 
high-dimensional space. 

Hierarchical clustering 

Biologists are used to taxonomic hierarchies: species are grouped into 
genera which are grouped into families and so on. Thus we can think 
of clusters of clusters. Hierarchical methods of clustering produce a 
tree, usually known as a dendrogram, such as Figure 9.1. This can be 
read in two directions. From the bottom up, we start with n clusters 
and the clustering changes at each level as two existing clusters are 
joined. (This is the agglomerative view.) In the divisive view, we start 
with one cluster and successively split clusters into two parts until this 
is no longer possible. These two views represent different families of 
algorithms. It is not necessary to split into two parts or to combine just 
two clusters, but this is easier to compute and so normally done. 

Hierarchical methods avoid specifying how many clusters are appro­
priate by providing the user with many different partitions by cutting 
the tree at some level (and normally this will achieve a partition into 
any specified number of clusters). Sometimes this can help to choose 
an appropriate number, but users should be warned that none of these 
partitions may be particularly good, even under the criterion used in 
the hierarchical algorithm. 

The levels on Figure 9.1 represen~ a dissimilarity between examples; 
we can define the tree-dissimilarity d,5 as the minimum height in the 
tree at which examples r and s belong to the same cluster. Such 
dissimilarities obey not just the triangle inequality but the stronger 
ultrametric property 

drt ::::;; min(d,5, dst)· 

Thus we can think of hierarchical clustering as approximating a given 
dissimilarity by an ultrametric dissimilarity. 

Agglomerative algorithms 

The essence of an agglomerative algorithm is very simple: pick the two 
clusters with smallest dissimilarity and merge them. Starting is easy 
(use each example as a cluster), but we are then faced with defining the 
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dissimilarity between our merged cluster and all other clusters. There 
are many methods to do so, and no consensus as to which is best. 
Two simple ideas are to define the dissimilarity between two clusters 
to be the minimum and the maximum dissimilarity between pairs, one 
from each cluster, and these give rise to clustering algorithms known 
as single-link and complete-link clustering respectively. 

In single-link clustering, two examples will be joined at level A if 
and only if we can find a chain of links of pairs of examples with 
dissimilarity less than A. Thus the tree-dissimilarity drs ~ drs, and it 
can be shown that single-link gives the largest ultrametric dissimilarity 
with this property. It will tend to produce long and loosely connected 
clusters, since only a single link is required. 

In contrast, complete-link clustering joins two clusters if and only if 
all members of one cluster are close to the other cluster, and so tends 
to produce 'compact' clusters, and relatively similar objects can remain 
separated up to quite high levels in the tree. 

There are many other rules for combining clusters. The only other 
one that is widely considered is group-average clustering, in which the 
combined dissimilarity of two groups is the average of all dissimilarities 
between members of each group. Unlike single- and complete-link, this 
depends on the scale of the dissimilarities; the other two are equivariant 
to increasing transformations (such as the square) of the dissimilarities. 
We also note that using the increase in the k-means criterion on merging 
the clusters is often attributed to Ward (1963). By standard analysis of 
variance computations, this attributes a squared dissimilarity of 

to clusters A and B. 
Figure 9.9 shows dendrograms produced by single-link, complete­

link and group-average clustering for the viruses data. All identify 
viruses 10, 11, 17, 22 and 31 as loosely connected to the rest, and 
single-link also highlights virus 46. (We note that 10, 11, 17, 31, 46 and 
48 are called 'miscellaneous' in the original source.) Nevertheless, each 
graph gives the impression of three or four major groupings of viruses. 

Divisive algorithms 

Divisive algorithms are much less known (and so much less used). They 
do have the advantage that if most interest is on the upper levels of 
the dendrogram (for example to produce a partition into k clusters for 
small k) they are much more likely to produce rational clusterings. 
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single-link complete-link group average 

At the first step, a divisive method has to consider the 2n-l -1 par­
titions of n examples into two non-empty sets. This is computationally 
infeasible, so of course only a small proportion of those partitions are 
actually considered. By analogy to agglomerative methods, we might 
seek a division into two clusters A and B such that the dissimilarity 
between A and B is maximized. This is infeasible, but we can attempt 
to approximate it by an iterative method. We could, for example, use 
any of the partitioning methods into k = 2 clusters that we have dis­
cussed earlier. For example, Ward's method could be used divisively 
by applying 2-means recursively. (This seems not to appear in the 
clustering literature, but is known as an algorithm for tree-structured 
vector quantization; Gersho & Gray, 1992, §12.4.) 

Macnaughton-Smith et al. (1964) proposed a method for general dis­
similarities which is discussed in detail by Kaufman & Rousseeuw (1990, 
Chapter 5). We first select a single example whose average dissimilarity 
to the remaining examples is greatest, and transfer that example to 
cluster B. For all remaining examples of cluster A we compare the 
average dissimilarity to B with that to the remainder of A. If any 
examples in A are on average nearer to B, we transfer to B that for 
which the difference in average dissimilarity is greatest. If there are no 
such examples the process stops. This process splits a single cluster. 
We can then split each of the clusters that are created (unless one is 

Figure 9.9: 
Dendrograms from 
three common 
hierarchical clustering 
techniques applied to 
the scaled viruses data. 
Such plots show the 
dissimilarity at which 
clusters are merged on 
the vertical scale and so 
show the construction 
process from bottom to 
top. 
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a singleton or all its members have zero dissimilarity from each other) 
and repeat the process as far as is required. The splits are not uniquely 
ordered ; Kaufman & Rousseeuw suggest splitting first the cluster with 
the largest diameter (maximum dissimilarity between members), which 
will be biased towards clusters with many members. 

Divisive hierarchical clustering is reminiscent of the classification 
tree methods discussed in Chapter 7. As there, we can restrict the com­
binatorial explosion by confining attention to splits which involve just 
one of the features; such methods are called monothetic. In Chapter 7 
the value of a split was computed from the distributions of the class 
variable in the two daughters; here it must be expressed by the differ­
ence in the clusters on the feature variables themselves. The obvious 
idea is to use the dissimilarity between the two daughters, calculated 
for example by group-averaging. 

For binary variables we can interpret monothetic methods a little 
further. A split on a binary variable will generate clusters that differ 
only on the remaining variables, and we want these clusters to be as 
different as possible. Thus we seek one variable whose difference most 
accurately reflects the difference of all. This is the aim of association 
analysis (Williams & Lambert, 1959). 

Examples 

We will apply clustering methods to the crabs example. Since we saw 
in Figure 9.3 that the variation was dominated by crab size, the data 
were adjusted to crabs of common size, effectively by dividing each 
measurement by the geometric mean of all five measurements on that 
crab. Figure 9.10 shows some partitions into four clusters, which we 
know in advance to be the correct number. The k-means algorithm 
does rather well (but the clusters are near to spherical here). It is not 
surprising that the hierarchical clustering does badly; it has merged 
200 examples and past groupings will tend to dominate at the last 
stages of agglomeration. The 'maximum likelihood' clustering with 
ellipsoidal clusters of the same size and shape should do well but does 
not, probably because the optimizer used seems less effective. 

Using mixtures of four normals with either a common covariance 
(which in this problem is close to the truth) or separate covariances 
did slightly better than k-means, but took considerably longer, the 
EM algorithm converging in about 10 iterations when started from the 
centres of the k-means solution but about 50-100 iterations from a 
random start. 
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We also tried all the applicable programs of Kaufman & Rousseeuw 
(1990). The results for divisive clustering and fuzzy clustering are 
shown in Figure 9.10. In this example k-medoids does well, as well 
as k-means. On the other hand, fuzzy clustering shows little discrim­
ination, allocating most objects around 40--50% to one cluster, with 
appreciable proportions to at least two others. The clustering shown 
is 'hardened' by taking the cluster with the largest membership co­
efficient. Macnaughton-Smith et al.'s divisive method started with a 
117/83 division, approximately by sex, then split the sexes by colour 
form. Group-average clustering had all the females in one group, apart 
from a small group of 5 outliers on the far left of the plot. 

9.4 Self-organizing maps 

The self organizing map is an algorithm developed by Teuvo Kohonen 
(1982a, b, 1989, 1990a, 1995). This is usually described in the language 
of neural networks (involving 'weights') and had a biological motivation 

Figure 9.10 : Sammon 
mapping plots of the 
Leptograpsus crabs data 
adjusted for overall size 
of the example. Plot (a) 
shows the true 
classification. The other 
five plots show a 
division into four 
clusters. Plot (b) shows 
k-means, initialized by 
the (c), complete-link 
hierarchical clustering. 
Plot (d) shows 
'maximum likelihood' 
clustering with 
ellipsoidal clusters. Plot 
(e) shows the 
classification by 
Macnaughton-Smith et 
al.'s divisive method, 
and (f) shows the 
'hardened' classification 
from fuzzy clustering. 

Fuzzy clustering was 
slow, at least 10 times 
slower than any other 
method considered. 
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discussed in these references, Kohonen (1993) and Ritter et al. (1992). 
It is, however, just a specific type of clustering algorithm. 

In the k-means method we saw that an example was assigned to 
the cluster whose representative mj is nearest to the example. This is 
precisely what happens in SOM, but the training algorithm attempts 
to assign some structure to the representatives mi. A large number 
of clusters are chosen, and arranged on a regular grid in one or 
two dimensions. (Both square and hexagonal grids have been used.) 
The idea is that the representatives (called 'weights' by Kohonen) are 
spatially correlated, so that representatives at nearby points on the grid 
are more similar that those which are widely separated. 

This process is conceptually similar to multidimensional scaling. 
That maps similar examples to nearby points in a q-dimensional space. 
If we were to discretize the q-dimensional space, for example by dividing 
it into a grid of square bins, we would have a mapping from the space 
of possible examples into a discrete space that provides a clustering. 
Further, we could average the examples which are mapped to each bin to 
provide a representative for each non-empty bin, and the representatives 
in nearby bins would be similar. This is precisely the spirit of SOM, 
and it is often used to provide a crude version of multidimensional 
scaling. Indeed Kohonen says 

'I just wanted an algorithm that would effectively map similar patterns 
(pattern vectors close to each other in the input signal space) onto 
contiguous locations in the output space.' (Kohonen, 1995, p. VI.) 

We have a spatial smoothness property of the cluster representa­
tives which Kohonen refers to as topological ordering. Cherkassky 
& Mulier (1994) draw analogies with principal curves, but those with 
multidimensional scaling seem closer. 

Kohonen defined an 'on-line' algorithm, so examples are presented 
in some order (possibly random) until convergence. The cluster repre­
sentatives are initially assigned at random in some suitable distribution. 
Whenever an example x is presented, the closest representative mj is 
found. Then 

m; +-- m; + a[x- m;] for all neighbours i (9.3) 

for all representatives i which are neighbours of j on the grid. Both 
the constant a and the definition of 'neighbour' are allowed to change 
with time. A typical specification is that a might decline linearly from 
1.0 to 0.04 over 1000 examples, then linearly to zero over the second 
thousand, while the definition of a 'neighbour' is a grid point i within 
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distance r of j, where r declines linearly from 6 to 1 over the first 
1000 examples. 

This defines just an algorithm, and the result will depend on the 
random initialization, the order of presentation of the examples and 
the tuning of the constants. Clearly it will be necessary to start with 
fairly large neighbourhoods, or no global order will emerge. Rather 
than update all clusters within the neighbourhood equally, it is natural 
to have a distance-weighted factor within the update, so 

for all i (9.4) 

where hiJ depends on the proximity of i to j, for example hiJ(t) = 
a1 exp -[d(i, j) / a1f . It is possible that some representatives may never 
get updated unless the initial neighbourhoods are very large. On the 
other hand, if the neighbourhoods are large, the representatives get 
updated in blocks, and it is wasteful to have so fine a grid. It is clearly 
better to refine the grid rather than shrink the neighbourhoods, an idea 
Haykin (1994) attributes to Luttrell (cf Luttrell, 1989). 

It is helpful to note what happens if we take neighbourhoods so 
small that they only contain one point. Then there will never be any 
connection between representative points, and we might expect SOM to 
reduce to k-means clustering. It does. Although the algorithm appears 
to update only the representative for the cluster that x joins and not 
the one it leaves, the latter is achieved by the continual presentation 
of examples and the 'forgetting' property for a > 0. Thus mj is an 
exponentially-weighted average of all examples which have ever been 
assigned to cluster j, and will eventually become the average of a stable 
set. This suggests that we can regard SOMas a spatially smooth version 
of k-means, and assess the degree of fit of a particular solution by the 
quantization error, the sum of squared differences between examples 
and the corresponding cluster centres. 

Analysis of the algorithm has been hampered by the lack of an 
'energy' function that the algorithm can be considered to minimize, 
and Erwin et al. (1992) showed that in general no such function exists. 
However, if we restrict attention to randomly sampling from a training 
set and take fixed neighbourhoods, clearly a suitable energy function is 

V = ELhijiiX-md 2 

j 

where I is the cluster to which the randomly chosen input X is assigned 
(Ruzicka, 1993). For randomly sampled inputs from a population, few 
results are known except for the special case of just one feature on [0, 1] 



Figure 9.11 : SOM 
mapping of the crabs 
data to a 6 x 6 grid. 
The labels of those 
examples mapped to 
each cluster are 
distributed randomly 
within the circle 
representing the cluster. 
As before the coding is 
upper case for males, 
lower case for females, 
'B' for blue and '0' for 
orange. 
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and a linear grid of representations (Cottrell & Fort, 1987 ; Bouton & 
Pages, 1993, 1994; Fort & Pages, 1993). 

A batch version of SOM has been proposed much more recently 
(Kohonen, 1995, §3.14). This is a simple adaptation of Forgy's algo­
rithm for k-means; simultaneously for all clusters the representative is 
updated to the (weighted) means of examples which are mapped to a 
neighbour of the cluster. This step is iterated, slowly decreasing the size 
of the neighbourhoods. 

The results of SOM mapping of the crabs data to a 6 x 6 grid are 
shown in Figure 9.11. (The grid size was chosen to allow a reasonable 
number of the 200 examples to be mapped to each representative.) 
This figure illustrates the difficulty of displaying an SOM map. We 
have five-dimensional data, so cannot show the representatives directly, 
neither on the grid nor as points in the feature space. What we can 
do is map each example to its nearest representative (its cluster centre) 
and display the clustering, as we show in the figure. 

Contiguity-constrained clustering 

Kohonen's SOM produces a grid of clusters. Often we wish to group 
those clusters into super-clusters, preserving the spatial smoothing. 
(This is pertinent for Figure 9.11.) One way to do so is to use 
segmentation methods from image analysis. Many of these reduce 
to agglomerative hierarchical clustering methods with contiguity con­
straints. Suppose we consider the group-average method of clustering, 
but only allow clusters to be merged if they are neighbours (that is 
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that there are members a E A and b E B which are neighbours on 
the grid). Then by construction clusters will always be connected sub­
graphs of the grid. Such algorithms are discussed by Gordon (1981), 
Murtagh (1985, 1995a) and Beaulieu & Goldberg (1989) and applied 
to a grid of SOM clusters by Murtagh (1995b). 

Other visualization strategies for SOMs are given by Ultsch (1993a, 
b), which display the similarity of the representatives mj by showing 
the magnitude of the gradient, viewing the representatives as a vector 
field (Figure 9.12). 

Figure 9.12: Ultsch 
representation of the 
SOM representatives 
for Figure 9.11. The 
rows and columns 
between the units 
represent the magnitude 
of the gradient (black 
being high); the 
greylevel at each unit 
represents the median 
of the surrounding 
gradients. The label is 
the most common class 
mapped to that 
representative. 
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Finding Good Pattern 
Features 

In this chapter we consider the problem of what features should be 
included when designing our classifier. We should make clear at the 
outset that this is an impossible problem; there may be no substitute 
for trying them all and seeing how well the resulting classifier works. 
However, this may be computationally impracticable, and unless a large 
test set is available it may be impossible to avoid selection effects, of 
choosing the best of a large class of classifiers on that particular test 
set and not for the population. 

To illustrate the difficulty, consider a battery of diagnostic tests 
T1. . .. , T m for a fairly rare disease, which perhaps around 5% of all 
patients tested actually have. Suppose test T1 correctly picks up 99% 
of the real cases and has a very low false positive rate. However, there 
is a rare special form of the disease that T1 cannot detect, but T2 

can, yet T2 is inaccurate on the normal disease form. If we test the 
diagnostic tests one at a time, we will never even think of including 
T2, yet Tt and T2 together may give a nearly perfect classifier by 
declaring a patient diseased if Tt is positive or Tt is negative and T2 
is positive. This illustrates that considering features one at a time may 
not be sufficient. 

Our aim in this chapter is to indicate single features which are 
likely to have good discriminatory power (feature selection) or linear 
combinations of features with the same aim (feature extraction). Unfor­
tunately the methods described can be quite effective with conventional 
statistical methods (linear and quadratic classifiers) but rather ineffec­
tive with modern non-linear classifiers. One reason that this is the last 
chapter of the book is that its methods are being supplanted by the 
model selection methods discussed in earlier chapters. 
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Throughout this chapter we will work with the conventional 0--1 
loss although some of the ideas can be extended to situations with 
genuine costs for erroneous classifications. Thus here the Bayes risk is 
the error rate of the Bayes rule. We will also concentrate on K = 2 
classes, as this suffices to illustrate the principles involved. 

10.1 Bounds for the Bayes error 

The 'gold standard' for a classifier was seen in Chapter 2 to be the 
Bayes error, the risk of the Bayes classifier. The Bayes classifier does 
however depend on the information available, and the Bayes error will 
be higher if only some of the features are measured. Thus it is of interest 
to estimate the Bayes error as a function of the variables included in 
the classifier design. Exact calculations are impossible (except in trivial 
problems) but · we can obtain reasonable upper and lower bounds. 

Thinking in terms of the Bayes error tells us immediately which 
features we ideally need, p(c I x) for K -1 of the classes. Of course this 
is unattainable in practice, although it is one view of the derivation of 
linear and quadratic discriminants for normal class distributions. 

In a two-class problem the Bayes error is 

E. = j min[p( 11 x), p(2! x)] p(x) dx = j min[ntPl (x), n2P2(x)] dx 

and since min( a, b) ~ a5b1-s for any s E [0, 1], we have 

E* ~ j[ntPt(xW[n2P2(x)] 1-sdx = nfnl-sexp-Jc (10.1) 

say, where 

(10.2) 

This is known as the Chernoff bound on the Bayes error (Chernoff, 
1952, 1973). The special case of s = 1/2 was derived earlier by 
Bhattacharyya (1943) and is therefore known as the Bhattacharyya 
bound. Because of its greater simplicity it is much more widely used. 

We will evaluate the Bhattacharyya bound for two normal distribu­
tions. It becomes 

E* ~ fo1Ci. exp-JB 

JB = ~(Jlt- Jl2f[i(~l + ~2))- 1 (Jlt- Jl2) 

+ 110 l!(~t + ~2)! 2 
g J1~1"'~2' 

(10.3) 



1-2El ~ 
1- 4£'(1- E') 
= (1- 2£')2, and 
E~. E' ~ 1/2, so 
.J1- 2El ~ 1- 2E'. 
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The second term of J B disappears if the two covariance matrices are 
equal; in that case the Chernoff bound is tightest for s = 1/2. 

Devijver & Kittler (1982, p. 58) point out that we can also obtain a 
lower bound on the Bayes risk in terms of the Bhattacharyya coefficient. 
The 1-nn rule has asymptotic risk 

E1 = j 2p(11 x)p(21 x) p(x) dx ~ j Jp(11 x)p(21 x) p(x) dx 

since p(11 x)p(21 x) ~ 1/4. Thus E* ~ E1 ~ jif11f2 exp -JB. However, 
Proposition 6.1 gives E1 ~ 2£*(1- E*) which we can invert to give 

! [1- j1-4n1n2exp-2JBJ ~! [1- )1-2£1] ~ E* (10.4) 

Of course, these bounds are only of any use if we know (or can estimate 
accurately) the Bhattacharyya coefficient. 

The Chernoff and Bhattacharyya coefficients are only two of a large 
class of separation measures which indicate how dissimilar two proba­
bility distributions are, in our case applied to the two class densities. 
Other measures are the divergence 

!{ } P1(x) 
Jv = 1t1P1(x)- 1t2P2(x) log P2(x) dx (10.5) 

and the Patrick-Fisher coefficient (Patrick & Fisher, 1969) 

[ ] 

1/2 
J p = j { n1P1 (x) - n2p(2(x)} 

2 
dx (10.6) 

The idea is to use one of the J coefficients to indicate how good a set 
of features is likely to be; large values of the coefficient indicate that 
it is likely that a classifier with low error rate can be found (although 
this is only guaranteed for Jc and JB ). The divergence Jv is signed, 
so we would look for large absolute value. 

10.2 Normal class distributions 

In practice the class probability densities Pi(x) are unknown, but 
progress can be made if we assume that they are normal distribu­
tions. We have already seen at (10.3) the expression for JB. There is a 
similar expression for Jc, and we have 

Jv = !(1'1 -p2)T[:E11 + :E21HI'1 -p2) 

+!trace [:E!1:E2 + :E21:E1- 21] (10.7) 
1 1 2 

)p = + - X 
j(2n)PI2:E11 j(2n)PI2:E21 j(2n)PI:E1 + :E2I 

exp -!(1'1 - 1'2f [:E1 + :E2r1(1'1 - 1'2). (10.8) 
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Note that for equal covariance matrices (~1 = ~2 = ~), Jv = 8JB = 
(p1 - p2f~-1 (p1 - p2) is the Mahalanobis distance between the class 
means. We saw on page 22 that the expected error rate for the linear 
classifier depended only on the Mahalanobis distance, so maximizing 
J B or J v is equivalent to minimizing the expected error rate of the 
linear classifier. 

Other class separation measures commonly used are trace(w-1 B) 
and IBI/ITI for the between-class B, within-class W and total T 
covariance matrices defined in Section 3.1. These too are obviously 
closely related to linear discrimination, and for K = 2 the trace measure 
reduces to the Mahalanobis separation of the means. 

Why should we use these measures rather than fit a linear or 
quadratic classifier and measure its performance directly? If compu­
tation permits, there is no reason not to assess performance directly, 
especially if the performance can be assessed on the actual distri­
butions rather than normal distributions. Even for assumed normal 
distributions we can compute the expected error rate, using numerical 
integration for K > 2 classes or for quadratic classifiers. So separation 
measures are best seen as a computational short cut for suboptimal 
feature selection. (Feature extraction in linear classifiers is simple: use 
the linear discriminants.) 

Most feature selection methods such as forwards and backwards 
selection and branch-and-bound (discussed in the next section) change 
the set of features under consideration by adding or deleting a single 
feature at a time. The various measures depend on the means Jli 
and variance matrices ~i· These can readily be found by taking the 
appropriate subsets of the mean vector and covariance matrix for all 
features, but it is worth noting that updating formulae for the inverses, 
determinants and traces that occur in the separation measures are 
available (for example in Devijver & Kittler, 1982, pp. 266-267). 

We have acted as if the class means and variances are known. 
In practice they are estimated from data, and we may bias-correct 
the formulae for separation measure by similar ideas to those used in 
Section 2.4. The correction for JB is given in Hjort (1986, §10.3). 

10.3 Branch-and-bound techniques 

The simplest feature selection strategies are stepwise ones. Suppose we 
wish to choose that combination of k < p features which maximizes 
some measure J of class separation or classifier performance. We will 
assume that J is monotone, so that adding features is guaranteed not 

For example, using a 
test set or 
cross-validation. 
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to decrease J. Forwards selection adds a feature at a time, at each stage 
choosing the addition that most increases J. Backward elimination starts 
with all p features and at each step drops the feature whose presence 
least increases J. The backward and forward procedures are optimal at 
each stage, but are unable to anticipate interactions between features 
of the sort we considered at the beginning of the chapter. Exchange 
strategies would start with a subset of size k, perhaps found by forward 
or backward methods, then try exchanging a feature in the set with any 
outside it. 

These strategies are all heuristics to avoid considering all of the very 
large number of subsets of size k of p variables for even moderate 
p. We can often find a subset which is guaranteed to be best of 
size k without considering all subsets by the technique of branch-and­
bound which is well known in combinatorial optimization and artificial 
intelligence (Winston, 1992, Chapter 5), and was considered in this 
context by Narendra & Fukunaga (1977). In choosing subsets of a 
regression, the procedure is best known from the algorithm of Furnival 
& Wilson (1974). 

Branch-and-bound allows us to eliminate subsets A from consid­
eration if we know that a larger subset A' has a value of J which is 
below that of our current best estimate a of the maximum value of 
J(A) over subsets of size k, for by monotonicity, necessarily J(A) < a. 
An initial estimate of a is found by one of the heuristic searches (or 
it is set to -oo ). We start by considering the set A of all the features, 
and search the tree of subsets of size at least k found by dropping 
one feature at a time. Whenever we find a subset A with J(A) < a 
we prune the tree at that point, to ensure that we do not consider 
any subsets of A (which can also occur elsewhere on the tree with the 
variables in a different order, and should also be pruned). Whenever 
we find a subset of size k with J(A) >a, we remember the subset and 
increase a to this J(A). 

There are a number of strategies for the actual search of the tree. 
We would like to consider 'good' subsets first, and we need to reach the 
leaves (the subsets of size k) to be able to increase a. So the search 
needs to be depth-first in 'good' subsets, and is aided by having a good 
initial estimate of a. 

10.4 Feature extraction 

Feature extraction is generally used to mean the construction of linear 
combinations aT x of continuous features which have good discrim-
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inatory power between classes. It is naturally part of finding linear 
classifiers, and it is also often used as a data reduction technique, to 
reduce the number of features to be input to a non-linear classifier. 

The simplest (and by far the most commonly used) method of 
feature extraction is to take the principal components of x. This 
was done, for example, by Candela & Chellappa (1993) in studies 
of fingerprint images, and by Grother & Candela (1993) in studies 
of hand-written zip codes. Apparently principal components have 
nothing to do with discriminatory power (they are an unsupervised 
technique) and it is easy to envisage (and find) examples where they 
have little discriminatory power. In problems where the features have 
been carefully scaled and are highly correlated (like images), large 
variance of a linear combination may imply that it varies across classes. 

It is possible, at least in principle, to maximize a measure of class 
separation over one or a few linear combinations of the features. This 
can be seen as a supervised version of projection pursuit (Section 9.1), 
in which the measure of 'interestingness' of the projection is related to 
how well it separates the known classes. Of course, we have to know the 
class-conditional densities on the projection, but they can be estimated 
by the methods of Chapter 6, especially by kernel methods. Devijver 
& Kittler (1982, §8.2.2) suggest that the Patrick-Fisher measure is most 
suitable for feature extraction with Gaussian kernel estimation since 
its derivative with respect to the projection direction a can be found 
analytically. 

Blue et al. (1994) is the 
journal version of these 
reports. 
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Statistical Side I i nes 

This appendix explains more of the background of some statistical 
ideas which are used at several points in the main text, but may not be 
well-known even to statistical readers. 

A.1 Maximum likelihood and MAP estimation 

A prototypical statistical problem is to estimate the value of some 
parameter 8 from a finite set !T = (Xi) of data. (In the parlance of 
pattern recognition, we will refer to this as the training set.) Since 8 
is described as a parameter, this implies the existence of a family of 
probability densities p(x; 8) for 8 E 0, and we will assume that the 
observations Xi are independent samples from an unknown density po, 
which might be p( ·; 8) for some 8, but need not be. 

Two technical asides. The assumption of independence is easily 
circumvented by taking all the observations as X1. Readers not used 
to measure-theoretic treatments of probability theory will associate 
densities with continuous distributions and probability mass functions 
with discrete ones. As probability mass functions are densities in the 
rigorous theory (with respect to counting measure) it is permissible to 
call both 'densities' and we do so. 

The likelihood is a function of 8 defined by 

t(8; !T) = p(!T; 8) = IT p(xi; 8). 
i 

Although it is another expression of the joint density, the notation 
reflects the change in emphasis to fixed data and varying parameter. 
The maximum likelihood estimator (MLE) then associates with each 
training set a value of 8 which maximizes t( 8; !T), or 

8(!T) = argmax t(8; !T). 
e 
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We will almost always drop the dependence on f7 and regard (j as a 
random variable. 

For sufficiently regular problems (for which the likelihood is differ­
entiable and the maximum occurs in the interior of 0) the maximum 
likelihood will occur at a stationary point of the log-likelihood, and 
this is the most common way to find e. Beware though that the MLE 
need not occur at a stationary point, even a local maximum, but could 
occur at the boundary of 0. 

In the Bayesian paradigm, the parameter vector e is random, and 
so itself has a distribution. The posterior density of 8 can be found by 
Bayes' formula as 

p(81f7) cx:p(f718)p(8) =t'(8;f/)p(8). 

A MAP (maximum a posteriori) estimator of e maximizes p(8 If/) 
or, equivalently, t( e; fl) p( 8). Thus the maximum likelihood estimator 
is a MAP estimator for the 'flat' prior over 0, the possibly improper 
distribution with uniform density. This highlights the problem with 
a MAP estimator for a continuous parameter; it finds the mode of 
a density. Densities are with respect to an underlying measure, and 
the MAP will depend on that measure. This implies that it will not 
transform in a sensible way. Suppose e is a parameter expressing 
a variance. Do we want the MAP of the variance. e, the standard 
deviation J(J, the precision K = 1/8 or the log-variance loge? The 
maximum likelihood estimator will transform in the way you would 
expect (we say it is equivariant to 1-1 transformations) but a MAP 
estimator will not. Only if the posterior density is highly concentrated 
about its mode and we allow only smooth transformations is the 
MAP estimator approximately equivariant. Thus MAP estimators are 
most useful as a simple summary of a highly concentrated posterior 
distribution. 

A.2 The EM algorithm 

The Expectation-Maximization (EM) algorithm is a device to help find 
maximum likelihood estimators in a problem with unobserved data. 
Suppose we have data X which have been observed and data Y 
which have not, and a vector of parameters e. The goal is to find the 
maximum likelihood estimator of e given the observed data X in a 
situation in which the joint density p(x, y; 8) is known explicitly, but 
the marginal density of X, p(x; 8), can only be found by numerical 
summation or integration from the joint density. 
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One application is to problems where we have a series of pairs 
(Xi, Yi) of which only Xi is observed (and Yi is often the label for a 
component of a mixture). Then the log-likelihood is 

L(8;(Xi)) = Llog J p(xi,y;8)dy 
l 

and the presence of the logarithm inhibits any simplification. Another 
application is to missing observations of a few of the features. The 
idea has many precursors, including the Baum-Welch algorithm in 
speech recognition (see Baum et al., 1970), but was developed in some 
generality by Dempster et al. (1977). 

Let Q(8,8') = E[logp(X, Y;8) I X;8'] which is also a function of 
the observed data X; the conditional expectation is over the values of 
Y, and is evaluated as if 8' were the true parameter. The EM algorithm 
starts at some value 8(0) and alternates two steps: 

E Find Q(8,8U-1l) = E[logp(X, Y;8) 1 X;8U-1l]. 

M Choose 8(il to maximize Q(8, 8U-1l). 

Each iteration increases the log-likelihood L( 8; X) = log p(X; 8). Write 

L(8;X) = logp(X, Y ;8) -logp(Y I X;8) 

and take expectations using the density p( Y I X; 8') to obtain 

L(8;X) = Q(8, 8')- E [logp(Y I X; 8) I X; 8']. 

Now consider expectations E' with respect to p(Y I X; 8') and let 
h(Y) = p(Y IX;8)/p(Y IX;8'). Then E'logh(Y) ~ E'h(Y)- 1 = 0 
from log x ~ x - 1. Thus 

E'logp(Y IX;8) ~ E'logp(Y IX;8'). 

Now suppose Q(8, 8') > Q(8', 8'), so 

L(8;X) = Q(8,8')-E'logp(Y IX;8) 

> Q(8', 8')- E'logp(Y I X; 8') 

= L(8' ;X). 

The increase in likelihood at an EM iteration will be positive provided 
Q(8, 8U-1l) > Q(8U-1l, 8U-1l), and this is so unless 8(i-l) is already the 
maximizer. These arguments still apply to what is often called a GEM 
(generalized EM) algorithm in which Q(8, 8U-ll) is not fully maximized, 
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but eUl is chosen to increase its value (except at a global maximum, 
and perhaps at a local maximum). 

The convergence properties of ( G )EM algorithms are often stated 
rather loosely. At each step the log-likelihood is increased. In a problem 
which does have a finite maximum to the likelihood (and by no means 
all mixture problems do) the sequence L( eUl; X) is bounded above, and 
so has a limit. That limit need not be a local maximum, but it will be 
under mild regularity conditions. (Convergence properties are discussed 
by Boyles, 1983, and Wu, 1983; the proofs in Dempster et al., 1977, 
are flawed.) Under further regularity conditions we can show the less 
important condition that the sequence (8Ul) itself converges to a local 
maximizer of the likelihood. 

It is often useful to know the Hessian at the (local) maximum 
likelihood solution, for example to find asymptotic standard errors. 
Louis (1982) gives an algorithm to do so, based on the complete-data 
likelihood. 

There is also a Bayesian view of the EM algorithm as a way to 
find posterior modes for a subset of the parameters. Write 8 = ( cp, 1p) 
which in the Bayesian paradigm is a random vector, and suppose we 
wish to find a mode of the posterior density p( cp I X). Now take 1p as 
the unobserved data. Since 

logp(c/J I X)= logp(c/J, 1p I X) -logp(1p I c/J,X) 

the same arguments apply to Q( cp, cp') = E [log p( cp, 1p I X) I c/J', X], so 
the EM algorithm can be used to help find a MAP estimator of cp. 

There are 'on-line' versions of the EM algorithm, given for exam­
ple by Titterington (1984), Celeux & Diebolt (1992) and Jordan & 
Jacobs (1994). 

Mixture distributions 

Most applications of the EM algorithm are either to missing data or 
mixture distributions. The latter are often particularly simple, and were 
discussed by Dempster et al. (1977). Suppose we have a density of the 
form 

p(x) = L wif;(x; cp;) 

where the parameters cp of the densities may have common components 
(for example a common covariance matrix in a Gaussian mixture), 
and the mixing weights (w;) are unrestricted (apart from forming a 
discrete distribution for the component I ). The parameter vector () 
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encompasses the weight distribution (w;) and all qy;. We regard the 
component I as the missing data: Then the E step gives 

Q(8, 8') = L L n;(x) [logf;(x; qy;) +log wd 
xEY i 

where 

( ) [ ( .) I 8,J wif;(x; 4J;) 
n; x = E I I = l X= x; = "' ·f·( . A. ·) · 

wj WJ 1 X,'+'] 

To maximize this over (w;) we need only consider the second term of 
Q(8, 8'), so we are maximizing 2:: n; log w; where (n;) is the average of 
the n;(x) over the training set. We have 

so 2:: n; log w; :::; 2:: n; log n; and w; = n;. For the parameters qy; we 
maximize the weighted log-likelihood 

L L n;(x)logj;(x;qy;). 
i xEY 

If there are no common parameters, each 4J can be found separately. 

A.3 Markov chain Monte Carlo 

Markov chain Monte Carlo methods are iterative methods to simulate 
from distributions that are not easily simulated by more direct meth­
ods. They have been used to simulate stochastic processes for many 
years (Metropolis et al., 1953; Ripley, 1977, 1979; Geman & Geman, 
1984; Ripley, 1987), but have recently become popular in mainstream 
Bayesian statistics following their espousal by Gelfand & Smith (1990) 
and Gelfand et al. (1990). (See Geyer, 1992; Smith & Roberts, 1993 ; 
Besag & Green, 1993; Tierney, 1994; Besag et al., 1995; and Gelman 
et al., 1995, for recent reviews.) 

We will consider a finite collection Xv, v E V for random variables, 
and use the notation of Chapter 8, that XA denotes the collection 
X a, a E A c V. We are interested in sampling from the whole collection 
X v or from the conditional distribution of X A given XAc, often with 
the aim of finding aspects of the marginal distribution of some subset A. 
We can in principle sample successively from the marginal distribution 
of X1, then from X2l X1, X3l X1,X2 and so on, but these distributions 
may not be known sufficiently explicitly to sample from. Suppose we 
do know how to sample from the conditional distribution of Xv given 
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X V\{v} for each random variable (as is required at the last step of 
successive sampling). Then starting with some set of values for X v, we 
can pick a variable, and sample it conditionally on the rest. This is 
repeated for all the variables in some order, and is what is known as 
the Gibbs sampler. This term is due to Geman & Geman (1984), who 
showed that for discrete random variables with a finite state space and 
no zero-probability configurations the joint distribution of X v after n 
samples converges to the required joint distribution provided only that 
each random variable is visited infinitely often. Thus we can visit the 
variables in random or systematic order, and visit some more often 
than others. 

The restriction to a strictly positive joint distribution is an essential 
one, as without it the Gibbs sampler may fail. Consider three binary 
random variables A, B, C such that B and C are independent given 
A = 0, but A = 1 implies B = C = 1. The Gibbs sampler will 
eventually reach the state A = B = C = 1 and be unable to escape. 
Assuming irreducibility (that we can move with positive probability 
from any configuration with positive probability to any other in a finite 
number of steps) saves convergence (Ripley, 1987, §4.7). Sometimes 
irreducibility can be retrieved by grouping vertices or by taking zero 
probabilities to be the limit of very small probabilities (Sheehan & 
Thomas, 1993), but there are practical limits to the value of these 
'tricks'. It is widely assumed that this result still holds for continuous 
random variables, although the theory is much more complicated and 
further mild conditions are required (Chan, 1993; Smith & Roberts, 
1993, Appendix A; Tierney, 1994). 

In the discrete case there are many other MCMC schemes. We 
confine attention to configurations with positive probability (without 
any loss of generality). Suppose we have a transition kernel q(xv, x~) 
which gives the conditional probability of moving from configuration 
xv to configuration x'v· A Metropolis algorithm generates a move 
according to this conditional probability, and accepts it with probability 
min{1,p(x~)/p(xv)}. This converges to the joint distribution provided 

(a) the kernel q is symmetric, 

(b) the process is irreducible, and 

(c) the process is aperiodic. (This says that the feasible return times to 
a state have period one, and precludes only returning with positive 
probability at even times, for example.) 

A Hastings algorithm (Hastings, 1970) allows an asymmetric kernel q, 
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and accepts the move with probability 

. { 1 p(x~ )q(x~, xv)} m1n , , . 
p(xv )q(xv, xv) 

This process converges if it is irreducible and aperiodic. Suppose in a 
Metropolis-Hastings algorithm we consider moves which change only 
one random variable. If this is Xv we have 

p(x'v) p(x~ I X V\{v} = XV\{v}) ---- = ------~~--~~ 
p(xv) p(xviXV\{v}=Xv\{v}) 

which needs only the conditional distributions as for the Gibbs sampler. 
Unlike the Gibbs sampler it needs only ratios of distributions, so these 
need not be normalized. There are a few continuous analogues of the 
Metropolis-Hastings method. 

'Blocked' Gibbs sampler methods use the Gibbs sampler on blocks 
of random variables rather than on single variables. Sometimes this 
is a device to ensure irreducibility or to encourage faster convergence. 
On the other hand, it can be quite natural. Consider a general mixture 
distribution as at the end of Section A.2. We can treat the set of 
indicators (Ii) of the unknown components for each member of the 
training set as a block, and sample these simultaneously given the real 
parameters. 

Much of the theoretical work when using an MCMC method is 
proving irreducibility, and in practical examples this can be lengthy 
(Grenander et al., 1991). In practice the difficulty is knowing when the 
process has reached equilibrium, and how long to wait between sampling 
XA if (approximately) independent samples are required. There is much 
discussion of empirical methods of assessing convergence in the surveys 
cited at the beginning of this section, but none would recognize the 
pseudo-equilibrium behaviour reported by Ripley & Kirkland (1990), 
who give an example in which equilibrium has not been approached 
after each random variable in the system has been sampled 10,000 
times, although the process has appeared stable for 9,500 passes. So 
great care is needed! 

A.4 Axioms for conditional independence 

We will use the notation X .JL Y I Z of Dawid (1979, 1980) to say that 
random variables X and Y are independent given Z. For discrete 
random variables it is clear what this means: 

Pr{X=x,Y =yiZ =z} = Pr{X=xiZ =z}Pr{Y =yiZ =z} 

whenever Pr{Z = z} > 0. 
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If just Z is discrete we can ask that the joint conditional density 
factorizes. In general we may ensure that the conditional densities exist 
and require 

p( X, y I z) = p( X I z) p(y I z) 

except for z belonging to a set visited by Z with probability zero. Alter­
natively, we will have p(x I y,z) = p(x I z), and conditional independence 
will hold whenever there is a version of p(x I y, z) which is a function 
of x and z alone (since then p(x I z) = E[p(x I Y, z) I Z = z] = p(x I y, z) 
for any y ). Alternatively (and only for those thoroughly familiar 
with probability theory) we can use regular conditional probabilities 
(Freedman, 1971, §10.10) which define a conditional probability for 
each value of Z, and use the usual definition of independence, the 
factorization of Pr{X E A, Y E BIZ = z }. 

We will regard a group of random variables as still a random 
variable, so in the following X, Y , Z and W may be collections of 
random variables. 

The following properties are easily derived from the definitions. 

XJ.LY IZ <==> YJ.LXIZ (A.1) 

XJ.LY,WIZ = XJ.LY IZ (A.2) 

XJ.LY,WIZ = XJ.LY IZ,W (A.3) 

X J.L W I Z, Y and X J.L Y I Z = X J.L Y, w I z. (A.4) 

Note that on interchanging the roles of W and Y in (A.3) we may 
replace (A.2-A.4) by 

X J.L W I Z, Y and X J.L Y I Z <==> X J.L Y, W I Z. (A.5) 

For strictly positive densities (only) we have also 

X J.L WI Z, Y and X J.L Y I Z, W =X J.L Y, WI Z. (A.6) 

Properties (A.4) and (A.6) are different, since in general neither of 
X J.L Y I Z and X J.L Y I Z, W implies the other. 

The graphical interpretations of conditional independence discussed 
in Chapter 8 are all deducible from these axioms. This has led Pearl 
and his co-workers to term concepts which respect (A.1-A.4) graphoids 

These exist on Borel 
spaces, which covers 
any practicable 
example. 

and graphoids which also obey (A.6) are called positive graphoids. This The precise definitions 

is not pure axiomatization; there are other concepts which obey these vary across his papers. 

axioms (such as embedded multi-valued dependencies of attributes in 
databases; Fagin, 1977). If we allow non-disjoint collections of variables 
we also need to know 

X..lLY IY,W. (A.7) 
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J. Q. Smith (1989) uses (A.7), (A.1) and (A.5) as his axiom system for 
a discussion of conditional independence on DAGs (less powerful than 
that described in Chapter 8). From these axioms we deduce 

X,Z .JL y ,Z I z <==> X .JL y I z 
so we can confine attention to disjoint collections of random variables. 

The graphical representations of conditional independence discussed 
in Chapter 8 have stronger properties. Write A .l B I C if set C 
separates A from B. Separation on an undirected graph satisfies 

X.lYIZ 

X.lYUWIZ 

X.lYIZ 

X .l W I Z u Y and X .l Y I Z u W 

Y .l X I Z (A.8) 

X .l Y I Z (A.9) 

X .l Y I Z u W (A.lO) 

X .l Y u W I Z. (A.ll) 

Note that (A.10) is stronger than (A.3) (and we have already said is not 
true for conditional independence), and that we do have the intersection 
condition (A.ll). The first three conditions are immediate. Condition 
(A.ll) is easily proved by contradiction. (Suppose there is a path from 
X to Y U W avoiding Z. Then this path can be truncated if necessary 
to have no interior vertices in Y U W. If it ends in Y, it avoids 
Z U W, and if it ends in W it avoids Z U Y .) Graph separation is also 
transitive: 

X .l Y I Z ~ X .l { v} I Z or Y .l { v} I Z if v tt X u Y u Z. ( A.12) 

On the other hand, d-separation on a DAG satisfies (Pearl, 1988, 
p. 128) 

X.lYIZ <==> Y.lXIZ (A.13) 

X.lYUWIZ ~ X.lYIZ (A.14) 

X.lYUWIZ ~ X.lYIZUW (A.15) 

X .l W I Z u Y and X .l Y I Z ~ X.lYUWIZ (A.16) 

X .l W I Z u Y and X .l Y I Z u W ~ X.lYUWIZ (A.17) 

X .l Y I Z and X .l W I Z <==> X .l Y u W I Z. (A.18) 

The first four conditions map to properties of conditional independence, 
and the fifth is valid for conditional independence under strict positivity. 
We also have 

X .l Y I Z and X .l Y I Z U { v} 

~ X .l { v} I z or Y .l { v} I z 
{a} .l { b} I { c, d} and { c} .l { d} I {a, b} 

~{a} .l {b} I {d} or {a} .l {b} I {d} 

(A.19) 

(A.20) 
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none of which are necessary for probabilistic conditional independence. 
Shenoy & Shafer (1990) also axiomatize marginalization, which en­

ables them to give an abstract version of the computations of marginal 
probabilities on join trees; Dempster & Kong (1988) had already shown 
the version of these computations for Dempster-Shafer belief functions. 
The local computations are about taking a potential representation of a 
distribution (the density is taken to be a product of potential functions 
on cliques) and rearranging the terms of the product while keeping the 
product constant so that the terms are related to marginals. To pass a 
message from Ci to c1 we need to be able to 

1 form the marginal on S = Ci n c1 and 

2 combine this new marginal with the existing marginal on c1. 

For this to be valid, marginals have to be combined in a way that is com­
mutative, associative, marginalization has to be consistent (marginal­
izing from C to S c C must be the same as first marginalizing to 
T then S if C :::J T :::J S ), and marginalization must be distributive 
over combination. (This means that combining marginals on Ci and 
c1 and then marginalizing to c1 is the same as marginalizing from Ci 
to S = C U CJ and then combining marginals on S and Cj.) These 
axioms are true for other systems of combination and marginalization 
that arise in belief function theory and database theory. 

A.5 Optimization 

Optimization, while not strictly statistical, is used in many statistical 
procedures. In statistical applications it is only necessary to find a 
parameter estimate to within a small fraction of its standard error, 
so for our applications it is more important that the optimization 
algorithm is quick to reach an approximately right answer than that its 
convergence (to machine precision) is fast. 

We will concentrate on good methods for estimating many param­
eters. More detailed expositions are given by Gill et al. (1981), Dennis 
& Schnabel (1983) and Fletcher (1987). These methods are iterative. A 
generic minimization algorithm is of the form: 

1 Choose an initial point x0. 

2 Select a search direction p. 

3 Select a step length a, set s = ap and x +--- x + s. We normally 
ensure that f(x) is decreased. 

4 Return to step 2 unless the convergence criteria are met. 

The convergence criteria will be problem-specific. 



The gradient is a 
column vector of 
partial derivatives. 
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Methods based on Taylor expansions 

Suppose we have a function f: 1R m ~ 1R which we wish to minimize. 
We assume that f is differentiable, and let g = V f denote the gradient. 
A first-order Taylor expansion about any point xo g1ves 

f(x) ~ f(xo) + g(xo)T (x- xo) 

and so the value of the function will be reduced by moving to xo-1]g(xo) 
for small enough 17, provided the derivative is not zero at xo. This is 
known as the method of steepest descent, since amongst all unit-length 
vectors a, aT g(xo) is smallest when a oc -g(xo). 

The Taylor expansion provides no idea how to choose 1], and there 
are two main strategies. One is to perform a line search for the minimum 
of f(xo + 17a). This entails that the next step will be orthogonal to this 
one, and the method tends to move in a series of zig-zag steps. The 
other strategy is to increase 11 as far as possible while f(xo)-'711g(xo)f 
remains an adequate approximation to f(x- 1Jg(xo)). 

The curvature of the surface f(x) can give us information about the 
step length, so we now assume that f is continuously twice differentiable 
and has Hessian matrix H(x). A second-order Taylor expansion gives 

f(x) ~ f(xo) + g(xo)T (x- xo) + !(x- xof H(xo)(x- xo).' (A.21) 

and the minimum of the right-hand side occurs at xo- H(xo)-1g(xo) 
provided that H(x) is positive-definite; otherwise the right-hand side 
does not have a unique minimum. Algorithms based on this expansion 
are called Newton methods. It is not always obvious that H(x) is 
positive-definite, but careful algorithms will check this, and adjust it to 
be so if it seems likely that it fails to be positive-definite only through 
rounding errors. 

Note that Newton methods require no line search, but do not ensure 
that f(x) is reduced at each step. They can diverge dramatically. Thus 
practical algorithms will reduce the step length to ensure that the step 
reduces f(x) and perhaps that (A.21) is a reasonable approximation. 
Eventually the full step length will always be used, and the convergence 
then is second-order, that is llxt+l- Xtll = O(llxt- Xt-111 2

). 

The convergence properties of Newton methods are unsurpassed, 
but they are not necessarily so well behaved away from the minimum. 
The Hessian H(x) measures the curvature at x, but this may not be 
useful except very close to x. The methods described next build up a 
quadratic approximation similar to (A.21) which is valid at about the 
length scale of a current step of the algorithm. The other drawback of 
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Newton methods is that H(x) may not be known or be very expensive 
to compute, much more expensive than function values and derivatives. 

Methods based on quadratic approximations 

Suppose our function f is actually quadratic with Hessian G (which 
does not depend on x), so (A.21) is an equality everywhere. We can 
garner information about G from the gradients at x and x + s at the 
beginning and end of a step, since 

g(x + s) = g(x) + Gs. 

A quasi-Newton method uses this to build up an approximation B to 
G. Initially B is set to the best possible guess (the identity matrix if 
no further information is available). Each step is along -B-1g(x), and 
after each step B is updated by B ~ B + U, where the correction U 
is chosen so that after correction Bs = g(x + s)- g(x). If the function 
is quadratic, we will learn G exactly after m linearly independent 
steps, and for a general function we will build up a local quadratic 
approximation to f. 

There are many ways to find a correction term U. It is widely be­
lieved that the most effective update is the Broyden-Fletcher-Goldfarb­
Shanno (BFGS) formula 

where y = g(x + s)- g(x). As the search is along ocp = -aB-1g(x), the 
BFGS update becomes 

B ~ B- g(x)g(x)T + yyT. 
g(x)Tp ayTp 

(A.22) 

For this method to be viable, we do need B to remain positive-definite. 
This needs yT s > 0, which can be ensured by choosing a sufficiently 
accurate line search over a. 

Quasi-Newton methods generally converge super-linearly (which 
means llxt+l- Xtll/llxr- Xt-III ---+ 0), but are often more effective 
than Newton methods away from a local minimum. As with Newton 
methods, the step length a = 1 is preferred, so a line search along p is 
only needed in the early stages. 

The inverse C = B-1 is all that is needed to find the search 
direction, and (A.22) can be converted to an update for C using the 

An older name for 
quasi-Newton methods 
is variable metric 
methods. 

This was proposed 
separately by all four 
authors in 1970. 

Sherman-Morrison-Woodbury formula to give See the glossary. 



Code is given by 
Shanno & Phua (1980). 

Me~ller's comparisons 
with BFGS are invalid, 
since he fails to check if 
rx = 1 is a sufficiently 
good value for the step 
length. 
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(A.23) 

Some but not all accounts suggest that this is less desirable than 
updating a factorization of B, for example the Cholesky factorization 
B = LDLT for L lower-triangular and D diagonal. 

When used on an exactly quadratic function, quasi-Newton methods 
have conjugate search directions p;, that is pf Gpj = 0 for j =!= i. There 
are many other methods based on conjugate gradients with this property, 
and all will find the minimum of a quadratic in at most m steps. We 
are interested in methods which do not form an m x m matrix. We can 
find conjugate search directions by Pl = -g(xi) and for 2 ~ i ~ m, 

fJ. _ Y[lg(xi) _ llg(xi)f 
1

- ffg(xi_l)ff 2 - ffg(xi_l)ff 2 . 

The first formula for f3i is the Polak-Ribiere formula, the second the 
Fletcher-Reeves formula. The two are equal with exact line searches 
on a quadratic function, but not otherwise. The Polak-Ribiere formula 
is generally preferred, since if the algorithm is making little progress, 
f3 ~ 0 and steepest descent is used. The theory of conjugate gradient 
algorithms assumes that they are re-started (by f3 = 0) every m steps. 
However, as they should only be used when m is large, there will 
be at most a few times m iterations and the theory is not relevant. 
Fairly accurate line searches are needed for conjugate gradient methods, 
unlike quasi-Newton ones. M0ller (1993) has developed one particular 
version of conjugate gradients which seems well known in the neural 
network field; it uses the out-dated Hestenes-Stiefel formula for f3i 
with a particular line-search algorithm. 

An alternative way to find conjugate search directions is to use 
(A.22) taking C = I and exact line searches. More generally, we 
can retain only a small number of updates without explicitly forming 
C. Such methods are known as limited-memory quasi-Newton meth­
ods. Shanno (1990) refers to other promising methods intermediate 
between the Polak-Ribiere and quasi-Newton methods; see: Liu & 
Nocedal (1989); Gilbert & Lemarechal (1989); Buckley (1994); and 
Byrd et al. ( 1994 ). 

Non-linear least-squares problems 

Many fitting problems amount to minimizing a sum of squares of the 
form 

n 

E(w) = ~I: IIYj- f(xj; w)ll 2 

j=l 
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for an m-dimensional vector w for parameters. Here y and f are 
univariate, but multivariable problems can be put in this form by 
making multiple entries for each example. 

The gradient and Hessian of E are of a special form, and mini­
mization methods have been developed to exploit this. Let J denote 
the n x m matrix whose rows are the vectors of(xj;w)jow, and let 
ri = Yi- f(xi;w) be the residuals. Then 

oE(w) = J(w)T (r ·) 
ow 1 

and 

()2 E(w) = J(w)T J(w)- "'\:"" r. ()2 f(xj; w) = J(wf J(w) + Q(w), 
OWOWT ~ 1 OWOWT 

j 

say. The specialized methods assume that Q(w) is negligible, so either 
the residuals or the curvatures of f are small. This is often not the 
case in statistical problems. 

The Gauss-Newton procedure is a Newton algorithm with the Hes­
sian replaced by J(wf J(w), that is taking Q(w) = 0. This is equivalent 
to the local linear approximation 

(A.24) 

It is not uncommon to find that J(wf J(w) is ill-conditioned, and 
ridge-regression methods may be used to fit (A.24). In this context they 
are known as Levenberg-Marquardt methods, which replace J(wf J(w) 
by J(wf J(w)+AI. Ifthe residuals are not small, it should be better to 
use general quasi-Newton methods or hybrids between Gauss-Newton 
and quasi-Newton methods (Gillet al., 1981). 

The local linearization (A.24) is also used to find standard errors 
for the parameters w. The variance of the least-squares solution w will 
be approximately 

(A.25) 

where a2 is the variance of the observational errors. 
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AIC ('An Information Criterion') A method developed by Akaike (1973, 1974) 
to avoid over-fitting, by penalizing the deviance by twice the number of 
free parameters. 

back-fitting An iterative method of fitting additive models, by fitting each term 
to the residuals given the rest. It is a version of the Gauss-Seidel methods 
of numerical linear algebra. 

back-propagation is the method used to calculate the gradient vector of a 
fitting criterion for a feed-forward neural network with respect to the 
parameters (weights). Also used for a steepest-descent algorithm with the 
gradient vector computed in this way. 

Bayes formula An elementary formula of probability. If B; are disjoint events, 
and AcU;B; then 

Pr{B; I A}= Pr{A I B;}Pr{B;} . 
L:j Pr{A I Bj}Pr{Bj} 

Bayes rule is a rule which attains the Bayes risk, and so is the 'gold-standard', 
the best possible for that problem. 

bias has two meanings. (a) The bias of an estimator is the difference between 
its mean and the true value. (b) For a neural network, parameters which 
are constants (rather than multiplying signals) are often called biases. 

BIC has two similar meanings. Akaike (1977, 1978) introduced 'informa­
tion criterion B'. Schwarz (1978) introduced something which has become 
known as a 'Bayesian information criterion'. Although most references 
mean Schwarz's BIC, to avoid confusion this is also known as SBC 
('Schwarz Bayes Criterion'). Both penalize the deviance by log n times 
the number p of free parameters for n examples, but Akaike's has O(p) 
terms not depending on n. 

Bieoayme-chebychev inequality For a random variable X with mean J1 and 
variance a 2 < oo we have 

(J2 

Pr{IX- Ji.l > e} ~ 2 f' 

for all e > 0. This follows from Jensen's inequality applied to (X- J1)2• 
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bootstrap (Efron, 1979) An idea for statistical inference, using trammg sets 
created by re-sampling with replacement from the original training set, so 
examples may occur more than once. 

branch-and-bound A technique in combinatorial optimization to rule out solu­
tions without evaluating them. 

classification trees Classifiers which partition the examples on one feature at 
a time. See Chapter 7. 

classifier A rule to assign a class (or 'doubt' or 'outlier') to new examples. 

codebook vectors Representative examples of a probability distribution. The 
term comes from vector quantization. 

compact set A subset A c IR_m is compact if it is closed and bounded, that is 
A c [-K,K]m for some K > 0. Compact sets are also called compacta. 

conjugate gradients A class of methods used in optimization (and solving 
linear systems). See Section A.5. 

consistent An estimator is consistent if in large samples it converges to the 
true parameter value (when there is one). 

concave A function f is concave if - f is convex. 

convex A set A c IR_m is convex if a.a + (1- a.)b E A whenever a,b EA. A 
function f:A- IR is convex is f(a.a + (1- a.)b) ~ af(a) + (1- a.)f(b). 

cross-validation A method of evaluating parameters or classifiers by dividing 
the training set into several parts, and in turn using one part to test the 
procedure fitted to the remaining parts. Sometimes used to refer to leave­
one-out (or ordinary) cross-validation, where every example is dropped in 
turn. This term is much abused; it does not mean the use of a test set or 
validation set. Generalized cross-validation is a measure of the performance 
of a regularized classifier; see page 141. 

deviance A measure of fit of a statistical model. The deviance is twice (log­
likelihood of the best model minus log-likelihood of the current model). 
The best model can be the true model or an exact fit (often called a 
saturated model). 

diagnostic paradigm In the terminology of Dawid (1976), modelling the con­
ditional distribution of the class C given the features X . 

Dirichlet distribution A distribution over probability distributions (nb .. . , nK) 
on K classes. Its density (Berger, 1985, p. 561) is, for a.; > 0 and 
o ~ n;,l:n; = 1, 

K 

p(n) oc IT n~;-1 
i=l 

which has mean at (a.;/ Lt a.t), and is increasingly concentrated as (a.;) 
increases. 
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Dirichlet tessellation Given a set of points in RP, associate with each those 
points of RP to which it is nearest. This defines a tile, and the tiles 
partition the space. Also known as Voronoi or Thiessen polygons in R 2• 

Preparata & Shamos (1985) give algorithmic details. 

dissimilarity A measure of the dissimilarity of two examples based on their 
features. Must be non-negative and symmetric. 

early stopping A method of optimization in which the objective used is not the 
real goal, and optimization is stopped when another measure of fit starts 
to rise. This may be critically dependent on the starting value chosen. 

editing Methods of reducing the training set for use by nearest-neighbour 
methods. 

efficiency A statistical term, measuring the performance of estimators. Unless 
stated otherwise, efficiency is a measure of 1/(n x variance in samples of 
size n) (for large n). 

eigendecomposition of a real symmetric matrix A. This is an orthonormal 
matrix C and a non-negative diagonal matrix D such that A= CDCT. 

EM algorithm A device to construct algorithms for maximum likelihood and 
MAP estimators. See Section A.2. 

equivariance An invariant procedure is unchanged under a transformation; 
an equivariant procedure transforms its answer. For example, if () is a 
parameter and ¢ = g(O), then '¢ = g(O). 

estimator A rule to assign a parameter value to a set of observations. The 
value assigned is called an estimate, and the distinction between estimators 
and estimates is not always observed. 

feature A measurement on an example, so the training set of examples has 
measured features and a class for each. 

feature extraction Creating useful new features by combinations (usually lin­
ear) of existing features. 

feed-forward network A network in which vertices can be numbered so that 
all connections go from a vertex to one with a higher number. In practice 
the vertices are arranged in layers, with connections only to higher layers. 

generalization A measure of t~e ability of a classifier to perform well on future 
examples, or such a measure applied to a method to design classifiers. The 
term comes from psychology and refers to the ability to infer the correct 
structure from examples. 

Gibbs sampler A simulation method used in Bayesian inference. See Sec­
tion A.3. 

Hermite polynomials Families of orthogonal polynomials. See Thisted (1988, 
§5.3.2). 
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Hessian The second derivative matrix of a function f(x). 

hints The idea of 'hints' is to incorporate qualitative information into the 
classifier. 

HME Hierarchical mixtures of experts. A tree-structured way to select a 
combination of classifiers. See Section 8.5. 

information (matrix) The Hessian of the log-likelihood with respect to the 
parameters (the observed information) or its expected value (the Fisher 
information). 

Jensen's inequality Suppose f is a convex function on a convex domain, and 
X a random variable on that domain. Then Ef(X);::: f(EX). 

Kullback-Leibler divergence between distributions on the same space with den­
sities p and q is 

J p(x) 
d(p, q) = p(x) log q(x) dx. 

learning Choosing the parameters of a classifier (and perhaps also the family 
of classifiers) from the training set. 

least false parameter value. If the parametric family does not contain the true 
distribution, this is the best possible parameter value e in the sense of 
minimum Kullback-Leibler divergence d(p,pe). See page 32. 

likelihood The probability density of the observations, viewed as a function of 
the parameters, not of the observations. 

logistic The logistic distribution has cumulative distribution function t(x) = 

exp(x)/[1 + exp(x)], and this function is called the logistic function. Lo­
gistic regression and discrimination are based on converting predictions to 
probabilities through the logistic function. 

Lp An Lp space is the space of random variables X such that E IXIP < oo 
or a space offunctions f for which J f(x)Pdx < oo. Convergence Xn --+X 
in Lp means E (Xn - X)P --+ 0. 

LVQ Learning Vector Quantization. A method of designing examples for use 
in nearest-neighbour procedures. See page 201. 

Mahalanobis distance Given a positive-definite symmetric matrix l: (a covari­
ance matrix), the distance between examples x and y in feature space is 
(x- y)Tl:-l(x- y). 

MAP estimator is the global maximum of the posterior density p(8 I:?/). See 
Section A.l for further discussion. MAP stands for maximum a posteriori. 

maximum likelihood estimate is a value which maximizes the likelihood func­
tion, or, more loosely, is a stationary point of the likelihood function. 

missing values are unreported values of features. These could be lost, or 
they could be deliberate non-measurement and so convey information. (A 
medical practitioner will not order tests if their value appears low.) 
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multilayer perceptron is another name for a feed-forward neural network. De­
spite the name, the 'neurons' are not usually perceptrons. 

multivariate analysis is the branch of statistics concerned with multiple ob­
servations on each example which are not only of interest to predict or 
explain just one of the observations. 

non-informative prior A prior distribution for a parameter vector e which is 
intended to express ignorance about e. This can be tricky, and often leads 
to the use of densities which have an infinite integral (known as improper 
priors), such as a uniform density on R. 

normal distribution In our usage, this includes both univariate and multivariate 
distributions. The density is 

NP-complete It is desirable that algorithms terminate in a time which is 
polynomial in the size of the problem and the accuracy required. Let P 
denote all problems for which there is such an algorithm. If we allow 
nondeterministic algorithms (which are allowed to choose the best option 
whenever there is a choice) the class of problems is called NP. Equivalently, 
NP is the class of problems for which a solution could be verified in 
polynomial time. It is widely believed that NP is strictly larger than P, 
but this remains an open research problem. A problem in NP is called 
NP-complete if proving it was in P would establish P = NP, which should 
be regarded as strong evidence that no polynomial algorithm will ever be 
found. (Cormen et al., 1990; Sedgewick, 1990; Garey & Johnson, 1979.) 

NP-bard A NP-hard problem is one that implies a solution to every problem 
in NP (see NP-complete) but is not known to be in NP. Thus NP-hardness 
is strong evidence that no polynomial algorithm for the problem will ever 
be found. 

on-line methods of parameter estimation adjust the estimate after each new 
example is seen. 

ordinal feature An ordinal measurement is one of a series of ordered categories, 
for example income ('poor', 'sufficient', 'well-off', 'rich', ... ). 

outliers Outliers are examples which did not (or are thought not to have) 
come from the assumed population of examples. For example, in digit 
recognition, the segmentation will fail occasionally, so the data will not be 
from a digit at all. 

Parzen windows A name for kernel density estimation once common in the 
pattern recognition community. 

perceptron A simple classifier into two classes which thresholds a linear com­
bination of the features. Much publicized by F. Rosenblatt around 1960. 
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plug-in classifier A classifier constructed by assuming that estimated parameter 
values are in fact the true ones. 

posterior probability The probability of an event conditional on the observa­
tions. 

predictive classifier A classifier constructed by averaging over the uncertainty 
in the estimated parameter values. 

principal components are linear combinations of features with high variance. 
See Section 9.1. 

prior probability Probabilities specified before seeing the data, and so based 
on prior experience or belief. Commonly these are the prior probabilities 
nk of the classes. 

profile likelihood Suppose we divide the parameters () = ( ¢, tp ). The profile 
likelihood for ¢ is the likelihood for () maximized over tp. 

projection pursuit methods are based on extracting features (linear combina­
tions of the original features). Exploratory projection pursuit (Section 9.1) 
looks for 'interesting' (non-normal) features, and projection pursuit regres­
sion (Section 4.1) uses the extracted features in an additive model. 

pruning is the term used for removing parts of trees and networks with the 
aim of increasing generalization. See Section 7.2. 

quasi-Newton methods are methods of optimization which approximate the 
Hessian using only gradient information. See Section A.5. 

radial basis functions are a large class of approximating functions, computed 
as a linear combination of non-linear functions of the distances to a set of 
centres: 

rank (of a matrix). The number of linearly independent rows or columns. 

regularization A class of methods of avoiding over-fitting to the training set 
by penalizing the fit by a measure of 'smoothness' of the fitted function. 

resistant methods are designed to be little affected by outliers. For example, 
the median is much more resistant than the mean. 

ridge regression See shrinkage methods. 

risk of a classifier is the expected loss from using it. The Bayes risk is the 
lowest attainable risk (using these features). 

robust methods are designed to be resistant, and also to have high efficiency 
near some target distribution. For example, although the median is resis­
tant, it is inefficient compared to a trimmed mean. 

sampling paradigm In the terminology of Dawid (1976), modelling the class­
conditional densities Pk(x) and, perhaps, the prior probabilities of the 
classes nk. 
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Sherman-Morrison-Woodbury formula Given a non-singular n x n matrix A 
and column vectors b and d we have 

provided dT A-1b =F -1. If B and D are n x m matrices for m::::; n then 

provided the m x m matrix I+ DT A-1B is invertible (Golub & Van 
Loan, 1989, p. 51). 

shrinkage methods of estimation 'shrink' an estimator by moving it towards 
some fixed value (or an overall mean). Ridge regression shrinks regression 
coefficients towards zero, apart from the constant. The idea is that the 
shrunken estimator has more bias but lower variance and hence better 
generalization. The James- Stein example (Cox & Hinkley, 1974, §11.8) 
shows that this idea works even for the mean of a normal distribution in 
p ;?; 3 dimensions. 

simulated annealing is a method of combinatorial optimization based on tak­
ing a series of random steps in the search space. See Ripley (1987) or 
Aarts & Korst (1989). 

singular value decomposition of a real matrix X = U AVT, where A is a 
diagonal matrix with decreasing non-negative entries, U is an n x p 
matrix with orthonormal columns, and V is a p x p orthogonal matrix 
(Golub & Van Loan, 1989). 

SOFM, SOM Self-organizing (feature) map of Kohonen. See Section 9.4. 

softmax Given outputs Y1, ... , YK for each of K classes, assign posterior 
probabilities as 

K 

p(k I x) = expyk / L::expyj. 
j=l 

The term comes from Bridle (1990a, b), but the idea is that of multiple 
logistic regression. 

splines are used in function approximation and smoothing. They are con­
structed by joining functions defined over a partition of the space: the 
simplest case is polynomials on adjoining intervals. See Section 4.1. 

stacked generalization A method of using cross-validation to choose a combi­
nation of classifiers. The term is from Wolpert (1992); the idea goes back 
at least to M. Stone (1974). 

steepest descent A method of minimization which takes steps along the direc­
tion to steepest descent, the gradient vector. For maximization the method 
is known as steepest ascent or hill-climbing. 



354 Glossary 

stochastic approximation aims to find the value of Oo solving f(O) = 0, but 
although we can measure f(O), the result will measured with error. After 
taking many measurements for fJ with j(fJ) near zero we will be able to 
find accurate estimators of 00. There are also versions which aim to find 
the maximizer of f(O). 

supervised learning Choosing a classifier from a training set of correctly clas­
sified examples. 

t distribution The t distribution in p dimensions with location vector J1 and 
scale matrix ~ is the distribution of J1 +X /S where X "' Np{O, ~} and 
vS2 "'x; (Johnson & Kotz, 1972, §37.3; Mardia et al., 1979, p. 57). For 
v > 2 the mean is J1 and the covariance matrix v~/(v- 2). The density is 

test set A set of examples used only to assess the performance of a fully­
specified classifier. 

training set A set of examples used for learning, that is to fit the parameters 
of the classifier. 

uniform convergence A sequence of functions fn converges uniformly to f if 
maxx lfn(x)- f(x)l ---+ 0 as n ---+ oo. We have uniform convergence on 
compacta if this holds whenever the maximum is taken over any compact 
set K. 

unsupervised learning Discovering groupings in the training set when none are 
pre-specified. 

updating Changing the classifier when new examples become available, possi­
bly lacking their true classifications. 

validation set A set of examples used to tune the parameters of a classifier, for 
example to choose the number of hidden units in a neural network. 

vector quantization A method of encoding data for signal transmission, in 
which a vector is replaced by one of a finite number of representatives. 
See page 201. 

weights The parameters in a neural network model. Also weights given to 
individual examples, for example to indicate multiple copies. 
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