
Front-End 
Multi-Scale 
Analysis: M 
Computer Vi 
andApplic 
written in 



Front-End Vision and Multi-Scale Image Analysis 



Computational Imaging and Vision 

Managing Editor 

MAX A. VIER GE VER 

Utrecht University, Utrecht, The Netherlands 

Editorial Board 
GUNILLA BORGEFORS, Centre for Image Analysis, SLU, Uppsala, Sweden 
THOMAS S. HUANG, University of Illinois, Urbana, USA 
SABURO TSUJI, Wakayama University, Wakayama, Japan 

Volume 27 



Front-End Vision and 
Multi-Scale Image Analysis 
Multi-Scale Computer Vision Theory and 
Applications, written in Mathematica 

by 

Bart M. ter Haar Romeny 

Eindhoven University of Technology, 
Department of Biomedical Engineering, 
Biomedical Imaging and Informatics, 
Eindhoven, The Netherlands 

~Springer 



Printed on acid-free paper

9 8 7 6 5 4 3 2 1

springer.com

Reprinted in 2008

http://bmia.bmt.tue.nl/Education/Courses/FEV/book/index.html

Prof. Dr. Bart M. ter Haar Romeny

Fac. Biomedical Engineering 

Dept. Image Analysis & Interpretation
5600 MB Eindhoven
Netherlands

c

No part of this work may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, microfilming, recording

or otherwise, without written permission from the Publisher, with the exception

of any material supplied specifically for the purpose of being entered

and executed on a computer system, for exclusive use by the purchaser of the work.

© 2003 Springer Science + Business Media B.V.

Eindhoven University of Technology

This book is available in Mathematica, a mathematical  programming language, at the following website:

ISBN 978-1-4020-1503-8 (HB) 

ISBN 978-1-4020-1507-6 (PB) 

e-ISBN 978-1-4020-8840-7 (e-book) 

Library of Congress Control Number: 2008929603



Table of contents 

Front-End Vision and Multi-Scale Image Analysis ................................ xiii 
The purpose of this book ........... ..... ...... ...................... ... . .. ............. ........... .... xiii 
Scale-space theory is biologically motivated computer vision ... ... .. .. xiv 
This book has been written in Mathematica. .......................................... xvi 
Acknowledgements ......................................................................................... xviii 

1. Apertures and the notion of scale .......................................................... . 
1.1 Observations and the size of apertures ........................................... . 
1 .2 Mathematics, physics, and vision . . ..... ............. ................................... 2 
1.3 We blur by looking ................................................................................... 5 
1.4 A critical view on observations .............................. ...... ......................... 9 
1.5 Summary of this chapter....................................................................... 12 

2. Foundations of scale-space......................................................... 13 
2.1 Constraints for an uncommitted front-end ........................................ 13 
2.2 Axioms of a visual front-end .................. .............................................. 15 

2.2.1 Dimensional analysis ............................... ........................... 15 

2.2.2 The cooking of a turkey...................................................... 16 

2.2.3 Reynold's number ................ ................................................. 18 

2.2.4 Rowing: more oarsmen, higher speed? .... .... ........... ..... 19 
2.3 Axiomatic derivation of the Gaussian kernel ................................... 21 
2.4 Scale-space from causality .............................................. .................... 23 
2.5 Scale-space from entropy maximization ....................... ............. ...... 25 
2.6 Derivatives of sampled, observed data ............................................. 27 
2.7 Scale-space stack.................................................................................... 31 
2.8 Sampling the scale-axis ............. ........................................................... 32 
2.9 Summary of this chapter ........................................................................ 35 

3. The Gaussian kernel ........................................................ ........................ ...... 37 
3.1 The Gaussian kernel .................... .......... ....... .. . ... ... .. ... ... ....... ...... .... ....... 37 
3.2 Normalization .............. ...... ..... .... ..... ..... ....... .................... ........................... 38 
3.3 Cascade property, selfsimilarity ........................................................... 39 
3.4 The scale parameter ............................................................................... 40 
3.5 Relation to generalized functions ........................................................ 40 
3.6 Separability ................................................................................................. 43 
3.7 Relation to binomial coefficients.......................................................... 43 
3.8 The Fourier transform of the Gaussian kernel ................................ 44 
3.9 Central limit theorem ............................................................................... 46 
3.10 Anisotropy ................................................................................................ 48 
3.11 The diffusion equation .......................................................................... 49 
3.12 Summary of this chapter ........................................................... 50 



vi Front-end vision and multi-scale image analysis 

4. Gaussian derivatives ............... ................................................. ..................... 53 
4.1 Introduction ................................................................................................ 53 
4.2 Shape and algebraic structure ............................................................. 53 
4.3 Gaussian derivatives in the Fourier domain .................................... 57 
4.4 Zero crossings of Gaussian derivative functions ............ ............... 59 
4.5 The correlation between Gaussian derivatives ............. .......... ........ 60 
4.6 Discrete Gaussian kernels .................................................................... 64 
4.7 Other families of kernels........................................................................ 65 
4.8 Higher dimensions and separability ................................................... 67 
4.9 Summary of this chapter........................................................................ 69 

5. Multi-scale derivatives: implementations ............................................ 71 
5.1 Implementation in the spatial domain ................................................ 71 
5.2 Separable implementation ..................................................................... 73 
5.3 Some examples ........................................................................................ 74 
5.4 N-dim Gaussian derivative operator implementation .................... 78 
5.5 Implementation in the Fourier domain............................................... 79 
5.6 Boundaries ................................................................................................. 83 
5.7 Advanced topic: speed concerns in Mathematica ........................ 85 
5.8 Summary of this chapter........................................................................ 89 

6. Differential structure of images ................................................................ 91 
6.1 The differential structure of images .................................................... 91 
6.2 lsophotes and flowlines .......................................................................... 92 
6.3 Coordinate systems and transformations ......................................... 96 
6.4 Directional derivatives ............................................................................. 102 
6.5 First order gauge coordinates .............................................................. 103 
6.6 Gauge coordinate invariants: examples ........................................... 108 

6.6.1 Ridge detection ..................................................................... 108 

6.6.2 lsophote and flowline curvature in gauge coord ......... 110 

6.6.3 Affine invariant corner detection ...................................... 113 
6. 7 A curvature illusion .................................................................................. 115 
6.8 Second order structure ........................................................................... 117 

6.8.1 The Hessian matrix and principal curvatures .............. 119 

6.8.2 The shape index .................................................................... 120 

6.8.3 Principal directions ............................................................... 122 

6.8.4 Gaussian and mean curvature ......................................... 123 

6.8.5 Minimal and zero Gaussian curvature surfaces .......... 126 
6.9 Third order image structure: T-junction detection .......................... 127 
6.10 Fourth order image structure: junction detection ......................... 131 
6.11 Scale invariance and natural coordinates ...................................... 132 
6.12 Irreducible invariants ............................................................................. 134 

Intermezzo: Tensor notation ........................................................ 135 
6.13 Summary of this chapter ..................................................................... 136 



Table of contents vii 

7. Natural limits on observations .................................................................. 137 
7.1 Limits on differentiation: scale, accuracy and order ...................... 137 
7.2 Summary of this chapter ........................................................................ 141 

8. Differentiation and regularization ............................................................ 143 
8.1 Regularization ........................................................................................... 143 
8.2 Regular tempered distributions and test functions ........................ 144 
8.3 An example of regularization ................................................................ 147 
8.4 Relation regularization ¢==} Gaussian scale-space ....................... 148 
8.5 Summary of this chapter ........................................................................ 152 

9. The front-end visual system - the retina ............................................... 153 
9.1 Introduction ................................................................................................ 153 
9.2 Studies of vision ....................................................................................... 154 
9.3 The eye ........................................................................................................ 156 
9.4 The retina .................................................................................................... 157 
9.1 Retinal receptive fields ........................................................................... 160 
9.6 Sensitivity profile measurement of a receptive field ...................... 162 
9.7 Summary of this chapter ........................................................................ 165 

10. A scale-space model for the retinal sampling ................................. 167 
10.1 The size and spatial distribution of receptive fields .................... 167 
10.2 A scale-space model for the retinal receptive fields ................... 172 
10.3 Summary of this chapter ..................................................................... 177 

11. The front-end visual system - LGN and cortex ................................ 179 
11.1 The thalamus .......................................................................................... 179 
11.2 The lateral geniculate nucleus (LGN) .............................................. 181 
11.3 Corticofugal connections to the LGN .............................................. 183 
11.4 The primary visual cortex .................................................................... 185 

11.4.1 Simple cells .......................................................................... 187 

11. 4.2 Complex cells ............................. ................................... ...... 188 

11.4.3 Directional selectivity ......................................................... 189 
11.5 Intermezzo: Measurement of neural activity in the brain .......... 191 

Electro-Encephalography (EEG) ................................................ 191 

Magneto-Encephalography (MEG) ............................................ 192 

Functional MRI (fMRI) .................................................................... 193 

Optical imaging with voltage sensitive dyes ... ......................... 194 

Positron Emission Tomography (PET) ..................................... 194 
11.6 Summary of this chapter ..................................................................... 195 

12. The front-end visual system - cortical columns ............................. 197 
12.1 Hypercolumns and orientation structure ........................................ 197 
12.2 Stabilized retinal images ...................................................................... 200 
12.3 The concept of local sign .................................................................... 202 
12.4 Gaussian derivatives and Eigen-images ........................................ 204 



viii Front-end vision and multi-scale image analysis 

12.5 Plasticity and self-organization .......................................................... 208 
12.6 Higher cortical visual areas ................................................................ 21 o 
12. 7 Summary of this chapter ..................................................................... 211 
12.8 Vision dictionary ..................................................................................... 211 

12.8.1 Further reading on the web: ............................................ 212 

13 Deep structure I. watershed segmentation ........................................ 215 
13.1 Multi-scale measurements .................................................................. 215 
13.2 Scale selection ........................................................................................ 216 
13.3 Normalized feature detection ............................................................. 218 
13.4 Automatic scale selection .................................................................... 219 

13.4.1 ;\.-Normalized scale selection .......................................... 220 

13.4.2 Is this really deep structure? ........................................... 220 
13.5 Edge focusing ......................................................................................... 221 

13.5.1 Simplification followed by focusing ............................... 221 

13.5.2 Linking in 1 D ........................................................................ 222 
13.6 Follicle detection in 3D ultrasound ................................................... 225 

13.6.1 Fitting spherical harmonics to 3D points ..................... 229 
13. 7 Multi-scale segmentation ..................................................................... 231 

13.7.1 Dissimilarity measure in scale-space ........................... 231 

13.7.2 Watershed segmentation ................................................ 232 

13.7.3 Linking of regions ............................................................... 234 

13.7.4 The multi-scale watershed segmentation ................... 237 
13.8 Deep structure and nonlinear diffusion ........................................... 239 

13.8.1 Non-linear diffusion watershed segmentation ........... 239 

14. Deep structure II. catastrophe theory .................................................. 241 
14.1 Catastrophes and singularities .......................................................... 241 
14.2 Evolution of image singularities in scale-space ........................... 242 
14.3 Catastrophe theory basics .................................................................. 243 

14.3.1 Functions .............................................................................. 243 

14.3.2 Characterization of points ................................................ 243 

14.3.3 Structural equivalence ...................................................... 244 

14.3.4 Local characterization of functions ............................... 244 

14.3.5 Thom's theorem .................................................................. 245 

14.3.6 Generic property ................................................................. 246 

14.3.7 Dimensionality ..................................................................... 246 

14.3.8 Illustration of the concepts .............................................. 247 
14.4 Catastrophe theory in scale-space .................................................. 250 

14.4.1 Generic events for differential operators .................... 251 

14.4.2 Generic events for other differential operators ......... 254 

14.4.3 Annihilations and creations ............................................. 255 
14.5 Summary of this chapter ..................................................................... 256 



Table of contents ix 

15. Deep structure Ill. topological numbers ............................................. 257 
15.1 Topological numbers ............................................................................ 257 

15.1.1 Topological numbers in scale-space ............................ 258 
15.1.2 Topological number for a signal .................................... 259 
15.1.3 Topological number for an image ................................. 259 
15.1.4 The winding number on 2D images ............................. 260 

15.2 Topological numbers and catastrophes ......................................... 263 
15.3 The deep structure toolbox ................................................................. 265 

15.3.1 Detection of singularities .................................................. 265 
15.3.2 Linking of singularities ...................................................... 265 
15.3.3 Linking of contours ............................................................. 268 
15.3.4 Detection of catastrophes ................................................ 268 
15.3.5 General discrete geometry approach .......................... 269 

15.4 From deep structure to global structure ......................................... 271 
15.4.1 Image representations ...................................................... 271 
15.4.2 Hierarchical pre-segmentation ....................................... 272 
15.4.3 Perceptual grouping .......................................................... 273 
15.4.4 Matching and registration ................................................ 274 
15.4.5 Image databases ................................................................ 274 
15.4.6 Image understanding ........................................................ 275 

15.5 Summary of this chapter ..................................................................... 275 

16. Deblurring Gaussian blur .......................................................................... 277 
16.1 Deblurring ................................................................................................. 277 
16.2 Deblurring with a scale-space approach ........................................ 277 
16.3 Less accurate representation, noise and holes ........................... 281 
16.4 Summary of this chapter ..................................................................... 284 

17. Multi-scale optic flow .................................................................................. 285 
17.1 Introduction .............................................................................................. 285 
17.2 Motion detection with pairs of receptive fields .............................. 286 
17.3 Image deformation by a discrete vectorfield ................................. 289 
17.4 The optic flow constraint equation .................................................... 290 
17.5 Scalar and density images .................................................................. 292 
17.6 Derivation of multi-scale optic flow constraint equation ............ 292 

17 .6.1 Scalar images, normal flow ............................................. 296 
17.6.2 Density images, normal flow .......................................... 301 

17.7 Testing the optic flow constraint equations ................................... 303 
17 .8 Cleaning up the vector field ................................................................ 305 
17.9 Scale selection ........................................................................................ 307 
17.10 Discussion ............................................................................................. 309 
17.11 Summary of this chapter ................................................................... 31 O 



x Front-end vision and multi-scale image analysis 

18. Color differential structure ....................................................................... 311 
18.1 Introduction .............................................................................................. 311 
18.2 Color image formation and color invariants ................................... 311 
18.3 Koenderink's Gaussian derivative color model ............................ 314 
18.4 Implementation ....................................................................................... 320 
18.5 Combination with spatial constraints ............................................... 325 
18.6 Summary of this chapter ..................................................................... 327 

19. Steerable kernels .......................................................................................... 329 
19.1 Introduction .............................................................................................. 329 
19.2 Multi-scale orientation .......................................................................... 330 
19.3 Orientation analysis with Gaussian derivatives ............................ 331 
19.4 Steering with self-similar functions ................................................... 332 
19.5 Steering with Cartesian partial derivatives .................................... 336 
19.6 Detection of stellate tumors ................................................................ 338 
19. 7 Classical papers and student tasks ................................................. 342 
19.8 Summary of this chapter ..................................................................... 343 

20. Scale-time ........................................................................................................ 345 
20.1 Introduction .............................................................................................. 345 
20.2 Analysis of prerecorded time-sequences ....................................... 346 
20.3 Causal time-scale is logarithmic ....................................................... 349 
20.4 Other derivations of logarithmic scale-time ................................... 351 
20.5 Real-time receptive fields .................................................................... 353 
20.6 A scale-space model for time-causal receptive fields ................ 354 
20. 7 Conclusion ............................................................................................... 359 
20.8 Summary of this chapter ..................................................................... 360 

21. Geometry-driven diffusion ........................................................................ 361 
21.1 Adaptive Smoothing and Image Evolution ..................................... 361 
21.2 Nonlinear Diffusion Equations ........................................................... 362 
21.3 The Perona & Malik Equation ............................................................ 364 
21.4 Scale-space implementation of the P&M equation ..................... 366 
21.5 The P&M equation is ill-posed ........................................................... 370 
21.6 Von Neumann stability of numerical PDE's ................................... 372 
21.7 Stability of Gaussian linear diffusion .............................................. 373 
21.8 A practical example of numerical stability ...................................... 376 
21.9 Euclidean shortening flow ................................................................... 378 
21.1 O Grayscale invariance .......................................................................... 379 
21.11 Numerical examples shortening flow ............................................ 379 
21.12 Curve Evolution .................................................................................... 382 
21.13 Duality between PDE- and curve evolution ................................. 383 
21.14 Mathematical Morphology ................................................................. 386 
21.15 Mathematical morphology on grayvalued images .................... 389 
21.16 Mathematical morphology versus scale-space .......................... 390 
21.17 Summary of this chapter ................................................................... 390 



Table of contents xi 

22. Epilog ................................................................................................................. 393 

A. Introduction to Mathematica .................................................................... 395 

A.1 Quick overview of using Mathematica .............................................. 395 
A.2 Quick overview of the most useful commands ............................... 397 
A.3 Pure functions ........................................................................................... 401 
A.4 Pattern matching ...................................................................................... 401 
A.5 Some special plot forms ........................................................................ 404 
A.6 A faster way to read binary 30 data .................................................. 405 
A.7 What often goes wrong ......................................................................... 407 
A.8 Suggested reading .................................................................................. 410 
A9. Web resources ......................................................................................... 412 

B. The concept of convolution ....................................................................... 413 

B.1 Convolution ................................................................................................ 413 
B.2 Convolution is a product in the Fourier domain ............................. 416 

C. Installing the book and packages ........................................................... 419 

C. 1 Content ....................................................................................................... 419 
C.2 Installation for all systems .................................................................... 420 
C.3 Viewing the book in the Help Browser .............................................. 420 
C.4 Sources of additional applications ..................................................... 421 

D. First Start with Mathematica: Tips & Tricks ....................................... 423 

1 . Evaluation ..................................................................................................... 423 
2. Images ........................................................................................................... 423 
3. Programming ............................................................................................... 424 

4. 30 ···················································································································· 424 

References .............................................................................................................. 425 

Index .......................................................................................................................... 455 



Front-End Vision and Multi-Scale 
Image Analysis 

Bart M. ter Haar Romeny, PhD 

Department of Biomedical Engineering 
Eindhoven University of Technology 
The Netherlands 

Tell me, and I will forget. Slzow me. and I will remember. 
lllvolve me, and I will understand. 

Old Chinese proverb 

The purpose of this book 

Scale is not an imp01iant parameter in computer vision research. It is an essential parameter. 
It is an immediate consequence of the process of observation, of measurements. This book is 

about scale, and its fundamental notion in computer vision, as well as human vision. 

Scale-space theory is the theory of apertures. through which we and machines observe the 
world. The apertures come in an astounding variety. They can be exploited to model the first 
stages of human vision, and they appear in all aspects of computer vision, such as the 
extraction of features, the measurement of optic flow and stereo disparity, to do orientation 
analysis. segmentation, image enhancement etc. They have an essential role in the 
fundamental processes of differentiation and regularization. 

Scale-space theory is named after the space that is fanned by looking at an image at many 
different scales simultaneously. 

When stacked, we get one dimension extra, i.e. the scale dimension. The scale-space is the 
space of the spatial and scale dimensions, see figure I. 

This book is a tutorial course. The level of the book is undergraduate and first level graduate. 
Its main purpose is to be used as a coursebook in computer vision and front-end vision entry 

courses. It may also be useful as an entry point for research in biological vision. 

Although there are excellent texts appearing on the notion of scale space, most of them are 

not easy reading for people just entering this field or lacking a solid mathematical 

background. This book is intended partly to fill this gap, to act as an entry point for the 
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growing literature on scale-space theory. Throughout the book we will work steadily through 
the necessary mathematics. 

The book discusses the many classical papers published over the last two decades, when 
scale-space theory became mature. The different approaches and findings are put into 
context. First, linear scale-space theory is derived from first principles, giving it a sound 
mathematical basis. 

The notion that a multi-scale approach is a natural consequence of the process of observation 
is interwoven in every chapter of this book. E.g. Hom and Schunck's famous optic flow 
equation gets a new meaning when we 'look at the data'. The concept of a point and local 
point operators like the derivative operator diffuse into versions with a Gaussian extent, 
making the process of differentiation well posed. It immediately makes large and mature 
fields like differential geometry, invariant theory, tensor analysis and singularity theory 
available for analysis on discrete data, such as images. 

We develop ready-to-use applications of differential invariants of second, third and fourth 
order. The relation between accuracy, differential order and scale of the operator is 
developed, and an example of very high order derivatives is worked out in the analytical 
deblurring of Gaussian blur. 

Practical examples are also developed in the chapters on multi-scale optic flow and multi
scale differential structure of color images. Again, the physics of the observation process 
forces the analytical solution to be multi-scale. Several examples of ways to come to proper 
scale-selection are treated underway. 

Figure 1. A scale-space of a sagittal MR image. The image is blurred with a Gaussian kernel 
with variable width a, which is the third dimension in this image. 

Scale-space theory is biologically motivated computer vision 

We consider it very important to have many cross-links between multi-scale computer vision 
theory, and findings in the human (mammalian) visual system. We hope the reader will 
appreciate the mutual cross-fertilization between these fields. For that reason we elaborate 
the current state of the art in neurophysiological and psychophysical findings of the first 
stages of the visual system. 
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The chapters on time-scale and multi-scale orientation analysis are directly inspired by 
findings from biological vision. The grouping of local properties into meaningful larger 
subgroups (perceptual grouping) is treated both on the level of establishing neighborhood 
relationships through all measured properties of the points, and through 

the study of the deep structure of images, where topology comes in as a mathematical toolkit. 
The natural hierarchical ordering is exploited in a practical application, where we discuss 
multi-scale watershed segmentation. 

This book is meant to be a practical and interactive book. It is written as a series of 
notebooks in Mathematica 4, a modem computer algebra language/system. 

For every technique discussed the complete code is presented. The reader can run and adapt 
all experiments himself, and learn by example and prototyping. The most effective way to 
master the content is to go through the notebooks on a computer running Mathematica and 
play with variations. 

This book is a tribute to Jan Koenderink, professor at Utrecht University in the Netherlands, 
chairman of the Physics Depaitment 'Physics of Man'. He can be considered the 'godfather' 
of modern scale-space theory. A brilliant physicist, combining broad knowledge on human 
visual perception with deep insight in the mathematics and physics of the problems. 

Figure 2. Prof. dr. hon.cir. Jan Koenderink. 

This book is just a humble introduction to his monumental oeuvre and the offspin of it. Many 
papers he wrote together with his wife, Ans van Doom. They published on virtually every 
aspect of front-end vision and computer vision with a strong perceptually based inspiration, 
and the physical modeling of it. 

This book is written for both the computer vision scientist with an interest in multi-scale 
approaches to image processing, and for the neuroscientist with an appeal for mathematical 
modeling of the early stages of the visual system. One of the purposes of this book is to 
bridge the gap between both worlds. To accommodate a wide readership, both from physics 

and biology, sometimes mathematical rigor is lacking (but can be found in the indicated 

references) in favor of clarity of the exposition. 
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Figure 3. Attendants of the first international Scale-Space conference, Summer 1997 in 
Utrecht, the Netherlands, chaired by the author (standing fourth from right). 

Figure 4. Attendants of the second international Scale-Space conference, Summer 1999 in 
Corfu, Greece, chaired by Mads Nielsen, PhD (IT-Univ. Copenhagen, foreground fifth from 
right) . See for the conference series : www.scalespace.org. 

This book has been written in Mathematica 

This book is written as a series of Mathematica notebooks. Mathematica is a high level 
interactive mathematical programming language. developed and marketed by Stephen 
Wolfram (www.wolfram.com). Notebooks are interactive scientific documents, containing 
both the text as the code. 

Mathematica consists of a two separate programs, the kernel (the computing engine) and a 
front-end which handles all information for and from the user. The structure of 'cells' in the 
front-end enables the efficient mix of explaining text, computer code and graphics in an 
intuitive way. The reasons to write this book in Mathematica are plentiful : 

- We can now do matllematica/ prototyping with computer vi sion principles/techniques on 
images. The integration of both symbolic and fast numerical capabilities, and the powerful 
pattern matching techniques make up for a new and efficient approach to apply and teach 
computer vision, more suitable for human mathematical reasoning. For, computer vision is 

mathematics on images. It is now easy to do rapid prototyping . 

- Reading a scientific method now has something extra: the code of every method discussed 
is available. ready for testing , with modifications and applications to the reader's images. The 
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gap between the appreciation of a method in a theoretical paper and one's own working 
software that applies the method is now closing. David Donoho writes about his WaveLab 
package: "An article about computational science in a scientific publication is not the 
scholarship itself, it is merely adve1tising of the scholarship. The actual scholarship is the 
complete software development environment and the complete set of instructions which 
generated the figures. (http://www-stat.stanford.edu/-wavelab/). 

- Mathematica stays close to the traditional notation. The mathematical notation of e.g. 
symbols, operators and mies are vi1tually identical to traditional math 

The notebooks are WYSIWYG. Notebooks can easily be saved as LaTeX or 
HTML/MathML documents. Notebooks are portable ASCII documents, they appear vi1tually 
identical on a wide range of computer platforms. 

- All programs become compact. In this book no example exceeds 20 lines of code. There are 
no for, while or do loops. Most commands are Listable, i.e. operate on any member 
of the operand list. The language contains hardly abbreviations, and is so intuitive that 
learning the language may be mastered during reading the book. In the appendix a list of 
tutorial books on Mathematica is given, and a summary of the command structure of the 
most popular commands used in this book. 

- Wolfram Research Inc. indicates that over 2 million licenses are sold. It may serve as a 
(WWW-based) starting set in exchangeable Mathematica computer vision routines. 

- Mathematica is complete. Over 2500 highly optimized mathematical routines are on board, 
which relieves the computer vision programmer from searching for routines in Numerical 
Recipes, IMSL etc. It has graphical capabilities for ID to 4D (animations). It is now 
integrated with Java (JLink), which is available anywhere and ideally suited for further 
development of the GUI and real-time manipulation with the data. Mathematica code can be 
compiled for further speed increase. 

The parallel version of Mathematica now enables the easy distribution over a range of 
kernels on different computers on a network. 

- Last but not least: the present version of Mathematica is fast. From release 4 it has reached 
a point where, from being an ideal rapid prototyping tool. it is now turning into an all-round 
prototyping and application tool. The run-time of most experiments described in this book is 
within fractions of seconds to tens of seconds on a typical 1.7 GHz 256 MB Pentium IV 
system under Windows. 

It is platform independent, and is available on any type of computer. 
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1. Apertures and the notion of 
scale 

Nothing that is seen is perceived at once in its entirety. 
Euclid (-300 B.C.), Theorem I 

1.1 Observations and the size of apertures 

Observations are always done by integrating some physical property with a measurement 
device. Integration can be done over a spatial area, over an amount of time, over wavelengths 
etc. depending on the task of the physical measurement. For example, we can integrate the 
emitted or reflected light intensity of an object with a CCD (charge-coupled device) detector 
element in a digital camera, or a grain in the photographic emulsion in a film, or a 
photoreceptor in our eye. These 'devices' have a sensitive area, where the light is collected. 
This is the aperture for this measurement. Today's digital cameras have several million 
'pixels' (picture elements), very small squares where the incoming light is integrated and 
transformed into an electrical signal. The size of such pixels/apertures determines the 
maximal sharpness of the resulting picture. 

An example of integration over time is sampling of a temporal signal. for example with an 
analog-digital conve11er (ADC). The integration time needed to measure a finite signal is the 
size of the temporal aperture. We always need a finite integration area or a finite integration 
time in order to measure a signal. It would be nice to have infinitely small or infinitely fast 
detectors, but then the integrated signal is zero, making it useless. 

Looking with our visual system is making measurements. When we look at something, we 
have a range of possibilities to do so. We can look with our eyes, the most obvious choice. 

We can zoom in with a microscope when things are too small for the unaided eye, or with a 
telescope when things are just very big.The smallest distance we can see with the naked eye 
is about 0.5 second of arc, which is about the distance between two neighboring cones in the 
center of our visual field. And, of course, the largest object we can see fills the whole retina. 

It seems that for the eye (and any other measurement device) the range of possibilities to 
observe ce11ain sizes of objects is bounded on two sides: there is a minimal size, about the 
size of the smallest aperture, and there is a maximal size, about the size of the whole detector 
array. 
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Spatial resolution is defined as the diameter of the local integration area. It is the size of the 
field of view divided by the number of samples taken over it. The spatial resolution of a 
Computer Tomography (CT) scanner is about 0.5 mm, which is calculated from the 
measurement of 512 samples over a field of view with a diameter of 25 cm. 

The temporal resolution of a modem CT scanner is about 0.5 second, which is 2 images per 
second. 

It seems that we are always trying to measure with the highest possible sharpness. or highest 
resolution. Reasons to accept lower resolution range from costs, computational efficiency, 
storage and transmission requirements, to the radiation dose to a patient etc. We can always 
reduce the resolution by taking together some pixels into one, but we cannot make a coarse 
image into a sharp one without the introduction of extra knowledge. 

The resulting measurement of course strongly depends on the size of the measurement 
aperture. We need to develop strict criteria that detennine objectively what aperture size to 
apply. Even for a fixed aperture the results may vary, for example when we measure the 
same object at different distances (see figure I. I). 

<< FrontEndVision'FEV'; 
Show[GraphicsArray[ 

{ {Import [ "cloudLgif"]}, {Import [ "cloud2 .gif"]}}] , ImageSize-> 400]; 

0 . 
-" . 

cy (~ 
Figure 1.1 A cloud observed at different scales, simulated by the blurring of a random set of 
points, the 'drops'. Adapted from [Koenderink1992a]. 

1.2 Mathematics, physics, and vision 

In mathematics objects are allowed to have no size. We are familiar with the notion of 
points, that really shrink to zero extent. and lines of zero width. No metrical units (like 
meters, seconds, amperes) are involved in mathematics, as in physics. 

Neighborhoods, like necessary in the definition of differential operators, are taken into the 
limit to zero, so for such operators we can really speak of local operators. We recall the 
definition for the derivative of j(x): limh_,o f(x+l;,-f\x) , where the limit makes the operation 
confined to a mathematical point. 

In plrysics however this is impossible. We saw before that objects live on a bounded range of 
scales. When we measure an object, or look at it, we use an instrument to do this observation 
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(our eye, a camera) and it is the range that this instrument can see that we call the scale 
range. The scale range is bounded on two sides: 
- the smallest scale the instrument can see is the inner scale. This is the smallest sampling 
element, such as a CCD element in a digital camera, rod or cone on our retina; 

- the largest scale the instrument can see is the outer scale. This is the field of view. The 
dimension is expressed as the ratio between the outer scale and the inner scale, or how often 
the inner scale fits into the outer scale. Of course the bounds apply both to the detector and 
the measurement: an image can have a 2D dimension of 256 x 256 pixels. 

Dimensional units are essential in physics: we express any measurement in dimensional 
units, like: 12 meters, 14.7 seconds, 0.02 candela/m2 etc. When we measure (observe, 
sample) a physical property, we need to choose the 'stepsize' with which we should 
investigate the measurement. We scrutinize a microscope image in microns, a global satellite 
image in kilometers. In measurements there is no such thing as a physical 'point': the smallest 
'point' we have is the physical sample, which is defined as the integrated weighted 
measurement over the detector area (which we call the aperture), where area is always finite. 

How large should the sampling element be? It depends on the task at hand in what scale 
range we should measure: "Do we like to see the leaves or the tree"? The range of scales 
applies not only to the objects in the image, but also to the scale of the features. In chapter 5 
we discuss in detail many such features. and how they can be constructed. We give just one 
example here: in figure 1.2 we see a hierarchy in the range of scales. illustrated here for a 
specific feature (the gradient). 

im = Import [ "Utrecht256. gif"] [ [ 1, l]]; 

Block [ ($DisplayFunction =Identity}, 

pl= ListDensityPlot[im]; 

p2 = 

ListoensityPlot['-1go[im, 1, o, #] 2 +gD[im, o, 1, #J 2
] &/@(l, 2, 4}]; 

Show[GraphicsArray[Prepend[p2, pl]], ImageSize-+ 500]; 

I \, 
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Figure 1.2 Picture of the city of Utrecht. The right three pictures show the gradient: the 
strength of borders, at a scale of 1 , 2 resp. 4 pixels. At the finest scale we can see the 
contours of almost every stone, at the coarsest scale we see the most important edges, in 
terms of outlines of the larger structures. We see a hierarchy of structures at different scales. 
The Mathematica code and the gradient will be explained in detail in later chapters. 

To expand the range say of our eye we have a wide armamentarium of instruments available, 
like scanning electron microscopes and a Hubble telescope. The scale range known to 



4 1.2 Mathematics, physics, and vision 

humankind spans about 50 decades. as is beautifully illustrated in the book (and movie) 
"Powers of Ten" [Morrison I 985]. 

Show[Import [ "PowersoflOsel. gif"], ImageSiz·e-+ SOOT; 

Figure 1.3 Selection of pictures from the journey through scale from the book 
[Morrison1985], where each page zooms in a factor of ten. Starting at a cosmic scale, with 
clusters of galaxies, we zoom in to the solar system, the earth (see the selection above}, to a 
picknicking couple in a park in Chicago. Here we reach the 'human' (antropometric) scales 
which are so familiar to us. We then travel further into cellular and molecular structures in the 
hand, ending up in the quark structure of the nuclear particles. For the movie see: 
http://www.micro.magnet.fsu.edu/primer/java/scienceopticsu/powersof10/index.html. 

In vision we have a system evolved to make visual observations of the outside world. The 
front-end of the lhuman) visual system is defined as the very first few layers of the visual 
system. Here a special representation of the incoming data is set up where subsequent 
processing layers can start from . At this stage there is no memory involved or cognitive 
process. 

Later we will define the term 'front-end' in a more precise way. We mean the retina, lateral 
geniculate nucleus (LGN, a small nucleus in the thalamus in our mid-brain), and the primary 
visual cortex in the back of our head. In the chapter on human vision we fully elaborate on 
the visual pathway. 

The front-end sampling apparatus lthe receptors in the retina) is designed just to extract 
multi-scale information. As we will see, it does so by applying sampling apertures, at a wide 
range of sizes simultaneously. 

There is no sampling by individual rods and cones, but by well-structured assemblies of rods 
and cones, the so-called 'receptive fields'. 

In chapters 6 - 9 we will study the neuroanatomy of the human front-end visual system in 
more detail. The concept of a receptive field was introduced in the visual sciences by 
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Hartline [Hartlinel940J in 1940, who studied single fibre recordings in the horseshoe crab 
(Limnlns polyphemus). 

Psychophysically (psychophysics is the art of measnring the performance of our perceptual 
abilities throngh perceptual tasks) it has been shown that when viewing sinnsoidal gratings 
of different spatial freqnency the threshold modulation depth is constant (within 5%) over 
more than two decades. 

This indicates that the visnal system is indeed equipped with a large range of sampling 
apertures. Also, there is abundant electro-physiological evidence that the receptive fields 
come in a wide range of sizes. In the optic nerve leaving each eye one optic-nerve-fibre 
comes from one receptive field, not from an individual rod or cone. 

In a human eye there are about 150 million receptors and one million optic nerve fibres.So a 
typical receptive field consists of an average of 150 receptors. Receptive fields form the 
elementary 'multi-scale apertures' on the retina. In the chapter on human vision we will study 
this neuroanatomy in more detail. 

1.3 We blur by looking 

Using a larger aperture reduces the resolution. Sometimes we exploit the blurring that is the 
result of applying a larger aperture. A classical example is dithering , where the eye blurs the 
little dots printed by a laser printer into a multilevel greyscale picture , dependent on the 
density of the dots (see figure 1.4). 

It nicely illustrates that we can make quite a few different observations of the same object (in 
this case the universe), with measurement devices having different inner and outer scales. An 
atlas, of course, is the canonical example. 

Show[GraphicsArray [{Import [ "FloydO .gif"] , Import [ "Floydl.gif"]}], 
ImageSize -> 330]; 

Figure 1.4 Dithering is the representation of grayvalues through sparse printing of black dots 
on paper. In this way a tonal image can be produced with a laserprinter, which is only able to 
print miniscule identical single small high contrast dots. Left the image as we observe it, with 
grayscales and no dithering. Right: Floyd-Steinberg dithering with random dot placements. 
[From http ://sevilleta. unm .edu/~bmilne/khoros/html-dip/c3/s7 /front-page. html]. 
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A priori we have to decide on how large we should take the inner scale. The front-end vision 
system has no knowledge whatsoever of what it is measuring, and should be open-minded 
with respect to the size of the measurement aperture to apply. 

Show[Import["wales-colordither.gif"], ImageSize -> 400]; 

Figure 1.5 En example of color-dithering in image compression. Left: the original image, 26 
KByte. Middle: color dithering, effective spreading of a smaller number of color pixels so that 
the blurring of our perception blends the colors to the same color as in the original. Filesize 
16 Kbyte. Right: enlargement of a detail showing the dithering. From http://www.digital
foundry.com/gif/workshop/dithering.shtml. 

As we will see in the next section, the visual front-end measures at a multitude of aperture 
sizes simultaneously. The reason for this is found in the world around us: objects come at all 
sizes, and at this stage they are all equally impo1tant for the front-end. 

Show [Import [ "Edlef Romany - cherry trees .jpg"], Imagesize -> 280]; 

Figure 1.6 In art often perceptual clues are used, like only coarse scale representation of 
image structures, and dithering. Painting by Edlef ter Haar Romeny [TerHaarRomeny2002b]. 

im=Import["mona lisa face.gif"][[l, l]]; 
imrl =Table [Plus@@Plus@@Take[im, {y, y + 9), {x, x + 9)], 

{y, 1, 300, 10), {x, 1, 200, 10)]; 
imr2 = Table[Plus@@Plus@@Take[im, {y, y + 14), {x, x + 9)], 

{y, 1, 290, 15), {x, 1, 200, 10)]; 
DisplayTogetherArray[ListDensityPlot/@{im, 

Join @@Table [MapThread [Join, Table [imr2 imrl [ [y, x]], {x, 1, 20)]], 
{y, 1, 30)]), ImageSize-+ 250]; 
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Figure 1.7 Image mosaic of the Mona Lisa. Image resolution 200x300 pixels. The image is 
subsampled to 20x30 samples, whose mean intensity modulates a mosaic of the 
subsampled images. 

And that, in a natural way, leads us to the notion of multi-scale observation, and multi-scale 
representation of info1mation, which is intrinsically coupled to the fact that we can observe 
in so many ways. The size of the aperture of the measurement will become an extra 
continuous measurement dimension, as is space, time, color etc. We use it as a free 
parameter: in first instance we don't give it a value, it can take any value. 

4 Task 1.1 Experiment with dithering with circular disks of proper size in each 
pixel. Calculate the area the disk occupies. Some example code to get started: 
Show[Graphics[Table[Disk[{x,y},.3+im[[y,x]]/2048],{y,1,128} 

,{x,1,128}]] ,AspectRatio~Automatic]; 

4 Task 1.2 Experiment with dithering with randomly placed small dots in each 
pixel. 

Mosaics, known since Roman times. employ this multiresolution perceptive effect. There is 
also artistic interest in replacing a pixel by a complete image (see e.g. figure 1.7). When 
random images with appropriate average intensity and color (and often intensity gradient) are 
chosen the technique is called an image mosaic. 

4 Task 1.3 One can play with other graphical elements , e.g. text ( BasicBlock:-> 
(Text["FEV", #1,#2]&) ) etc. Note that despite the structure in the dithering 
elements, we still perceive the large scale structure unchanged in depth. 

It turns out that there is a very specific reason to not 011/y look at the highest resolution. As 
we will see in this book, a new world opens when we consider a measurement of the outside 
world at aJl these sizes simultaneously, at a whole range of sharpnesses. So, not only the 
smallest possible pixel element in our camera, but a camera with very small ones, somewhat 
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larger ones, still larger ones and so on. It turns out that our visual system takes this approach. 
The stack of images taken at a range of resolutions is called a scale-space. 

Another interesting application of ditheling is in the generation of random dot stereograms 
(RDS). see figure 1.8. 

Options [RDSPlot] "' {BasicBlock 1.+ (Rectangle [ f:l - #2, #1 + #2] &) } 1 

RDSPlot[expr_, {x_, xmin_, xm.ax_} , {y_, ymin_, ymax_}, opts_] t• 

Block{{pts = 120, periods • 6 , zrange = {-1, l}, density • .4, depth • l , 
basicblock = Basic Block /. {opts} I . options (RDSPlot] , guides • True, 
strip, xpts, ypts , dJC , dy, xval, yval, r;11in , zlllax , exprnorm), 

(zmin, z.11.ax} = zrange; {:irpts, ypts} • If(Length[pts]::: 2, pts, {pta, pts} ]; 
dy= (ym.ax -ymin) / ypts ; ds • (xmax -xmin) /xpts; strip •P loor(spt.s / periods] dx ; 
exprnorm. = ( .25depth (xir1.ax -xmin ) I (periods (zmax-zmin ))) • 

( Max[zmin, Min[zraax, expr]}- (zmax+zmin) /2)p 
Graphics [ {RDSArray [basicbloc:k, {dx, dy} / 2, Flatten [Table [If [RandOln [] < density, 

Thread [ {rdsimages (exprno.nn /, y-+ yval, {x, xval, xmax, strip}], yval}], {}], 
{yval, ymin + . S dy, ymax, dy}, {xval, xmin + .S dx, 
rdsimage[exprnorm /. y-+yval, {x, xmin, strip}], dx}], 2]], 

If [guides, makeguides [ { . 5 xmax + .5 xmin, 1.1 ymin - .1 ymax}, . S strip], {}]}, 
Sequence @@Select[{opts}, I MemherQ (First /@Options (RDSPlot], First[#]]&]]]; 

rdsimage [expr_, {x_, xval_, dx_}] : "' xval + dx - N (expr /. x-+ xval + dx / 2] ; 
rds images [expr_, {x_, xval_, xmax_, dx_}] := I If[xval ::S: xmax, 

Prepend[rdsimages[expr, {x, rdsi111age[expr, {x, xval, dx}] , xmax , dx}], xval], {}]; 
111akeguides [pos_, size_] : • Apply [Rectangle, 

Map(pos +size f & , {{{-1.l, -.1) , (- . 9 , . 1)), ((.9, -.1), {l.l, . 1) )), {2)], l] ; 
unprotect (Display] ; Dis play (channel_ , graphics_ 7 ( ! FreeO ( I, RDSArray) & ) ) : • {Display ( 

channel , graphics /. (RDSArray (basicblock_, dims_ , pts_] :+ (bas icblock [ I, dims] & /fl pts))] 1 

graphics) 1 Protect (Display] 1 

2 x 2 + y 2 

Show[RDSPlot[---- xExp[- ---), ( x, -3, 3), ( y, -3, 3)), 
-{2"; 2 

ImageSize-+ 400) ; 

Figure 1.8 Random dot stereogram (of the first derivative with respect to x of the Gaussian 
function, a function which we will encounter frequently in this book) . The dots are replaced by 
a random draw from the letters A-Z. 
Code by Bar-Natan [Bar-Natan1991, www.ma.huji.ac.il/-drorbn/]. 
See also www.ccc.nottingham.ac.uk/-etzpc/sirds.html . Look with both eyes to a point behind 
the image, so the dots under the figure blend together. You will then see the function in 
depth. 
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See also the peculiar paintings of the Italian painter Giuseppe Arcimboldo (1527-1593). See 
www.illumin.co. uk/ svank/bi og/arcim/arcidx. html. 

Show[Import["Vertumnus.jpg"], ImageSize -> 170]; 

Figure 1.9 Vertumnus (Rudolph II) by Giuseppe Arcimboldo (ca. 1590). Painting in the 
Skoklosters Slot!, Stockholm, Sweden. 

1.4 A critical view on observations 

Let us take a close look at the process of observation. We note the following: 

• Any physical observation is done through an aperture. By necessity this aperture has to be 
finite. If it would be zero size no photon would come through. We can modify the 
aperture considerably by using instrnments, but never make it of zero width. This leads to 
the fundamental statement: We cannot measure at infinite resolution. We only can 
perceive a 'blurred' version of the mathematical abstraction (infinite resolution) of the 
outside world. 

• In a first 'virginal' measurement like on the retina we like to carry out observations that 
are uncommitted. With uncommitted we mean: not biased in any way, and with no model 
or any a priori knowledge involved. Later we will fully incorporate the notion of a model, 
but in this first stage of observation we know nothing. 

An example: when we know we want to observe vertical strnctures such as stems of trees, it 
might be advantageous to take a vertically elongated aperture. But in this early stage we 
cannot allow such special apertures. 

At this stage the system needs to be general. We will exploit this notion of being 
uncommitted in the sequel of this chapter to the establishment of linear scale-space theory. 

It turns out that we can express this 'uncommitment' into axioms from which a physical 
theory can be derived. Extensions of the theory, like nonlinear scale-space theories, follow in 
a natural way through relaxing these axioms. 
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+ Being uncommitted is a natural requirement for the first stage, but not for fmiher stages, 
where extracted information, knowledge of model and/or task etc. come in. An example: 
the introduction of feedback enables a multi-scale analysis where the aperture can be 
made adaptive to properties measured from the data (such as the strength of certain 
derivatives of the data). This is the field of geometry-driven diffusion, a nonlinear scale
space theory. This will be discussed in more detail after the treatment of linear scale-space 
theory. 

Show[Import["DottedPR.gif"], ImageSize -> 380]; 
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Figure 1.1 O At different resolutions we see different information. The meaningful information in 
this image is at a larger scale then the dots of which it is made. Look at the image from about 
2 meters. Source: dr. Bob Duin, Pattern Recognition Group, Delft University, the Netherlands. 

+ A single constant size aperture function may be sufficient in a controlled physical 
application. An example is a picture taken with a camera or a medical tomographic 
scanner, with the purpose to replicate the pixels on a screen, paper or film without the 
need for cognitive tasks like recognition. Note that most man-made devices have a single 
aperture size. If we need images at a multiple of resolutions we simply blur the images 
after the measurement. 

+ The human visual system measures at multiple resolutions sim11ltaneo11sly, thus 
effectively adding scale or resolution as a measurement dimension. It measures a scale

space L(x, y; er), a function of space (x, y) and scale er, where L denotes the measured 
parameter (in this case luminance) and er the size of the aperture. In a most general 
observation no a priori size is set, we just don't know what aperture size to take. So, in 
some way control is needed: we could apply a whole range of aperture sizes if we have no 
preference or clue what size to take. 

+ When we observe noisy images we should realize that noise is always part of the 
observation. The term 'noisy image' already implies that we have some idea of an image 
with structure 'corrupted with noise'. In a measurement noise can only be separated from 
the observation if we have a model of the structures in the image, a model of the noise, or 
a model of both. Very often this is not considered explicitly. 
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im =Table [If [11 < x < 30 && 11 < y < 30, 1, O] + 2 Random[], {x, 40), {y, 40)]; 
ListDensityPlot[im, FrameTicks ->False, ImageSize -> 120]; 
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Figure 1.11 A square with additive uniform pixel-uncorrelated noise. Jagged or straight 
contours? 'We think it is' or 'it looks like' a square embedded in the noise. Without a model 
one really cannot tell. 

• When it is given that objects are human-made structures like buildings or otherwise part 
of computer vision's 'blocks world', we may assume straight or smoothly curved contours, 
but often this is not known. 

• Things often go wrong when we change the resolution of an image, for example by 
creating larger pixels. 

• If the apertures (the pixels) are square, as they usually are, we start to see blocky 
tesselation artefacts. In his famous paper "The strncture of images" Koenderink coined 
this spurious resolution [Koenderinkl984a], the emergence of details that were not there 
before, and should not be there. The sharp boundaries and right angles are artefacts of the 
representation, they certainly are not in the outside world data. Somehow we have created 
structure in such a process. Nearest neighbour interpolation (the name for pixel 
replication) is of all interpolation methods fastest but the worst. As a general rnle we want 
the structure only to decrease with increasing ape1ture. 

Show[Import["Einsteinblocky.gif"], ImageSize -> 120]; 

Figure 1.12 Spurious resolution due to square apertures. Detail of a famous face: Einstein 
Much unintended 'spurious' information has been added to this picture due to the sampling 
process. Intuitively we take countermeasures for such artefacts by squeezing our eyes and 
looking through our eyelashes to blur the image, or we look from a greater distance. 

• In the construction of fonts and graphics anti-aliasing is well known: one obtains a much 
better perceptual delineation of the contour if the filling of the pixel is equivalent to the 
physical integration of the intensity over the area of the detector. See figure 1.13 for a font 
example. 
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Show[Import["anti_alias.gif"], ImageSize -> 250]; 

a a 

a 
Figure 1.13 Anti-aliasing is the partial volume effect at the boundaries of contours. When 
making physically realistic test images for computer vision applications it is essential to take 
this sampling effect into account. 

1.5 Summary of this chapter 

Observations are necessarily done through a finite ape1ture. Making this ape1ture 
infinitesimally small is not a physical reality. The size of the aperture determines a hierarchy 
of structures, which occur naturally in (natural) images. With the help of instruments 
(telescopes, microscopes) we are able to see a scale-range of roughly 1050

. The visual 
system exploits a wide range of such observation apertures in the front-end simultaneously, 
in order to capture the information at all scales. Dithering is a method where the 
blending/blurring through an observation with a finite aperture is exploited to create 
grayscale and color nuances which can then be created with a much smaller pal et of colors. 

Observed noise is part of the observation. There is no way to separate the noise from the data 
if a model of the data, a model of the noise or a model of both is absent. Without a model 
noise is considered input which also contains structural geometric information, like edges, 
comers, etc. at all scales. 

The aperture cannot take any form. An example of a wrong ape1ture is the square pixel so 
often used when zooming in on images. Such a representation gives rise to edges that were 
never present in the 01iginal image. This artificial extra information is called 'spmious 
resolution'. In the next chapter we derive from first principles the best and unique kernel for 
an uncommitted observation. 



2. Foundations of scale-space 

"There are many paths to the top of the mountain, 
but the view is always the same" -Chinese proverb. 

2.1 Constraints for an uncommitted front-end 

To compute any type of representation from the image data, information must be extracted 
using certain operators interacting with the data. Basic questions then are: Which operators 
to apply? Where to apply them? How should they look like? How large should they be? 

Suppose such an operator is the derivative operator. This is a difference operator, comparing 
two neighboring values at a distance close to each other. In mathematics this distance can 
indeed become infinitesimally small by taking the limit of the separation distance to zero, but 
in physics this reduces to the sampling distance as the smallest distance possible. Therefore 
we may foresee serious problems when we deal with such notions as mathematical 
differentiation on discrete data (especially for high order), and sub-pixel accuracy. 

From this moment on we consider the aperture function as an operator: we will search for 
constraints to pin down the exact specification of this operator. We will find an important 
result: for an unconstrained front-end there is a unique solution for the operator. This is the 

Gaussian kernel g(x; <r) = . ~ e- ,'.:, , with <T the widt!t of the kernel. It is the same bell-
v 2na-2 

shaped kernel we know from probability theory as the probability density function of the 
normal distribution, where <Tis the standard deviation of the distribution. 

Interestingly, there have been many derivations of the front-end kernel, all leading to the 
unique Gaussian kernel. 

This approach was pioneered by Iijima (figure 2.2) in Japan in the sixties [Iijimal962J, but 
was unnoticed for decades because the work was in Japanese and therefore inaccessible for 
Western researchers. 

Independently Koenderink m the Netherlands developed in the early eighties a rather 
complete multi-scale theory [Koenderinkl 984a], including the derivation of the Gaussian 
kernel and the linear diffusion equation. 

<< FrontEndVision'FEV'; 
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1 " a= 1; Plot[ E-,-;r, {x, -4, 4), ImageSize -> 200]; 

~ 

02 

U I 

- 4 - 2 

Figure 2.1 The Gaussian kernel with unit standard deviation in 1 D. 

Koenderink was the first to point out the important relation to the receptive field families in 
the visual system, as we will discuss in forthcoming chapters. Koenderink's work turned out 
to be monumental for the development of scale-space theory. Lindeberg pioneered the field 
with a tutorial book [Lindebergl994a]. The papers by Weickert, Ishikawa and lmija (who 
together discovered this Japanese connection) present a very nice review on these early 
developments lWeickert l 997a, Weickertl 999a]. 

Show[Import["Iijima.gif"], ImageSize -> 150]; 

Fig. 2.2 Prof. Taizo lijima, emeritus prof. of Tokyo Technical University, Japan, was the first 
to publish the axiomatic derivation of 'the fundamental equation of figure' . 

We will select and discuss two fundamentally different example approaches to come to the 
Gaussian kernel in this book: 

1. An axiomatic approach based on dimensional analysis and the notion of having 'no 
preferences' (section 2.2); 
2. An approach based on the maximization of local entropy in the observation (section 2.5); 
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2.2 Axioms of a visual front-end 

The line of reasoning presented here is due to Florack et al. [Florackl992a]. The 
requirements can be stated as axioms, or postulates for an uncommitted visual front-end. In 
essence it is the mathematical formulation for being uncommitted: "we know nothing", or 
"we have no preference whatsoever". 

• linearity: we do not allow any nonlinearities at this stage, because they involve knowledge 
of some kind. So: no knowledge, no model, no memory; 

• spatial shift invariance: no preferred location. Any location should be measured in the 
same fashion, with the same aperture function; 

• isotropy: no preferred orientation. Structures with a particular orientation, like vertical 
trees or a horizontal horizon, should have no preference, any orientation is just as likely. This 
necessitates an aperture function with a circular integration area. 

• scale invariance: no preferred size, or scale of the aperture. Any size of structure, object, 
texture etc. to be measured is at this stage just as likely. We have no reason to look only 
through the finest of apertures. The visual world consists of structures at any size, and they 
should be measured at any size. 

In order to use these constraints in a theory that sets up the reasoning to come to the aperture 
profile formula, we need to introduce the concept of dimensional analysis. 

2.2.1 Dimensional analysis 

Every physical unit has a physical dimension. 

It is this that mostly discriminates physics from mathematics. It was Baron Jean-Baptiste 
Fourier who already in 1822 established the concept of dimensional analysis [Fourier1955]. 
This is indeed the same mathematician so famous for his Fourier transformation. 

Show [Import ["Fourier. jpg"] , ImageSize-+ 140] ; 

Figure 2.3 Jean-Baptiste Fourier, 1792-1842. 
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Fourier described the concept of dimension analysis in his memorable work entitled "Theorie 
analytique de la chaleur" [Fourierl9551 as follows: "It should be noted tltat each physical 
quantity, known or unknown, possesses a dimension proper to itself and that the terms in a11 
equation cannot be compared one with another unless they possess the same dimensional 
exponent". 

When a physicist inspects a new fonnula he invariably checks first whether the dimensions 
are correct. It is for example impossible to add meters to meters/second. One of the most 
fundamental laws in physics is that the physical laws should be rock solid, independent of a 
chosen description, anywhere and anytime. This law is the law of scale invariance, which 
indicates that we have full freedom of reparametrization: 

[Law of Scale Invariance] Physical laws must be independent of the choice of 
fundamental parameters. 

'Scale invariance' here refers to the notion of scale with respect to dimensional units 
(remember the microns, kilometers or milliseconds as the aperture size of the measurement 
instrument). 

In essence the law of scale inva1iance states that the left and right pa.it of the equation of a 
physical equation should have the same dimensional units. and they should describe the same 
process, whether expressed in Cartesian or polar coordinates. 

Core in dimensional analysis is that when the dimensions in a complex physical system are 
considered, only a limited number of dimensionless combinations can be made: the basis or 
null-space of the system. It is an elegant and powetful tool to find out basic relations 
between physical entities, or even to solve a problem. It is often a method of first choice. 
when no other information is available. It is often quite remarkable how much one can 
deduct by just using this technique. We will use dimensional analysis to establish the 
expression defining the basic lineai· isotropic scale-space kernel. First some examples which 
illustrate the idea. 

2.2.2 The cooking of a turkey 

Show(Import["Turkey.gif"], ImageSize -> 150]; 

This example is taken from the delightful paper by Geoffrey West rwestl988]. When 
cooking a turkey, or a goose, there is the problem of knowing how long to cook the bird in 
the oven, given the considerable variation that can exist in its weight and size. 

Many (inferior) cookbooks specify simply something like '20 minutes per pound', implying a 
linear relation. There are superior cookbooks, however, such as the 'Better Homes and 
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Gardens Cookbook' that recognize the nonlinear nature of this relationship. In figure 1.4 we 
have adapted the graph from this cookbook, showing a log-log plot of the cooking time as a 
function of the weight of the turkey. The slope of the linear relation is about 0.6. It turns out 
that we can predict this relation just by dimensional analysis. 

data= ((5, 3), (7, 3.8), (10, 4.5), (14, 5), (20, 6), (24, 7}}; 
LogLogListPlot[data, PlotJoined ->False, 

Ticks-> { (5, 10, 15, 20), (3, 5, 7)}, Frame-> True, 
FrameLabel -> {"Cooking time (hrs)", "Weight (lb)"}, 
Plotstyle -> PointSize[0.02], ImageSize -> 220]; 

10 15 20 

O:x:>kmgt1melhrs) 

Figure 2.4. Turkey cooking time as a (nonlinear) function of turkey weight. The slope of the 
log-log plot is about 0.6. (Based on a table in Better Homes and Gardens Cookbook, Des 
Moines: Meridith Corp., 1962, p. 272). 

Let us list the physical quantities that are involved: 
- the temperature distribution inside the turkey T, in degrees Kelvin, 
- the oven temperature To (both measured relative to the outside air temperature), in degrees 
Kelvin, 
- the bird density p in kg/ m3 , 

- the diffusion coefficient of the turkey K from Fourier's diffusion equation for T: 

~; = K fl T where fl is the Laplacian operator :.:, + £:, + ::, , in m2 /sec, 

- the weight of the turkey W, in kg, 
- and the time t in seconds. 
In general, for the dimensional quantities in this problem, there will be a relationship of the 
forn1 T = flTo, W, t, p, K). We can make a matrix of the units and their dimensions: 

m= ((0, 0, 0, 0, -3, 2), 
(0, 0, 0, 1, 0, -1), (0, 0, 1, 0, 1, 0), (1, 1, 0, 0, 0, O)}; 

TableForm[m, TableHeadings-> {{"length", "time", "mass", "degree"), 
{"TO", "T", "W", "t", "p", "x"}}] 

TO T w t p K 

length 0 0 0 0 -3 2 

time 0 0 0 1 0 -1 

mass 0 0 1 0 1 0 

degree 1 1 0 0 0 0 

A matrix can be described with a basis spanned by basis vectors, whose linear combinations 

satisfy the matrix equation m.x == 0. The command NullSpace gives us the list of 
basis vectors: 
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NullSpace[m] 

((0, 0, -2, 3, 2, 3), (-1, 1, O, 0, 0, 0)) 

The (famous) Pi-theorem in dimensional analysis by Buckingham (see 
http://www.treasure-troves.com/physics/BuckinghamsPiTheorem.html) states that one can 
make as many independent dimensionless combinations of the physical variables in the 

system under study as the number of basis vectors of the nullspace of the dimension matrix 

m. These are detennined by the nullspace. 

So, for the turkey problem we can only construct two independent dimensionless quantities 

(just fill in the exponents given by the basis vectors): p'1~'.2 i<3 and io . 

So, from the nullspace vector { -1 , 1 , 0 , O , 0 , 0 } we found io and from 
2 3 J 

{ O, O, -2, 3, 2, 3} we found P 1~' . Because both these quantities are dimensionless one 
T 2 13 J 

must be expressible in the other, giving the relationship: To = f( P wi" ). Note that since the 

lefthand side is dimensionless, the arbitrary function f must be a dimensionless function of a 
dimensionless variable. This equation does not depend on the choice of units, since 
dimensionless units remain invariant to changes in scale: the scale invariance. 
The graph in the cookbook can now be understood: when geometrically similar birds are 
considered, cooked to the same temperature distribution at the same oven temperature, there 

will be the following scaling law: r? :/ = constant. If the birds have the same physical 

characteristics, which means the same p and K, we find that t3 = ~', , so the cooking time 
p K 

t is proportional to w213 which nicely explains the slope. 

2.2.3 Reynold's number 

From [Olverl 993] we take the example of the Reynold's number. We study the motion of an 
object in some fluid. 

As physical parameters we have the resistance D of the object (in ,,~;, ), the fluid density p 

tin ,~~ ), the velocity relative to the fluid v (in ~),the object diameter d tin m) and the fluid 

viscosityµ tin ~ ). The dimension matrix becomes then: 
ms 

m = ((-3, 1, 1, -1, -1), (0, -1, 0, -1, -2), (1, 0, 0, 1, l}}; 
TableForm[m, 
TableHeadings-> {{"meter", "second", "kg"}, {"p", "v", "d", "µ", "D"}}] 

meter 

second 

kg 

p 

-3 
0 

1 

We calculate the nullspace: 

NullSpace[m] 

v 

-1 

0 

d 

0 

0 

µ 

-1 

-1 

1 

((-1, -2, 0, 0, 1), (-1, -1, -1, 1, 0)) 

D 

-1 

-2 
1 
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From the nullspace we easily find the famous Reynolds number: R = .f!..!.!!... . The other µ 

dimensionless entity --12, is the friction factor. 
pv-

2.2.4 Rowing: more oarsmen, higher speed? 

Show [Import [ "Rowerswanted. gif"] , Image Size .... 210] l 

Another illuminating example is the problem of the number of oarsmen in a competition 
rowing boat: Do 8 oarsmen need less time to row a certain distance, say 2000 meter, then a 
single skiffer, despite the fact that the water displacement is so much bigger? Let's study the 
physics again: We first find the relation for the drag force F on a ship with length l moving 
with velocity v through a viscous fluid with viscosityµ and density p. 

The final term to take into account in this physical setup is the gravity g. Again we can make 
a dimensional matrix for the six variables involved: 

m= {{l, 1, 1, -1, -3, 1), {-2, 0, -1, -1, 0, -2), {l, 0, O, 1, 1, O}}l 

TableForm[m, TableHeadings-> 
{{"meter", "second", "kg"), {"F", "l", "v", "µ", "p", "g"}}] 

F 1 v µ p g 

meter 1 1 -1 -3 
second -2 0 -1 -1 0 -2 

kg 1 0 0 0 

Figure 2.5 Dimensional matrix for the physics of drag of an object through water. F is the 
drag force, l resp v are the length resp. the velocity of the ship, µ is the viscosity of the 
water. 

and study the nullspace: 

Null Space [m] 

{{O, 1, -2, O, O, 1), {-1, 2, 2, O, 1, 0), {-1, 1, 1, 1, O, 0)) 

rowdatal = {{l, 6.88), {2, 6.80), {4, 6.60), {8, 5.80)); 
rowdata2 = {{l, 7.01), {2, 6.85), {4, 6.50), {8, 5.85)); 
rowdata3 = {{l, 7.04), {2, 6.85), {4, 6.40), {8, 5.95)); 
rowdata4 = {{l, 7.10), {2, 6.95), {4, 6.50), {8, 5.90))1 
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MultipleListPlot[rowdatal, rowdata2, 
rowdatal, rowdata4, Ticks-> ((1, 2, 4, 8), Automatic}, 
AxesLabel -> {"II of\noarsmen", "Time for\n2000 m (min)"}, 
PlotJoined->True, PlotRange-> {Automatic, (5, 8)}]; 

Tm1efor 

2000m(rnrn) 

8 

75 

65 

55 

8 oarsmen 

Figure 2.5. The results of best US regatta rowing (2000 m) of Summer 2000 for different 
numbers of oarsmen. The slope of the graph is about -1 /9. Source: http://rowingresults.com/ 

The dimensionless units are: ~: (Froude's number), P:; f2 (the pressure coefficient) and 
1"J' (the Poisseuille coefficient). So we have P';; f2 = f( ~, 1"J') or F"' pv2 12 f where f 

is a dimensionless number. The power E produced by the n oarsmen together to overcome 

the drag force Fis given by Fv. Thus E=Fv=pv3 l2 f ;,;n because Eis directly 
proportional to n . 

The weight W of a ship is proportional to the volume of displaced water (Archimedes law). 

so W "' l3. This implies ~ "' +which means that larger ships have advantages, because, for 
similar bodies, the ratio w decreases as the size of the ship increases. We know p = I for 

water and W"' !3 (Archimedes again) and W"' n in good approximation, we find v3 "'n 113 

so v "' 11119 • So eight oarsmen indeed go faster. though little, than less oarsmen. 

There are several nice references to the technique of dimensional analysis [West1988, 
Pankhurst1964a, Olver1993], often with quite amusing examples, some of which were 
presented in this section. 

Archimedes' Number 
Bingham Number 
Biot Number 

Froude Number 

Grashof Number 
InternalFroudeNumber 

Mon in - Obukhov Length 

Nusselt Number 

PE!clet Number 
BoussinesqNurnber Mach Number Prandtl Number 
Critical Rayleigh Number Magnetic Reynolds Number Rayleigh Number 
Ekman Number 
Fresnel Number 

Mason Number Richardson Number 

Moment of Inertia Ratio Timescale Number 

Figure 2.6. A list of famous dimensional numbers. From Eric Weisstein's World of Physics. 
URL: http://scienceworld.wolfram.com/physics/topics/UnitsandDimensionalAnalysis.html. 

Many scaling laws exist. In biology scaling laws have become a powerful technique to find 
surprising relations (see for a delightful easy-to-read overview the book by McMahon and 
Bonner [McMal10n1983] and the classical book by Thompson [Thompson1942]). 
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2.3 Axiomatic derivation of the Gaussian kernel 

The dimensional analysis discussed in the previous section will now be used to derive the 
Gaussian kernel as the unique solution for the aperture function of the uncommitted visual 
front-end. 

We do the reasoning in the Fourier domain, as this turns out to be easier and leads to smaller 
equations. We give the theory for 2D. We will see that expansion to other dimensionalities is 
straightforward. We use scripted symbols for variables in the Fourier domain. We consider 
'looking through an aperture'. The matrix m and the nullspace become: 

m = { (1, -1, -2, -2), (0, 0, 1, 1)) i 
TableForm[m, 
TableHeadings-> {{"meter", "Candela"}, ("a", .. ., .. , "LO", "L"}}] 

meter 

candela 

1 

0 

w 
-1 

0 

LO 
-2 

L 

-2 

Figure 2.8 Dimensional matrix for the physics of observation through an aperture. 

NullSpace[m] 

({O, O, -1, l}, (1, 1, O, 0)) 

were IT is the size of the aperture, w the spatial coordinate (frequency in the Fourier domain), 

Lo the luminance of the outside world (in candela per square meter: cd / m2 ), and L the 

luminance as processed in our system. The two dimensionless units fa and <JW can be 

expressed into each other: fa = {:J(<Tw), where g is the kernel (filter, aperture) function in 
the Fourier domain to be found (the Gaussian kernel we are after). We now plug in our 
constraints, one by one. 
No preference for location, together with the prerequisite for linearity, leads to the 
recognition of the process as a co11volutio11. The aperture function is shifted over the whole 
image domain, with no preference for location: any location is measured (or filtered, 
observed) with the same aperture function (kernel, template, filter, receptive field: all the 
same thing). This is written for the spatial domain as: 

L(x, y) = Lo(x, y) ® G(x, y) = L:Lo(u, v) G(x - u, y- v) du dv 

In the Fourier domain, a convolution of functions translates to a regular product between the 
Fourier transforms of the functions: L(wx, wy) = Lo(wx, wy) . {:J(wx, wy) 

The axiom of isotropy translates into the fact that we now only have to consider the length 

llwll of our spatial frequency vector w = {wx, wy}: w = II w II = ~ w_, 2 + w/ . This is a 
scalar. 

The axiom of scale-invariance is the core of the reasoning: when we observe (or blur) an 
observed image again, we get an image which is blurred with the same but wider kernel: 
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{J(w <T1 )lJ(w <Tz) = {J(w<T 1 + w <Tz). Only the exponential function is a general solution of 
this equation: {J(w <T) = exp ((aw <T)P) where a and p are some arbitrary constants. 
We must raise the argument here to some power p because we are dealing with the 

dimensionless parameter w <T. In general, we don't know a or p, so we apply the following 
constraint: isotropy. 
The dimensions are independent, thus separable: II w <T II = (WJ <T) e1 + (W1 <T) ez + ... where 

the e, are the basis unit coordinate vectors. Recall that the vector w 
(w = Wx ex + Wy ey + Wx ez) in the Fomier domain is the set of spatial frequencies in the 
spatial dimensions. The magnitude of 11 w <T 11 is calculated by means of Pythagoras from the 
projections along e;, so we add the squares: p = 2. We further demand the solution to be 
real, so a2 is real. We notice that when we open the ape11ure fully, we blur everything out, 
so lim<TwJ.O {J(w<T) ~ 0. This means that a 2 must be negative. We choose a= -f. As we 
will see, this (arbitrary) choice gives us a concise notation of the diffusion equation. So we 
get: {J(w, <T) = exp(-f <T2 w2 ). We go to the spatial domain with the inverse Fourier 
transform: 

Clear[a]; 
a2 "'2 

g[x_, a_] :Simplify[InverseFourierTransform[Exp[--
2
-], .,, x], a>O] 

--
CT 

The last notion to use it that we want a normalized kernel. The integrated area under the 
curve must be unity: 

" e-~ 

Simplify[Integrate[--, (x, -oo, oo}j, a> 0] 
a 

We divide by this factor. so we finally find for the kernel: G(x, <T) = ~CT exp(- ;;, ). 

This is the Gaussian kernel, which is the Green's function of the linear, isotropic diffusion 
. a' L a' L aL . 2 . . equatwn 7fX2 + ay;: = Lxx + Lyy = 7it , whe1e t = 2 <T 1s the vanance. 

Note that the 'derivative to scale' in the diffusion equation (as it is typically called) is the 

derivative to 2<T2 , which also immediately follows from a consideration of the 
dimensionality of the equation. The variance t has the dimensional unit of m2 . The original 
image is the boundary condition of the diffusion: it staJ1s 'diffusing' from there.Green's 
functions are named in honor of the English mathematician and physicist George Green 
(1793-1841). 

So from the prerequisites 'we know nothing', the axioms from which we staJ1ed, we have 
found the Gaussian kernel as the unique kernel fulfilling these constraints. This is an 
important result, one of the cornerstones in scale-space theory. There have been more ways 
in which the kernel could be derived as the unique kernel. Weickert [Weickertl997a] gives a 
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systematic and thorough overview of the historical schemes that have been published to 
derive the Gaussian. 

2.4 Scale-space from causality 

Koenderink presented in his famous paper "The structure of images" [Koenderinkl 984a I the 
elegant and concise derivation of the linear diffusion equation as the generating partial 
differential equation for the construction of a scale-space. 

The arguments were taken from the physics of causality: when we increase the scale and blur 
the image further, we have the situation that the final blurred image is completely caused by 

the image we started from. 

The previous level of scale is the cause of events at the next level. We first discuss the 
situation in ID. 

-3 

Clear[f]; f [x_] : =Sin [x] +Sin [3 x]; gr= Plot[ f [x], {x, -3, 3), Epilog -> 
(Arrow[(x, f[x]), (x, f[x] +Sign[f''[x]] .5)] /. Solve[f'[x] ==0, x]), 

AxesLabel -> { "x", "intensity"), ImageSize -> 200]; 

mtenslt) 

Figure 2.9 Under causal blurring signals can only change in the direction of less structure. 
Generation of new structure is impossible, so the signal must always be closed to above 
(seen from both sides of the signal). The arrows indicate the direction the intensity moves 
under blurring. 

A higher level of scale contains always less structure. It is physically not possible that new 
structure is being generated. This is one of the most essential properties of a scale-space. We 
will encounter this property again when we consider nonlinear scale-spaces in chapter 19. 

The direction of the arrows in figure 2.9 are detern1ined by the fact if the extremum is a 
maximum or a minimum. In a maximum the intensity is bound to decrease, in a minimum 
the intensity is bound to increase. The second order derivative determines the curvature of 
the signal. and the sign determines whether the function is locally convex (in a maximum) or 
concave (in a minimum). We have the following conditions: 

. a'u 0 au 0 . . I d . maximum: ax' < , 8t < , mtens1ty a ways ecreasmg; 

minimum: ~:~ > 0, ~~ > 0, intensity always increasing. 

Th d. . b . db a'u au 0 ese con 1tJons can e summanze y ax' 8t > . 
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The most important property to include next is the requirement of linearity: the second order 

derivative to space ~:~ is linearly related to the first order derivative to scale ~ ~ , so: 

~~ =a ~~ . We ma~ resample any scale axis in such a way that a= 1 so we get 

~~ = ~u . This is the ID linear isotropic diffusion equation, an important result. The 
ux ut ~ 

Green's function of the linear diffusion equation is the Gaussian kernel .,; 1 
0 

e- 2':r2 , which 
2Jr<T-

means that any function upon which the diffusion is applied, is convolved with this Gaussian 
kernel. 

We can check (with t = t a2, the double 
assignment): 

means equation, test of equality, not 

Clear[x, t] 1 8._, ( ,/
4

1
>rt E-.;2,-) == Bt ( ,/

4

1
>rt E-f.) //Simplify 

True 

Also any spatial derivative of the Gaussian kernel is a solution. We test this for the first order 
derivative: 

True 

_. Task 2.1 Show that this holds true for any order of derivative, including mixed 
derivatives for 2- or higher dimensional Gaussians. 

In 2D and higher dimensions the reasoning is the same. Again we demand the function to be 
closed to the top. No new structure can emerge. 

The requirement for the sign of the second order derivative is now replaced by the 

requirement on the sign of the rotation invariant Laplacian, ~} + ~:.~. 

The reasoning leads to ~:~ + ~~~ = ~'; , the 2D linear isotropic diffusion equation, or 

.:i u = ~~ in any dimension (the L~placian operator ;:2 + ; 2 is often indicated as .:i). 

In the following chapters we will study the Gaussian kernel and the Gaussian derivatives in 
detail. First we present in the next section an alternative and paiticularly attractive alternative 
approach to derive the scale-space kernel starting from the maximization of entropy. 
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2.5 Scale-space from entropy maximization 

An alternative way to derive the Gaussian kernel as the scale-space kernel of an 
uncommitted observation is based on the notion that the 'uncommittedness' is expressed in a 
statistical way using the entropy of the observed signal. The reasoning is due to Mads 
Nielsen, IT-University Copenhagen [Nielsenl995, Nielsenl997a]: 

First of all, we want to do a measurement. We have a device which has some integration area 
over which the measurement is done. As we have seen before, the area (or length or volume) 
of this detector should have a finite width. It cannot be brought down to zero size, because 
then nothing would be measured anymore. 

The measurement should be done at all locations in the same way, with either a series of 
identical detectors, or the same detector measuring at all places. In mathematical language 
this is stating that the measurement should be invariant for translation. 

We also want the measurement to be linear in the signal to be measured, for example the 
intensity. This means that when we measure a signal twice as strong, also the output of the 
measurement should be doubled, and when we measure two signals, the measurement of the 
sum of the signals should be equal to the sum of the individual measurements. In 
mathematical language again this is called invariance for translation along the intensity axis. 

These requirements lead automatically to the formulation that the observation must be a 

convolution: h(x) = J: Lla) g(x - a) d a. 

L(x) is the observed variable, in this example the luminance, g(x) is our aperture, h(x) the 
result of our measurement. 

The aperture function g(x) should be a unity filter. Such a filter is called a normalized filter. 
Normalization means that the integral over its weighting profile should be unity: 
J:g(x) dx = I. The filter should not multiply the data with something other than I. 

The mea11 of the filter g(x) should be at the location where we measure (say at x0 ), so the 
expected value lor first moment) should be xo: J:x g(x) dx = xo. Because we may take any 

point for x0 , we may take for our further calculations as well the point xo = 0, which makes 
life somewhat easier. 

The size of the aperture is a very essential element. We want to be free in choice of this size, 
so at least we want to find a family of filters where this size is a free parameter. We can then 
monitor the world at all these sizes by 'looking through' the complete set of kernels 

simultaneously. We call this 'size' er. It has the dimension of length, and is the yardstick of 
our measurement. We call it the inner scale. Every physical measurement has an inner scale. 

It can be µm, milliseconds, light-years, anything, but for every dimension we need a 

yardstick. Here er is our yardstick. We can express distances in a measurement in "number of 

er's that we stepped around". 
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If we weight distances quadratically with our kernel we separate the dimensions: two 

orthogonal vectors fulfill (a+ b)2 = a2 + b2 . Distances (or lengths) add up quadratically by 

Pythagoras' law. We call the weighted metiic a2-: f:x2 g(x) dx = a2-. 

The last equation we add to the set that will lead to the final formula of the kernel. comes 
from the incorporation of the request to be as uncommitted as possible. We want no filter 
that has a preference for something, such as vertical structures, or squares or circles. 
Actually, we want, in statistical terms, the 'orderlessness' or disorder of the measurement as 
large as possible, there should be no ordering, ranking, structuring or whatsoever. Physically, 
this is expressed through the entropy. a measure for disorder. The entropy of very regular 
data is low, we just want maximal entropy. The fonnula for entropy of our filter is: 

H = L: g(x) lng(x) dx where ln (x) is the natural logarithm. 

We look for the g(x) for which the entropy is maximal, given the constraints that we derived 
before: 

1: g(x) dx = 1, 1: xg(x) dx = 0and1: x
2 

g(x) dx = CT
2

• 

When we want to find a maximum under a set of given constraints, we apply a standard 
mathematical technique named the method of Euler-Lagrange equations (see for an intuitive 
explanation of this method Petrou and Bosdogianni [Petroul 999a, page 258]). 

This is a technique from the calculus of variations. We first make the Euler-Lagrange 
equation, or Lagrangian, by adding to the entropy tern1 the constraints above, each 

multiplied with an unknown constant A, which we are going to determine. The Lagrangian E 

becomes: 

The condition to be minimal for a certain g(x) is given by the vanishing of the first variation 
(corresponding to the first derivative, but in this case with respect to a function) to g(x): 

~~ = 0. This gives us: -1 + A1 + x A2 + x2 A3 - In g(x) = 0 from which we can easily solve 

g(x): g(x) = e-l+l1 +x "' +x2 "' . So, g(x) is beginning to get some shape: it is an exponential 
function with constant, linear and quadratic terms of x in the exponent. Let us solve for the 
A's: 

g [x_J : = E-l+J.l+xJ.2+x
2 

J.3; 

From the equation we see that at least A3 must be negative, otherwise the function explodes, 
which is physically unrealistic. We then need the explicit expressions for our constraints, so 
we make the following set of constraint equations, simplified with the condition of A3 < 0: 
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eqnl = Simplify[l: g[x] dlx == 1, .A3 <OJ 

e-1+.u--Kr .y; 
-J-J..3 

== 1 

eqn2 =Simplify[ l: x g[x] dlx == 0, .A3 <OJ 

eqn3 =Simplify [ l: x 2 g [x] dlx == a 2
, .A3 < 0 J 

.,-1+>1-?',',- '17i (J..22 - 2 J..3) 

4 (-J..3)512 

Now we can solve for all three .l's: 

== a2 

solution= Solve[{eqnl, eqn2, eqn3), (.Al, .A2, .A3)] 

g[x_, a_]= Simplify[E-l+A1+»2 +x2" I. Flatten[solution], a> OJ 
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which is the Gaussian function. A beautiful result. Again. we have found the Gaussian as the 
unique solution to the set of constraints, which in principle are a formal statement of the 
1111co111mitt111ent of the observation. 

2.6 Derivatives of sampled, observed data 

All partial derivatives of the Gaussian kernel are solutions too of the diffusion equation. 

So the first important result is that we have found the Gaussian kernel and all of its partial 
derivatives as the unique set of kernels for a front-end visual system that satisfies the 
constraints: no preference for location, scale and orientation, and linearity. We have found a 

one-parameter family of kernels. where the scale er is the free paran1eter. 

Here are the plots of some members of the Gaussian derivative fan1ily: 

1 x 2 + y 2 

g := -- Exp[---]; a= l; 
2:>ra2 2a2 

Block [ {$DisplayFunction =Identity}, 
graphs=Plot3D[Evaluate[#], (x, -3.5, 3.5), (y, -3.5, 3.5)] &/@ 

{g, "· g, "· "' g, ""' g + c3y,y g} l; 
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Show[GraphicsArray[graphsl, ImageSize -> 4001; 

Figure 2.10 Upper left: the Gaussian kernel G(x,y;<T) as the zeroth order point operator; upper 
right: iJG · lower left: ~ · lower right: the Laplacian &'.! + .i'a of the Gaussian kernel. ih: I dX dy ' iJ:c· .Jyl 

Because of their importance, we wi II discuss properties of the Gaussian kernel and its 
derivatives in detail in the next chapters. In chapters 6 and 7 we will see how sensitivity 
profiles of cells in the retina closely resemble the Laplacian of the Gaussian, and in the 
primary visual cortex they closely resemble Gaussian derivatives, as was first noticed by 
Young [Young1985, Young1986, Young1986b, Young1987aj and Koenderink 
[Koenderink1984aj. 

The derivative of the observed data Lo(x, y) ® G(x, y; er) (the convolution is the 

observation) is given by ! {Lo(x, y)®G(x, y; er)}, which can be rewritten as 

Lo(x, y) ® %x G(x, y; er). Note that we cannot apply the chainrule of differentiation here: the 

operator between Lo(x, y) and G(x, y; er) is a convolution, not a product. The commutt1tion 

(exchange) of the convolution operator and the difterential operator is possible because of 

their linearity. It is best appreciated when we consider the equation 

%x {Lo(x, y) ® G(x, y; er)] in the Fourier domain. We need the two rules: 

- The Fourier transform of the derivative of a function is equal to -i w times the Fourier 

transform of the function, where i = H, and 

- convolution in the spatial domain is a product in the Fourier domain: 

Clear[fl; FourierTransform[f[xl, x, ~l 

FourierTransform[f[xl, x, wl 

FourierTransform[D[f[xl, xl, x, ~l 

-iwFourierTransform[f[xl, x, wl 

So we get (L denotes the Fourier transform of L): ;, {Lo(x, y) ® G(x, y; er)} 
. , , , ( . , ) r -' a 

-1w(L.G) = L. -1wG -> Lo(x,y)® ox G(x,y;cr) 

The commutation of the convolution and the derivative operators , which is easily shown in 

the Fourier domain. From this we can see the following important results : 

• Differentiation and observation are done in a single step: convolution with a Gaussian 
derivative kernel. 

• Differentiation is now done by integration, namely by the convolution integral. 
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This is a key result in scale-space theory. We can now apply differentiation (even to high 
order) to sampled data like images. 

We just convolve the image with the approp1iate Gaussian derivative kernel. But where do 
we need the derivatives, and where do we need higher order derivatives? 

An important area of application is the exploitation of geometric information from images. 
The most basic exan1ple is the first order derivative, which gives us edges. 

Edges are defined as a sudden change of intensity L when we walk over the image and this is 
exactly what a derivative captures: ~; . 

Derivatives abound in the detection of differential features (features expressed as some 
(polynomial) expression in image derivatives). They also show up with the detection of 
motion, of stereo disparity to find the depth, the detection of structure in color images, 
segmentation, image enhancement and denoising, and many other application areas as we 
will see in the rest of the book. 

Some more implications of the theory so far: 

• The Gaussian kernel is the physical analogue of a mathematical point, the Gaussian 
deiivative kernels are the physical analogous of the mathematical differential operators. 
Equivalence is reached for the limit when the scale of the Gaussian goes to zero: 

• limu->0 G(x; <T) = o(x)' where o(x) is the Dirac delta function, and 

limu_,O (/(x) ® aa~;ui} = limu_,o f:f(cr) Ox G(x - er; <r) dcr = 

L:f(a) o(x - a) da: =Ox f(x). 

I: f[a] D[DiracDelta(a- x], x] dla 

f' [x] 

• There is an intrinsic and unavoidable relation between differentiation and blurring. By its 
definition, any differentiation on discrete (observed) data blurs the data somewhat, with 
the amount of the scale of the differential operator. There is no way out. this increase of 
the inner scale is a physical necessity. We can only try to minimize the effect by choosing 
small scales for the differentiation operator. However, this minimal scale is subject to 
constraints (as is the maximal scale). In chapter 7 we develop the fundamental relation 
between the scale of the operator, its differential order and the required amount of 
accuracy. 

The Mathematica function gD[irn,nx,ny,a] implements a convolution with a Gaussian 
deiivative on the image irn, with order of differentiation nx with respect to x resp. ny with 
respect toy. Figure 2.12 shows the deiivative to x and y of a simple test image of a square: 
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im=Table[If[80<x<l70&&80<y<l70, 1, OJ, {y, 1, 256), {x, 1, 256)]; 

Block [ {$DisplayFunction = Identity}, 

imx = gD [im, 1, O, l]; imy = gD[im, O, 1, l]; grad= -V imx2 + imy2 ; 

pl= ListDensityPlot/@ {im, imx, imy, grad} J; 
Show (GraphicsArray[pl], ImageSize ... 400]; 

• Figure 2.11 The first order derivative of an image gives edges. Left: original test image 
LlX, y), resolution 2562

. Second: the derivative with respect to x: ~; at scale <T = 1 pixel. 
Note the positive and negative edges. Third: the derivative with respect to y: ~; at scale 

<T = 1 pixel. Right: the gradient 

edges. 

( ~; ) 2 
+ l ~; )2 

at a scale of <T = 1 pixel which gives all 

• The Gaussian kernel is the unique kernel that generates no spurious resolution. It is the 
blown-up physical point operator, the Gaussian derivatives are the blown-up physical 
multi-scale derivative operators. 

Show[Import["blown-up ddx.jpg"], ImageSize -> 300]: 

Figure 2.12 Convolution with a Gaussian derivative is the blown-up version of convolution with 
the Delta Dirac function. Taking the limit of the scale to zero ('letting the air out") leads to the 
'regular' mathematical formulation. 

• Because convolving is an integration, the Gaussian kernel has by definition a strong 
regularizing effect. It was shown by Schwartz [Schwartz1951] that differentiation of 
distributions of data ('wild' data, such as discontinuous or sampled data) has to be 
accomplished by convolution with a smooth testfunction. This smooth testfunction is our 
Gaussian kernel here. So, we recognize that the process of observation is the regularizer. 
So there is no need to smooth the data first. Actually, one should never change the input 
data, but only make modifications to the process of observation where one has access: the 
filter through which the measurement is done. The visual system does the same: it 
employs filters at many sizes and shapes, as we will see in the chapter on human vision. 

• Recently some interesting papers have shown the complete equivalence of Gaussian scale 
space regularization with a number of other methods for regularization such as splines, 
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thin plate splines, graduated convexity etc. LScherzer2000a, Nielsen1996b, 
Nielsenl997b]. In chapter 10 we will discuss the aspects of differentiation of discrete data 
(it is 'ill-posed') and the property of regularization in detail. 

• The set of Gaussian derivative kernels (including the zeroth order derivative: the Gaussian 
kernel itself) forms a complete set of derivatives. This set is sometimes referred to as the 
N-jet. 

Now the basic toolkit is there to do differential geometry, tensor analysis, invariant theory, 
topology and apply many more mathematical tools on our discrete data. This will be the 
topic of much of the rest of this book. 

2. 7 Scale-space stack 

A scale-space is a stack of 2D images, where scale is the third dimension. One can make a 
scale-space of any measurement, so one can measure an intensity scale-space, a gradient 
magnitude scale-space, a Laplacian scale-space etc. 

im = Import["mr64.gif"] [ [l, l]]; 

Block [ {$DisplayFunction = Identity, xres, yres, max}, 
{yres, xres} =Dimensions [im]; max= Max [im]; 

gr= Graphics3D[ListPlot3D[Table [O, {yres}, {xres}], 
Map [GrayLevel, im I max, (2)] , Mesh .... False, Boxed .... False]] ; 

gb =Table [blur= gD [im, 0, 0, i]; Graphics3D [ListPlot3D [ 
Table [i 10, {yres}, { xres}] , Map [GrayLevel, blur I max, { 2}] , 
Mesh .... False, Boxed .... False]], (i, 1, 6)]]; 

Show[{gr, gb), BoxRatios .... (1, 1, 1), ViewPoint-> (1.190, -3.209, 1.234), 
DisplayFunction -> $DisplayFunction, Boxed-> True, ImageSize -> 240]; 

Figure 2.13 A scale-space of a 20 MRI sagittal slice, dimensions 642
, for a range of scales c 

=1,2,3,4,5,and 6 pixels. 

We found a family of kernels, with the scale er as a free parameter. When we don't know 
what scale to apply in an uncommitted measurement, we just take them all. It is like 
sampling at spatial locations: we put CCD elements all over our receptor's sensitive area. We 
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will see that the visual system does just that: it has groups of rods and cones in the retina 
(termed receptive fields) of a wide range of circular diameters, effectively sampling at many 
different scales. 

We will see in the chapters on the 'deep structure' of images (i.e. the structure along the scale 
axis), that in the scale-space the hierarchical, topological structure of images is embedded. 
See chapters 13-15. 

One can make scale-spaces of any dimension. A scale-space stack of 3D images. such as 3D 

datasets from medical tomographic scanners. is a 4D space (x,y,z;cr) and is termed a 
hyperstack [Vincken 1990]. 

And here are two scale-spaces of a real image, a scale-space of the intensity (no derivatives, 
only blurred) and a scale-space of the Laplacian (the Laplacian is the sum of the second 

· · · ~L ~L order denvatJves of the image, ox' + ayi ). 

im=Import["mr128.gif"][[l, 1]]; 
DisplayTogetherArray[ 

{Table[ListDensityPlot[gD[im, 0, 0, E']], {r, 0, 2.1, .3}], 
Table[ListDensityPlot[gD[im, 2, 0, E'] + gD[im, O, 2, E']], 

{r, 0, 2.1, .3}]}, ImageSize->390]; 

Figure 2.14 A scale-space is a stack of images at a range of scales. Top row: Gaussian blur 
scale-space of a sagittal Magnetic Resonance image, resolution 1282

, exponential scale 
range from (J' = e0 to (J' = e2·1 . Bottom row: Laplacian scale-space of the same image, same 
scale range. 
The function gD[im,nx,ny,aJ will be explained later (chapter 4 and 5). It convolves the 
image with a Gaussian derivative. 

2.8 Sampling the scale-axis 

From the example from the trip through scale in the "Powers of 10" series we made steps of 
a factor 10 each time we took a new picture. This is an exponential stepping through scale, 
and we know this as experimental fact. We step in 'orders of magnitude'. The scale parameter 

er gives a logical length parameter for the level of resolution. 

If we consider how to parametrize scale er with a dimensionless parameter T, then we realize 

that scale-invariance (or self-similarity) must imply that d er/ d T must be proportional to er. 

In other words, the change that we see when we step along the scale axis, is proportional to 

the level of resolution at hand. Without loss of generality we may take ~~ =er with 

er lr=O = E. We call the dimensionless parameter T the natural scale parameter: a = E e" 
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where T can be any number, even negative. Note that the artificial singularity due to the 
problematic value of <r = 0 is now no longer present. 

There is a difference between 'zooming' and 'blurring': 

zooming is the reparametrization of the spatial axis, x 1-> ax, so we get a larger or smaller 
image by just setting them further apart of farther away. There is no infonnation gained or 
lost. Blurring is doing an observation with a larger aperture: the image is blurred. Now 
information is lost, and this is exactly what is a requirement for a scale-space: reduction of 
information. Because we have a larger <r over the same image domain, we can effectively 
perfom1 a sampling rate reduction [Vinckenl990]. 

How much information is lost when we increase scale? Florack [Florackl994b] introduced 
the following reasoning: 

The number of (equidistant) samples on a given domain, given a fixed amount of overlap 

between neighboring apertures, on scale level <r relative to the number of samples at another 

scale level <ro is given by ~<;jJ = ( ~ )D, where D is the dimension. 

Or, in terms of the natural scale parameter r with <r = E eT: 

N(<r) = N(<ro) ( ~:; )D = N(<ro) eD(To-Tl 

which is the solution of the differential equation : ~ + D N = 0. At the highest scale, we 
have just a single wide aperture left and we achieved total blurring; the image domain has 
become a single point. Notice that the sampling rate reduction depends on the dimension D. 
When we consider natural. generic images, we expect the information in the images to exist 
on all scales. We could think of a 'density of local generic features' such as intensity maxima, 
minima, saddle points, corners etc. as relatively homogeneously distributed over the images 
over all scales when we consider enough images. This 'feature density' NF (r) might then be 

related to the number of samples N(r), so ddN; + DNF = 0. In chapter 20 we will see that 
the number of extrema and saddle points in a scale-space of generic images indeed decreases 

with a slope of d~~F ~ -2 for 2D images and a slope of -1 for ID signals. 

The factor E in the equation for natural scale appears for dimensional reasons: it is the scale 

for T = 0, and is a property of our imaging device; it is the pixel size, CCD element size, the 
sampling width etc.: the inner scale of the measurement. 
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Block [ {$DisplayFunction =Identity}, 
pl = Graphics [ 

2.8 Sampling the scale-axis 

Table[Circle[{x,y}, .6], {x, 1, 10), (y, 1, 10)],AspectRatio->l]; 
p2 = Graphics[Table[Circle[(x, y}, 1.2], {x, 1, 10, 2), {y, 1, 10, 2)], 

AspectRatio -> l]; 
pl= GraphicslD[Table[(EdgeForm[], TranslateShape[Sphere[.6, 10, 10], 

(x, y, z}]), (x, 1, 6), (y, 1, 6), (z, 1, 6)], Boxed-> False]; 

p4 = GraphicslD [Table [ (EdgeForm [] , TranslateShape [ 
Sphere[l.2, 10, 10], {x, y, z}]), {x, 1, 6, 2), 

(y, 1, 6, 2), {z, 1, 6, 2)], Boxed-> False]]; 
Show[GraphicsArray [{pl, p2, pl, p4}], ImageSize -> 400]; 

•• Figure 2.15 The number of samples on a 20 domain, given a fixed amount of overlap 
decreases with ( 7) 2 (left two figures), on a 30 domain with ( "."," )3 (right two figures). So 
the number of samples decreases as a function of scale with a slope of -D, where D is the 
dimension (see text). The sampling rate reduction is dependent on the dimensionality of the 
measurement. 

For positive r we go to larger scale, for negative T we go to smaller scale. In the expression 

for the natural scale the singularity at er = 0 is effectively removed. 

The exponential stepping over the scale axis is also evident in the Hausdorff dimension, the 
number of boxes counted in a quadtree of a binary image (see also [Pedersen2000] and 
chapter 15, section 15.1.4). 

Of course, there is no information within the inner scale, so here problems are to be expected 
when we try to extract information at sub-pixel scale. Only by taking into account a context 
of voxels through a proper model, we can go to the subpixel domain. 

This is an important notion: any observation at a single point is an independent 
measurement, and we can do a lot of measurements there. 

In the next few chapters we will derive many features related to the measurement of 
derivatives at our pixel. It turns out that we can make lots of specific polynomial 
combinations, like edge strength, 'comerness' etc. but they all describe info1mation in that 
point. It is a 'keyhole observation'. The important 'perceptual grouping' of neighbming points 
into meaningful sets is accomplished by specifying constraints, like models. In this book we 
first derive many local (differential) features. 

In the second pai1 we go a little further in the cascade of visual processing steps. and 
investigate local neighborhood relations through comparison of local properties like 
orientation, strength of derivative measurements etc. We also explore the deep structure of 
images (a tem1 first coined by Koenderink), by which we mean the relations over scale. In 
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the deep structure we may expect the hierarchical, structuring, more topological information: 
what is 'embedded in' what, what is 'surrounded by' what, what is 'part of what etc. This 
takes us to a next level of description in images, which is currently receiving a lot of 
attention. 

Fractals are famous examples of self similar functions. This self-similar fractal shows a tree 
in three dimensions [Cabrera, www.mathsource.com]. Parameters: a = branch angle; E = 
scale factor; m =number of branches from previous branch; n = deepness. 

2.9 Summary of this chapter 

Scale-space theory was discovered independently by Iijima in Japan in the early sixties, and 
by Koenderink in Europe in the early seventies. 

Because we have specific physical constraints for the early vision front-end kernel. we are 
able to set up a 'first principle' framework from which the exact sensitivity function of the 
measurement aperture can be derived. There exist many such derivations for an uncommitted 
kernel, all leading to the same unique result: the Gaussian kernel. We discussed two 
approaches: the first started with the assumptions of linearity, isotropy, homogeneity and 
scale-invariance. 

With the help of the Pi-theorem from dimensional analysis one is able to derive the Gaussian 
by plugging in the constraints one by one. 

The second derivation staiied from causality: it is impossible that maxima increase and 
minima decrease with increasing scale, every blurred version is the causal consequence of 
the image it was blurred from. This means that the extrema must be closed from above. This 
leads to s constraint on the sign of the second derivative, from which the diffusion equation 
emerges. 

The third derivation started from the minimization of the entropy at the very first 
measurement. Through the use of Lagrange multipliers, where the constraints are used one 
by one, one can again derive the Gaussian kernel as the unique kernel for the front-end. 

A crucial result is that differentiation of discrete data is done by the convolution with the 
derivative of the observation kernel, in other words: by an integration. Differentiation is now 
possible on discrete data by means of convolution with a finite kernel. In chapter 14 we 
discuss this important mathematical notion, which is known as regularization. 

This means that differentiation can never be done without blurring the data somewhat. We 
find as a complete family of front-end kernels the family of all partial derivatives of the 
Gaussian kernel. The zeroth order derivative is just the Gaussian blurkemel itself. 

Scale is parametrized in an exponential fashion (we consider 'orders of magnitude' when 
scaling). The exponent in this parametrization is called the natural scale parameter. 
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Rotz[t_] = ((Cos[t], Sin[t], O}, (-Sin[t], Cos[t], O}, (0, 0, 1}}; 
Roty[t_] = ({Cos[t], 0, -Sin[t]}, (0, 1, O}, {Sin[t], 0, Cos[t]}}; 
Rot3D[r/t_, e_] = Roty[e] .Rotz[r/t]; SphericalCoordinates[{x_, y_, z_}] 

{ Sqrt [x' 2 + y' 2 + z '2], ArcTan [z, Sqrt [x' 2 + z '2]] , ArcTan [x, y]}; 
NextBranches[a_, e_, m_] [ Branch[rl_List, rO_List, th_] ] := 

Module[(r, r/t, 0}, (r, e, r/t} = SphericalCoordinates[rl-rO]; 

{Branch[E*(rl-rO) +rl, rl, E*th], Sequence@@Table[ 

Branch [rl + e * r {Sin [a] Cos ['I>], Sin [a] Sin [rp], Cos [a]} .Rot3D [r/t, e], 
2 Pi 

rl, E*th], {rp, 0, 2Pi, --}]} /IN]; 
m 

NextBranches[a_, e_, m_] [w_List] := Map[NextBranches[a, e, m], w]; 
Tree2D [a_, e_, m_, r_List, th_, n_] : = 
NestList[NextBranches[a, e, m], Branch[r, (0, 0, O}, l], n] /. 

Branch [rl_, rO_, t_] : > 
{RGBColor[O, 0.6 (1-t) +0.4, O], Thickness[th*t], Line[{rl, rO}]} 

Show[Graphics3D[Tree2D[a, e, m, r, thO, n] /. 
{a->Pi/8, e->0.6, m->5, r-> (0.01, 0, l}, n->4, th0->0.03}], 

PlotRange-> ({-1, l}, (-1, 1}, (0, 2.5}}, 
ViewPoint-> (3.369, -0.040, 0.312}, ImageSize-> 200]; 

Figure 2.16 Fractals are famous examples of self similar functions. This self-similar 
fractal shows a tree in three dimensions [Cabrera, www.mathsource.com]. Parameters: a = 
branch angle; E =scale factor; m =number of branches from previous branch; n =deepness. 
Source: Renan Cabrera, www.mathsource.com. 



3. The Gaussian kernel 

Of all things, man is the measure. 
Protagoras the Sophist (480-411 B.C.) 

3.1 The Gaussian kernel 

The Gaussian (better GauBian) kernel is named after Carl Friedrich GauB ( 1777-1855), a 
brilliant German mathematician. This chapter discusses many of the attractive and special 
properties of the Gaussian kernel. 

<< FrontEndVision ' FEV'; Show[Import["GausslODM.gif"], ImageSize -> 280]; 

Figure 3.1 The Gaussian kernel is apparent on every German banknote of DM 10,- where it 
is depicted next to its famous inventor when he was 55 years old. The new Euro replaces 
these banknotes. See also: http://scienceworld.wolfram.com/biography/Gauss.html. 

The Gaussian kernel is defined in 1-D, 2D and N-D respectively as 

., l _...i._ I -~ ... I 
G1 D (x; a-)= {2ii rr e "" , Gi D(X, y ; a-)= 2w 2 e 2 ~ , GNo (x; a-)= ({27f rrt 

The a- determines the width of the Gaussian kernel. In stat1st1cs, when we consider the 
Gaussian probability density function it is called the standard deviation , and the square of it, 
a-2 , the variance. In the rest of this book, when we consider the Gaussian as an aperture 

function of some observation, we will refer to a- as the inner scale or shortly scale. 

In the whole of this book the scale can only take positive values, a- > 0 . In the process of 

observation a- can never become zero. For. this would imply making an observation through 
an infinitesimally small aperture, which is impossible. The factor of 2 in the exponent is a 
matter of convention, because we then have a 'cleaner' fornrnla for the diffusion equation. as 
we will see later on. The semicolon between the spatial and scale parameters is 
conventionally put there to make the difference between these parameters explicit. 
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The scale-dimension is not just another spatial dimension, as we will thoroughly discuss in 
the remainder of this book. 

The half width at half marimum (CT = 2 {2lr;2") is often used to approximate CT, but it is 
somewhat larger: 

Unprotect[gauss]; 

1 x 2 

gauss[x , a]:= --- Exp[---]; 
- -

0 
-{2"; 2 a 2 

[ 
gauss [x, a] 1 J 

Solve == - , x 
gauss [O, a] 2 

{ { x -> - o -.,/ 2 Log [ 2 ] } , { x -> o -.,/ 2 Log [ 2 ] } } 

% 11 N 

{{X->-1.177410), {x->1.177410}) 

3.2 Normalization 

The term .~ in front of the one-dimensional Gaussian kernel is the normalization 
v2" rJ" 

constant. It comes from the fact that the integral over the exponential function is not unity: 

f:e-x2
/
2 cr' dx = y:f;° CT. With the normalization constant this Gaussian kernel is a 

normalized kernel, i.e. its integral over its full domain is unity for every CT. 

This means that increasing the CT of the kernel reduces the amplitude substantially. Let us 
look at the graphs of the normalized kernels for CT= 0.3, CT= 1 and CT= 2 plotted on the 
same axes: 

1 x 2 

Unprotect[gauss]; gauss[x , a]:= --- Exp[---]; 
- -

0 
-{2"; 2 a 2 

Block[{$DisplayFunction= Identity}, {pl, p2, p3) = 
Plot[gauss[x, a=#], {x, -5, 5), PlotRange-> {O, 1.4)] &I@ 

{ .3, 1, 2) l; 
Show[GraphicsArray[{pl, p2, p3)], ImageSize -> 400]; 
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Figure 3.2 The Gaussian function at scales CT= .3, CT= I and CT= 2. The kernel is 
normalized, so the total area under the curve is always unity. 

The normalization ensures that the average graylevel of the image remains the same when 
we blur the image with this kernel. This is known as average grey level invariance. 
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3.3 Cascade property, selfsimilarity 

The shape of the kernel remains the same, irrespective of the IT. When we convolve two 
Gaussian kernels we get a new wider Gaussian with a variance a2- which is the sum of the 

variances of the constituting Gaussians: gnewlx; !Ti+ IT~) = g1 (x; ITT)® g1 (x; IT~). 

a=.i Simplify[J:gauss[a, ai] gauss[a-x, a2 ] dla, {a1 >0, a, >OJ] 

This phenomenon, i.e. that a new function emerges that is similar to the constituting 
functions, is called self-similarity. 

The Gaussian is a self-similar function. Convolution with a Gaussian is a linear operation, so 
a convolution with a Gaussian kernel followed by a convolution with again a Gaussian 

kernel is equivalent to convolution with the broader kernel. Note that the squares of IT add. 

not the !T's themselves. Of course we can concatenate as many blurring steps as we want to 
create a larger blurring step. With analogy to a cascade of waterfalls spanning the same 
height as the total waterfall, this phenomenon is also known as the cascade smoothing 
property. 
Fan1ous examples of self-similar functions are fractals. This shows the famous Mandelbrot 
fractal: 

cMandelbrot = compile[{{c, _complex)), -Length[ 

FixedPointList[#2 + c &, c, 50, SameTest -> (Abs[#2] > 2.0 &)]]] i 

ListDensityPlot[ -Table[cMandelbrot[a + bI], (b, -1.1, 1.1, 0.0114), 
{a, -2.0, 0.5, 0.0142)], Mesh -> False, AspectRatio -> Automatic, 

Frame -> False, ColorFunction ->Hue, ImageSize -> 170] i 

Figure 3.3 The Mandelbrot fractal is a famous example of a self-similar function. Source: 
www.mathforum.org. See also mathworld.wolfram.com/MandelbrotSet.html. 
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3.4 The scale parameter 

In order to avoid the summing of squares, one often uses the following 
2 er2 ~ t, so the Gaussian kernel get a particular short 

dimensions:~o(.X, t) = ____!__)Nl2 e-.o;-. 
(7rt 

parametrization: 
form. In N 

It is this t that emerges in the diffusion equation ~; = ~f + ~:.f + ~:; . It is often referred 

to as 'scale' (like in: differentiation to scale, i;:; ), but a better mu~e is variance. 

To make the self-similarity of the Gaussian kernel explicit, we can introduce a new 
dimensionless spatial parameter, x = x,,, . We say that we have reparametrized the x-axis. 

er v 2 

Now the Gaussian kernel becomes: g 11 (x; er) = .~ e-x' , or g 11 (x; t) = -J1N/' e-i2 . In 
erv2" (1rt -

other words: if we walk along the spatial axis in footsteps expressed in scale-units (er's), all 
kernels are of equal size or 'width' (but due to the normalization constraint not necessarily of 
the same amplitude). We now have a 'natural' size of footstep to walk over the spatial 

coordinate: a unit step in x is now er .../2, so in more blurred images we make bigger steps. 
We call this basic Gaussian kernel the natural Gaussian kernel g11 (x; er). The new coordinate 

x = x,,, is called the natural coordinate. It eliminates the scale factor er from the spatial 
er v 2 

coordinates, i.e. it makes the Gaussian kernels similar, despite their different inner scales. 
We will encounter natural coordinates many times hereafter. 

The spatial extent of the Gaussian kernel ranges from -oo to +oo, but in practice it has 

negligible values for x larger then a few (say 5) er. The numerical value at x=5er, and the area 

under the curve from x=5er to infinity (recall that the total area is 1): 

gauss [5, l] // N 
Integrate[gauss[x, l], {x, 5, Infinity)]// N 

1. 48672 °' 10-' 

2. 86652, 10-7 

The larger we make the standard deviation er, the more the image gets blurred. In the limit to 
infinity, the image becomes homogenous in intensity. The final intensity is the average 
intensity of the image. This is true for an image with infinite extent, which in practice will 
never occur, of course. The boundary has to be taken into account. Actually, one can take 
many choices what to do at the boundary, it is a matter of consensus. Boundaiies ai·e 
discussed in detail in chapter 5, where practical issues of computer implementation are 
discussed. 

3.5 Relation to generalized functions 

The Gaussian kernel is the physical equivalent of the mathematical point. It is not strictly 
local, like the mathematical point, but semi-local. It has a Gaussian weighted extent, 

indicated by its inner scale er. 
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Because scale-space theory is revolving around the Gaussian function and its derivatives as a 
physical differential operator (in more detail explained in the next chapter), we will focus 
here on some mathematical notions that are directly related, i.e. the mathematical notions 
underlying sampling of values from functions and their derivatives at selected points (i.e. that 
is why it is referred to as sampling). The mathematical functions involved are the 
generalized functions, i.e. the Delta-Dirac function, the Heaviside function and the error 
function. In the next section we study these functions in detail. 

When we take the limit as the inner scale goes down to zero (remember that <T can only take 
positive values for a physically realistic system), we get the mathematical delta function, or 

Dirac delta function, o(x). This function is everywhere zero except in x = 0, where it has 
infinite amplitude and zero width, its area is unity. 

o(x) is called the sampling function in mathematics, because the Dirac delta function 
adequately samples just one point out of a function when integrated. It is assumed that f(x) 

is continuous at x =a: 

1: DiracDelta [x - a] f [x] dlx 

f [a] 

The sampling property of derivatives of the Dirac delta function is shown below: 

J~ D[DiracDelta[x], {x, 2}] f[x] dlx 

f°' [ O] 

The delta function was originally proposed by the eccentric Victorian mathematician Oliver 
Heaviside (1880-1925, see also 1Pickoverl998]). Story goes that mathematicians called this 
function a "monstrosity". but it did work! Around 1950 physicist Paul Dirac (1902-1984) 
gave it new light. Mathematician Laurent Schwartz (1915-) proved it in 1951 with his 
famous "theory of distributions" (we discuss this theory in chapter 8). And today it's called 
"the Dirac delta function". 

The integral of the Gaussian kernel from -oo to x is a famous function as well. It is the error 

function, or cumulative Gaussian function, and is defined as: 

l
x 1 y2 

a=. i err[x_, a_]= --- Exp[- --
2

] dly 
o a .,,(2; 2 a 

.!. Erf [-x-] 
2 Y2 0 
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The y in the integral above is just a dummy integration variable, and is integrated out. The 
Mathematica error function is Erf [ x] . 

In our integral of the Gaussian function we need to do the reparametrization x ~ x"' . 
<FV2 

Again we recognize the natural coordinates. The factor f is due to the fact that integration 

starts halfway, in x = 0. 

1 x 
a= 1.; Plot[- Erf[---], {x, -4, 4), AspectRatio -> .3, 

2 a-{2 

AxesLabel -> { "x", "Erf [x] "}, ImageSize -> 200]; 

Erf[xJ 

Figure 3.4 The error function Erf [x] is the cumulative Gaussian function. 

When the inner scale er of the e1TOr function goes to zero, we get in the limiting case the so
called Heavyside function or 1mitstep function. The derivative of the Heavyside function is 
the Delta-Dirac function, just as the derivative of the error function of the Gaussian kernel. 

1 x 
a= .l; Plot[-Erf[---], {x, -4, 4), AspectRatio-> .3, 

2 a...f2 

AxesLabel -> { "x", "Erf [x] "}, ImageSize -> 270]; 

Erll..:] 

-4 _, 

Figure 3.5 For decreasing IT the Error function begins to look like a step function. The Error 
function is the Gaussian blurred step-edge. 

Plot[Unitstep[x], (x, -4, 4), DisplayFunction -> $DisplayFunction, 
AspectRatio-> .3, AxesLabel-> {"x", "Heavyside[x], Unitstep[x]"), 
Plotstyle -> Thickness[.015], ImageSize -> 270); 

Hcav~s1d(l_x], UnitSter(x] 

~i1 
-4 

Figure 3.6 The Heavyside function is the generalized unit stepfunction. It is the limiting case 
of the Error function for lim IT-> o. 

The derivative of the Heavyside step function is the Delta function again: 



3. The Gaussian kernel 43 

D[UnitStep[x], x] 

DiracDelta [x] 

3.6 Separability 

The Gaussian kernel for dimensions higher than one, say N, can be described as a regular 

product of N one-dimensional kernels. Example: gz D(x, y; a-y +<TD = g1 D (x; a-T) 
g1 D (y; a-~) where the space in between is the product operator. The regular product also 

explains the exponent Nin the normalization constant for N-dimensional Gaussian kernels in 
(0). Because higher dimensional Gaussian kernels are regular products of one-dimensional 
Gaussians, they are called separable. We will use quite often this property of separability. 

DisplayTogetherArray[{Plot[gauss [x, a= l], {x, -3, 3)], 
Plot3D[gauss[x, a= l] gauss[y, a= l], (x, -3, 3), (y, -3, 3)]), 

ImageSize -> 440] ; 

03 

0, 

01 

-3 -:! -1 

Figure 3.7 A product of Gaussian functions gives a higher dimensional Gaussian function. 
This is a consequence of the separability. 

An important application is the speed improvement when implementing numerical separable 
convolution. In chapter 5 we explain in detail how the convolution with a 2D (or better: N

dimensional) Gaussian kernel can be replaced by a cascade of ID convolutions, making the 
process much more efficient because convolution with the lD kernels requires far fewer 
multiplications. 

3.7 Relation to binomial coefficients 

Another place where the Gaussian function emerges is m expansions of powers of 
polynomials. Here is an exan1ple: 

Expand[ (x + y) 30
] 

x 30 + 30 x 29 y + 435 x 28 y 2 + 4060 x 27 y 3 + 27405 x 26 y 4 + 142506 x 25 y 5 + 

593775 x 24 y 6 + 2035800 x 23 y 7 + 5852925 x 22 y 8 + 14307150 x21 y 9 + 

30045015 x 20 y 10 + 54627300 x 19 y 11 + 86493225 x 18 y 12 + 119759850 x 17 y 13 + 

145422675 x 16 y 14 + 155117520 x 15 y 15 + 145422675 x 14 y 16 + 

119759850 x 13 y 17 + 86493225 x 12 y 18 + 54627300 x 11 y 19 + 30045015 x 10 y 20 + 

14307150 x 9 y 21 + 5852925 x 8 y 22 + 2035800 x 7 y 23 + 593775 x 6 y 24 + 

142506 x 5 y 25 + 27405 x 4 y 26 + 4060 x 3 y 27 + 435 x 2 y 28 + 30 x y 29 + y 30 

The coefficients of this expansion are the binomial coefficients (7.) ('n over m'): 
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ListPlot[Table[Binomial[30, n], (n, 1, 30)], 
Plotstyle-> {PointSize[.015]), AspectRatio-> .3]; 

l 25xH:f 

l;...llf 

75x107 

15Ylcfl A 
5xl07 

'5xIO'~~ 

IO 15 25 3U 

Figure 3.8 Binomial coefficients approximate a Gaussian distribution for increasing order. 

And here in two dimensions: 

BarChart3D[Table [Binomial [30, n] Binomial [30, m], (n, 1, 30), (m, 1, 30)], 
ImageSize -> 180]; 

;o 

Figure 3.9 Binomial coefficients approximate a Gaussian distribution for increasing order. 
Here in 2 dimensions we see separability again. 

3.8 The Fourier transform of the Gaussian kernel 

We will regularly do our calculations in the Fornier domain, as this often turns out to be 
analytically convenient or computationally efficient. The basis functions of the Fourier 

transform 'Fare the sinusoidal functions eiwx. The definitions for the Fourier transform and 
its inverse are: 

the Fourier transf01m: F(w) = 'F {j(x)) = .b f"' /(x) eiwx dx v 21f J_oo 
the inverse Fourier transform: r-1 {F(w)) = b f"' F(w) e-iwx dw 

v 21f J_oo 

a=.; rgauss [w_, a_] = 
1 1 x 2 

Simplify[-- Integrate[--- Exp[- --
2 

J Exp[I w x], {x, -oo, oo}], 
...(2"; 0 ...(2"; 2 a 

{a> 0, Im[a] ==OJ] 
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The Fourier transform is a standard Mathematica command: 

Simplify[FourierTransform[gauss [x, a], x, w], a> O] 

Note that different conunumtJes (mathematicians, computer scientists, engineers) have 
different definitions for the Fourier transform. From the Mathematica help function: 

With the setting FourierParameters~ {a, b} the discrete Fourier transfonn computed 

by FourierTransform is~ <2 ~~-.. L:f(t)e;hwi dlt. Some common choices for {a,b} 

are {0,1} (default), {-1,l} (data analysis), {l,-1} (signal processing). 

In this book we consistently use the default definition. 

So the Fourier transf01m of the Gaussian function is again a Gaussian function. but now of 

the frequency w. The Gaussian function is the 011/_v function with this property. Note that the 

scale l.T now appears as a multiplication with the frequency. We recognize a well-known fact: 
a smaller kernel in the spatial domain gives a wider kernel in the Fourier domain, and vice 
versa. Here we plot 3 Gaussian kernels with their Fourier transf01m beneath each plot: 

Block [ { $DisplayFunction = Identity} , 
pl=Table[Plot[gauss[x, a], (x, -10, 10), PlotRange->All, 

PlotLabel -> "gauss [x," <> ToString [a] <> "] "], {a, 1, 3)] ; 
p2 =Table [Plot [rgauss [w, a], (w, -3, 3), PlotRange ->All, 

PlotLabel-> "rgauss[x,"<>ToString[a] <>"]"],{a, 1, 3)]]; 
Show[GraphicsArray[{pl, p2}], ImageSize -> 400]; 

·~~'!] :7(\'i 
~~ 
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Figure 3.1 O Top row: Gaussian function at scales er=!, cr=2 and cr=3. Bottom row: Fourier 
transform of the Gaussian function above it. Note that for wider Gaussian its Fourier 
transform gets narrower and vice versa, a well known phenomenon with the Fourier 
transform. Also note by checking the amplitudes that the kernel is normalized in the spatial 
domain only. 

There are many names for the Fourier transform 'T g(w; 1.F) of g(x; 1.F): when the kernel 
g(x; 1.F) is considered to be the point spread function, 'T g(w; 1.F) is referred to as the 

111od11latio11 transfer function. When the kernel g(x;l.T) is considered to be a signal, 'T g(w; 1.F) 

is referred to as the spectrum. When applied to a signal, it operates as a lowpass filter. Let us 



46 3.8 The Fourier transform of the Gaussian kernel 

plot the spectra of a series of such filters (with a logarithmic increase in scale) on double 
logarithmic paper: 

scales=N[Table[Exp[t/3], (t, 0, 8}]] 
spectra= LogLinearPlot [:T"gauss [w, #], 

(w, .01, 10), DisplayFunction ->Identity] & /@scales; 
Show[spectra, DisplayFunction -> $DisplayFunction, AspectRatio -> .4, 

PlotRange ->All, AxesLabel -> { "w", "Amplitude"}, ImageSize -> 300]; 

{1.' 1.39561, 1.94773, 2. 71828, 
3.79367, 5.29449, 7.38906, 10.3123, 14.3919) 

Amplitude 

001 005 01 05 I IO 

Figure 3.11 Fourier spectra of the Gaussian kernel for an exponential range of scales rr = 

(most right graph) to rr = 14.39 (most left graph). The frequency w is on a logarithmic scale. 
The Gaussian kernels are seen to act as low-pass filters. 

Due to this behaviour the role of receptive fields as lowpass filters has long persisted. But the 
retina does not measure a Fourier transfonn of the incoming image, as we will discuss in the 
chapters on the visual system (chapters 9-12). 

3.9 Central limit theorem 

We see in the paragraph above the relation with the central limit theorem: any repetitive 
operator goes in the limit to a Gaussian function. Later, when we study the discrete 
implementation of the Gaussian kernel and discrete sampled data, we will see the relation 
between interpolation schemes and the binomial coefficients. We study a repeated 
convolution of two blockfunctions with each other: 

f [x_] : = UnitStep[l I 2 + x] + UnitStep[l I 2 - x] - 1; 
g[x_] :=UnitStep[l/2+x] +UnitStep[l/2-x] -1; 

Plot[f[x], (x, -3, 3), ImageSize->140]; 

_J_ 
-3 -::: -1 I 2 3 

Figure 3.12 The analytical blockfunction is a combination of two Heavyside unitstep functions. 

We calculate analytically the convolution integral 
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hl = Integrate[f[x] g[x- xl], {x, -oo, oo}] 

1 . . 
2 (-1+2 UnitStep[l- xl] - 2 xl UnitStep[l- xl] - 2 xl UnitStep[xl]) + 

-} (-1+2xlUnitStep[-xl] +2UnitStep[l+xl] +2xlUnitStep[l+xl]) 

Plot [hl, { xl, -3, 3}, PlotRange -> All, ImageSize -> 150] ; 

'12 

-3 -2 -1 

Figure 3.13 One times a convolution of a blockfunction with the same blockfunction gives a 
triangle function. 

The next convolution is this function convolved with the block function again: 

h2 =Integrate [ (hl I. xl -> x) g [x - xl], (x, -oo, oo)] 

1 ,1 ,1 2 1 2 1 
-1+ 8 (l-2xl) + 8 (1+2xl) + 8 (3-4xl-4xl) + 8 (3+4xl-4xl) + 8 

(-4 + 9 UnitStep[ j - xl] - 12 xl UnitStep[ j- xl] + 4 xl 2 UnitStep[ j - xl] + 

UnitStep[--} + xl] - 4 xl UnitStep[--} + xl] + 4 xl 2 UnitStep[--} + xl]) + 

f (-unitStep[-} - xl] + 4 xl UnitStep[-} - xl] - 4 xl 2 UnitStep[-} - xl] -

UnitStep[-} + xl] - 4 xl UnitStep[-} +xl] - 4 xl 2 UnitStep[-} + xl]) + 

-} (-4 + UnitStep[--}- xl] + 4 xl UnitStep[--}- xl] + 

4 x 1 2 Uni tStep [ - -} - x 1] + 9 Uni tStep [ j + x 1] + 

12 xl UnitStep[ j + xl] + 4 xl 2 UnitStep[-} + xl]) 

1 2 1 2 1 2 1 2 -1+ 8 (1-2xl) + 8 (1+2xl) + 8 (3-4xl-4xl) + 8 (3+4xl-4xl) + 

~ (-4 + 9 UnitStep[ f -xl] - 12 xl UnitStep[ f -xl] + 4 xl 2 UnitStep[ f -xl] + 

UnitStep[-+ + xl] - 4 xl UnitStep[-+ + xl] + 4 xl2 UnitStep[-+ + xl]) +-}

(-unitStep[ + - xl] +4xlUnitStep[+-xl]-4xl2 UnitStep[+-xl]

UnitStep[ + +xl] - 4xl UnitStep[ + +xl] - 4xl2 UnitStep[ ++xi])+ 

~ (-4 +Uni tstep[ -+ - xl] + 4 xl UnitStep[-+ - xl] + 4 xl2 Unitstep[ -+ - xl] + 

9 Unitstep[ f + xl] + 12 xl UnitStep[ f + xl] + 4 xl2 Unitstep[ f + xl]) 

We see that we get a result that begins to look more towards a Gaussian: 
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Plot[{h2, gauss[xl, .SJ), {xl, -3, 3), PlotRange->All, 
PlotStyle ->{Dashing[()], Dashing[(0.02, 0.02)] }, ImageSize -> 150]; 

-3 -2 -1 

Figure 3.14 Two times a convolution of a blockfunction with the same blockfunction gives a 
function that rapidly begins to look like a Gaussian function. A Gaussian kernel with u = 0.5 
is drawn (dotted) for comparison. 

The real Gaussian is reached when we apply an infinite number of these convolutions with 
the same function. It is remarkable that this result applies for the infinite repetition of any 
convolution kernel. This is the central limit theorem . 

.._ Task 3.1 Show the central limit theorem in practice for a number of other 

arbitrary kernels. 

3.10 Anisotropy 

PlotGradientField[-gauss[x, l] gauss[y, l], 
{x, -3, 3), (y, -3, 3), PlotPoints -> 20, ImageSize -> 140]; 
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Figure 3.15 The slope of an isotropic Gaussian function is indicated by arrows here. There are 
circularly symmetric, i.e. in all directions the same, from which the name isotropic derives. 
The arrows are in the direction of the normal of the intensity landscape, and are called 
gradient vectors. 

The Gaussian kernel as specified above is isotropic, which means that the behaviour of the 
function is in any direction the same. For 2D this means the Gaussian function is circular, for 
3D it looks like a fuzzy sphere. 

It is of no use to speak of isotropy in 1-D. When the standard deviations in the different 
dimensions are not equal, we call the Gaussian function anisotropic. An example is the 
pointspreadfunction of an astigmatic eye, where differences in curvature of the cornea/lens in 
different directions occur. This show an anisotropic Gaussian with anisotropy ratio of 2 

(i.Tx Ii.Ty = 2): 
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Unprotect[gauss]; 

gauss[x_, y_, ax_, ay) := 
1 Exp(-(~+ ~)J; 

- 2 >r ax ay 2 ax2 2 ay' 

ax= 2; ay = 1; Block [ ($DisplayFunction = Identity}, 
pl= DensityPlot[gauss[x, y, ax, ay], 

(x, -10, 10), (y, -10, 10), PlotPoints->50); 
p2 = Plot3D[gauss[x, y, ax, ay], (x, -10, 10), 

(y, -10, 10), Shading-> True) ; 
p3 = ContourPlot[gauss[x, y, ax, ay], (x, -5, 5), (y, -10, 10))); 

Show(GraphicsArray[(pl, p2, p3}), ImageSize-> 400]; 

ill....---------, 

-5 

-10~-----~ 
--1 -2 0 

49 

Figure 3.16 An anisotropic Gaussian kernel with anisotropy ratio crx / cry = 2 in three 
appearances. Left: DensityPlot, middle: Plot3D, right: ContourPlot. 

3.11 The diffusion equation 

The Gaussian function is the solution of several differential equations. It is the solution of 

~ ~ = ·""~~x) , because d/ = <µ;ix) d x, from which we find by integration In{ :a ) = - <1;_-;/ 
(x-µ)2 - -

and thus y =Yoe---,-;;;-. 

It is the solution of the linear diffusion equation, °f; = ~ + ~:f = !!.. L. 

This is a paitial differential equation, stating that the first derivative of the (luminance) 

function L(x, y) to the parameter t (time, or vaiiance) is equal to the sum of the second order 

spatial derivatives. The right hand side is also known as the Laplacian (indicated by !!.. for 

any dimension, we call /::,, the Laplacia11 operator) , or the trace of the Hessian matrix of 
second order derivatives: 

hessian2D = ( Lxx Lxy l ; Tr [hessian2D) 
Lxy Lyy 

( 

Lxx 

hessian3D = Lyx 

L,. 

L.,) 
Ly, ; Tr(hessian3D) 

L., 

The diffusion equation ~~ = !!.. u is one of some of the most famous differential equations in 
physics. It is often referred to as the heat equation. It belongs in the row of other famous 
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<!2 u equations like the Laplace equation D.. u = 0, the wave equation 012 = D.. u and the 

Schrodinger equation ~~ = i D.. u. 

Th d.ff . . OU A • • • f . . b" d e 1 us10n equation at = u u 1s a linear equat10n. It consists o JUSt lmearly com me 
derivative terms, no nonlinear exponents or functions of derivatives. 

The diffused entity is the intensity in the images. The role of time is taken by the variance 
t = 2 cr2 . The intensity is diffused over time (in our case over scale) in all directions in the 
same way (this is called isotropic). E.g. in 3D one can think of the example of the intensity 
of an inkdrop in water, diffusing in all directions. 

The diffusion equation can be derived from physical principles: the luminance can be 
considered a flow, that is pushed away from a certain location by a force equal to the 
gradient. The divergence of this gradient gives how much the total entity (luminance in our 
case) diminishes with time. 

<< Calculus'VectorAnalysis' 
Setcoordinates[Cartesian[x, y, z]]; 

Div[ Grad[L[x, y, z]]] 

L"· 0
" 1 [x, y, z] +L"''• 01 [x, y, z] +L 12 · 0

•
01 [x, y, z] 

A very important feature of the diffusion process is that it satisfies a maximum principle 
LHummell987bJ: the amplitude of local maxima are always decreasing when we go to 
coarser scale, and vice versa. the amplitude of local minima always increase for coarser 
scale. This argument was the principal reasoning in the derivation of the diffusion equation 
as the generating equation for scale-space by Koenderink [Koenderinkl984a]. 

3.12 Summary of this chapter 

The normalized Gaussian kernel has an area under the curve of unity. i.e. as a filter it does 
not multiply the operand with an accidental multiplication factor. Two Gaussian functions 
can be cascaded, i.e. applied consecutively. to give a Gaussian convolution result which is 
equivalent to a kernel with the variance equal to the sum of the variances of the constituting 
Gaussian kernels. The spatial parameter normalized over scale is called the dimensionless 
'natural coordinate'. 

The Gaussian kernel is the 'bluITed version' of the Delta Dirac function, the cumulative 
Gaussian function is the EITor function, which is the 'bluITed version' of the Heavyside 
stepfunction. The Dirac and Heavyside functions a.re examples of generalized functions. 

The Gaussian kernel appears as the limiting case of the Pascal Triangle of binomial 
coefficients in an expanded polynomial of high order. This is a special case of the central 
limit theorem. The central limit theorem states that any finite kernel, when repeatedly 
convolved with itself. leads to the Gaussian kernel. 



3. The Gaussia11 kernel 51 

Anisotropy of a Gaussian kernel means that the scales, or standard deviations, are different 
for the different dimensions. When they are the same in all directions, the kernel is called 
isotropic. 

The Fourier transform of a Gaussian kernel acts as a low-pass filter for frequencies. The cut
off frequency depends on the scale of the Gaussian kernel. The Fourier transform has the 
same Gaussian shape. The Gaussian kernel is the only kernel for which the Fourier transform 
has the same shape. 

The diffusion equation describes the expel of the flow of some quantity (intensity, 
temperature) over space under the force of a gradient. It is a second order parabolic 
differential equation. The linear, isotropic diffusion equation is the generating equation for a 
scale-space. In chapter 21 we will encounter a wealth on nonlinear diffusion equations. 



4. Gaussian derivatives 

A difference which makes no difference is not a difference. 
Mr. Spock (stardate 2822.3) 

4.1 Introduction 

We will encounter the Gaussian derivative function at many places throughout this book. 
The Gaussian derivative function has many interesting prope11ies. We will discuss them in 
one dimension first. We study its shape and algebraic strncture, its Fourier transf01m, and its 
close relation to other functions like the He1mite functions, the Gabor functions and the 
generalized functions. In two and more dimensions additional properties are involved like 
orientation (directional derivatives) and anisotropy. 

4.2 Shape and algebraic structure 

When we take derivatives to x (spatial derivatives) of the Gaussian function repetitively, we 
see a pattern emerging of a polynomial of increasing order, multiplied with the original 
(normalized) Gaussian function again. Here we show a table of the derivatives from order 0 
(i.e. no differentiation) to 3. 

<< FrontEndVision'FEV'; 

1 x 2 

Unprotect[gauss]; gauss[x , a ] := --- Exp[---]; 
- - a~ 202 

Table[Factor[Evaluate[D[gauss[x, a], (x, n}]]], (n, 0, 4}) 

•' 
.,-~ x (x2 - 3 0 2 ) 

•' 
.,-~ (x4 - 6 x 2 0 2 + 3 0 4 ) 

{27[ 07 {27[ 0' 

The function Factor takes polynomial factors apart. 

The function gauss [x, o] is part of the standard set of functions (in FEV. m) with this 
book, and is protected. To modify it, it must be Unprotected. 

The zeroth order derivative is indeed the Gaussian function itself. The even order (including 
the zeroth order) derivative functions are even functions (i.e. symmetric around zero) and the 
odd order derivatives are odd functions (antisymmetric around zero). This is how the graphs 
of Gaussian derivative functions look like, from order 0 up to order 7 (note the marked 
increase in aniplitude for higher order of differentiation): 
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GraphicsArray[ 
Partition[Table[Plot[Evaluate[D[gauss[x, l], {x, n}]], {x, -5, 5), 

PlotLabel -> StringJoin ["Order=", ToString [n]], DisplayFunction -> 
Identity], (n, O, 7)], 4], ImageSize -> 500] //Show; 

02 

-4 - ,., 4 -
_)K 

Order=l Order=2 Order=.3 

-4 

-4 -'.!. 2 4 +14 

04 -

Order::4 Order=S Order=6 Order::7 

+.~++o l 5 

-4 :! - 4 
-4 ,., '.! 4 -. -4 -2 4 

-1 - 5 
-'.! -() - ( 

Figure 4.1 Plots of the 1 D Gaussian derivative function for order O to 7. 

The Gaussian function itself is a common element of all higher order derivatives. We extract 
the polynomials by dividing by the Gaussian function: 

[ [ 
D[gauss[x, a], {x, n}] ] 

Table Evaluate , {n, O, 4}] //Simplify 
gauss [ x, a] 

x x 2 
- a 2 x 3 - 3 x a 2 x 4 - 6 x2 a 2 + 3 a 4 

{l,-(i2,--0-,-,- a 6 ' a } 

These polynomials have the same order as the derivative they are related to. Note that the 
highest order of xis the same as the order of differentiation, and that we have a plus sign for 
the highest order of x for even number of differentiation, and a minus signs for the odd 
orders. 

These polynomials are the Hermite polynomials, called after Charles Hermite, a brilliant 

French mathematician (see figure 4.2). 

Show[Import["Charles Hermite.jpg"], ImageSize -> 150]; 

Figure 4.2 Charles Hermite (1822-1901 ). 
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They emerge from the following definition: a·;~,_, = (-1 t Hn (x) e-x2 . The function 

Hn(x) is the Hermite polynomial, where n is called the order of the polynomial. When we 

make the substitution x --+ x / ( <r Yi), we get the following relation between the Gaussian 

f . G d" d ... a"G(x,crl -( l)n I R( x )G( unct10n (x, <r) an Its envatJves. ----a,;n- - - (crY'i)" n cr{'i x, <r). 

In Mathematica the function Hn is given by the function HermiteH[n,x]. Here are the 

Hermite functions from zeroth to fifth order: 

Table[HermiteH[n, x], {n, 0, 7}] // TableForm 

2x 

- 2 + 4 x 2 

-12 x + 8 x 3 

12 - 48 x 2 + 16 x' 

120 x - 160 x 3 + 32 x 5 

-120 + 720 x 2 - 480 x 4 + 64 x 6 

-1680 x + 3360 x 3 
- 1344 x 5 + 128 x 7 

The inner scale <r is introduced in the equation by substituting x--+ x"' . As a consequence, 
crv2 

with each differentiation we get a new factor .'ro . So now we are able to calculate the 1-D 
crv2 

Gaussian derivative functions gd[x,n,a] directly with the Hermite polynomials, again 

incorporating the normalization factor . ~ : 
crv2rr 

Clear[a]; 

gd[x_, n_, a_] := [--=..:.__)" HermiteH[n, _x_] --
1

- Exp[-~] 
a--./2 0 --.{2 a~ 2a

2 

Check: 

Simplify[gd[x, 4, a], a> OJ 

x2 
.,-,-;;i- (x4 - 6 x 2 a 2 + 3 0 4 ) 

"27f a' 

1 x 2 

Simplify[D[--- Exp [- --
2 

] , {x, 4}], a> 0] 
0~ 2a 

x2 
.,-,-;;i- (x4 

- 6 x 2 a 2 + 3 a 4
) 

"27f a' 

The amplitude of the He1mite polynomials explodes for large x, but the Gaussian envelop 
suppresses any polynomial function. No matter how high the polynomial order, the 
exponential function always wins. We can see this graphically when we look at e.g. the 7th 

order Gaussian derivative without (i.e. the Hermite function, figure left) and with its 
Gaussian weight function (figure right). Note the vertical scales: 
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f[x_] := (~ r HermiteH[7, .;-11 
DisplayTogetherArray[ {Plot[ f [x], {x, -S, SJ], 

x2 
p2=Plot[f[x] Exp[--], (x, -S, SJ]}, ImageSize->400]; 

2 

]()()() 

-2 -4 

-5110 

-JIXXJ 

56 

Figure 4.3 Left: The 7th order Hermite polynomial. Right: idem, with a Gaussian envelope 
(weighting function). This is the 7th order Gaussian derivative kernel. 

Due to the limiting extent of the Gaussian window function, the amplitude of the Gaussian 
derivative function can be negligible at the location of the larger zeros. We plot an example, 
showing the 20th order derivative and its Gaussian envelope function: 

n = 20; a= l; DisplayTogether[ {FilledPlot[gd[x, n, a], {x, -S, SJ], 

[ 
gd[O, n, a] gauss[x, a] 

Plot , {x, -S, SJ]}, ImageSize->200]; 
gauss[O, a] 

_, 

Figure 4.4 The 20th order Gaussian derivative's outer zero-crossings vahish in negligence. 
Note also that the amplitude of the Gaussian derivative function is not bounded by the 
Gaussian window. The Gabor kernels, as we will discuss later in section 4. 7, are bounded by 
the Gaussian window. 

How fast the Gaussian function goes zero can be seen from its values at x 

and x = 5 CT, relative to its peak value: 

gauss[a, l] 
Table ( , {a, 3, SJ] I I N 

gauss [O, l] 

{0.011109, 0.000335463, 3. 72665/'10-6
} 

and in the limit: 

3 (T' x 
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Limit[gd[x, 7, 1], x ->Infinity] 

0 

The Hermite polynomials belong to the family of 01thogonal functions on the infinite 

interval (-00,00) with the weight function e-x
2

, f:e-x2 
H,,(x)Hm(x)dx = 2'i+m n! ...{; 011rn, 

where Onm is the Kronecker delta, or delta tensor. Onrn = 1 for n = m, and On111 = 0 for 

n * m. 

Table[l: Exp[-x2
] HermiteH[k, x] HermiteH[m, x] dlx, 

{k, 0, 3), (m, 0, 3J] //MatrixForm 

{lT 0 0 0 

0 2 {lT 0 0 

0 0 8 {lT 0 

0 0 0 48 {lT 

The Gaussian derivative functions, with their weight function e-'T- are not orthogonal. We 
check this with some examples: 

{1: gd[x, 2, 1] gd[x, 3, 1] dlx, l: gd[x, 2, 1] gd[x, 4, 1] dlx} 

( 0 __ 15_} 
' 16 {lT 

Other families of orthogonal polynomials are e.g. Legendre, Chebyshev, Laguerre, and 
Jacobi polynomials. Other orthogonal families of functions are e.g. Bessel functions and the 
spherical harmonic functions. The area under the Gaussian derivative functions is not unity, 
e.g. for the first deiivative: 

SetOptions[Integrate, GenerateConditions ->False]; 

J.ro gd[x, 1, a] dlx 

1 
-~ 

4.3 Gaussian derivatives in the Fourier domain 

The Fouiier transform of the derivative of a function is (-i w) times the Fourier transform of 
the function. For each differentiation, a new factor ( - i w) is added. So the Fourier transforms 
of the Gaussian function and its first and second order deiivatives are: 

a=.; Simplify[FourierTransform[ 
{gauss [x, a], Clx gauss [x, a], CJ 1., 2i gauss [x, a]}, x, w], a> O] 

_ i 
0

2 w2 , _ 1 0 2 w2 

{
e-z- 1eT w 
~ ,- ~ 
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In general: 'F ( an~;:·O")) = (-iw)n 'F {G(x, a-)). 

Gaussian derivative kernels also act as bandpass filters. The maximum is at w ...[ii: 

(-I w)" CJ2 w2 

n =·;CJ= l; Solve[Evaluate[D[--- Exp[---], w]] == O, w] 
.y-2; 2 

((w-do~}, {w->-yn}, {w->vnl} 

The normalized powerspectra show that higher order of differentiation means a higher center 
frequency for the bandpass filter. The bandwidth remains virtually the same. 

08 

06 

04 

02 

~Exp[- ozrdz] 

CJ= l; pl= Table[Plot[Abs[ """ 
2 

] , 
(-Ial!Z)n Exp[-~] 
~ 2 

(w, O, 6), DisplayFunction->Identity], (n, 1, 12J]; 

Show[pl, DisplayFunction -> $DisplayFunction, PlotRange ->All, 
AxesLabel -> { "w", ""}, ImageSize -> 400]; 

Figure 4.5 Normalized power spectra for Gaussian derivative filters for order 1 to 12, lowest 
order is left-most graph, er= 1 . Gaussian derivative kernels act like bandpass filters. 

& Task 4.1 Show with partial integration and the definitions from section 3.10 that 
the Fourier transform of the derivative of a function is (-iw) times the Fourier 
transform of the function. 

& Task 4.2 Note that there are several definitions of the signs occurring in the 
Fourier transform (see the Help function in Mathematica under Fourier). Show 
that with the other definitions it is possible to arrive to the result that the Fourier 
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transform of the derivative of a function is (i w) times the Fourier transform of the 

function. In this book we stick to the default definition. 

4.4 Zero crossings of Gaussian derivative functions 

( 
-1 l n x 1 x' 

gd[x_, n_, a_] := --- HenniteH[n, ---J --- Exp[- --
2 

Ji 
a ...(2 a ...(2 a .y2"; 2 a 

nmax=20;a=l; 

Show[Graphics[Flatten[Table[(PointSize[0.015), Point [(n, x}]} I. 

Solve[HenniteH[n, _x J 

...f2 
== O, x J, (n, 1, nmax}J, 1]], 

AxesLabel -> {"Order", "Zeros of\nHenniteH"}, Axes-> True, 

ImageSize -> 350 Ji 

Zeros of 

Herm1teH 

75 • • 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 

'5 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • i 
Order 

• • 5 • • "' • • • • • • • • • • • • • • • • • • • • • • • • • 
-25 • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • -5 • • • • • • • • • • • • • • -75 • • 

Figure 4.6 Zero crossings of Gaussian derivative functions to 20th order. Each dot is a zero
crossing. 

How wide is a Gaussian derivative? This may seem a non-relevant question, because the 
Gaussian envelop often completely dete1mines its behaviour. However, the number of zero
crossings is equal to the order of differentiation, because the Gaussian weighting function is 
a positive definite function. 

It is of interest to study the behaviour of the zero-crossings. They move further apart with 
higher order. We can define the 'width' of a Gaussian derivative function as the distance 
between the outermost zero-crossings. The zero-crossings of the Hermite polynomials 
determine the zero-crossings of the Gaussian derivatives. In figure 4. 6all zeros of the first 20 
Hermite functions as a function of the order are shown. Note that the zeros of the second 
derivative are just one standard deviation from the origin: 

a=. i Simplify[Solve[D[gauss[x, a], (x, 2}] == 0, x), a> OJ 

{{x->-cr), {x->cr}) 
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An exact analytic solution for the largest zero is not known. The formula of Zemicke (I93I) 
specifies a range, and Szego ( 1939) gives a better estimate: 

Block [ {$DisplayFunction = Identity}, 

pl=Plot[2Sqrt[n+l-3.05~], {n, 5, 50J]; 

(* Zernicke upper limit *) 

p2 = Plot[2 Sqrt[n + 1- 1.15 ~], {n, 1, 50)]; 

(* Zernicke lower limit *) 

p3:Plot[2~ -2.338098/~, 
{n, 1, 50),Plotstyle->Dashing[(.Ol, .02JJ]]; 

Show[(pl, p2, p3), AxesLabel ->{"Order", 
"Width of Gaussian\nderivative (in a)"}, ImageSize -> 260]; 

W1dthof Gaussian 

dematne(1nt.r) 

I4 

IO 

IO 

IO eu 
Order 

3U 40 50 

Figure 4. 7 Estimates for the width of Gaussian derivative functions to 501
h order. Width is 

defined as the distance between the outmost zero-crossings. Top and bottom graph: 
estimated range by Zernicke (1931), dashed graph: estimate by Szego (1939). 

For very high orders of differentiation of course the numbers of zero-crossings increases, but 
also their mutual distance between the zeros becomes more equal. In the limiting case of 
infinite order the Gaussian derivative function becomes a sinusoidal function: 

· 8" G s· ( ~ I n+I ) lnnn_,00 7FX (x, a-)= m X (i (-2-) . 

4.5 The correlation between Gaussian derivatives 

Higher order Gaussian derivative kernels tend to become more and more similar. This makes 
them not very suitable as a basis. But before we investigate their role in a possible basis, let 
us investigate their similarity. 

In fact we can express exactly how much they resemble each other as a function of the 
difference in differential order, by calculating the correlation between them. We derive the 
conelation below, and will appreciate the nice mathematical properties of the Gaussian 
function. Because the higher dimensional Gaussians are just the product of ID Gaussian 
functions, it suffices to study the ID case. 

Compare e.g. the 20th and 24nd derivative function: 
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Block [ { $DisplayFunction = Identity}, 
gl =Plot [gd [x, 20, 2], {x, -7, 7}, PlotLabel -> "Order 20"]; 

g2 =Plot[gd[x, 24, 2], {x, -7, 7}, PlotLabel-> "Order 24"]]; 
Show[GraphicsArray[{gl, g2}, ImageSize -> 400]]; 

Order20 Order24 

3000 

Figure 4.8 Gaussian derivative functions start to look more and more alike for higher order. 
Here the graphs are shown for the 20th and 24th order of differentiation. 

The correlation coefficient between two functions is defined as the integral of the product of 

the functions over the full domain (in this case -oo to +oo ). 

Because we want the coefficient to be unity for complete correlation (when the functions are 
identical by an amplitude scaling factor) we divide the coefficient by the so-called 
autocorrelation coefficients, i.e. the correlation of the functions with themselves. 

We then get as definition for the correlation coefficient r between two Gaussian derivatives 
of order n and m: 

with g(n\x) = iJ'~''.Xl . The Gaussian kernel g(x) itself is an even function. and. as we have 

seen before, g(n)(x) is an even function for n is even, and an odd function for n is odd. The 

correlation between an even function and an odd function is zero. This is the case when n 

and m are both not even or both not odd, i.e. when (n - m) is odd. We now can see already 
two important results: 

rn,m = 0 for (11 - m) odd; 
r11,m = 1 for n = m . 

The remaining case is when (n - m) is even. We take n > m. Let us first look to the 
nominator.l:g(nl(x) glm) tx) dx. The standard approach to tackle high exponents of 
functions in integrals, is the reduction of these exponents by partial integration: 

1:g(11l(x)gCml(x)dx = 

g(n-l)(x) gCm\x) l'.'.'oo - l:g(n-l)(x) g(l11+l\x) dx = t-1 l 1:g(n-k)(x) gCm+k)(x) dx 

when we do the partial integration k times. The 'stick expression' g\n- 1\x) g(m)(x) l'.'.'
00 

is zero 
because any Gaussian derivative function goes to zero for large x. We can choose k such that 
the exponents in the integral are equal (so we end up with the square of a Gaussian derivative 
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function). So we make (n - k) = (m + k), i.e. k = <n;m) . Because we study the case that 
(n - m) is even, k is an integer number. We then get: 

The total energy of a function in the spatial domain is the integral of the square of the 
function over its full extent. The famous theorem of Parceval states that the total energy of a 
function in the spatial domain is equal to the total energy of the function in the Fourier 
domain, i.e. expressed as the integral of the square of the Fourier transform over its full 
extent. Therefore 

!!=!E.. roo ( n+m) ( n+m) Parceval n-m 1 roo I n+m 12 
(-1) 2 J_

00
g---Y- (x)g---Y- (x)dx = (-1) 2 2lf Loo (iw)---Y- g(w) dw = 

(-l)n~m ___!__ roow11+nlg'2(w)dw= (-1)";"' ___!__ rcown+me-c?w'dw 
2lf J_oo 2lf J_oo 

• • n-m! I foo() •2 
We now substitute w' = <r w, and get fmally: ( - 1) 2 2lf <T'""'+i Loo w' n+m e-w d w'. 

This integral can be looked up in a table of integrals, but why not let Mathematica do the job 
(we first clear n and 111): 

Clear [n, m] ; J: xm'" e-x' dlx 

1 1 1 2 (1 + (-l)m+n) Gamma[ '2 (1 +m+n)] Log[ep- 1-
1 -m-n) 

The function Gamma is the Euler gamma function. In our case Re [m+n] >-1, so we get for 
our correlation coefficient for (n -111) even: 

<-1)'';"' -hr a-11+~+1 r(¥) <-uTr(¥) 

~r(''~+l Jr(¥) 

Let's first have a look at this function for a range of values for n and m (0-15): 

•-• m + n + 1 I J 2 n + 1 2 m + 1 
r[n_, m_] := (-1)--,-- Gamma[ 

2 
J 'V Gamma[-

2
-J Gamma[-

2
-J 

ListPlotJD[Table[Abs[r[n, m]], {n, 0, 15), {m, 0, 15)], 
Axes-> True, AxesLabel -> { "n", "m", "Abs\nr [n,m] "}, 
viewPoint -> {-2.348, -1.540, 1.281), ImageSize -> 220]; 

Figure 4.9 The magnitude of the correlation coefficient of Gaussian derivative functions for 
O < n < 15 and O < m < 15. The origin is in front. 



63 4.5 The correlation between Gaussian derivatives 

Here is the function tabulated:. 

Table[NumberForm[r[n, m] 11 N, 3], {n, 0, 4), {m, O, 4}] I I MatrixForm 

1. 0.-0.798i -0.577 0.+0.412i 0.293 

0.+0.798i 1. 0.-0.92li -0.775 0.+0.623i 

-0.577 o. + 0.921 i 1. 0.-0.952i -0.845 

o. - 0.412 i -0.775 o. + 0.952 i 1. 0.-0.965i 

0 .293 o. - 0.623 i -0.845 o. + 0.965 i 1. 

The correlation is unity when n = m, as expected, is negative when n - m = 2, and is positive 
when n - m = 4, and is complex otherwise. Indeed we see that when n - m = 2 the functions 
are even but of opposite sign: 

Block [ { $DisplayFunction = Identity} , 
pl= Plot[gd[x, 20, 2], {x, -5, 5), PlotLabel ->"Order 20"]; 
p2 =Plot [gd [x, 22, 2], {x, -5, 5}, PlotLabel -> "Order 22"]]; 

Show [GraphicsArray [{pl, p2} , ImageSize -> 450] ] ; 

01der2Ll 

-4 

Figure 4.10 Gaussian derivative functions differing two orders are of opposite polarity. 

and when n - m = 1 they have a phase-shift, leading to a complex correlation coefficient: 

Block [ { $DisplayFunction = Identity}, 
pl= Plot[gd[x, 20, 2], {x, -5, 5), PlotLabel ->"Order 20"]; 
p2 = Plot[gd[x, 21, 2], {x, -5, 5), PlotLabel ->"Order 21"]]; 

Show [GraphicsArray [{pl, p2}, ImageSize -> 450] ] ; 

Order2U Order21 

-4 -4 

Figure 4.11 Gaussian derivative functions differing one order display a phase shift. 

Of course, this is easy understood if we realize the factor (-i w) in the Fourier domain, and 
that i = e-• T. We plot the behaviour of the correlation coefficient of two close orders for 

large n. The asymptotic behaviour towards unity for increasing order is clear. 
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Plot [-r [n, n + 2], {n, 1, 20), DisplayFunction -> $DisplayFunction, 
AspectRatio-> .4, PlotRange -> {.8, 1.01), 
AxesLabel -> {"Order", "Correlation\ncoefficient"}]; 
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Figure 4.12 The correlation coefficient between a Gaussian derivative function and its ever 
neighbour up quite quickly tends to unity for high differential order. 

4.6 Discrete Gaussian kernels 

1 -x' 1 
a=2; Plot[{ Exp[--], BesselI[x, a 2

] /BesselI[O, a'J}, 
~ 2a2 ~ 

{x, 0, 8), PlotStyle-+ {RGBColor[O, 0, OJ, Dashing[{0.02, 0.02)]), 
PlotLegend-+ {"Gauss", "Bessel"}, LegendPosition-+ {l, 0), 

LegendLabel -+ "a = 2", PlotRange-+ All, ImageSize-+ 400 J i 
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Figure 4.13 The graphs of the Gaussian kernel and the modified Bessel function of the first 
kind are very alike. 

Lindeberg LLindebergl990] derived the optimal kernel for the case when the Gaussian kernel 
was discretized and came up with the "modified Bessel function of the first kind". In 
Mathematica this function is available as Bessel!. This function is almost equal to the 
Gaussian kernel for 1.r > l , as we see in the figure on the previous page. Note that the Bessel 
function has to be normalized by its value at x = 0. For larger 1.r the kernels become rapidly 
very similar. 
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4.7 Other families of kernels 

The first p1inciples that we applied to derive the Gaussian kernel in chapter 2 essentially 
stated "we know nothing" (at this stage of the observation). Of course, we can relax these 
principles, and introduce some knowledge. When we want to derive a set of apertures tuned 

to a specific spatial frequency k in the image, we add this physical quantity to the matrix of 
the dimensionality analysis: 

m = ((1, -1, -2, -2, -1), (0, 0, 1, 1, O)}; 
TableForm[m, 

TableHeadings -> { {"meter", "candela"}, {"a", "w", "LO", "L", "k"}}] 

meter 
candela 

The nullspace is now: 

NullSpace[m] 

a 

0 

w 
-1 

0 

LO 
-2 

L 

-2 
k 

-1 

0 

((1, O, O, O, 1), (0, O, -1, 1, 0), (1, 1, O, O, 0)) 

Following the exactly similar line of reasoning, we end up from this new set of constraints 
with a new fan1ily of kernels, the Gabor family of receptive fields, with are given by a 
sinusoidal function {at the specified spatial frequency) under a Gaussian window. 

In the Fourier domain: (Jabor{w, <r, k) = e-w' cr2 e'kw, which translates into the spatial 
domain: 

1 x 2 

gabor[x_, a_] := Sin[x] Exp[---]; 
~ 2a2 

The Gabor function model of cortical receptive fields was first proposed by Marcelja in 1980 
LMarceljal980]. However the functions themselves are often credited to Gabor [Gabor19461 
who supported their use in communications. 

Gabor functions are defined as the sinus function under a Gaussian window with scale <r. 

The phase</> of the sinusoidal function determines its detailed behaviour, e.g. for </> =Jr I 2 we 
get an even function.Gabor functions can look very much like Gaussian derivatives, but there 
are essential differences: 

- Gabor functions have an infinite number of zero-crossings on their domain. 

- The amplitudes of the sinusoidal function never exceeds the Gaussian envelope. 
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gabor[x_, q,_, a_] :=Sin[x+4>] gauss[x, a]; 

Block [ {$DisplayFunction =Identity, p, pg), 
p = Plot[gabor[x, #, 10], (x, -30, 30), PlotRange -> (-.04, .04)] &; 

pg= Plot [gauss [x, 10], {x, -30, 30), PlotRange -> {- .04, .04)]; 
pl3 = Show[p [O], pg]; p23 = Show[p [7r I 2], pg]]; 

Show[GraphicsArray [ {pl3, p23}], ImageSize -> 450]; 

-30 30 -30 30 

-U -0 
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Figure 4.14 Gabor functions are sinusoidal functions with a Gaussian envelope. Left: Sin[x] 
G[x,10]; right: Sin[x+n/2] G[x,10]. 

Gabor functions can be made to look very similar by an appropriate choice of parameters: 

1 x 2 

a=l;gd[x_, a_] =D[ Exp[---,], x]; 
~ 2a 

Plot[(- l.2gabor[x, 1.2], gd[x, l]), {x, -4, 4), 
PlotStyle-+ {Dashing[(0.02, 0.02)], RGBColor[O, 0, 0]}, 

PlotLegend-+ {"Gabor", "Gauss"}, 
LegendPosition-+ (1.2, -0.3), ImageSize->320]; 

-4 
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Figure 4.15 Gabor functions can be made very similar to Gaussian derivative kernels. In a 
practical application then there is no difference in result. Dotted graph: Gaussian first 
derivative kernel. Continuous graph: Minus the Gabor kernel with the same a as the 
Gaussian kernel. Note the necessity of sign change due to the polarity of the sinusoidal 
function. 

If we relax one or more of the first principles (leave one or more out, or add other axioms). 
we get other families of kernels. E.g. when we add the constraint that the kernel should be 
tuned to a specific spatial frequency, we get the family of Gabor kernels LFlorackl992a, 
Florackl997a]. It was recently shown by Duits et al. [Duits2002a], extending the work of 
Pauwels [Pauwels 19951. that giving up the constraint of separability gives a new family of 
interesting Poisson scale-space kernels, defined by the solution of the Dirichlet problem 
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~~ = -(-~)(l' L. For a= 1 we find the Gaussian scale-space, for a= + we get the Poisson 
scale-space. In this book we limit ourselves to the Gaussian kernel. 

We conclude this section by the realization that the front-end visual system at the retinal 
level must be uncommitted, no feedback from higher levels is at stake, so the Gaussian 
kernel seems a good candidate to start observing with at this level. At higher levels this 
constraint is released. 

The extensive feedback loops from the primary visual cortex to the LGN may give rise to 
'geometry-driven diffusion' [TerHaarRomeny 1994fl, nonlinear scale-space theory, where the 
early differential geometric measurements through e.g. the simple cells may modify the 
kernels LGN levels. Nonlinear scale-space theory will be treated in chapter 21. 

.._ Task 4.2 When we have noise in the signal to be differentiated, we have two 
counterbalancing effect when we change differential order and scale: for higher 
order the noise is amplified (the factor (-i wt in the Fourier transform 
representation) and the noise is averaged out for larger scales. Give an explicit 
formula in our Mathematica framework for the propagation of noise when filtered 
with Gaussian derivatives. Start with the easiest case, i.e. pixel-uncorrelated 
(white) noise, and continue with correlated noise. See for a treatment of this 
subject the work by Blom et al. [Blom1993a] . 

.._ Task 4.3 Give an explicit formula in our Mathematica framework for the 
propagation of noise when filtered with a compound function of Gaussian 

derivatives, e.g. by the Laplacian ~:~ + ~Y~ . See for a treatment of this subject 

the work by Blom et al. [Blom1993a]. 

4.8 Higher dimensions and separability 

Gaussian derivative kernels of higher dimensions are simply made by multiplication. Here 
again we see the separability of the Gaussian, i.e. this is the separability. The function 
gd2D[x,y,n,m,ox,oy] is an example of a Gaussian partial derivative function in 2D, 
first order derivative to x, second order derivative toy, at scale 2 (equal for x and y ): 



./. Gaussian derivatives 

gd2D[x_, y_, n_, m_, ax_, ay_] := gd[x, n, ax] gd[y, m, ay]; 

Plot3D[gd2D[x, y, 1, 2, 2, 2], {x, -7, 7), 
{y, -7, 7), AxesLabel-> {x, y, ""}, PlotPoints->40, 
PlotRange ->All, Boxed-> False, Axes-> True, ImageSize -> 190]; 

lh")fl:' 
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Figure 4.16 Plot of a~;~~;J . The two-dimensional Gaussian derivative function can be 

constructed as the product of two one-dimensional Gaussian derivative functions, and so for 
higher dimensions, due to the separability of the Gaussian kernel for higher dimensions. 

The ratio !!i.. is called the anisotropy ratio. When it is unity, we have an isotropic kernel. 
<Ty 

which diffuses in the x and y direction by the same amount. The Greek word 'isos' (uroc;) 

means 'equal', the Greek word 'tropos' ( rponoc;) means 'direction' (the Greek word 'topos' 

( ronoc;) means 'location, place'). 

In 3D the iso-intensity surfaces of the Gaussian kernels are shown (and can be interactively 
manipulated) with the command MVContourPlot3D from the OpenGL viewer 'MathGL3D' 
by J.P.Kuska 
(phong.informatik.uni-leipzig.de/-kuska/mathgl3dv3): 

« MathGL3d'OpenGLViewer'; 

MVClear [] ; a = 1; 
x2 +y2 +z2 

pl= Table[MVcontourPlot3D[Evaluate[o[E---,;;;-, {x, n}]], (x, -6, 6), 

{y, -4, 4), {z, -3, 0), Contours-+Range[-.6, .6, .1], PlotPoints-+60, 

BoxRatios-+ (2, 2, 1), DisplayFunction-+ Identity], {n, 1, 3)]; 

Show[GraphicsArray[pl], ImageSize-+ 400]; 

Figure 4.17 Isa-intensity surface for Gaussian derivative kernels in 30. Left: ~~ ; middle: ~~~ 
right: ~~~ . 

The sum of 2 of the three 2nd order de1ivatives is called the 'hotdog' detector: 
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MVClear [] ; a = 1; 
:.:2 +y2 +z2 ,.2 +y2 +z2 

pl= MVContourPlot3D[Evaluate[ Cl._,E--,-.,- + Oz,z E--,-a'--], (x, -6, 6), 

(y, -4, 4), (z, -3, 0), Contours->Range[-.6, .6, .l], 
PlotPoints->60, BoxRatios-> (2, 2, 1), ImageSize->150]; 

Figure 4.18 Isa-intensity surface for the Gaussian derivative in 30 qj£- + ;;.;.- . 

4.9 Summary of this chapter 

The Gaussian derivatives are characterized by the product of a polynomial function, the 
Hermite polynomial, and a Gaussian kernel. The order of the Hermite polynomial is the same 
as the differential order of the Gaussian derivative. Many interesting recursive relations exist 
for Hennite polynomials, making them very suitable for analytical treatment. The shape of 
the Gaussian derivative kernel can be very similar to specific Gabor kernels. One essential 
difference is the number of zerocrossing: this is always infinite for Gabor kernels, the 
number of zerocrossings of Gaussian derivatives is equal to the differential order. The 
envelope of the Gaussian derivative amplitude is not the Gaussian function, as is the case for 
Gabor kernels. 

The even orders are symmetric kernels, the odd orders are asymmetric kernels. The 
normalized zeroth order kernel has unit area by definition. the Gaussian derivative kernels of 
the normalized kernel have no unit area. 

Gaussian derivatives are not orthogonal kernels. They become more and more correlated for 
higher order, if odd or even specimens are compared. The limiting case for infinite order 
leads to a sinusoidal (for the odd orders) or cosinusoidal (for the even orders) function with a 
Gaussian envelope, i.e. a Gabor function. 

In the vision chapters we will encounter the Gaussian derivative functions as suitable and 
likely candidates for the receptive fields in the primary visual c011ex. 



5. Multi-scale derivatives: 
implementations 

Three people were at work on a construction site. All were doing the same job. but when each w,1s asked what the 

job was, the answers varied. "Breaking rocks," the first replied. "Earning my living." the second said. "Helping to 

build a cathedral. " said the third. 

-Peter Schultz 

In order to get a good feeling for the interactive use of Mathematica, we discuss in this 
section three implementations of convolution with a Gaussian derivative kernel (in 20) in 
detail: 
1. implementation in the spatial domain with a 20 kernel; 
2. through two sequential ID kernel convolutions (exploiting the separability property); 
3. implementation in the Fouiier domain. 
Just blurring is done through convolution with the zero order Gaussian deiivative, i.e. the 
Gaussian kernel itself. 

5.1 Implementation in the spatial domain 

Mathematica 4 has a fast implementation of a convolution: ListConvolve [kernel, 

list] fmms the convolution of the kernel kernel with list. This function is N
dimensional, and is internally optimized for speed. It can take any Mathematica expression, 
but its greatest speed is for Real (floating) numbers. We first define the 10 Gaussian 
function gauss [x, a] : 

<< FrontEndVision 'FEV'; 
Unprotect[gauss]; 

1 " gauss [x_, a_ I; a> O] :=---e-~ 
a....{2; 

We explain in detail what happens here: 
The function gauss [x _, a_] is defined for the vaiiables x _and a . The underscore 

means that x_ is a Pattern with the name x, it can be anything. This is one of the most 
powerful features in Mathematica: it allows pattern matching. In the appendix a number of 

examples are given. The variable a_ has the condition (indicated with I;) that a should be 
positive. If this condition is not met, the function will not be evaluated. The function is 

defined with delayed assignment (: = in stead of = for direct assignment). In this way it will 
be evaluated only when it is called. The semicolon is the separator between statements, and 
in general prevents output to the screen, a handy feature when working on images. 

The function gDc [ im, nx, ny, a) implements the same function in the spatial domain. The 
parameters are the same as above. This function is much faster, as it exploits the internal 
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function ListConvolve , and applies Gaussian derivative kernels with a width truncated to 
+/- 4 standard deviations , which of course can freely be changed. 

gDc[im_, nx_, ny_, a_!; a>O] := Module[{x, y, kernel}, 

kernel = N[Table[Evaluate[ 

D[gauss[x, a] •gauss[y, a], {x, nx}, {y, ny}]], 

{y, -4*a, 4•a), {x, -4•a, 4•a)]]; 

ListConvolve[kernel , im, Ceiling[Dimensions[kernel] /2]]]; 

Module [{vars}, ... ] is a construct to make a block of code where the vars are 

shielded from the global variable environment. The derivative of the function gauss [] is 

taken with D [ f, { x, nx} , { y, ny} ] where nx is the number of differentiations to x and 

ny the number of differentiations toy. The variable kernel is a List, generated by the 

Table command, which tabulates the function gauss [] over the range ± 4a- for both x 

and y . The derivative function must be evaluated with Evaluate [] before it can be 

tabulated. The function N [] makes the result a numerical value, a Real number. 

ListConvolve is an optimized internal Mathematica command, that cyclically convolves 

the kernel kernel with the image im. The Dimensions [] of the kernel are a List 
containing the x- and y-dimension of the square kernel matrix. Finally, the upwards rounded 

(Ceiling) list of dimensions is used by ListConvolve to fix that the kernel starts at the 

first element of im and returns an output image with the same dimension as the input image. 

im=Table[If[x2 +y2 <7000, 100, O], (x, -128, 127), ( y, -128, 127)]; 
Block [ {$DisplayFunction =Identity}, 

pl= ListDensityPlot[#] & /@ {im, gDc[im, 1, 0, 1]}]; 
Show[GraphicsArray[pl], ImageSize -> 350]; 

Figure 5.1 The derivative to x (right) at scale er= 1 pixel on a 2562 image of a circle (left). 

The wider the kernel, the more points we include for calculation of the convolution, so the 
more computational burden we get. When the kernel becomes wider than half of the domain 
of the image, it becomes more efficient to apply the Fourier implementation discussed 
below. This trade-off has been worked out in detail by Florack [Aorack2000a]. 
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5.2 Separable implementation 

The fastest implementation exploits the separability of the Gaussian kernel, and this 
implementation is mainly used in the sequel: 

Options[gD] = {kernelSampleRange-+ {-6, 6}}; 
gD[im_List, nx_, ny_, a_, ( opts~_)?OptionQ] · 

Module[(x, y, kpleft, kpright, kx, ky, mid, tmp}, 
{kpleft, kpright} = kernelSampleRange / . {opts}/. Options[gD] ; 
kx = N[Table[Evaluate[D[gauss[x, a], {x, nx}]] , 

{x, kpleft *a, kpright *a)]] ; 
ky = 

If[nx == ny, kx, N[Table[Evaluate[D[gauss[y, a], {y, ny}]], 
{y, kpleft *a, kpright *a)]]] ; mid = Ceiling [Length [#1] / 2] & ; 

tmp = 
Transpose[ListConvolve[ {kx}, im, {{l, mid[kx]} , {1, mid[kx]}}]]; 

Transpose[ListConvolve[{ky}, tmp, {{l, mid[ky]}, {l, mid[ky]}}]]]; 

The function gD [im, nx, ny, u, options] implements first a convolution per row. 
then transposes the matrix of the image, and does the convolution on the rows again, thereby 

effectively convolving the columns of the original image. A second Transpose returns the 
image hack to its original orientation. This is the default implementation of multi -scale 
Gaussian deri vatives and will be used throughout his book. 

im = Table[If[x2 +y2 < 7000, 100, OJ, {x, -128, 127), ( y, -128, 127)]; 
Timing [imx = gD [im, 0, 1, 2]] [ [1]] 

0. 031 Second 

Block [ { $DisplayFunction = Identity} , 
pl= ListDensityPlot[#] & /@ {im, imx}]; 

Show[GraphicsArray[pl], ImageSize -> 260]; 

• 
Figure 5.2 The derivative toy (right) at scale er= 2 pixels on a 2562 image of a circle (left). 

& Task 5.1 Write a Mathematica function of the separable Gaussian derivative 
kernel implementation for 30. Test the functionality on a 30 test image, e.g. a 
sphere . 
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5.3 Some examples 

Convolving an image with a single point (a delta function) with the Gaussian derivative 
kernels, gives the kernels themselves., i.e. the pointspread function. E.g. here is the well 
known series of all Cat1esian pat1ial Gaussian dedvatives to 5th order: 

spike= Table [O., (128), (128)]; spike [ [64, 64]] = 1.; 
Block [ { $DisplayFunction = Identity}, 

array= Table [Table [ListDensityPlot [gD [spike, m - n, n, 20], 
PlotLabel -> "ox="<> ToString[m- n] <> ", o,=" <> ToString[n]], 

(n, 0, m}], (m, 0, 5}]]; 
Show[GraphicsArray[array], ImageSize-+ 330]; 

<\=2.i\=O a,=1.a,=1 a, =0.a,~ 

<>••. a,=o a •••. a,.1 

Figure 5.3 Gaussian partial derivative kernels up to 5th order. 

$DisplayFunction is the internal vaiiable that determines how things should be 
displayed. Its normal state (it default has the value Display [$Display, #1] &) is to send 
PostScript to the output cell. Its value is temporarily set to Identity, which means: no 
output. This is necessary to calculate but not display the plots. 

We read an image with Import and only use the first element [ [1, l]] of the returned 
structure as this contains the pixeldata. 

im=Import["mrl28.gif"][[l, l]]; 

We stat1 with just blurring at a scale of CT= 3 pixels and show the result as 2D image and JD 
height plot: 
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DisplayTogetherArray[ 
{ListDensityPlot[gD[im, 0, 0, 3]], ListPlot3D[gD[im, 0, 0, 3], 

Mesh -> False, BoxRatios .... { 1, 1, 1}] } , ImageSize .... 500] ; 
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Figure 5.4 Left: a blurred MR image, resolution 1282
, O"biur = 3 pixels. Right: The intensity 

surface as a height surface shows the blurring of the surfaces. 

A movie of a (in this example) logaiithmically sampled intensity scale-space is made with 

the Table command. Close the group of cells with images by double-clicking the group 
bracket. Double-clicking one of the resulting images starts the animation. Controls are on the 
bottom windowbar. 

ss = Table[ListDensityPlot[gDf[im, 0, 0, E'], ImageSize -> 150], 
{~, 0, 2.5, .25)]; 

Figure 5.5 Animation of a blurring sequence, with exponential scale parametrization. Double
click the image to start the animation (only in the electronic version). Controls appear at the 
lower window bar. 

This animation is only available in the electronic version. Here are the images: 
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Show[GraphicsArray[Partition[ss, 5]], ImageSize -> 450]; 

Figure 5.6 Frames of the animation of a blurring sequence above. 

The sequence can be saved as an animated GIF movie (e.g. for use in webpages) with: 

Export [ "c: \ \scalespace .gif", ss, "GIF"] ; 

The gradient of an image is defined as ~ Lx 2 +Ly 2 
. On a scale er= 0.5 pixel for a 2562 CT 

image of chronic cocaine abuse (EuroRAD teaching file case #1472, www.eurorad.org): 

im = Import["Cocaine septum.gif"] [ [1, 1]]; 

DisplayTogetherArray[{ListDensityPlot[im], 

grad = ListDensi tyPlot [ "J'~g-D_[_i_m_, -1-,-0-, -.-5-] 2_+_g_D_[-im-, -0-,-1-,-. -5-] 2 ]} , 

ImageSize -> 370]; 

Figure 5.7 The gradient at a small scale CT = 0.5 pixels. Due to the letters R and L in the 
image with steep gradients the gradient image is not properly scaled in intensity. Note the 
completely missing septum in this patient (From www.eurorad.org, EuroRAD authors: D. De 
Vuyst, A.M. De Schepper, P.M. Parizel, 2002). 

To change the window/level (contrast/brightness) settings one can change the displayed 
range of intensity values: 
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Show[grad, PlotRange .... {O, 20), 
DisplayFunction -> $DisplayFunction, ImageSize -> 150]; 

Figure 5.8 The gradient at a small scale <T = 0.5 pixels, now with an intensity window of O 
(black) to 30 (white). 

We can also transfer the image into its histogram equalized version, by substituting its 
grayvalues by the values given by its cumulative lookup table: 

Unprotect [heq]; 

heq[im_List] := Module[{min, max, freq, cf, lcf, maxcf, lut, int), 

min= Min[im]; max= Max[im]; 
freq= BinCounts[Flatten[im], {min, max, (max- min) /256)]; 
cf= FoldList[Plus, First[freq], Drop[freq, 1]]; 

maxcf = Max[cf]; lcf = Length[cf]; 
lut=Table[N[{(i-1) /lcf, cf[[i]] /maxcf)], {i, 1, lcf)]; 
lut [ [lcf]] = { 1. , 1. ) ; 
int= Interpolation[lut]; max int[ (im- min)/ (max-min)]]; 

ListDensityPlot[ 

heq[--JgD[im, 1, O, .S]
2

+gD[im, O, 1, .SJ 2
], ImageSize->150]; 

Figure 5.9 Histogram equalization of the gradient image of figure 5.7. By many radiologists 
this is considered too much enhancement. 'Clipped' adaptive histogram equalization admits 
different levels of enhancement tuning (Pizer1987]. 

The cumulative lookup table is applied for the intensity transform. Small contrasts have been 
stretched to larger contrasts, and reverse. We next compare the histograms of the gradient 
image with the histogram of the histogram-equalized gradient image. The total histogram of 
this image is indeed reasonably flat now. 
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grad= ,/ gD [ im, 1, O, , 5] 2 + gD [im, O, 1, , 5] 2 ; DisplayTogetherArray [ 

Histogram[Flatten [#]] & /@(grad, heq[grad]}, ImageSize--> 380]; 
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Figure 5.1 O Left: Histogram of the gradient image of figure 5. 7. Right: Histogram of the 
histogram-equalized gradient image. Note the equalizing or marked stretching of the 
histogram. 

To conclude this introduction to multi-scale derivatives, let us look at some edges detected at 
different scales. It is clear from the examples below that the larger scale edges denote the 
more 'important' edges, describing the coarser, hierarchically higher structure: 

im = Import["Utrecht256.gif"] [ [l, l]]; 
DisplayTogetherArray[ 

ListDensityPlot [,Y~g_D_[_i_m_,-1-, _0_,_#_]_2 _+_g_D_[_i_m_,-0-,-1-,-#-]-2 J & !@ ( .5, 2, 5), 

ImageSi ze - > 400 J ; 

. ' 
L : lt - \ 

Figure 5.11 Gradient edges detected at different scales (er = 0.5, 2, 5 pixels resp.}. The 
coarser edges (right) indicate hierarchically more 'important' edges. 

Other sources of different scales for edges are shadows and diffuse boundaries [Elder1996]. 

5.4 N-dim Gaussian derivative operator implementation 

One of the powe1ful capabilities of Mathematica as a programming language is the relative 
ease to write numerical functions on N-dimensional data. In scale-space theory often high 
dimensional data occur: 3D and 3D-time medical images, such as 3D cardiovascular time 
sequences, orientation bundles (see chapter 16 where an extra dimension emerges from the 
inclusion of orientation as the output of 111eas11re111ents by oriented filters), high dimensional 
feature spaces for texture analysis, etc. Here is the separable implementation for N
dimensions: 
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Unprotect[gDn]; gDn[im_, order list_, alist_, opts_?OptionQ] : = 
Module[{gaussd, dim=Length[Dimensions[im]], out=N[im], 1, r, gder, x, 

kernel, cat, mid, le, tl, td}, td =Dimensions/@ {orderlist, alist}; 
tl =Length /@td; (1, r} = kernelSampleRange /. (opts}/. Options[gD]; 

gaussd= --
1
-- (---

1-lu HermiteH[#l, __ x_] .,-,~:, &; 

#2 ~ #2 Y2 #2 Y2 
gder=Table[N[gaussd[#l, #2]], {x, Floor[l#2], Ceiling[r#2]}] &; 
kernel= RotateRight[MapThread (gder, {order list, alist}]]; 
mid= {Ceiling(Length[#l] / 2] &) /@kernel; 
cnt=Append[Table[l, {dim-1)], mid[#l]] &; 

le= 
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Transpose[ListConvolve[Nest [List, kernel[#2], dim - l], #1, {cnt [#2], cnt [#2]}], 

RotateRigbt[Range(dim]]] &; Do[out =le [out, i], {i, dim}]; out] 

The function makes use of the possibility to Nest functions to large depth, and the 

universality of the ListConvolve function. The function is fast. Note the specification of 
orders and scales as lists, and note the specific. Mathematica-intrinsic ordering with the 
fastest running variable last: {z.y,x}. 

Example: gDn [ im, { 0 , 2 , 1} , { 2 , 2 , 2} ] calculates 0~0~2 of the input image im at an 

isotropic scale of ere= cry = crx = 2 pixels. 

Here is the time it takes to calculate the first order derivative in 3 directions at scales of 
pixel of a 1283 random array (more than 2 million pixels, 1.7 GHz. 512 MB, Windows XP): 

im = Table[Random[], {128), {128}, {128)]; 

Timing[gDn[im, {l, 1, l}, {l, 1, l}]] //First 

5.094 Second 

This gives help on how to call the function: 

?gDn 

gDn[im,{ ... ,ny,nx},{ ... ,ay,ax},options] calculates the Gaussian 
derivative of an N-dimensional image by approximated spatial 
convolution. It is optimized for speed by ID convolutions per 
dimension. The image is considered cyclic in each direction. 
Note the order of the dimensions in the parameter lists. 

im N-dimensional input image [List] 
nx = order of differentiation to x [Integer, nx ~ O] 
ax = scale in x-dimension [in pixels, a > O] 
options = <optional> kernelSampleRange: range of kernel 

sampled in multiples of J. Default: kernelSampleRange->(-6,6) 

Example: gDn[im,{O,O,l),(2,2,2)) calculates the x-
derivative of a 30 image at an isotropic scale of Oz=Oy=Ox=2. 

5.5 Implementation in the Fourier domain 

The spatial convolutions are not exact. The Gaussian kernel is truncated. In this section we 
discuss the implementation of the convolution operation in the Fornier domain. 
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In appendix B we have seen that a convolution of two functions in the spatial domain is a 
multiplication of the Fourier transforms of the functions in the Fourier domain, and take the 
inverse Fourier transform to come back to the spatial domain. We recall the processing 
scheme (e.g. with ID functions): 

f(x) 

:t 

F(w) 

h(x) ® g(x) 

:t :t 

H(w) G(w) 

The :t indicates the Fourier transform in the downwards direction and the inverse Fourier 
transform in the upwards direction. /(x) is the convolved function, h(x) the input function, 
and g(x) the convolution kernel. 

The function gDf [ im, nx, ny, a] implements the convolution of the 2D image with the 
Gaussian derivative for 2D discrete data in the Fourier domain. This is an exact function, no 
approximations other than the finite periodic window in both the x- and y-direction. We 
explicitly give the code of the functions here, so you see how it is implemented, the reader 
may make modifications as required. All information on (always capitalized) internal 
functions is on board of the Mathematica program in the Help Browser (highlight+key Fl), 
as well as on the 'the Mathematica book' internet pages of Wolfram Inc. 

Variables: im = 2D image (as a List strncture) 

nx, ny = order of differentiation to x resp. y 

a= scale of the Gaussian derivative kernel, in pixels 

The underscore in e.g. im _means Blank [im] and stands for anything (a single element) 

which we name im. im _List means that im is tested if it is a List. If not, the function 
gDf will not be evaluated. 

Unprotect[gDf]; Remove[gDf]; 

gDf [im_List, nx_, ny_, a_] : = 
Module [ {xres, yres, gdkernel}, 

{yres, xres} = Dimensions[im]; 
gdkernel = 

1 x 2 + y 2 

N[Table[Evaluate[o[-- Exp[---], (x, nx}, (y, ny}]], {y, 
2 :.ra2 2 a 2 

- (yres - 1) / 2, (yres- 1) I 2}, {x, - (xres - 1) I 2, (xres - 1) I 2}]]; 

Chop [ N [ .Y xres yres InverseFourier [Fourier [im] 

Fourier [RotateLeft [gdkernel, {yres I 2, xres I 2} l l l]] J; 
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A Module [ {vars} , ... code ... ] is a scope construct, where the vars are private 
variables. The last line determines what is returned. The assignment with : = is a delayed 
assignment, i.e. the function is only evaluated when called. The dimensions of the input 
image are extracted (note the order!) and the Gaussian kernel is differentiated with the 
function D [gauss , { x, nx} , { y, ny} ] and symmetrically tabulated over the x- and y

dimensions to get a kernel image with the same dimensions as the input image. 

We have now a 2D List with the kernel in the center. We shift gdkernel with 
RotateLeft over half the dimensions in x- and y-direction in order to put the kernel's 
center at the origin at {0,0}. We could equally have shifted in this symmetric case with 
RotateRight. We then take the Fourier transform of both the image and the kernel, 
multiply them (indicated by a space) and take the InverseFourier transform. 

Because we have a finite Fourier transf01m, we normalize over the domain through the factor 

.Y xres yres . The function N [] makes all output numerical. and the function Chop [ 1 
removes everything that is smaller then 10-10

, so to remove very small round-off en-ors. 

im = Import["mr256.gif"] [ [l, l]]; imx = gDf[im, 1, 0, l]; 
ListDensityPlot [imx, ImageSize -> 240]; 

Figure 5.12 First order Gaussian derivative with respect to x at scale <T = 1 pixel, calculated 
through the Fourier domain. Resolution 2562 pixels. 

The Mathematica function Fourier is highly optimized for any size of the data, and uses 
sophisticated bases when the number of pixels is not a power of 2. 

This function is somewhat slower that the spatial implementation, but is exact. Here is a 
vertical edge with a lot of additive uniform noise. The edge detection at very small scale only 
reveals the 'edges of the noise'. Only at the larger scales we discern the true edge, i.e. when 
the scale of the operator applied is at 'the scale of the edge'. 
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im5 = Table(If(x > 128, 1, O] + 13 Random(], {y, 256}, {x, 256}]; 

DisplayTogetherArray[ 

Prepend[ListDensityPlot[vfgof(im5, 1, 0, #] 2 +gDf(im5, 0, 1, #J 2
] & /@ 

{2, 6, 12}, ListDensityPlot(im5J], ImageSize -> 500]; 

I t.' I 

Figure 5.13 Detection of a very low contrast step-edge in noise. Left: original image, the step
edge is barely visible. At small scales (second image, cr = 2 pixels) the edge is not detected. 
We see the edges of the noise itself, cluttering the edge of the step-edge. Only at large scale 
(right, cr = 12 pixels) the edge is clearly found. At this scale the large scale structure of the 
edge emerges from the small scale structure of the noise. 

• Task 5.2 The Fourier implementation takes the Fourier transform of the image 

and the Fourier transform of a calculated kernel. This seems a waste of 
calculating time, as we know the analytical expression for the Fourier transform 

of the Gaussian kernel. Write a new Mathematica function that takes this into 
account, and check if there is a real speed increase. 

• Task 5.3 The spatial implementation has different speed for different size 

kernels. With increasing kernel size the number of operations increases 
substantially. How? 

• Task 5.4 Compare for what kernel size the choice of implementation is 
computationally more effective: Fourier or spatial domain implementation. See 
also [Florack 2000a]. 

There are two concerns we discuss next: what to do at the boundaries? And: the function is 
slow, so how to speed it up? 
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5.6 Boundaries 

DisplayTogetherArray[ 
Show/@ Import/@ {"Magritte painting boundary.gif", "Magritte. jpg"}, 
ImageSize -> 340]; 
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Figure 5.14 It is important to consider what happens at the boundaries of images. It matters 
what we model outside our image. Painting by Rene Magritte (right: self-portrait, 1898-1967). 

At the boundary of the image atiefacts may appear when we do convolutions with (by 
nature) extended kernels. Here is an example: two linear intensity ramps give a constant 
output when we calculate the first deiivative to x. but we see both at the left- and right-hand 
side strong edge responses. for the Fourier implementation as well as for the spatial 
implementation: 

im = Table[If[y > 64, x- 64, 64- x], (y, 128), (x, 128)]; 
DisplayTogetherArray [ListDensi tyPlot [#] & /@ 

{im, gDf[im, 1, 0, 3], gD[im, 1, 0, 3]}, ImageSize -> 400]; 

Figure 5.15 Boundary effects due to the periodicity of the Fourier domain. 

This is due to the fact that both in the Fourier domain as the spatial domain implementation 
of the convolution function the image is regarded as repetitive. A Fourier transform is a 
cyclic function, i.e. 'F(w) = 'F(w + n 2n). In 2D: 'T(wx, wy) = 'F(wx + nx 2 n, w + ny 2 n). 
The boundary effects in the image above are due to the strong edge created by the 
neighboring pixels at both ends. One can regard the domain of the image as a window cut
out from an infinite tiling of the plane with 2D functions. Figure 4.1 shows a tiling with 20 
images, each 642 pixels: 
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im = Import["mr64.gif"] [ [1, l]]; 
tiles= Join@@ Table[MapThread [Join, Table [im, (5)]], { 4)]; 

ListDensityPlot [tiles, ImageSize -> 280] ; 

5.6 Boundaries 

Figure 5.16 A section from the infinite tiling of images when we consider a cyclic operation. 
The Mathematica function MapThread maps the function Join on the rows of the horizontal 
row of 5 images to concatenate them into long rows, the function Join is then applied (with 
Apply or @@) on a table of 4 such resulting long rows to concatenate them into a long 
vertical image. 

Clear[a, b, c, d, e, f, h]; 
MapThread[h, {{a, b, c), (d, e, f}}] 

{h[a, d], h[b, e], h[c, f]} 

Apply[h, {(a, b, c), {d, e, f}}] 

h[{a, b, c}, (d, e, f}] 

h@@{(a, b, c), {d, e, f}} 

h[{a, b, c}, (d, e, f}] 

It is important to realize that there is no way out to deal with the boundaries. Convolution is 
an operation with an extended kernel, so at boundaries there is always a choice to be made. 
The most common decision is on repetitive tiling of the domain to infinity, but other choices 
are just as valid. One could extend the image with zero's, or mirror the neighboring image at 
all sides in order to minimize the edge artefacts. In all cases information is put at places 
where there was no original observation. This is no problem, as long as we carefully describe 
how our choice has been made. Here is an example of mirrored tiling: 



5. Multi-scale derivatives: implementations 

im = Import [ "mr128 .gif"] [ [ 1, 1]]; Off [General:: spell]; 
imv =Reverse [im]; imh =Reverse/@ im; imhv =Reverse /@Reverse [im] ; 

( ( 

imhv 
mirrored= Join@@ MapThread[Join, #] & /@ .imh 

imhv 

ListDensityPlot [mirrored, ImageSize -> 270] ; 

i.mv i.mhv J J 
im imh ; 

imv imhv 
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Figure 5.17 A section from the infinite tiling of images when we consider a mirroring 
operation. Note the rather complex mirroring and concatenation routines for these 20 images. 

• Task 5.5 Rachid Deriche [Deriche 1992] describes a fast recursive 
implementation of the Gaussian kernel and its derivatives. Make a Mathematica 
routine for recursive implementation. 

• Task 5.6 A small truncated kernel size involves less computations, and is thus 
faster. Blurring with a large kernel can also be accomplished by a concatenation 
of small kernels, e.g. a blurring step with IT = 3 pixels followed by a blurring step 
with IT= 4 pixels gives the same result as a single blurring step with IT = 5 pixels 
(IT1 

2 + ITi = 1Tnew2 ). What is faster, a large kernel, or a cascade series of 
smaller kernels? Where is the trade-off? 

5.7 Advanced topic: speed concerns in Mathematica 

This section can be skipped at first reading. 

Mathematica is an interpreter, working with symbolic elements, and arbitrary precision. For 
this reason, care must be taken that computation times do not explode for large datasets. 
When proper measures are taken, Mathematica can be fast, close to compiled C++ code. In 
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this section we discuss some examples of increasing the speed of the operations on larger 
datasets. 

It pays off to work numerically. and to compile a function when it is a repetitive operation of 
simple functions. Mathematica's internal commands are optimized for speed, so the gain here 
will be less. We discuss the issue with the example of the generation of a discrete Gaussian 
derivative kernel. The timings given are for a 1.7 GHz 512 MB PC and Mathematica 4.1 
under Windows XP. 

First of all, exact calculations are slow. Most internal Mathematica functions can work both 
with symbolic and numerical data. These internal functions are fully optimized with respect 
to speed and memory resources for numerical input. Here is a simple example: 

x2 + y2 
a=l;m=Table[Exp[----], {x, -4, 4), (y, -4, 4J]; 

2 a2 
Timing[Eigenvalues[m]] 
Timing[Eigenvalues[N[m]]] 

Timing[Chop[Eigenvalues[N[m]]]] 

2 2 2 2 
{3.156 Second, {O, 0, 0, 0, 0, O, 0, 0, 1 + €16 + €9 + €4 + e}} 

(O.Second, (1.77264, 5,59373,10- 1
', -4.27232>--10-17

, -l.82978x10- 1
•, 

3 .22688 x 10-22
, -6 ,5012 x 10-2

', -7 .47864 x lo-'', i.05492"10- 35
, o. J J 

(0. Second, (1.77264, 0, 0, O, 0, 0, 0, 0, OJ) 

In the sequel we will develop a very fast implementation for the convolution of a 20 image 
with a Gaussian derivative in the Fourier domain (see section 4.3). Most of the time is spent 
in the creation of the 20 Gaussian kernel, e.g. for 2562

: 

{xres, yres) = (256, 256); a= 3; 

Timing[ 

1 x2 + y 2 

kernel= Table[--- Exp [- ---], (y, - (yres - 1) I 2, (yres - 1) I 2), 
271'a2 2a2 

(x, - (xres - 1) I 2, (xres-1) I 2)]] [ [l]] 

4. 859 Second 

Mathematica keeps values as long as possible in an exact representation. Here is the 
pixel value at l30, 47): 

kernel[[30, 47]] 

1 
18 i;e32689 / 36 lT 

An additional disadvantage is that the Fourier transform on such symbolic expressions also 
takes a long time: 

Timing[fft = Fourier[kernel]] //First 

8. Second 
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It doesn't make much difference when we enter the data as Real values (to be done with the 

insertion of a decimal point in a number, or through the function N): 

{xres, yres} = (256., 256.); a= 3.; pi =N[,,.]; 

Timing[ 

1 x 2 + y 2 

gdkernel =Table[--- Exp[----], (y, - (yres-1) I 2, (yres-1) I 2), 
2 ,,.a2 2 a 2 

(x, -(xres-1)/2, (xres-l)/2l]][[l]] 

5. 797 Second 

The output is now a number, not a symbolic expression: 

gdkernel [ [30, 48]] 

6. 379323933059 ;. 10-393 

But still, we have no gain in speed. This is because the internal representation is still in 

'arbitrary precision' mode. The smallest and largest number that can be represented as a 

Real is: 

$MinMachineNumber 
$MaxMachineNumber 

2. 22507 .< 10-309 

1. 79769 x 10308 

We have smaller values in our pixels! As soon as Mathematica encounters a number smaller 

or larger then the dynamic range for Real numbers, it turns into arbitrary precision mode, 
which is slow. A good improvement in speed is therefore gained through restricting the 
output to be in this dynamic range. In our example the parameter for the exponential function 

Exp should be constrained: 

{xres, yres} = (256., 256.); a=3.;pi=N[,,.]; 

1 x 2 + y 2 

Timing[gdkernel =Table[--- Exp[If[---- < -100, 
2,,.a2 2a2 

x2 +y2 
-100, ---]], 

2 a 2 

{y, - (yres-1) I 2, (yres- 1) I 2), 

{x, - (xres - 1) / 2, (xres - 1) / 2) J J //First 

2.594Second 

Most of the internal commands of Mathematica do a very good job on real numbers. 

A further substantial improvement in speed can be obtained by compilation of the code into 

fast internal assembler code with the function Compile [ { args } , ... code ... , 

{de cl } ] . This generates a pure function, that can be called with the arguments { args}. 

This function generates optimized code based on an idealized register machine. It assumes 
approximate real or inter numbers, or matrices of these. The arguments in the argumentlist 

need to have the proper assignment (_Real, _Integer, _Complex or True/False). 
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The assignment _Real is default and may be omitted, so {x, _Real} 1s equivalent to 
{x}. An example to calculate the factorial of a sum of two real numbers: 

gammasum =Compile [ { (x, _Real}, (y, _Real}}, (x + y) ! ] 

CompiledFunction[ (x, y}, (x + y) ! , -CompiledCode-] 

gammaswn[3, 5] 

40320. 

We now check if the compiled code of our Gaussian kernel gives a speed improvement: 

xres - l yres - l 
gdkernel =Compile [ {xres, yres, a}, xresh = ; yresh = ----

2 2 

1 x2 + y2 x2 + y2 
p = Table[--Exp[If[--- < -100, -100, ---]], 

27ra2 2a2 2a2 

(y, -yresh, yresh}, (x, -xresh, xresh}], { (x, _Real}, 

(y, _Real}, {xresh, _Real}, {yresh, _Real}, (p, _Real, 2}}]; 

Timing[gdkernel[256, 256, 3]] II First 

2.532 Second 

In version 4.2 of Mathematica we see no improvement, running the example above, the 
kernel has been optimized for these calculations. In earlier versions you will encounter some 
60% improvement with the strategy above. See the Help browser (shift-Fl) for speed 
examples of the Compile function. We now add the symbolic operation of taking derivatives 
of the kernel. We force direct generation of the polynomials in the Gaussian derivatives with 

the Hermite polynomials, generated with Herrni teH. The symbolic functions are first 
evaluated through the use of the function Evaluate, then compiled code is made: 

gdkernel=Compile[{xres, yres, a, {nx, _Integer}, {ny, _Integer}}, 

xres - l yres - l 
xresh = 

2 
; yresh = 

2 
p = Table[Evaluate[ 

( ) 

nx.ny 
-1 x 

--- Hermi teH [ nx, --- ] 
O' Y2 O' Y2 

HermiteH[ny, __ Y_] 
a'V2 

1 x2 + y2 x2 + y2 
--Exp[If[--- < -100, -100, ---]]], 
a 2 2,.. 2a2 2a2 

(y, -yresh, yresh}, (x, -xresh, xresh}], { (x, _Real}, 

(y, _Real}, {xresh, _Real}, {yresh, _Real}, (p, _Real, 2}}]; 

Timing[gdkernel[256, 256, 3, 10, 10]] II First 

4.25Second 

Larger kernels are now no problem anymore, e.g. for 5122
: 
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Timing[t=gdkernel[512, 512, 3, 2, l]] //First 

7. 593 Second 

We adopt this function for our final implementation. Because the output is a matrix of real 
numbers, also the Fourier transfo1m is very fast. This is the time needed for the Fast Fourier 
Transform on the 5122 kernel just generated: 

Timing [Fourier [t]] I I First 

O. 1 72 Second 

To complete this section we present the final implementation, available throughout the book 
in the context FEV', which is loaded by default in each chapter. 

In the compiled function also complex arrays emerge, such as the result of Fourier [] and 

InverseFourier []. The compiler is told by the declarations at the end that anything 

with the name Fourier and InverseFourier working on something (_) should be 
stored in a complex array with tensorrank 2, i.e. a 2D aiTay. Study the rest of the details of 
the implementation yourself: 

Unprotect[gDf]; gDf[im_, nx_, ny_, a_] ·-
Module [ {}, { xres, yres} = Dimensions [ im] ; gf [ im, nx, ny, a, xres, yres] ] ; 

gf = 
Compile[{{im, _Real, 2), {nx, _Integer}, {ny, _Integer}, a, xres, yres}, 

xres - 1 yres - 1 
Module [ {x, y}, xresh = 

2 
; yresh = 

2 

p = RotateLeft [Table [--
1

- Evaluate[ (- -
1
-) nx+ny HermiteH[ nx, 

2 :rra' aV 

{y, 

x y [ ~~ ~~] 
--] HenniteH[ny, --] eu -"""'2"'T<- 200

·-
200

·-"""'2"";;2 J, 
a-{2 a-{2 

xres yres 
-yresh, yresh}, {x, -xresh, xresh}], {--, --}]] ; 

2 2 

.Y xres yres Chop [Re [ InverseFourier [Fourier [ im] Fourier [p]]]] , 
{{x, _Real}, {y, _Real}, {xresh, _Real}, {yresh, _Real}, {p, _Real, 2), 

{Fourier[_] , _Complex, 2}, { InverseFourier [_] , _Complex, 2)} J; 

5.8 Summary of this chapter 

Mathematica is fast when: 
- it can use its internal kernel routines as much as possible. They have been optimized for 
speed and memory use; 
- it can calculate on numerical data. Use the function N [ ... ] to convert infinite precision 

representations like Sin [3/7] to numerical data; 
- it is working in the representation range of real numbers. Otherwise it enters the infinite 
precision mode again; 

- the function is compiled with the function Compile [ ... ] ; 



6. Differential structure of images 

"If I had more time, I would have written you a shorter letter", Pascal ( 1623-1662) 

6.1 The differential structure of images 

In this chapter we will study the differential structure of discrete images in detail. This is the 
structure described by the local multi-scale derivatives of the image. We start with the 
development of a toolkit for the definitions of heightlines, local coordinate systems and 
independence of our choice of coordinates. 

<< FrontEndVision'FEV'; Off [General:: spell] ; 
Show[Import["Spiral CT abdomen.jpg"], ImageSize -> 170]; 

Figure 6.1 An example of a need for segmentation: 30 rendering of a spiral CT acquisition of 
the abdomen of a patient with Leriche's syndrome (EuroRAD case #745, authors R. Brillo, A. 
Napoli, S. Vagnarelli, M. Vendola, M. Benedetti Valentini, 2000, www.eurorad.org). 

We will use the tools of differential geometry, a field designed for the structural description 
of space and the lines, curves, smfaces etc. (a collection known as manifolds) that live there. 

We develop strategies for the generation of fo1mulas for the detection of particular features, 
that detect special, semantically circumscribed, local meaningful structures (or properties) in 
the image. Examples are edges, comers, T-junctions, monkey-saddles and many more. We 
develop operational detectors in Mathematica for all features described. 

One can discriminate local and multi-local methods in image analysis. We specifically 
discuss here local methods, at a particular local neighborhood (pixel). In later chapters we 
look at multi-local methods, and enter the realm of how to connect local features, both by 
studying similarity in properties with neighboring pixels ('perceptual grouping'), relations 
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over scale ('deep structure') and relations given by a particular model. We will discuss the use 
of the local features developed in this chapter into 'geometric reasoning'. 

Why do we need to go in detail about local image derivatives? Combinations of derivatives 
into expressions give nice feature detectors in images. It is well known that 

( aL )
2 + (.E1..) 2 

is a good edoe detector and (.E1..) 2 ll - 2 aL .£1.. __2!_L + ( aL )
2 fl 

ax ay " ' ay axz ax ay axay ax ayz 

is a good corner detector. But how do we come to such formula's? We can make an infinite 
number of such expressions. What constraints can/should we impose to come to a reasonably 
small set of basis descriptors? Is there such a basis? It turns out there is, and in this chapter 
we will derive a formal complete set of such descriptive elements. 

A very important constraint in the development of tools for the description of image structure 
is to be independent of the choice of coordinates. We will discuss coordinate 
transformations. like translations, rotations, zooming, in order to find a way to detect features 
i11varia11t to such coordinate transformations. In fact, we will discuss three 'languages' in 
which it is easy to develop a general strategy to come up with quite complex image structure 
detectors: 

gauge coordinates, Cartesian tensors, and algebraic polynomial invariants. All these methods 
have firm roots in mathematics, specifically differential geometry. and form an ideal 
substrate for the true understanding of image structure. 

We denote the function that describes our landscape (the image) with L(x, y) throughout this 
book, where L is the physical property measured in the image. Examples of L are luminance, 
Tl or T2 relaxation time (for MRI images), linear X-ray absorption coefficient (for CT 
images), depth (for range images) etc. In fact, it can be any scalar value. The coordinates x, y 
are discrete in our case, and denote the locations of the pixel. If the image is 3-dimensional, 
e.g. a stack of images from an MRI or CT scanner, we write L(x, y, .::). A scale-space of 
images. observed at a range of scales l.T is written as L(x, y; <T). We write a semicolon as 
separator to highlight the fact that l.T is not just another spatial variable. If images are a 
function of time as well, we write e.g. L(x, y, z; t) where t is the time paran1eter. In chapter 
17 we will develop scale-space theory for images sampled over time. In chapter 15 we study 
the extra dimension of color in images and derive differential features in color-space, and in 
chapter 13 we derive methods for the extraction of motion, a vectorial property with a 
magnitude and a direction. We firstly focus on static, spatial images. 

6.2 lsophotes and flowlines 

Lines in the image connecting points of equal intensity are called isophotes. They are the 
heightlines of the intensity landscape when we consider the intensity as 'height'. Isophotes in 
2D images are curves, and in 3D smfaces, connecting points with equal luminance. 

(Greek: isos (ii.Toe;) equal, photos (<{Joroc;) light): L(x, y) =constant or 
L(x, y. z) =constant. This definition however is for a continuous function. But the scale
space paradigm solves this: in discrete images isophotes exist because these are observed 
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images, and thus continuous (which means: infinitely differentiable, or C"" ). Lines of 

constant value in 2D are Contours in Mathematica, which can be plotted with 

ContourPlot. Figure 6.2 illustrates this for a blurred version of a 2D image. 

im=Import["mr128.gif"][[l, l]]I 
Block[{$DisplayFunction= Identity, dp, cp), 
dp=ListDensityPlot[gD[im, O, 0, #]] &/@{!, 2, 3)1 

cp = ListContourPlot[gD[im, 0, 0, #], 
ContourStyle-> List/@ Hue/@ ( .1 Range [ 10])] & /@ { 1, 2, 3} 1 

pa= MapThread [Show, {dp, cp)]] I Show[GraphicsArray [pa], 
ImageSize -> 400] 1 

Figure 6.2 lsophotes of an image at various blurring scales: from left to right: <T = I, <T = 2 
and <T = 3 pixels. Image resolution 1282

. Ten isophotes are plotted in each image, 
equidistant over the available intensity range. Each is shown in a different color, 
superimposed over the grayvalues. Notice that the isophotes get more 'rounded' when we 
blur the image. When we consider the intensity distribution of a 20 image as a landscape, 
where the height is given by the intensity, isophotes are the heightlines. 

lsophotes are important elements of an image. In principle, all isophotes together contain the 
same inf01mation as the image itself. The famous and often surprisingly good working 
segmentation method by thresholding and separating the image in pixels lying within or 
without the isophote at the threshold luminance is an example of an impo11ant application of 
isophotes. lsophotes have the following prope11ies: 

• isophotes are closed curves. Most (but not all, see below) isophotes in 2D images are a so
called Jordan curve: a non-self-intersecting planar curve topologically equivalent to a circle; 
• isophotes can intersect themselves. These are the critical isophotes. These always go 
through a saddlepoint; 
• isophotes do not intersect other isophotes; 
• any planar curve is completely described by its curvature. and so are isophotes. We will 
define and derive the expression for isophote curvature in the next section. 

• isophote shape is independent of grayscale transfonnations, such as changing the contrast 
or b1ightness of an image. 

A special class of isophotes is formed by those isophotes that go through a singularity in the 
intensity landscape. thus through a minimum. maximum or saddle point. At these places the 
intensity landscape is horizontal, the local spatial derivatives are all zero. Only at saddle 
points isophotes intersect themselves, and just above and below this intersection its neighbor 
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isophotes have different topology: they have split from one curve into two, or merged from 
two curves into one. 

1 (x - µx) 2 + (y - µy) 2 

blob[x_, y_, µx_, µy_, a_] := 
2 

7r0
2 

Exp(-
2 02 

] ; 

blobs[x_, y_] := 
blob[x, y, 10, 10, 4] + .7 blob[x, y, 15, 20, 4] + 0.8blob[x, y, 22, 8, 4]; 

Block[ {$DisplayFunction = Identity}, pl = Plot3D [blobs [x, y] - . 00008, 
{x, O, 30}, {y, O, 30}, PlotPoints-t30,Mesh-tFalse, Shading->True]; 

c = ContourPlot[blobs[x, y], {x, O, 30), {y, O, 30), 
PlotPoints -t 30, ContourShading -t False]; 

c3d = Graphics3D[Graphics[c] [ [l]] /. 
Line [pts_] =~ (val= Apply[blobs, First[pts]]; 

Line[Map[Append[#, val]&, pts]])]]; 
Show[pl, c3d, ViewPoint-> {l.393, 2.502, 1.114), ImageSize->250]; 

Figure 6.3 lsophote on a 20 'landscape' image of 3 Gaussian blobs, depicted as heightlines. 
The height is determined by the intensity. The height plot is depicted slightly lower (-0.0002) 
in order to show the full extent of the isophotes. 

At a minimum or maximum the isophote has shrunk to a point, and going to higher or lower 
intensity gives rise to the creation or disappearance of isophotes. This is best illustrated with 
an example of an image where only three Gaussian 'blobs' are present (see figure 6.3). The 
saddle points are in between the blobs. lsophotes through saddles and extrema are called 
critical isoplwtes. 

We show the dynan1ic event of a 'split' and a 'merge' of an isophote by the behaviour of a 
two-parameter family of curves, the Cassinian ovals: (x2 + y2 + a2 ) - b2 - 4 a2 x2 = O. 

Famous members of Cassini functions are the circle (cassini [x,y, a=O ,b]) and the 
lemniscate of Bernouilli ( cassini [x, y, a=b, b] ). The lima<;on function, a generalization 
of the cardioid function, shows how we can get self-intersection where the new loop is 
forn1ed within the isophote's inner domain. Here are the plots: 
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cassini [x_, y_, a_, b_] : = (x2 + y 2 + a 2
) 

2 
- b 2 

- 4 a 2 x 2
; 

DisplayTogetherArray[( 

6.2 lsophotes and flowlines 

ImplicitPlot[cassini[x, y, #, 4] ==0, {x, -5, 5}] &/@{1.99, 2., 2.01}, 
ParametricPlot[ (2 Cos[t] + #) { Cos[t], Sin[t] }, {t, 0, 2 7r}] & /@ 

(3, 2., 1}}, ImageSize -> 400]; 

~ -l 

s 
Figure 6.4 Top row: Split and merge of an isophote just under, at and above a saddle point in 
the image, simulated with a Cassini curve. Bottom row: Self intersection with an inner loop, 
simulated with the limac;:on function. Examples taken from the wonderful book by Alfred Gray 
[Gray1993]. 

lsophotes in 3D are surfaces. Here is an example of the plotting of 4 isophote surfaces of a 
discrete dataset. We use the versatile OpenGL viewer MathGL3d developed by Jens-Peer 
Kuska: http://phong.informatik.uni-leipzig.de/~kuska/mathgl3dv3/ 

Get [ "MathGL3d' OpenGLViewer' "] ; isos = Compile [ {}, 103 

x2 y2 z2 

Table[Exp[-- - - - -] , {z, -10, 10}, {y, -10, 10}, {x, -10, 10}]]; 
18 8 18 

MVListContourPlot3D[isos [] , Contours-> { .1, 1, 10}, ImageSize -> 150]; 

Figure 6.5 lsophotes in 30 are surfaces. Shown are the isophotes connecting all voxels with 
the values 0.1, 1, 1 O and 100 in the discrete dataset of two neighboring 30 Gaussian blobs. 

The calculations with the native command ListContourPlot3D take take much longer. 

Flowlines are the lines everywhere perpendicular to the isophotes. E.g. for a Gaussian blob 
the isophotes are circles, and the flowlines are radiating lines from the center. Flowlines are 
the integral curves of the gradient, made up of all the small little gradient vectors in each 
point integrated to a smooth long curve. In 2D, the flowlines and the isophotes together form 
a meslz or grid on the intensity surface. 

Figure 6.6 shows such a grid of the isophotes and flowlines of a 2D Gaussian blob (we have 
left out the singularity). 
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DisplayTogether[ 
ShadowPlot3D[-gauss[x, 5] gauss[y, 5], (y, -15, 15), (x, -15, 15)], 

CartesianMap[Exp, { -7r, 7r}, { -11:, 11:)], 

ImageSize -> 200, AspectRatio -> l]; 
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Figure 6.6 lsophotes and flowlines on the slope of a Gaussian blob. The circles are the 
isophotes, the flowlines are everywhere perpendicular to them. Inset: The height and 
intensity map of the Gaussian blob. 

Just as in principle all isophotes together completely describe the intensity smface. so does 
the set of all flowlines. Flowlines are the dual of isophotes. isophotes are the dual of 
flowlines. One set can be calculated from the other. Just as the isophotes have a singularity at 
minima and maxima in the image, so have flowlines a singularity in direction in such points. 

6.3 Coordinate systems and transformations 

We will now apply the complete family of well behaving differential operators developed in 
the first chapter for the detection of local differential structure in images. The set of 
derivatives taken at a particular location is a language from which we can make a description 
of a local feature. We can make assemblies of the derivatives to any order, in any 
combination. Local structure is the local shape of the intensity landscape. like how sloped or 
curved it is, if there are saddlepoints, etc. The first order derivative gives us the slope, the 
second order is related to how curved the landscape is. etc. 

In mathematical terms the image deiivatives show up in the so-called Taylor expansion of 
our image function. 

The Taylor expansion desciibes the function 'a little fmther up': If we move a little distance 
(8x. 8y) away from the pixel where we stand, the Taylor expansion -or Taylor series- is 
given by (we take the expansion in the origin (0, 0) for notational convenience): 

( al al ) 1 (fill - 2 a2 l a2 l ,._2) L(8 x, 8 y) = L(O, 0) + a; 8 x + ay 8 y + 2! ax2 ox + axay 8 x 8 y + a.1" u y + 

1 (a'l 3 a'l,. 2,. a'l ,._,._2 a'l,. 3) O(" 4 - 4) T! 7£3 8 x + ax' ay u x u y + ax ay' u x u y + 7fT u y + u x ' 0 y 
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We see al the partial derivatives appearing. The spatial derivatives are taken at the location 

(0,0), e.g. ~:f 1(0.0J. The first-order, second-order and third-order terms are grouped in 
brackets. Such groups of all terms of a specific order together are called 'binary forms'. The 
list goes to infinity, so we have to cut-off somewhere. The above series is an approximation 
to the third order, and the final expression O(o x4 , o y4 ) indicates that there is more, a rest 

term of order 4 and higher in ox and o y. Mathematica has the command Series to make a 
Taylor expansion. Here is the Taylor series for L(x, y) for ox to second order and then 
expanded to second order by o y : 

Series[L[c5x, c5y], (c5x, O, 2), (c5y, O, 2}] 

(L[O, OJ +L 10
"

1 [O, OJ oy+-} L 10
"

1 [O, OJ oy2 +O[oyJ') + 

( L 1l,o 1 [ 0 , 0 J + LI 1 ' 1) [ 0 , 0 J Oy + -} L 11 ' 2i [ 0, 0 J Oy2 + 0 [ Oy J 3 
) OX + 

(-} L 12
•

01 
[ o, o J + -} L ''·" [ o, o J oy + { L "·" [ o, o J oy' + o [ oyJ ') ox' + o [ oxJ' 

This expansion says essentially that we get a good approximation of the intensity landscape a 

little bit (ox. oy) further away from the origin (0, 0), when we first climb up over ox and oy 
with a slope given by the first derivative, the tangent. Then we come close, but not exactly. 
We can come somewhat better approximated when we include also the second order 
derivative, indicating how curved locally our landscape is. Etc. Taking into account more 
and more higher order te1ms gives us a better approximation and finally with the infinite 
series we have an exact desctiption. 
Our most imp011ant constraint for a good local image descriptor comes from the requirement 
that we want to be independent of our choice of coordinates. The coordinate system used the 
most is the Cartesian coordinate system (invented by and named after Descartes, a brilliant 
French mathematician from the 18th century): this is our familiar orthogonal (x, y) or 
(x, y, .:-) coordinate system. 

But it should not matter if we describe our local image structure in another coordinate system 
like a polar, cylindrical or rotated or translated version of our Cartesian coordinate system. 
Because the Cartesian system is the easiest to understand. we will deal only with changes in 
this coordinate system. The frame of the coordinate system is fom1ed by the unit vectors 
pointing in the respective dimensions. What changes could occur to a coordinate system? Of 
course any modification is possible. We will focus on the change of orientation (rotation of 
the axes frame), translation (x and/or y shift of the axes frame), and zoom (multiplication of 
the length of the units along the axes with some factor). 

The shear transformation (where the axes are no longer orthogonal) will not be discussed 
here; we limit ourselves to changes of the coordinates where they remain orthogonal. 
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DisplayTogetherArray[ 
Show[Graphics[ {Arrow[ (0, OJ, #] & /@ { (1, OJ, (0, lJ J, 

Red, PointSize[.04], Point[(.4, .6J])], 
Frame-> True, Axes-> True, AspectRatio -> l], 

Show[Graphics3D[{arrow3D[(O, 0, OJ,#, True] &/@({l, 0, OJ, (0, 1, OJ, 
(0, 0, 1)), Red, PointSize[.04], Point[(.4, .6, .7J])], 

Boxed-> True, BoxRatios -> (1, 1, lJ, Axes-> True], ImageSize -> 250]; 

,, i±======--i 
0 U'.! U4 ll6 08 l 

Figure 6.7 Use of graphics primitives in Mathematica: the coordinate unit vectors in 20 and 
30. 

We call all the possible instantiations of a transformation the transformation group. So all 
rotations form the rotational group, the group of translations is formed by all translations. We 
now consider the transfmmation of the frame vectors. 

Mathematically, the operation of a transformation is described by a matrix, the 
transformation matrix. E.g. rotation of a vector over an angle qi is described by the rotation 
matrix in 20: 

RotationMatrix2D[I/>] I I MatrixForm 

( 
Cos[¢] 

-Sin[¢] 
Sin[¢] ) 
Cos[¢] 

The angle ¢ is defined as clockwise for the positive direction. In 30 it gets a little more 
complicated, as we have three angles to rotate over (these are called the 'Euler' angles): 

RotationMatrix3D[l/I, e, I/>] 

{{Cos[¢] cos[l/f] -Cos[8] Sin[¢] Sin[l/I], 
cos [8] cos [I/I] Sin[¢] +cos[¢] Sin[l/I], Sin[8] Sin[¢] J, 

{-Cos[l/f] Sin[¢]-Cos[8] cos[¢] Sin[l/I], 
cos [8] Cos[¢] cos [I/I] - Sin[¢] Sin[l/I], cos[¢] Sin[8] J, 

(Sin[8] Sin[l/I], -Cos[l/f] Sin[8], cos[8])J 

In general a transformation is described by a set of equations: 
x'1=f1(x1,x2, x,,) 

When we transform a space, the volume often changes, and the density of the material inside 
is distiibuted over a different volume. To study the change of a small volume we need to 

consider ~; , which is the matrix of first order partial derivatives. 
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We have 

J 
- a-x· -[ a~~:1 
- a-x - . 

8(x')n 
a:;:;-

a~~,~
1 

]· This matrix is called the Jacobian matrix, named after Carl 
8(x'), 
a;;-

Jacobi ( 1804-1851 ). 
Mathematica with 

a Prussian mathematician. The Jacobian can be computed m 

jacobianmatrix[functions_List, variables_List] := 
Outer[D, functions, variables] 

If we consider the change of the infinitesimally small volume 

d x'1 d x'2 ... d x'11 = I ~;· I d x1 d x2 ... d Xn we see that the determinant of the Jacobian 
matrix (also called the Jacobian) is the factor which corrects for the change in volume. When 
the Jacobian is unity, we call the transformation a special transformation. 
The transformation in matrix notation is expressed as x' =Ax, where x' is the transformed 

vector, x is the input vector. and A = ; "· : is the transformation matrix. When 
[

au ··· a1nl 

Gnl ... Gnn 

the coefficients of A are constant, we have a linear transformation, often called an affine 

transfonnation. In Mathematica (note the dot product between the matrix and the vector): 

(
au a12 ) ~ Clear[x, y]; A= ; x = {x1 , x 2 }; 
a21 a22 

1 x I = ------------- A.X 
Det[jacobianmatrix[A.x, x]] 

{ 
a 11 X1 + a12 x 2 a 21 x 1 + a22 x2 } 

- a12 a21 + an a22 ' - a11 a21 + an a22 

£ Task 6.1 Show that the Jacobian of the transformation matrices 
RotationMatrix2D [l/i] and RotationMatrix3D [l/i,0,1/r] are unity. 

A rotation matrix that rotates over zero degrees is the identity matrix or the symmetric tensor 
or .5 -operator: 

6 = RotationMatrix2D [OJ; 6 I I MatrixForm 

( ~ ~ ) 

and the matrix that rotates over 90 degrees (n/2 radians) is called the antisymmetric tensor, 

the €-operator or the Levi-Civita tensor: 

e = RotationMatrix2D [7r I 2]; e I I MatrixForm 
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Let us study an example of a rotation: a unit vector under 45° is rotated over 110° clockwise: 

Y2 Y2 2~ 
V= { -- , -- } ; v ' = RotationMatrix2D [ 110 --] • v I I N 

2 2 360 

(0.422618, -0.906308) 

Show[Graphics[(Arrow[{O, OJ, #J &/@{v, v'}, Text["v", (.8, .8)], 

Text [ "v' " , { • 5 5, - • 8} ]} ], P lotRange -> { { -1, 1}, { -1, 1}} , 
Frame-> True, Axes-> True, AspectRatio -> 1, ImageSize -> 100]; 

IEE 075 v 
05 

025 
0 

-U25 
-05 

-075 ~ 

-()'7-j}-j)2!J02!Jj)751 

Figure 6.8 The vector v' is rotated by the action of the rotation matrix operator on the vector 
v. 

What we want is invariance under the transformations of translation and rotation. A function 
is said to be invariant under a group of transf01mations, if the transformation has no effect on 
the value of the function. The only geometrical entities that make physically sense are 
invariants. In the words of Heimann Wey!: "any invariant has a specific meaning'', and as 
such they are widely studied in computer vision theories. 

An example: The derivative to x is not invariant to rotation; if we rotate the coordinate 
system, or the image, we get in general a completely different value for the value of the 
derivative at that point. The same applies to the derivative to y. However, the combination 

( ~: )
2 

+ ( ~~ )2 
is invariant, as can be seen from the following: We denote derivatives 

with a lower index: Lx = ~: . The length of the gradient vector (Lx, Ly) is the scalar 

--./ {Lx, Ly). {Lx, Ly} 

VLx2 + Ly2 

We used here again the Dot(.) product of vectors. When we now rotate each vector lLx, Ly) 

with the rotation matrix over an arbitrary angle </J, we get 

.Y ( (RotationMatrix2D [cf>]. {Lx, Ly}) • (RotationMatrix2D[cf>] • {Lx, Ly})) 

~(LyCos[¢] -LxSin[¢]) 2 + (LxCos[¢] +LySin[c/>]) 2 

Simplify[%] 

VLx2 + Ly2 
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Invariance proved for this case. Invariants are so important, that the lower-order ones have a 

name. E.g. the scalar ( ~; )2 
+ ( ~~ )2 

is called the gradient magnitude, the vector operator 

V = { ;T, ~·) is called the nabla operator. So V Lis the gradient of L. V .(V L) = ~f + ~:f 

is called the Laplacian. Note that the gradient of the gradient V (v L) = a:' a.:ay is the 
( 

a
2

L a'L l 
a-L a-L 
axay 8y2 

matrix of second order derivatives, or the Hessian matrix (this is not an invariant) . 

.A Task 6.2 Show that the Laplacian is an invariant under rotation, in 20 and 30. 

In the sequel, we will only consider orthonormal transformations. These are also called 
Euclidean transformations. Orthonormal transfmmations are special orthogonal 
transfmmations (the Jacobian is unity). With orthogonal transformations the orthogonality of 
the coordinate frame is preserved. An orthonormal transformation preserves lengths of 
vectors and angles between vectors, i.e. it preserves a symmetric inner product < x, y >. 
When T is the orthogonal transformation, this means that < x, y >= < Tx. Ty >. 

The transformation matrix of an orthogonal transformation is an orthogonal matrix. They 
have the nice property that they are always invertible, as the inverse of an orthogonal matJix 
is equal to its transpose: A-1 =AT. A matrix m can be tested to see if it is orthogonal using 

OrthogonalQ[m_List?MatrixQ] := 
(Transpose[m] .m == IdentityMatrix[Length[m]]); 

Of course, there are many groups of transformations that can be considered, such as 
projective transformations (projecting a 3D world onto a 2D smface). In biomedical imaging 
mostly orthogonal transformations are encountered, and on those which will be the emphasis 
of the rest of this chapter. 

Notice that with invariance we mean invariance for the transformation (e.g. rotation) of the 
coordinate system, not of the image. The value of the local invariant properties is also the 
same when we rotate the image. There is however an important difference between image 
rotation, and coordinate rotation. We specifically mean here the local independence of 
rotation, for that particular point. See also figure 6.9. If we study the rotation of the whole 
image, we apply the same rotation to every pixel. 

Here, we want in every point a description which is independent to the rotation of the local 
coordinates, so we may as well rotate our coordinates in every pixel differently. Invariance 
for rotation in this way means something different than a rotation of the image. There would 
be no way otherwise to recognize rotated images from non-rotated ones! 
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Show[Import["Thatcher illusion.jpg"], ImageSize -> 330]; 

Figure 6.9 The "Thatcher illusion", created by P. Thompson [Thompson1980], shows that 
local rotations of image patches are radically different from the local coordinate rotation 
invariance, and that we are not used to (i.e. have no associative set in our memory) for 
sights that we seldomly see: faces upside down. Rotate the images 180 degrees to see the 
effect. 

In particular, we will see that specific scalar combinations of local derivatives give 
descriptions of local image structure invariant under a Euclidean transformation. 

6.4 Directional derivatives 

The directed first order nabla operator is given in 2D by v .V, where v is a unit vector 

pointing in the specific direction. v .V is called the directional derivative. Let us consider 

some examples. We calculate the directional derivative for v = (--v'z, --v'z) and 

v = (Y3 /2, 1 /2): 

im=Import["mip147.gif"][[l, 1]]; 

northeast[im_, a_]:= {--¥2, --¥2}.(gD[im, 1, 0, a], gD[im, O, 1, a]); 

southsouthwest[im_, a_] := 

{-YJ /2, 1I2}. {gD[im, 1, 0, a], gD[im, O, 1, a]}; 

DisplayTogetherArray[ListDensityPlot/@ 
{ im, northeast [im, l], southsouthwest [im, 1]}, ImageSize -> 300] ; 

Figure 6.10 Directional derivatives. Image from the Eurorad database (www.eurorad.org), 
case 147. 
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6.5 First order gauge coordinates 

We introduce the notion of intrinsic geometry: we like to have every point described in such 
a way. that if we have the same structure, or local landscape form. no matter the rotation, the 
description is always the same. This can be accomplished by setting up in each point a 
dedicated coordinate frame which is determined by some special local directions given by 
the landscape locally itself. 

Consider yourself an ant on a surface, you can only see the direct vicinity, so the world looks 
locally very simple. We now fix i11 each point separately our local coordinate frame in such 
a way that one frame vector points to the direction of maximal change of the intensity, and 
the other perpendicular to it (90 degrees clockwise). The direction of maximal change of 
intensity is just the gradient vector w = ( ~;, ~~ ). The perpendicular direction is 

v = (~I ~). w = ( ~~, - ~; ). We can check: if w~ are on a slope going up in the y

direction only (the 'Southern' slope of a hill), we have as gradient \0, ~~ ) , because in the x

direction the slope is horizontal. 

ContourPlot(x2 +y2, (y, 2, 4.5), 

(x, 2, 4.5), Contours .... Range[2, 100, 4], Epilog-> 

{ PointSize [. 02] , Point [ { 3, 3}] , Arrow ( { 3, 3}, { 3 + • 5 Yi, 3 - . 5 Yi}] , 
Arrow( (3, 3}, { 3 + • 5 Yi, 3 + • 5 Yi}], Text [ "v", (3. 8, 2 .2)], 

Text["w", (3.8, 3.8JJ}, Frame .... False, Imagesize .... 100]; 

Figure 6.11 Local first order gauge coordinates { v, w). The unit vector v is everywhere 
tangential to the isophote (line of constant intensity), the unit vector w is everywhere 
perpendicular to the isophote and points in the direction of the gradient vector. 

We have now fixed locally the direction for our new intrinsic local coordinate frame (v. w). 

This set of local directions is called a gauge, the new frame forms the gauge coordinates and 
fixing the frame vectors with respect to the constant direction w is called: fixing the gauge. 
Because we discuss first order deiivatives here. we call this a first order gauge. We can also 
derive a second order gauge from second order local differential structure, as we will see 
later. 

We want to take derivatives with respect to the gauge coordinates. 

As they are fixed to the object, no matter any rotation or translation, we have the following 
very useful result: 
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any derivative expressed in gauge coordinates is an orthogonal invariant. E.g. it is clear that 

~~ is the derivative in the gradient direction, and this is just the gradient itself, an invariant. 

And ~; = 0, as there is no change in the luminance as we move tangentially along the 
isophote, and we have chosen this direction by definition. 

From the derivatives with respect to the gauge coordinates, we always need to go to 
Cartesian coordinates in order to calculate the invariant properties on a computer. The 
transformation from the (v, w) from to the Cartesian (x, y) frame is done by implementing 
the definition of the directional de1ivatives. Important is that first a directional partial 
derivative (to whatever order) is calculated with respect to a frozen gradient direction. We 
call this direction (Lx, Ly). Then the formula is calculated which expresses the gauge 
derivative into this direction, and finally the frozen direction is filled in from the calculated 
gradient. 

In Mathematica: The frame vectors w and v are defined as 

w = {Lx, Ly} ; v = ( o l) .w; 
YLx2 +Ly2 -1 0 

The directional differential operators v . V = ( ;, , ~· ) and v . V = ( ;, , %i. ) are defined as: 

V • { c3x # , c3y # } & ; 

V. {c3x #, c3y #} &; 

The notation ( ... #) & is a 'pure function' on the argument #,e.g. (#2 + #5
) & gives the 

sum of second and fifth power of some argument #, D [ #, x] & (or equivalently (ax#) & ) 

takes the de1ivative of the variable # with respect to x (look in the Help browser to 
Function for more examples). So the construct of a pure function is the construct for an 
operator. This pure function can be applied to an argument by the familiar square brackets, 
e.g. 

(#2 +# 5 )&[zz] 

zz 2 + zz 5 

Higher order derivatives are constructed through nesting multiple first order derivatives, as 
many as needed. The total transf01mation routine is now: 

Clear[f, L, Lx, Ly]; Unprotect[gauge2D]; 

gauge2D[f_, nv_/; nv~O, nw_/; nw~O] := 
Module [ {Lx, Ly, v, w}, w = {Lx, Ly} I Sqrt [Lx' 2 +Ly' 2]; 

v= {{O, 1), {-1, O)}.w; 
Simplify[ 

Nest [ (v. {D[#l, x], D[#l, y]} &) , Nest[ (w. {D[#l, x], D[#l, y]} &) , 

f, nw], nv] I. {Lx -+ D [ f, x], Ly-+ D [ f, y]}]] ; 

where f is a symbolic function of x and y, and nw and nv are the orders of differentiation 

with respect tow resp v. Here is an example of its output: the gradient ~~ : 
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Lw = gauge2D[L[x, yJ, 0, lJ 

~L'''" [x, y]' + L11,01 [x, y]' 

Using pattern matching with the function shortnotation we get more readable output: 

Lw = gauge2D [L [x, yJ , 0, lJ I I shortnotation 

Lww = gauge2D[L[x, yJ, O, 2J 11 shortnotation 

L; Lxx + 2 Lx Lxy Ly + L~ Lyy 

Li+ L~ 

Lv = gauge2D[L[x, yJ, 1, OJ 11 shortnotation 

0 

As expected, because it is exactly what we put into the definition of ~~ : it is the 
differentiation in the direction perpendicular to the gradient, so along the tangential direction 
of the isophote, and in this direction there is no change of the intensity function. But 

Lvv = gauge2D[L[x, yJ, 2, OJ II shortnotation 

-2 Lx Lxy Ly+ Lxx L~ + L; Lyy 

Li+ Lf 

is not zero, because it is constructed by first applying the directional derivative twice, and 
then fixing the gauge. 

This calculates the Laplacian in gauge coordinates. L,,,. + Lww (what do you expect?): 

gauge2D[L[x, yJ, 0, 2J +gauge2D[L[x, yJ, 2, OJ II shortnotation 

.&. Task 6.3 Show and explain that in the definition of the function gauge2D we 
cannot define w = {8x L, 8y L). We need to have the direction of the gauge fixed 
while computing the compound formula. Why? 

The next figure shows the {v, w) gauge fran1e in every pixel of a simple 322 image with 3 
blobs: 
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1 (x-µx) 2 + (y-µy) 2 

blob [x_, y_, µx_, µy_, a_] : = 
2

,.. 
02 

Exp ( -
2 02 

] ; 

blobs[x_, y_] := 
blob[x, y, 10, 10, 4] + .7blob[x, y, 15, 20, 4] +O.Sblob[x, y, 22, 8, 4]; 

im=Table[blobs[x, y], {y, 30), {x, 30)]; 
Block [ { $DisplayFunction = Identity, gradient, norm, a, frame}, 

norm = ( # I Sqrt [ # • #]) & ; 

a= l; gradient= Map[norm, 
Transpose[{gD[im, 1, 0, a], gD[im, 0, 1, a]}, (3, 2, l)], {2}]; 

frame= Graphics[{White, Arrow[#2 - .5, #2 - .5 + #1], Red, 
Arrow [ # 2 - • 5, # 2 - • 5 + { #1 [ [ 2] ] , - #1 [ [ l] ] } ] } ] & ; 

ar = Mapindexed[frame, gradient I 2, (2)]; 
lp = ListDensityPlot [gD [im, 0, 0, a]]]; 

Show[ { lp, ar}, Frame-> True, ImageSize -> 410]; 

Figure 6.12 The gauge frame {w, v) given for every pixel in a 302 image of three Gaussian 
blobs. The gradient direction w, calculated at a scale of c:T=l pixel, is indicated in white, and 
points always to higher intensity. They are (defined as) everywhere perpendicular to the 
isophotes and tangential to the flowlines. These vectors always point to extrema and saddle 
points. The v frame vector (in red) is 71/2 radians rotated clockwise, they encircle the 
extrema, (defined as) tangential to the isophotes. (The boundary effects, most notably on the 
right, are due to the cyclic interpretation of the gradient calculation, which causes the image 
to be interpreted as infinitely repeated in all directions: the gradient direction changes over 7f, 

no artefact, but now well understood). 
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The gauge coordinates are not defined at 'horizontal points' in the intensity landscape, i.e. 

locations where ~ L_,Z + L/ = 0, as is clear from the definition of the gauge coordinates. 
This occurs in saddle points and extrema {minima and maxima) of the intensity landscape, 
where both Lx = 0 and r,,. = 0. In practice however this is not a problem: we have a finite 
number of such points, typically just a few, and we know from Morse theory that we can get 
rid of such a singularity by an infinitesimally small local change in the intensity landscape. 

Dne to the fixing of the gauge by removing the degree of freedom for rotation (that is why 
Lv = 0 ), we have an imp011ant result: every derivative to v and w is an ort!togo11al i11varia11t. 

In other words: it is an invariant property where translation and/or rotation of the coordinate 
frame is irrelevant. This also means that polynomial combinations of these gauge derivative 
terms are invariant. We now have the toolkit to make inva1iants expressed in gauge 
derivatives to any order. 

Here are a few other differential invariants of the image, which are now easily constructed: 

gauge2D [L [x, yJ , 4, OJ I I shortnotation 

- 4 L~ Lxyyy Ly + 6 L~ Lxxyy L~ - 4 Lx Lxxxy L; + Lxxxx L~ + L! Lyyyy 

(Li+ L~) 2 

gauge2D[L[x, yJ, 2, lJ // shortnotation 

L~ Lxyy + Lx (Lxxx - 2 Lxyy) L~ + Lxxy L; + L~ Ly (-2 Lxxy + Lyyy) 

(Li + L~) 312 

In conclusion of this section. we have found a complete family of differential invariants, that 
are invariant for rotation and translation of the coordinate frame. They are called differential 
invariants, because they consist of polynomials with as coefficients pm1ial deiivatives of the 
image. In the next section we discuss some important members of this fmnily. Only the 
lowest order invariants have a name, the higher orders become more mid more exotic. 

The final step is the operational implementation of the gauge derivative operators for discrete 
images. This is simply done by applying pattern matching: 
- first calculate the symbolic expression 

- then replace any derivative with respect to x and y by the nume1ical derivative 
gD[im,nx ,ny ,a] 

- and then insert the pixeldata in the resulting polynomial function; 
as follows: 

Unprotect[gauge2DNJ; 
gauge2DN [ im_, nv _, nw_, a_ I; a> OJ : = 

Module[{imO}, gauge2D[L[x, yJ, nv, nwJ I. 
Derivative[nx_, ny_J [L_J [x_, y_J ->gD[imO, nx, ny, aJ /, imO-> imJ; 

This writes our numerical code automatically. Here is the implementation for Lvv. If the 
image is not defined, we get the formula returned: 
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Clear[im, a]; gauge2DN[im, 2, 0, 2] 

( gD [ irn, 0, 2, 2] gD [ irn, 1, 0, 2] 2 -

2 gD [ irn, 0, 1, 2] gD [ irn, 1, 0, 2] gD [ irn, 1, 1, 2] + 

gD[irn, 0, 1, 2] 2 gD[irn, 2, 0, 2]) I (gD[irn, 0, 1, 2] 2 +gD[irn, 1, 0, 2] 2
) 

If the image is available, the invariant property is calculated in each pixel: 

im = Import [ "thorax02 .gif"] [ [ 1, l]]; 
DisplayTogetherArray[ 
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ListDensityPlot /@ {im, -gauge2DN[im, 0, 1, l], -gauge2DN[im, 2, 0, 4]), 
ImageSize -> 400]; 

l_ 
Figure 6.13 The gradient Lw (middle) and Lv v, the second order directional derivative in the 
direction tangential to the isophote (right) for a 2562 X-thorax image at a small scale of 0.5 
pixels. Note the shadow of the coins in the pocket of his shirt in the lower right. 

6.6 Gauge coordinate invariants: examples 

6.6.1 Ridge detection 

Lvv is a good ridge detector, since at 1idges the curvature of isophotes is large (see figure 
6.13). 

f[x, y] := (sin[x] +_:Sin[Jx]) (l+.ly); 
- - 3 

DisplayTogetherArray[Plot3D[f[x, y], {x, 0, 11'), {y, 0, 11')], 

ContourPlot[f[x, y], {x, 0, 11'), (y, 0, 11'), PlotPoints->50], 
ImageSize -> 370]; 

Figure 6.14 lsophotes are much more curved at the top of ridges and valleys then along the 
slopes of it. Left: a slightly sloping artificial intensity landscape with two ridges and a valley, 
at right the contours as isophotes. 
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Let us test this on an X-ray image of fingers and calculate Lvv scale l.T = 3. 

im = Import ["hands .gif"] [ [1, 1]] ; Lvv = gauge2DN [im, 2, 0, 3]; 
DisplayTogetherArray[ListDensityPlot /@ {im, Lvv}, ImageSize ... 450]; 

Figure 6.15 The invariant feature Lv v is a ridge detector. Here applied on an X-ray of two 
hands at 1J = 3 pixels. Image resolution: 361 x 239 pixels. 

... Task 6.4 Study the ridges Lvv of the fingers at different scales, and note the 
scale-dependent interpretation. 

Noise has structure too. Here are the ridges of uniform white noise: 

im:Table[Random[], {128), {256)]; 
ListDensityPlot[gauge2DN[im, 2, 0, 4]]; 

Figure 6.16 The invariant feature Lv v detects the ridges in white noise here, 1J = 4 pixels, 
image resolution: 256 x 128 pixels. 

... Task 6.5 Study in the same way the gradient of white noise at a range of scales. 
Do you see the similarity with a brain surface at larger scales? 

We will encounter the second order gauge derivative Lvv in chapter 19 in the 'fundamental' 
equation of Alvarez et al. [Alvarez1992a. Alvarez1993], a 11011/inear (geometry driven) 

d"ff . . aL L 1 us1on equation: Tt = vv. 
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This equation is used to evolve the image in a way that locally adapts the amount of blurring 
to differential invariant structure in the image in order to do e.g. edge-preserving smoothing. 
We discuss this in detail in chapter 21. 

Detection of ridges is an active topic in multi-scale feature detection LKoenderinkl993a, 
Maintz1996a, Eberly1993, Eberlyl994, Eberly1994a, Eberly1994b, Damonl999, 
Lindeberg 1998b, Lopez1999], as it focuses on the dual of boundaries. 

6.6.2 lsophote and flowline curvature in gauge coordinates 

The derivation of the formula for isophote curvature is particularly easy when we express the 

problem in gauge coordinates. Isophote curvature K is defined as the change w" = ~:~ of 
the tangent vector w' = ~: = v in the gradient-gauge coordinate system. The definition of an 
isophote is: L(v, w) =Constant, and w = w(v). So, in Mathematica we implicitly differentiate 

the equality ( ==) to v: 

L [v, w [v]] == Constant; 
v=.; w=.; D[L[v, w[v]] ==Constant, v] 

w' [v] L 10
•

1
J [v, w(v]] +L 11 '" [v, w[v]] == 0 

We know that Lv = 0 by definition of the gauge coordinates, sow' = 0, and the curvature K 

= w" is found by differentiating the isophote equation again and solving for w": 

IC= w'' [v] I. Solve[D[L[v, w[v]] ==Constant, (v, 2)] /. w' [v] -> 0, w' '[v]] 

L' 2 • 0 l [v, w[v]] 
{- L'°·" [v, w[v]] } 

So K = - ?,; . In Cartesian coordinates we recognize the well-known formula: 

gauge2D[L[x, y], 2, O] 
im =.; IC = - I I shortnotation 

gauge2D[L[x, y], 0, l] 

- 2 Lx Lxy Ly + Lxx L; + L; Lyy 

(Li +Li) 3/2 

Here is an example of the isophote curvature at a range of scales for a sagittal MR image: 

im = Import [ "mr256.gif"] [ [l, l ]J; 
1Cplot = 

. . [ gauge2DN[im, 2, O, #] 
ListDensityPlot - , PlotRange -> (-5, 5) J &; 

gauge2DN[im, 0, 1, #] 
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DisplayTogetherArray[ 
{ListDensityPlot [im], xplot [l], xplot [2], xplot [3]}, ImageSize -> 470]; 

~
~-~.' .... ; . \ 
... ·~ 

~ '. , ·::~"'i 
I ~. !ti. 1~ ·--

Figure 6.17 The isophote curvature K is a rotationally and translationally invariant feature. It 
takes high values at extrema. Image resolution: 2562 pixels. 

The reason we see extreme low and high values is due to the singularities that occur at 
intensity extrema, where the gradient Lw = 0. 

A. Task 6.6 Why was not in a single pixel infinite isophote curvature encountered? 
There are many maxima and minima in the image. 

Lopez et al. [Lopez2000b] defined a robust multi-scale version of a local curvature measure, 
which they termed level set extrinsic curvature, based on the divergence of the gradient field, 
integrated over a path l with a certain are: the scale) around the point of interest. 
The perception of curvature is influenced by its context, as is clear from the Tolansky's 
curvature illusion (see figure 6.18). 

Show[ 
Graphics[{Thickness[.01], Circle[(O, 0), 10, (0, 7r)], Circle[(O, -4), 

10, {,..I 4, 3 ,.. I 4}] , Circle [ { 0, - 8} , 10, (3 ,.. I 8, 5 ,.. I 8} ]) ] , 

AspectRatio-> Automatic, ImageSize -> 260]; 

Figure 6.18 Tolansky's curvature illusion. The three circle segments have the same curvature 
1/10. 

We remember the flowlines as the integral curves of the gradient. In figure 6.6 they were 
depicted together with their duals, the isophotes. In that particular case, for such circular 
objects flowlines are straight lines with curvature zero. In figure 6.6 the isophote curvature at 
the top of the blob goes to infinity and is left out for that reason. 
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.._ Task 6.7 Prove, with the methodology sketched above, that the flowline 
curvature expressed in first order gauge coordinates is: µ = - ~:·· . 

The third (and last) member of the set of second order derivatives in gauge coordinates is 
Lww. This is the derivative of the gradient in the gradient direction. So when we want to find 
the maximum of the gradient, we can inspect zeros of Lw w . 
Historically, much attention is paid to the zerocrossings of the Laplacian due to the 
groundbreaking work of MaiT and Hildreth. As a rotational isotropic filter, and its close 
analogy to the retinal receptive fields, its zerocrossings were often interpreted as the maxima 
of a rotational invariant edge detector. The zerocrossings are however displaced on curved 
edges. 

Note that with the compact expression for isophote curvature K = - ~'.,' we cai1 establish a 
relation between the Laplacian and the second order derivative in the gradient direction we 
want to investigate for zerocrossings: Lww. From the expression of the Laplacian in gauge 
coordinates i).L = Lww + Lvv = Lww - K Lw we see immediately that there is a deviation tem1 

K Lw which is directly proportional to the isophote curvature K. Only on a straight edge with 
local isophote curvature zero the Laplacian is numerically equal to Lww. Without gauge 
coordinates, this is much harder to prove. It took Clark two full pages in PAMI to show this 
[Clark!989]! 

im = Import [ "thorax02 .gif"] [ [ 1, l]] ; 
Block [ {$DisplayFunction =Identity}, 

pl= ListDensityPlot[im]; 
p2 = ListContourPlot[gauge2DN[im, 0, 2, 4], Contours-> {O}]; 
pl= ListContourPlot[gD[im, 2, 0, 4] +gD[im, O, 2, 4], Contours-> {O}]]; 

DisplayTogetherArray[ {Show [{pl, p2}] , Show [{pl, pl}]}, ImageSize -> lSO]; 

Figure 6.19 Contours of Lv v = O (left) and ill= O (right) superimposed on the X-thorax 
image for <r = 4 pixels. 

The term v = - LL,,,. is not a curvature, but can be interpreted as a density of isophotes. 
w 
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Notice that the isophote curvature K = - 7,,'· and flowline curvature µ = - 7,; have equal 
dimensionality for the intensity in both nominator and denominator. This leads to the 
desirable property that these curvatures do not change when we e.g. manipulate the contrast 
or brightness of an image. In general, these curvatures are said to be invariant under 
mouotonic intensity transformations. In section 6.7 we elaborate on this special case of 
invariance. 

6.6.3 Affine invariant corner detection 

Comers are defined as locations with high isophote curvature and high intensity gradient. An 
elegant reasoning for an affine invariant comer detector was proposed by Blom 
[Bloml99la], then a PhD student of Koenderink. We reproduce it here using Mathematica. 

Blom proposed to take the product of isophote curvature - t;' and the gradient L,1, raised to 
some (to be detem1ined) power n: 

An obvious advantage is invariance under a transformation that changes the opening angle of 
the comer. Such a transformation is the affine transformation. An affine transformation is a 
linear transformation of the coordinate axes: 

We omit the translation term (e j) and study the affine transformation proper. The term 
aJ~b,· is the determinant of the transfo1mation matrix, and is called the Jacobian. Its 
purpose is to adjust the amplitude when the area changes. 

A good example of the effect of an affine transformation is to study the projection of a 
square from a large distance. Rotation over a vertical axis shortens the x-axis. Changing both 
axes introduces a shear, where the angles between the sides change. The following example 
illustrates this by an affine transformation of a square: 

square = { { 0, 0} , { 1 , 0} , { 1 , 1 } , { 0, 1} , { 0, 0} } ; 

affine = ( 
5 2 

) ; afsquare = affine.# & /@square; 
0 .5 

DisplayTogetherArray[Graphics [Line [ #], AspectRatio -> 1] & /@ 
{square, afsquare}, ImageSize -> 200]; 

11/ 1 
Figure 6.20 Affine transformation of a square, with transformation matrix ( ~ _

2
5 

) mapped 

on each point 
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The derivatives transform as ( ~::) = ad~bc (; ! ) (Ox oy ). We put the affine 

transformation A = ( ~ ! ) into the de~inition of affinely transformed gauge coordinates: 

Clear[a, b, c, d]; 

gauge2Daffine[f_, nv_, nw_] :=Module[{Lx, Ly, v, w, A= 

w = {Lx', Ly'} ; v = ( O 1) .w; 

>/ -1 0 Lx, 2 +Ly' 2 

Simplify[Nest[v.(--
1
-A.(13,#, 13,#)) &, 

Det[A] 

Nest[w.(--
1
-A.{13,#, 13,#)) &, f, nw], nv] /. 

Det[A] 

( ac bd)}, 

a Lx + b Ly c Lx + d Ly 
{ Lx ' -> , Ly ' -> } / • { Lx -> 13, f , Ly -> 13, f} ]] ; 

Det [A] Det [A] 

The equation for the affinely distorted coordinates - Lv,, "" L,..,, n- I now becomes: 

-gauge2Daffine[L[x, y], 2, O] gauge2Daffine[L[x, y], 0, 11•-1 
// 

Simplify I I shortnotation 

2 2 2 2 2 2 -} (-3+n) 

( <a +c ) Lx+
2 (~=:~=~~2 Ly+(b +ct 

1 
Ly ) (2 Lx Lxy Ly - Lxx L~ - Li Lyy) 

(bc-ad) 2 

Very interesting: when 11 = 3 and for an affine transformation with unity Jacobean 
(ad - b c = 1, a so-called special transformation) we are independent of the parameters a. b, 
c and d ! This is the affine invariance condition. 

So the expression E> = ~~'.' Lw 3 = Lvv Lw2 = 2 Lx Lxy Ly - Lxx Ly 2 
- L,.2 Lyy is an affine 

invariant corner detector. This feature has the nice property that it is not singular at locations 
where the gradient vanishes, and through its affine invariance it detects corners at all 
'opening angles'. 

We show corner detection at two scales on the 'Utrecht' image: 

im = SubMatrix[Import["Utrecht256.gif"][ [1, 1]], (1, 128), (128, 128)]; 

cornerl = gauge2DN[im, 2, 0, 1] gauge2DN[im, 0, 1, 1] 2; 

corner3 = gauge2DN[im, 2, 0, 3] gauge2DN[im, 0, 1, 2] 2
; 
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DisplayTogetherArray[ 
ListDensityPlot /@ {im, corner!, corner3}, ImageSize-> 500]; 

Figure 6.21 Corner detection with the L,,,, L,..2 operator. Left: original image, dimensions 
1282

. Middle: corner detection at IT= 1 pixel; right: corner detection at IT= 3 pixels. lsophote 
curvature is signed, so note the positive (convex, light) and negative (concave, dark) corners. 

,. Task 6.8 Show why the compound spike response, where an rotationally 

invariant operator is applied on a spike image (discrete delta function), leads to 

a rotationally symmetric response. An example is given below: 

spike=Table[O, {128), {128)]; spike[[64, 64]] =100; 
gradient= gauge2DN[spike, 0, 1, 15]; 

cornerness = -gauge2DN[spike, 2, 0, 15] gauge2DN[spike, 0, 1, 15] 2
; 

DisplayTogetherArray[ 
ListDensityPlot /@{spike, gradient, cornerness}, ImageSize -> 400]; 

Figure 6.22 Convolution of a spike (Delta function) image with a kernel gives the kernel itself 
as result. Left: spike image, middle: response to the gradient kernel assembly, right: 
response to the cornerness kernel assembly. Scale IT = 15 pixels, resolution image 1282 

. 

6.7 A curvature illusion 

A particular visual illusion shows the influence of the multi-scale perception of a local 
property, like curvature. In figure 6.23 the lines appear curved, though they are really straight. 
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star = Graphics [Table [ 
Line[{{Cos[</>], Sin[</>]), {-Cos[</>], -Sin[</>]})],(</>, 0, ,., 7rl 20)]]; 

lines= Graphics [{Thickness [ .015], DarkViolet, 
Line [ { { -1, .1}, { 1, .1}}] , Line [ { (-1, - .1}, { 1, - .1}}]}] ; 

Show[{star, lines}, PlotRange-> ((-.4, .4), (-.2, .2)), 
AspectRatio-> Automatic, ImageSize -> 300]; 

Figure 6.23 The straight lines appear curved due to the surrounding pattern. 
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When we calculate the isophote curvature K = -f:, for this figure at a coarse scale, we see 

that the curvature is not constant along the horizontal lines, but changes when moving from 
the center. Figure 6.24 shows the curvature and the profile along the center of the horizontal 
line. 

curvill=Show[{star, lines), PlotRange-> ((-.4, .4), (-.2, .2)), 
AspectRatio-> Automatic, ImageSize -> 432, DisplayFunction -> Identity]; 

Export["curvillusion-star.jpg", curvill]; 
a+b+c 

iml = Import["curvillusion-star.jpg"] [[l, l]] I. {a_, b_, c_} -> --
3
--

DeleteFile["curvillusion-star.jpg"]; 

DisplayTogetherArray[ 

{ [ 
gauge2DN[iml, 2, 0, 20] 

ListDensityPlot xl = - , PlotRange -> {- .1, .1), 
gauge2DN[iml, O, 1, 20] 

Epilog-> {Red, Line[{(llO, 161), (320, 161))])], 

ListPlot[Take[xl, (161, 161), (110, 320)] II Flatten, 

AspectRatio -> . 4, AxesLabel -> {"", "xl"}]}, ImageSize -> 450]; 

"V\ - 0.2 

- 0.3 

- 0.4 

- 0.S 

Figure 6.24 Left: lsophote curvature K at a scale of <.T = 20 pixels for the pattern in figure 
6.23, dimensions image 216 x 432 pixels. Right: profile of curvature along the central portion 
of the top horizontal line (to avoid boundary effects only the central portion is shown, 
indicated by the red line in the left figure). 
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6.8 Second order structure 

The second order structure of the intensity landscape is rich. To describe and to represent it. 
we will develop a precise mathematical formulation in order to do a proper analysis. 

Let us first develop some intuitive notions by visual inspection. Figure 6.25 shows a blurred 
version of an X-thorax image is depicted as a height plot. We see hills and dales, saddle 
points, ridges, maxima and minima. Clearly curvature plays an important role. 

The second order structure of the intensity landscape L(x. y; <T) in a point L(xo, Yo; O") is 
described by the second order term in the local Taylor expansion around the point (xo. yo). 

Without any loss of generalization we take (xo, Yo)= (0. 0): 

s = Series[L[x, y], {x, O, 2}, {y, 0, 2}] //Normal// shortnotation 

0 x' Lxx ( X
2 

Lxxy ) 1 2 2 ) L[O, ] +xL, + -
2
- +y --

2
- +XLxy +Ly + 4 y (x Lxxyy + 2 (xLxyy + Lyy) 

The second order term is f Lxx x2 + Lxy x y + f Lyy y2. The second order derivatives are 
the coefficients in the quadratic polynomial that describes the second order landscape. 

im = Import [ "thorax02 .gif"] [ [1, l]]; 
DisplayTogetherArray[ListDensityPlot[im], 

ListPlot3D[-gD[im, 0, 0, 2], Mesh-+ False], ImageSize-+ 320]; 

Figure 6.25 Left: An X-thorax image (resolution 2562
) and its 'intensity landscape' at er= 2 

pixels (right). 

We investigate the role of the coefficients in this second order polynomial. In the graph 
below we vary all three coefficients. In the three groups of 9 plots the value of the mixed 
coefficient Lxy has been varied (value -I, 0 and 1). In each group the 'pure' order terms L.u 

and Lyy are varied (values -I, 0 and +I). In the middle group we see concave, convex, 
cylindrical and saddle shapes. 



6. Differential structure of images 

Show[GraphicsArray[ 

Lxx Lyy 
Table[GraphicsArray[Table[Plot3D[-

2
- x' + Lxy x y + -

2
- y 2 , ( x, -3, 3), 

(y, -3, 3), PlotRange ... (-18, 18), AspectRatio ... l, 

DisplayFunction-+ Identity, Boxed-+ True, Mesh-+ False], 
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{Lxx, -1, 1}, {Lyy, -1, l}], Frame-+True], {Lxy, -1, ll]], Imagesize-+480]; 

Figure 6.26 Plots of ¥ x2 + Lxy x y+ L;r y2 . Left: Lxy = -1. Middle: Lxy = 0. Right: 
Lx y = 1. In each frame: upper row: Lx x = 1 , middle row: Lx x = 0, lower row: Lx x = -1 , left 
column: Lyy = -1 , middle column : Lyy = 0, right row: Lyy = 1. 

When three vruiables are at steak, and a visual impression may give valuable insight, one can 
exploit the trichromacy of our vision. We employ the invariant second order derivatives, 
L..v. Lvw and L.vw· This shows the triple IL."" Lvw, L.vw) as RGBColor[Lv,,, L,,w. L.vwl 
color directive settings in each pixel. The color coefficients for this function need to be 
scaled between 0 and 255. 

im = Import[ "thorax02. gif"]; o • 5; impix = im [ [l, l]] ; imcolor = im; 
min=Min[color=Transpose[{gauge2DN[impix, 2, O, a], 

gauge2DN[impix, 1, 1, o], gauge2DN[impix, O, 2, o]), (3, 1, 2}]]; 
color - min 

max= Max [color - min]; imcolor [ [ 1, l]] = N [ max 255]; 

imcolor[ [l, 4]] = ColorFunction-+ RGBColor; 
DisplayTogetherArray(Show /@ (im, imcolor}, ImageSize ... 400]; 

Figure 6.27 Left: An X-thorax image (resolution 2562 ) and a mapping of the triple of invariant 
second order derivatives (Lv v, Lv w , Lw w} on the RGB coordinates in each pixel. 
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6.8.1 The Hessian matrix and principal curvatures 

At any point on the surface we can step into an infinite number of directions away from the 
point, and in each direction we can define a curvature. So in each point an infinite number of 
curvatures can be defined. It runs out that the curvatures in opposite directions are always the 
same. Secondly, when we smoothly change direction, there are two (opposite) directions 
where the curvature is maximal, and there are two (opposite) directions where the curvature 
is minimal. These directions are perpendicular to each other, and the extremal curvatures are 
called the principal curvatures. 

The Hessian matrix is the gradient of the gradient vect01field. The coefficients form the 
second order structure matrix. or the Hessian matrix, also known as the shape operator 
[Grayl993 I. The Hessian matrix is a square, symmetric matrix: 

. ( CJ.,,L[x, y] CJ.,yL[x, y]). 
hessian2D = 

CJ,,yL[x, y] Cly,yL[x, y] ' 

The Hessian matrix is square and symmetric, so we can bring it in diagonal form by 
calculating the Eigenvalues of the matrix and put these on the diagonal elements: 

Diagona1Matrix[Eigenvalues[hessian2D]] // shortnotation 

{ { } ( Lxx + Lyy - "1 Lix + 4 Liy - 2 Lxx Lyy + L~y ) , 0} , 

{O, -} (Lxx + Lyy + -JLi, + 4 Liy - 2 Lxx Lyy + L~y)}} 

These special values are the principal curvatures of that point of the surface. In the diagonal 
fo1m the Hessian matrix is rotated in such a way, that the curvatures are maximal and 
minimal. The principal curvature directions are given by the Eigenvectors of the Hessian 
matrix, found by solving the characteristic equation I H - KI I = 0 for K. where I ... I 
denotes the determinant, and I is the identity matJix (all diagonal elements are 1, rest zeros). 

IC=.; Solve [Det [hessian2D - IC IdentityMatrix[2]] == 0, IC] I I shortnotation 

{ { K ~ } (Lxx + Lyy - ~Lix + 4 Liy - 2 Lxx Lyy + L~y)}, 

{ K-> -} (Lxx + Lyy + -JLi, + 4 Liy - 2 Lxx Lyy + L~y)}} 

The command to calculate Eigenvalues is built into Mathematica: 

{1C1 , 1C2 } =Eigenvalues [hessian2D] I I FullSimplify; 
{1C1, 1C2 } I I shortnotation 

{-} ( Lxx - -J 4 Li1 + ( Lxx - Lyy) 
2 

+ Lyy) , -} ( Lxx + -J 4 Liy + ( Lxx - Lyy) 
2 

+ Lyy) } 

The two principal curvatures are equal when 4 Lx/ + (Lyv - Lxx) 2 is zero. This happens in 
so-called umbilical points. In umbilical points the plincipal directions are undefined. The 
surface is locally spherical. The term 4 Lx/ + (Lv_v - Lxx) 2 can be interpreted as 'deviation 
from sphericalness'. 



6. Differential structure of images 120 

6.8.2 The shape index 

When the principal curvatures Kt and Kz are considered coordinates in a 2D 'shape graph', 
we see that all different second order shapes are represented. Each shape is a point on this 
graph. The following list gives some possibilities: 

When both curvatures are zero we have the flat shape. 
When both curvatures are positive, we have concave shapes. 
When both curvatures are negative, we have convex shapes. 
When both curvatures the same sign and magnitude: spherical shapes. 
When the curvatures have opposite sign: saddle shapes. 
When one curvature is zero: cylindrical shapes. 

Koenderink proposed to call the angle, of where the shape vector points to, the shape index. 
It is defined as: 

shapeindex = 1. arctan Ki +•2 
, Kt ;::: Kz . 

7r K1 -1<.2 

The expression for ~' +K, can be markedly cleaned up: 
/\1-K2 

JC'1 + JC'2 
Simplify[---] I I shortnotation 

JC'1 - JC'2 

-Lxx - Lyy 

so we get for the shape index: 

shapeindex = 1. arctan( ~ -Lxx-L,, ). 
7r L(r 2 +4L_1 y

2 -2Lx;t Lvv+L)'.\' 2 

The shape index runs from -1 (cup) via the shapes trough, rut, and saddle rut to zero, the 
saddle (here the shape index is undefined), and the goes via saddle ridge. ridge, and dome to 
the value of+ 1, the cap. 

The length of the vector defines how curved a shape is, which gives Koenderink's definition 
of curvedness: 

curvedness = f ..../Kt 2 + K22 . 

1 - .Y x 1 
2 + x,2 I I Simplify I I shortnotation 

2 

shapes= 
Table [GraphicsArray [Table [Plot3D [x1 x 2 + x 2 y', { x, -3, 3) , {y, -3, 3), 

PlotRange .... { -18, 18) , PlotLabel -> 
"x1 =" <> ToString [x1 ] <> ", x 2 =" <> ToString [x2 ] , AspectRatio-> 1, 

DisplayFunction-> Identity, Boxed-> True, Mesh-> False], 
{!Ci, 1, -1, -1), {IC1, -1, 1)])] l 
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Show[ 
GraphicsArray[{Graphics[{Arrow[{O, 0), {.7, .5)], Red, PointSize[.02], 

Point [ {. 7, • 5)]), PlotRange-+ { { -1, 1) , {-1, 1)), 
Frame -+ True, Axes -+ True, AxesLabel -+ { "x1 " , "x2 ''} , 

AspectRatio-+ l] , shapes)] , ImageSize-+ 450] ; 

0 15 

- OS 

- 0 7'1 

IJ 7S -IJ5 0.23 0 0.25 OS 0 1S I 

Figure 6.28 Left: Coordinate space of the shape index. Horizontal axis : maximal principal 
curvature K, , vertical axis : minimal principal curvature K2. The angle of the position vector 
determines the shape, the length the curvedness. Right: same as middle set of figure 6.22. 

Here is the shape index calculated and plotted for every pixel on our familiar MR image at a 
scale of a-=3 pixels: 

im = Import [ "mrl28. gif"] [ [l, l]]; 
2 

shapeindex[im_, a_] •• - ArcTan[ (-gD[im, 2, O, a] -gD[im, 0, 2, a])/ ,,. 
(Y (gD[im, 2, 0, a] 2 +4gD[im, 1, 1, a] 2 

-

2gD[im, 2, 0, a] gD[im, O, 2, a] +gD[im, 0, 2, a] 2 l) ]; 
DisplayTogetherArray[ListDensityPlot [shape index [im, fl]] & /@ Range [5] , 

ImageSize-+ 400]; 

Figure 6.29 Shape index of the sagittal MR image at a-= 1, 2, 3, 4 and 5 pixels. 
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curvedness[im_, a_] := 

.Y (gD [im, 2, 0, a] 2 + 2 gD [im, 1, 1, a] 2 + gD [im, 0, 2, a] 2); 
DisplayTogetherArray [ListDensityPlot [curvedness [im, #]] & /@Range [4], 

ImageSize .... 400] ; 

Figure 6.30 Curvedness of the sagittal MR image at O" = 1, 2, 3 and 4 pixels. 

6.8.3 Principal directions 

The principal curvature directions are given by the Eigenvectors of the Hessian matrix: 

{vx1 , vx2 } =Eigenvectors [hessian2D]; {vx1 , vx2 } I I shortnotation 

{ {
- -Lxx + Lyy + ~L~x + 4 L~y - 2 Lxx Lyy + L~y 

2 L ' 1}' xy 

Lxx - Lyy + ~L~x + 4 L~y - 2 Lxx Lyy + L~y 
{ 2 Lxy ' 1}} 

The Eigenvectors are perpendicular to each other, there inner product is zero: 

vx1. vx2 I I Simplify 

0 

The local principal direction vectors form locally a frame. We inspect how the orientations of 
such frames are distributed in an image. We orient the frame in such a way that the largest 
Eigenvalue (maximal principal curvature) is one direction, the minimal principal curvature 
direction is n/2 rotated clockwise. 

plotprincipalcurvatureframes[im_, a_] ·
Module[ {hessian, frame, frames}, 

. ( gD[im, 2, 0, a] gD[im, 1, 1, a] ) 
hessian = gD[im, 1, 1, a] gD[im, 0, 2, a] ; 

frame= {Green, Arrow[#2 - .5, #2- .5 +First[#l]], 
Red, Arrow[#2 - • 5, #2 - • 5 +Last [#1]]} & ; 

frames= Mapindexed[frame, .SMap[Eigenvectors, 
Transpose[hessian, (4, 3, 2, l}], {2}], {2}] I 

plot= ListDensityPlot[gD[im, 0, 0, a], Epilog-> frames] J 
im = Import["mr32.gif"] [ [l, 1]]; 
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plotprincipalcurvatureframes[im, l] i 

Figure 6.31 Frames of the normalized principal curvature directions at a scale of 1 pixel. 
Image resolution 322 pixels. Green: maximal principal curvature direction; red: minimal 
principal curvature direction. 

The principal curvatures have been employed by Niessen, ter Haar Romeny and Lopez in 
studies to the 20 and 30 structure of trabecular bone [TerHaarRomeny1996f, Niessen1997b, 
Lopez200a]. The local structure was defined as flat when the two principal curvatures of the 
iso-intensity surface in 30 were are both small, as rod-like if one of the curvatures was small 
and the other high, giving a local cylindrical shape, and sphere-like if two p1incipal 
curvatures were both high. See also Task 19.8. 

6.8.4 Gaussian and mean curvature 

The Gaussian curvature <]( is defined as the product of the two p1incipal curvatures: 
']( = K1 K2. 

'X = K1 K, I I Simplify I I shortnotation 

- Li_y + Lxx Lyy 

The Gaussian curvature is equal to the determinant of the Hessian matrix: 

Det [hessian2D] I I shortnotation 

- Li_y + Lxx Lyy 

The sign of the Gaussian curvature determines if we are in a concave I convex area (positive 
Gaussian curvature) or in a saddle-like area (negative Gaussian curvature). This shows 
saddle-like areas as dark patches: 
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im= Import["mr256.gif"] [[1, l]]; 
a= 5; '7<: = -gD[im, 1, 1, a] 2 

+ gD[im, 2, 0, a] gD[im, 0, 2, a]; 
DisplayTogetherArray [Append [ListDensi tyPlot I@ {'7<:, Sign ['7<:]}, 

ListContourPlot ['7<:, Contours-+ {O}]], ImageSize-+ 390]; 
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Figure 6.32 Left: Gaussian curvature 1( for a 2562 sagittal MR image at a scale of 5 pixels. 
Middle: sign of 1<. Right: zerocrossings of 1<. 

The locations where the Gaussian curvature is zero, are characterized by the fact that at least 
one of the principal curvatures is zero. The collection of locations where the Gaussian 
curvature is zero is known as the parabolic lines. It was shown by Koenderink that these 
lines play an important role in reflection and shape-from-shading. 

The mean curvature is defined as the arithmetic mean of the principal curvatures: 'H = Ki ;Kz . 

The mean curvature is related to the trace of the Hessian matrix: 

1C1 + 1C2 
'H = --

2
- 11Simplify11 shortnotation 

1 
2 (Lxx + Lyy) 

Tr [hessian2D] I I shortnotation 

Lxx + Lyy 

The relation between the mean curvature 'H and the Gaussian curvature '}( is given by 
K

2 
- 2 'H K + '}( = 0, which has solutions: 

'}-{ =. ; '7<: =. ; Solve [JC
2 

- 2 '}-{JC + '7<: " 0, JC] 

The mean curvature 'H and the Gaussian curvature '}( are well defined in umbilical points. 

The directional derivative of the principal curvature in the direction of the principal direction 
is called the extremality [Mongal995]. 

Because there are two principal curvatures, there are two extremalities, VKJ.V K1 and VKz .V Kz: 

<< Calculus'VectorAnalysis'; 
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e 1 = vx1 .Take[Grad[{x1 , 0, OJ, Cartesian[x, y, z]], 2] // FullSimplify; 
e 1 I I shortnotation 

{ 
1 ( ( -4 Lxxy Lxy - (Lxxx - Lxyy) (Lxx - Lyy) 

-
4 

Lxy Lxxx + Lxyy + --~---.-"======"""==--~ 
-.j 4 L~y + (Lxx - Lyy) 

2 

( -Lxx + ~ 4 L~y + ( Lxx - Lyy ) 
2 

+ Lyy ) ) • 

-
4 

Ly ( (-Lxx + ~ 4 L~y + (Lxx - Lyy) 
2 

+ Lyy) 

(
Lxxy + - 4 Lxy Lxyy - (Lxx - Lyy) (Lxxy - Lyyy) + Lyyy l l • 0} 

-.j 4 L~y + ( Lxx - Lyy ) 
2 

e 2 =vx2 .Take[Grad[(x2 , 0, OJ, Cartesian[x, y, z]], 2] //FullSimplify; 
e 2 I I shortnotation 

{
- _l_ ( (L L 4 Lxxy Lxy + (Lxxx - Lxyy) (Lxx - Lyy) 

4 L xxx+ xyy+ 

xy ~ 4 L~y + ( Lxx - Lyy ) 
2 

( - Lxx - ~ 4 L~y + ( Lxx - Lyy ) 
2 

+ Lyy ) l ' 
- 4 ~xy ( (-Lxx - ~ 4 L~y + ( Lxx - Lyy ) 

2 
+ Lyy ) 

(
Lxxy + 4 Lxy Lxyy + (Lxx - Lyy) (Lxxy - Lyyy) + Lyyy l l' O} 

-.j 4 L~y + (Lxx - Lyy) 
2 

The lines defined by the zerocrossings of each of these two extremalities are called the 
extremal lines [Thirion1995a, Thirion1996]. There are 4 types of these lines: 
- lines of maximum largest principal curvature {these are called crest lines); 
- lines of minimum largest principal curvature; 
- lines of maximum smallest principal curvature; 
- lines of minimum smallest principal curvature. 

The product of the two extremalities is called the Gaussian extremality (} = e1 .ez, a true 
local invariant [Thirion1996]. The boundaries of the regions where the Gaussian extremality 
changes sign, are the extremal lines. 

e 1 • e 2 I I Simplify I I shortnotation 

- (L;y (L;xx + 2 Lxxx Lxyy - 3 (L~xy + L~yy)) + 

Lxxx Lxyy ( Lxx - Lyy ) 
2 + 2 Lxxx Lxxy Lxy ( -Lxx + Lyy ) + 

(L~x Lxxy - 2 Lxy Lxyy Lyy + 2 Lxx ( Lxy Lxyy - Lxxy Lyy) + Lxxy ( 2 L;y + L:y) ) Lyyy + 

L;y L:yy) I (L;x + 4 L!y - 2 Lxx Lyy + L:y) 
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DisplayTogetherArray[ 
ListDensityPlot [Sign[e 1 • e 2 I. Derivative [nx_, ny_] [L] [x_, y_] -+ 

gD[imO, nx, ny, #] /. imO-+im]] &/@{2, 6, 10}, ImageSize-+400]; 

Figure 6.33 Left: Gaussian extremality {} = e1 ~ for a 2562 sagittal MR image at a scale of 2 
pixels (left), 6 pixels (middle) and 1 O pixels (right). 

The mesh that these lines f01m on an iso-intensity surface in 3D is called the extremal mesh. 
It has been applied for 3D image registration, by extracting the lines with a dedicated 
'marching lines' algorithm [Thirion 1996]. 

Show[Import["extremal mesh - Thirion.jpg"], ImageSize-+ 250]; 

Figure 6.34 Extremal mesh on a 30 skull from a 30 CT dataset. The extremal lines are found 
with the marching lines algorithm. From [Thirion1993]. 

6.8.5 Minimal surfaces and zero Gaussian curvature surfaces 

Surfaces that have everywhere mean curvature zero, are called minimal surfaces. There are 
many beautiful examples of such surfaces (see e.g. the Scientific Grahics Project, 
http://www.msri.org/publications/sgp/SGP/indexc.html. Soap bubbles are famous and much 
studied examples of minimal surfaces. 

From the wonderful interactive book by Alfred Gray [Grayl993] (written in Mathematica) 
we plot two members of the family of zero Gaussian curvature manifolds that can be 
constructed by a moving straight line through 3D space: 
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heltocat[t_] [u_, v_] := Cos[t] {Sinh[v] Sin[u], -Sinh[v] Cos[u], u} + 
Sin[t] {Cosh[v] Cos[u], Cosh[v] Sin[u], v}; 

moebiusstrip[u_, v_] := {Cos[u] +vCos[u/2] Cos[u], 

Sin[u] +vCos[u/2] Sin[u], vSin[u/2]); 
DisplayTogetherArray[{ParametricPlot3D[ 

Evaluate [heltocat[O] [u, v]], (u, ->r, >r}, {v, ->r, >r}, 

PlotPoints -> 30, Axes -> None, BoxRatios -> { l, l, 1}, 
PlotRange -> ({-13, 13), (-13, 13), {->r, >r}}], 

ParametricPlot3D[moebiusstrip[u, v] //Evaluate, 
(u, 0, 2 Pi}, (v, - .3, .3), PlotPoints -> {30, 4), 

Axes ->None]}, ImageSize-+ 390]; 

Figure 6.35 Surfaces with zero Gaussian curvature. Left the helicoid, a member of the 
heltocat family. Right the Moebius strip. Both surfaces can be constructed by a moving 
straight line. From [Gray1993]. 

_. Task 6.9 Which surfaces have constant mean curvature? And which surfaces 
have constant Gaussian curvature? 

_. Task 6.10 If I walk with my principal coordinate frame over an egg, something 
goes wrong when I walk through an umbilical point. What? 

6.9 Third order image structure: T-junction detection 

An example of third order geometric reasoning in images is the detection of T-junctions 
[TerHaarRomenyl99la, TerHaarRomenyl993b]. T-junctions in the intensity landscape of 
natural images occur typically at occlusion points. Occlusion points are those points where a 
contour ends or emerges because there is another object in front of the contour. See for an 
artistic example the famous painting 'the blank cheque' by Magritte. 
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Show[Import["blank cheque.jpg"], ImageSize -> 210]; 

Figure 6.36 The painting 'the blank cheque' by the famous Belgian surrealist painter Rene 
Magritte (1898 - 1967). Source: Paleta (www.paletaworld.org). 

In this section we develop a third order detector for "T-junction-likeniness". In the figure 
below the circles indicate a few particular T-junctions: 

blocks= Import["blocks.gif"] [[l, l]]; 
ListDensityPlot[blocks, 

Epilog-> (circles= {Circle[{221, 178}, 13], Circle[(l57, 169}, 13], 
Circle[{90, 155}, 13], Circle[{l48, 56}, 13], 
Circle[(l94, 77}, 13], Circle[(253, 84}, 13]}), ImageSize-> 300]; 

Figure 6.37 T-junctions often emerge at occlusion boundaries. The foreground edge is most 
likely to be the straight edge of the "T", with the occluded edge at some angle to it. The 
circles indicate some T-junctions in the image. 

When we zoom in on the T-junction of an observed image and inspect locally the isophote 

structure at a T-junction, we see that at a T-junction the derivative of the isophote curvature K 
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m the direction perpendicular to the isophotes is high. In the figure below the isophote 

landscape of a blurred T-junction illustrates the direction of maximum change of K: 

im:Table[If[y<64, 0, l] +If[y<x&&y>63, 2, l], (y, 128), (x, 128)]; 
DisplayTogetherArray[ListDensityPlot[im], 

ListContourPlot[gD[im, 0, O, 7], Contours-> 15, 
PlotRange-> (-0.3, 2.8)], ImageSize->280]; 

Figure 6.38 The isophote structure (right) of a simple idealized and observed (blurred) T
junction (left) shows that isophotes strongly bend at T-junctions when we walk through the 
intensity landscape. 

When we study the curvature of the isophotes in the middle of the image, at the location of 
the T-junction, we see the isophote 'sweep' from highly curved to almost straight for 
decreasing intensity. So the geometric reasoning is the "the isophote curvature changes a lot 
when we traverse the image in thew direction". It seems to make sense to study !:. : 
We recall that the isophote curvature K is defined as K = - Z.'' : 

gauge2D[L[x, y], 2, OJ 
x = ; x I I Simplify I I shortnotation 

gauge2D[L[x, y], 0, l] 

-2 Lx Lxy Ly + Lxx L; + L~ Lyy 

(Li+ LP 3/2 

The derivative of the isophote curvature in the direction of the gradient, !, is quite a 
complex third order expression. The formula is derived by calculating the directional 
derivative of the curvature in the direction of the normalized gradient. We define the gradient 
(or nabla: V) operator with a pure function: 

grad= (o,#, oy#) &; 

grad[L[x, y]] 
dxdw = --;:=============-.grad [x] ; 

ygrad[L[x, y]] .grad[L[x, y]] 

dxdw I I Simplify I I shortnotation 

1 

(L~+L~) 3 

(Lxxy L~ + L! (-2 L!y + Lx Lxyy - Lxx Lyy) - L~ (2 L!y - Lx (Lxxx - 2 Lxyy) + Lxx Lyy) + 

L! L~ ( - 3 L!x + 8 L!y + Lx ( Lxxx - Lxyy) + 4 Lxx Lyy - 3 L~y) + 

L! Ly ( 6 Lxy ( Lxx - Lyy ) + Lx ( - 2 Lxxy + Lyyy ) ) + 

Lx L~ ( 6 Lxy ( - Lxx + Lyy ) + Lx ( -Lxxy + Lyyy ) ) ) 
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To avoid singularities at vanishing gradients through the division by (L/ + L/)
3 

= Lw 6 we 
use as our T-junction detector T = %~ Lw 6 : . 

tjunction=dxdw (grad[L[x, y]] .grad[L[x, y]]) 3
; 

tjunction I I shortnotation 

L; Lxyy + L~ (-2 L;y + Lxxy Ly - Lxx Lyy) + 

L; Ly (6 Lxx Lxy + Lxxx Ly - Lxyy Ly - 6 Lxy Lyy) + 

Lx L~ ( - 6 Lxx Lxy + Lxxx Ly - 2 Lxyy Ly + 6 Lxy Lyy ) -

L! ( 2 L;y + 2 Lxxy Ly + Lxx Lyy - Ly Lyyy ) + 

L; L: ( - 3 L;x + 8 L;y - Lxxy Ly + 4 Lxx Lyy - 3 L~y + Ly Lyyy ) 

Finally, we apply the T-junction detector on our blocks at a rather fine scale of <T = 2 (we 
plot - tjunction to invert the contrast): 

a= 2; ListDensityPlot[ 
tjunction/. Derivative[nx_, ny_] [L] [x, y] ->gD[imO, nx, ny, a]/. 

imO ->blocks, Epilog ->circles, ImageSize -> 230]; 

0 0 0 

00 0 

Figure 6.39 Detection of T-junctions in the image of the blocks with the detector r = i:. Lw 6 . 

The same circles have been drawn as in figure 6.32. 

Compare the detected points with the circles in the input image. Note that in medical 
tomographic images (CT, MR. PET, SPECT, US) there is no occlusion present. One can 
however use third order properties in any geometric reasoning scheme, as the 'change of a 
second order property'. 

"" Task 6.11 Investigate if the expression for the T-junction r = !:. Lw 6 is affine 

invariant. 

"" Task 6.12 Another definition for a T-junction detector might be the magnitude o 

the gradient of the curvature: r = ( %~ i2 + ( %~ )2 
Lw 6 , or the derivative of the 

curvature in the v direction: %~ Lw 6 . Study and explain the differences. 
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6.10 Fourth order image structure: junction detection 

As a final fourth order example, we give an example for a detection problem in images at 
high order of differentiation from algebraic theory. Even at orders of differentiation as high 
as 4, invariant features can be constructed and calculated for discrete images through the 
biologically inspired scaled derivative operators. Our example is to find in a checkerboard 
the crossings where 4 edges meet. We take an algebraic approach, which is taken from 
Salden et al. [Saldenl999a]. 

When we study the fourth order local image structure, we consider the fourth order 
polynomial terms from the local Taylor expansion: 

pol4 = Lxxxx x 4 + 4 Lxxxy x 3 y + 6 Lxxyy x' y 2 + 4 Lxyyy x y 3 + Lyyyy y 4 i 

The main theorem of algebra states that a polynomial is fully described by its roots: e.g. 
ax2 +bx+ c = (x - xi) (x -x2). It was shown more than a century ago by Hilbert 
LHilbertl890] that the 'coincidencesness' of the roots, or how well all roots coincide, is a 
particular invariant condition. From algebraic theory it is known that this 'coincidenceness' is 
given by the discri111i11a11t, defined below (see also [Salden1999a]): 

Discriminant[p_, x_] := 
1 

(-1) .,-m(m-l) Resultant[p, a.p, x] l l 
With[ {m = Exponent[p, x]}, Cancel[--------------

Coefficient[p, x, m] 

The resultant of two polynomials a and b, both with leading coefficient one, is the product of 
all the differences a, - b1 between roots of the polynomials. The resultant is always a 
number or a polynomial. The discriminant of a polynomial is the product of the squares of all 
the differences of the roots taken in pairs. We can express our function in two vatiables 
{x, y) as a function in a single variable ~ by the substitution y-> I. Some examples: 

Discriminant [Lxx x' + 2 Lxy x y + Lyy y 2
, x] /. {y-+ l} 

-4 (-Lxy2 + Lxx Lyy) 

The discriminant of second order image structure is just the determinant of the Hessiat1 
matrix, i.e. the Gaussiat1 curvature. Here is our fourth order discriminant: 

Discriminant [pol4, x] /. {y-+ l} //Simplify 

2 5 6 ( - 2 7 Lxxxy4 Lyyyy2 + Lxxxy3 
( - 6 4 Lxyyy3 + 10 8 Lxxyy Lxyyy Lyyyy) -

12 Lxxxx Lxxxy Lxyyy ( - 9 Lxxyy Lxyyy2 + 15 Lxxyy2 Lyyyy + Lxxxx Lyyyy 2 
) -

6 Lxxxy2 
( - 6 Lxxyy2 Lxyyy2 + 9 Lxxyy3 Lyyyy + 

Lxxxx Lxyyy2 Lyyyy - 9 Lxxxx Lxxyy Lyyyy2 
) + 

Lxxxx (-54 Lxxyy3 Lxyyy2 + 81 Lxxyy 4 Lyyyy + 54 Lxxxx Lxxyy Lxyyy2 Lyyyy -

18 Lxxxx Lxxyy2 Lyyyy2 + Lxxxx ( - 2 7 Lxyyy4 + Lxxxx Lyyyy3 
) ) ) 

It looks like an impossibly complicated polynomial in fourth order derivative images, and it 
is. Through the use of Gaussian derivative kernels each separate term can easily be 
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calculated. We replace (with the operator I.) all the partial derivatives into scaled Gaussian 
derivatives: 

discr4 [im_, a_] : =Discriminant [pol4, x] I. 
(y-+ 1, Lxxxx-+ gD[im, 4, 0, a], Lxxxy-+ gD[im, 3, 1, a], 
Lxxyy-+gD[im, 2, 2, a], Lxyyy-+gD[im, 1, 3, a], Lyyyy-+gD[im, 0, 4, a]) 

Let us apply this high order function on an image of a checkerboard, and we add noise with 
twice the maximum image intensity to show its robustness, despite the high order derivatives 
(see figure 6.40). 

Note that we have a highly symmetric situation here: the four edges that come together at the 
checkerboard vertex cut the angle in four. The symmetry can be seen in the complex 
expression for discr4: only pure pat1ial derivatives of fourth order occur. For a less 
symmetric situation we need a detector which incorporates in its expression also the lower 
order pat1ial derivatives. For details see [Saldenl999a]. 

tl =Table [If [ (x > 50 && y > 50) I I (x ~ 50 && y ~ 50) , 0, 100] + 200 *Random [], 
(x, 100), (y, 100)]; 

t2 =Table [If [ (x + y - 100 > 0 && y - x < 0) I I (x + y - 100 ~ 0 && y - x ~ 0), 
0, 100] +200,.Random[], (x, 100), (y, 100)]; 

noisycheck = Transpose[Join[tl, t2]]; 
DisplayTogetherArray[ListDensityPlot/@ 

(noisycheck, discr4 [noisycheck, 5]}, ImageSize -> 400]; 

Figure 6.40 Left: A noisy checkerboard detail at two orientations. Right: the output of the 4th 

order discriminant. The detection clearly is rotation invariant, robust to noise, and there is no 
detection at corners (e.g. center of the image). 

6.11 Scale invariance and natural coordinates 

The intensity of images and invatiant features at larger scale decreases fast. This is due to the 
non-scale-invariant use of the differential operators. For, if we consider the transformation 
i:" --> i, then i is dimensionless. At every scale now distances are measured with a distance 
yai·dstick with is scaled relative to the scale itself. This is the scale-invariance. 

The dimensionless coordinate is te1med the natural coordinate. This implies that the 

derivative operator in natural coordinates has a scaling factor: ::;, --> u 11 /:x~ . 

Here we generate a scale-space of the intensity gradient. To study the absolute intensities, we 
plot every image with the same intensity plotrange of {0,40}: 
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im = Import [ "mrl28.gif"] [ [l, l J] i Block [ ($DisplayFunction = Identity}, 

pl= Table[grad = Y (gD[im, 1, 0, a] 2 + gD[im, 0, 1, a]') i 

ListDensityPlot[#, Plc,tRange-> (0, 40)] &/@{grad, agrad) 

, {a, 1, 5)]] i Show[GraphicsArray [Transpose [pl]], ImageSize-> 450] i 

Figure 6.41 The gradient of a 1282 image plotted at 5 scales, for er = 1, 2, 3, 4 and 5 pixels 
respectively. All images (in both rows) are plotted at a fixed intensity range {0,40}. Top row 
shows the regular gradient, clearly showing the decrease in intensity for larger blurring. 
Bottom row: the gradient in natural coordinates (multiplied by er). The intensity dynamic 
range is now kept more or less constant. 

Clearly the gradient magnitude expressed in the natural coordinates keeps its average output 
range. For a Laplacian scale-space stack in natural coordinates we need to multiply the 

. . a' ff'- o a' ff'- ) Laplacian with a2: ax' + as" =er( ax' + 7iY' , and so on for higher order derivative 

operators in natural coordinates. 

Block [ { $DisplayFunction = Identity}, 
pl=Table[lapl=gD[im, 2, 0, a] +gD[im, 0, 2, a]i 

ListDensityPlot[#, PlcotRange-> (-90, 60)] &/@{lap!, a 2 lapl) 
, {a, 1, 5}]] 1 Show [GraphicsArray [Transpose [pl]] , ImageSize-> 450] i 

Figure 6.42 The Laplacian of a 1282 image plotted at 5 scales, for a= 1, 2, 3, 4 and 5 pixels 
respectively. Top row: Laplacian in regular coordinates. Bottom row: Laplacian in natural 
coordinates. Top and bottom rows at fixed intensity range of {-90,60}. 
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6.12 Irreducible invariants 

Invariant differential features are independent of changes in specific groups of coordinate 
transfo1mations. Note that the transfo1mations of the coordinates are involved as the basic 
physical notion, as the particular choice of coordinates is just a mean to describe the world. 
the real situation should be independent of this choice. This is often misunderstood, e.g. 
when rotation invariance is interpreted as that all results are the same when the image itself is 
rotated. Rotation invariance is a local prope1iy, and as such a coordinate rotation and an 
image rotation are only the same when we consider a single point in the image. 

For medical imaging the most important groups are the orthogonal transformations, such as 
translations, rotations, mi1TOring and scaling, and the affine transformations, such as shear. 
There are numerous other groups of transfo1mations, but it is beyond the scope of this book 
to treat this. The differential invariants are the natural building blocks to express local 
differential structure. 

It has been shown by Hilbert [Hilbertl893] that any invariant of finite order can be 
expressed as a polynomial function of a set of irreducible invariants. This is an important 
result. For e.g. scalar images these invariants form the fundamental set of image primitives in 
which all local intrinsic properties can be described. In other words: any invariant can be 
expressed in a polynomial combination of the irreducible invadants. 

Typically, and fortunately, there are only a small number of irreducible invariants for low 
order. E.g. for 2D images up to second order there are only 5 of such irreducibles. We have 
already encountered one mechanism to find the irreducible set: gauge coordinates. We found 
the following set: 

Zeroth order 
First order 
Second order 
Third order 
etc. 

L 

Lw 
Lvv, Lvw, Lww 

4vv' ~·vw, Lvww, Lwww 

Each of these irreducible invadants cannot be expressed in the others. Any invariant property 
to some finite order can be expressed as a combination of these irreducibles. E.g. isophote 
curvature, a second order local in valiant feature, is expressed as: K = -Lv" / Lw. 
Note that the first derivative to v is missing. But Lv = 0 is just the gauge condition! There is 
always that one degree of freedom to rotate the coordinate system in such a way that the 
tangential dedvative vanishes. This gives a way to estimate the number of iffeducible 
invariants for a given order: It is equal to the number of partial derivative coefficients in the 
local Taylor expansion, minus 1 for the gauge condition. E.g. for the 4th order we have the 
partial derivatives Li•vvv, Lvvv•v, Lvvww, Lvwww, and Lwwww, so in total we have 
1 + 1+3+4 + 5 = 14 iITeducible invariants for the 4th order. 
These irreducibles form a basis for the differential invaiiant structure. The set of 5 
irreducible grayvalue invariants in 2D images has been exploited to classify local image 
structure by Schmidt et al. [Schmidtl996a, Schmidtl996b] for statistical object recognition. 
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This assigns the three RGB channels of a color image to the irreducible invariants 
{L, L..v and Lvv + L..vw} of a scalar grayvalue image for CT= 2 pixels: 

im = Import["mr256.gif"]; px "im[ [l, l]]; a= 2; 

r=gD[px, 0, 0, a];g=..JgD[pic, 1, 0, a] 2 +gD[px, 0, 1, a] 2 ; 

b•gD[px, 2, 0, a] 2 +gD[px , O, 2, a] 2
; 

255 255 
gs g --- ; b = b --- ; imtr = Transpose[{r, g, b}, {3, 1, 2)]; 

Max[g] Max[b) 

im [ ( 1, 1] ] = imtr ; im [ [ 1 , 4) ) = ColorFunction _, RGBColor ; Show [im, ImageSize - > 150] ; 

Figure 6.43 RGB color coding with the triplet of differential invariants {L, L; L;, L;,}. 

Intermezzo: Tensor notation 

There are many ways to set up an irreducible basis, but it is beyond the scope of this 
introductory book to go in detail here. We just give one example of another often used 
scheme to generate irreducible invariants: tensor notation (see for details e.g. 
[Florackl993a]). Here tensor indices denote partial derivatives and run over the dimensions, 
e.g. L; denotes the vector {Lx, Ly ), L;; denotes the second order matrix (the Hessian) 

( ~xx ~xy ) , etc. 
yx yy 

When indices come in pairs, summation over the dimensions is implied (the so-called 
Einstein summation convention, or contraction): L;, = L;:.x L;; = Lxx + Lyy , etc. So we get: 

Zeroth order 
First order 
Second order 

etc. 

L 

L;L; 

L;; 

L;J L1; 

L; L; 1 LJ 

(= L.x Lx +Ly Lv, the gradient) 
(= Lxx + Lvv, the Laplacian) 
(= L.x.x 2 + i-Lxy +Ly/, the 'deviation from flatness'), 
( = L/ Lx x + 2 Lx Ly Lx y + L/ Lyy , 'curvature') 

Some statements by famous physicists: 
- "Gauge invariance is a classic case of a good idea which was discovered before its time." 
(K. Moriyasu, An Elementary Primer for Gauge Theory, World Scientific, 1984). 
- "The name 'gauge' comes from the ordinary English word meaning 'measure'. The history 
of the use of this name for a class of field theories is very roundabout, and has little to do 
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with their physical significance as we now understand it." (S. Weinberg, "The Forces of 
Nature", Am. Scientist, 65, 1977). 
- "As far as I see, all a priori statements in physics have their origin in symmetry." (H. Wey!, 
Symmetry, 1952). 

6.13 Summary of this ch1apter 

Invariant differential feature detectors are special (mostly) polynomial combinations of 
image derivatives, which exhibit invariance under some chosen group of transf01mations. 
We only discussed invariance under translations and rotations, the most common groups, 
especially for medical images. The derivatives are easily calculated from the image through 
the multi-scale Gaussian deiivative kernels. 

The notion of invariance is crucial for geometric relevance. Non-invariant properties have no 
value in general feature detection tasks. A convenient paradigm to calculate features 
invariant under Euclidean coordinate transformations is the notion of gauge coordinates. For 
first order in 2D they are defined as a local fran1e with one unit vector w pointing in the 
direction of the gradient, the other perpendicular unit vector v pointing in the direction 
tangential to the isophote. Any combination of derivatives with respect to v and w is 
invariant under Euclidean transformations. We discussed the second order examples of 
isophote and flowline curvature, comemess and the third order example of T-junction 
detection in this framework. 

Mathematica offers a particularly attractive framework, in that it combines the analytical 
calculation of features under the Euclidean invariance condition with a final replacement of 
the analytical derivatives with numeiical Gaussian derivatives. In this way even high order 
(up to order 4) examples could be discussed and calculated. 
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He who asks a question is a fool for jive minutes; 
he who does not ask a question remains a fool forever. 

Chinese Proverb 

7.1 Limits on differentiation: scale, accuracy and order 

For a given order of differentiation we find that there is a limiting scale-size below which the 
results are no longer exact. E.g. when we study the derivative of a ramp with slope I. we 
expect the outcome to be correct. Let us look at the observed derivative at the center of the 

image for a range of scales (0.4 < IJ' < 1.2 in steps of 0.1 ): 

<< FrontEndVision'FEV'; im =Table [x, {y, 64}, {x, 64}]; 
b = Table[{a, gDf[im, 1, 0, a] [[32, 32]]}, {a, .4, 1.2, .l}]; 
ListPlot [b, PlotJoined-> True, 

0.4 

PlotRange-> All, AxesLabel-> {"a", "axL"}, 
PlotStyle ->Thickness [. 01], ImageSize -> 250]; 

8,L 

1.3 

1.25 

1.2 

J.15 

I.I 

1.05 

0.6 o.s l.2 

Figure 7.1 The measured derivative value of the function y = x is no longer correct for 
decreasing scale. For scales CT < 0.6 pixels a marked deviation occurs. 

The value of the derivative sta1ts to deviate for scales smaller then say IJ' = 0.6. Intuitively, 
we understand that something must go wrong, when we decrease the size of the kernel in the 
spatial domain: it becomes increasingly difficult to fit the Gaussian derivative function with 
its zerocrossings. We recall from chapter 4 that the number of zerocrossings of a Gaussian 
de1ivative kernel is equal to the order of differentiation. 
There is a fundamental relation between the order of differentiation, scale of the operator and 
the accuracy required [TerHaarRomeny1994b]. We will derive now this relation. 
The Fourier transform of a Gaussian kernel is again a Gaussian: 
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1 x 2 

Unprotect[gauss]; gauss[x_, a_]:= Exp[---]; 
~ 2a2 

fftgauss[OJ_, a_]= FourierTransform[gauss[x, a], x, OJ] 

The Fourier transform of the derivative of a function is -i w times the Fourier transfonn of 
the function: 

FourierTransform[c3,gauss[x, a], x, OJ] 

FourierTransform [gauss [x, a] , x, OJ] 

-i w 

The Fourier transform of the 11-th derivative of a function is l-iw)" times the Fourier 
transform of the function. Note that there are several definitions for the signs lsee the 
Mathematica Help browser for Fourier). 
A smaller kernel in the spatial domain gives rise to a wider kernel in the Fourier domain, as 
shown below for a range of widths of first order derivative Gaussian kernels (in ID): 

DisplayTogetherArray[ 
{Plot3D[fftgauss[OJ, a], {OJ, -7r, 7r}, {a, .4, 2), PlotPoints-+ 30, 

AxesLabel-+ {"OJ", "a", "fft"), Axes-+True, Boxed-+ True], 
Plot3D[gauss[x, a], {x, -7r, 7r}, {a, .4, 2), PlotPoints-+30, AxesLabel-< 

{ "x", "a", "gauss"}, Axes-+ True, Boxed-+ True]}, ImageSize -> 490]; 

Figure 7.2 Left: The Fourier transform of the Gaussian kernel is defined for Jr< w <Jr. The 
function repeats forever along the frequency axis over this domain. For decreasing scale er 
in the spatial domain the Fourier transform get wider in the spatial frequency domain. At 
some value of er a significant leakage (aliasing) occurs. Right: The spatial Gaussian kernel 
as a function of scale. 

We plot the Fomier spectrum of a kernel, and see that the function has signal energy outside 

its proper domain [-Jr, H] for which the spectrum is defined: 
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FilledPlot[ { If[-11'<1'1 <11', fftgauss[t.1, .SJ, OJ, fftgauss[t.1, .SJ}, 
{t.1, -211', 2Pi}, Fills-+ {{{ l, Axis}, GrayLevel[.S] }} , 
Ticks-+ { {-11', 11'}, Automatic}, 
AxesLabel-+ { .. ., .. , "!l(t.1, a=. S) "}, ImageSize -> 3SO]; 

(}(w,u= .S) 

139 

Figure 7.3 The definition of the leakage is the (unshaded) area under the curve outside the 
definition domain, relative to the total area under the curve. Here the definition is given for 
the 1 D Gaussian kernel. Due to the separability of Gaussian kernels this definition is easily 
extended to higher dimensions. 

The error is defined as the amount of the energy {the square) of the kernel that is 'leaking' 
relative to the total area under the curve {note the integration ranges): 

J: (I .,)2• fftgauss[t.1, a] 2 dlt.1 
error [n_, a_] = 100 ------------

J0= (I t.1) 2
" fftgauss [t.1, a] 2 dlt.1 

100 ( ( l + 2 n ) Gamma [ + + n] - 2 Ganuna [ f + n] + ( l + 2 n ) 2 Gamma [ + + n, 7T
2 a 2

] ) 

( l + 2 n) 2 Ganuna [ + + n] 

We plot this Gamma function for scales between <r = 0.2 - 2 and order of differentiation 
from 0 to 10, and we insert the 5% error line in it (we have to lower the plot somewhat (-
6%) to make the line visible): 

Block [ { $DisplayFunction = Identity} , 

pl= Plot3D [error [n, a] - 6, { a, .2, 2}, {n, 0, 10 } , PlotRange-+ All, 
AxesLabel-+ {"0 11

, 
11 n", "error %11

}, Boxed-+ True, Axes-+True]; 
p2 = ContourPlot[error[n, a], {a, .2, 2}, {n, 0, 10 } , 

Contour Shading-+ False, Contours-+ { S}] ; 
c3d = Graphics3D [Graphics [p2] [ [ l] ] I . 

Line [pts_] : > ({ Thickness [ .01], val =Apply [error, First [pts]]; 
Line [Map [Append[#, val] & , pts)] })]]; 
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Show[pl, c3d, ImageSize -> 310]; 

in 

Figure 7.4 Relation between scale CT, order of differentiation n, and accepted error (in%) for 
a convolution with a Gaussian derivative function, implemented through the Fourier domain. 

ContourPlot[error[n, a], (n, 0, 10}, (a, .1, 2}, 
ContourShading-> False, Contours-> ( l, 5, 10}, FrameLabel -> 

("Order of differentiation", "Scale in pixels"}, ImageSize -> 275]; 

JO 
Ordernf d1fferen 1i.1t1on 

Figure 7.5 Relation between scale CT and the order of differentiation n for three fixed 
accuracies for a convolution with a Gaussian derivative function, implemented through the 
Fourier domain: upper graph: 1%, middle graph: 5%, lower graph: 10% accepted error. 

The lesson from this section is that we should never make the scale of the operator, the 
Gaussian kernel, too small. The lower limit is indicated in the graph above. A similar 
reasoning can be set up for the outer scale, when the aliasing occurs in the spatial domain. 
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We summarize with a table of the minimum <r, given accuracies of 1, 5, resp 10%, and 
differentiation up to fifth order: 

TableForm[Table[ 
Prepend [(a I. FindRoot [error [n, a] == #, {a, • 6)]) & !@ { 1, 5, 10), n] , 
{n, 1, 5)], TableHeadings -> 
{None, {"Order", "a@ 1%", "a@ 5%", "a@ 10%"}}] 

Order a @ 1% a @ 5% a @ 10% 

o. 758115 0. 629205 0.56276 

2 0.874231 0.748891 0.684046 

3 0.967455 0.844186 0.78025 

4 1.04767 0.925811 0.862486 

5 1.11919 0.998376 0.935501 

.._ Task 7.1 This chapter discusses the fundamental limit which occurs by too 
much 'broadening' of the Gaussian kernel in the Fourier domain for small scales 
(the 'inner scale limit'). Such a broadening also occurs in the spatial domain, 
when we make the scale too large. A similar fundamental limit can be 
established for the 'outer scale limit'. 
Find the relation between scale, differential order and accuracy for the outer 
scale. 

The reasoning in this chapter is based on the implementation of a convolution in the Fourier 
domain. The same reasoning holds however when other choices are made for the 
implementation. In each case, a decision about the periodicity or extension of the image 
values outside the domain (see the discussion in chapter 5). determines the fundamental limit 
discussed here. 

7.2 Summary of this chapter 

There is a limit to the order of differentiation for a given scale of operator and required 
accuracy. The limit is due to the no longer 'fitting' of the Gaussian derivative kernel in its 
Gaussian envelop, known as aliasing. We derived the analytic expression for this error. 

As a rule of thumb, for derivatives up to 4th order. the scale should be not less then one pixel. 
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8.1 Regularization 

Regulaiization is the technique to make data behave well when an operator is applied to 
them. Such data could e.g. be functions, that are impossible or difficult to differentiate. or 
discrete data where a derivative seems to be not defined at all. In scale-space theory, we 
realize that we do physics. This implies that when we consider a system, a small variation of 
the input data should lead to small change in the output data. 
Differentiation is a notorious function with 'bad behaviour'. Here are some examples of non
differentiable functions: 

<< FrontEndVision' FEV'; 

Block [ { $DisplayFunction = Identity) , 

pl=Plot[Exp[-Abs[x]], {x, -2, 2), PlotStyle->Thickness[.01]]; 

p2 = Plot [Uni tStep[x - l], {x, -2, 5), PlotStyle -> Thickness[. 01]]; 

p3=Plot[Floor[4Sin[x]], {x, 0, 4>T), PlotStyle->Thickness[.01]]; 

p4 = ListPlot[ Table [Sin [ 4,.. / -{i] , {i, 2, 40)] , PlotStyle -> PointSize[. 02J]]; 

Show[GraphicsArray[{{pl, p2), {p3, p4))], ImageSize->300]; 

08 
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-1 

Figure 8.1 Some functions that can not be differentiated. 

In mathematical terms it is said that the operation of differentiation is ill-posed, the opposite 
of well-posed. Jacques Hadainard (1865-1963) [Hadainard1902] stated the conditions for 
well-posedness: 

•The solution must exist; 
•The solution must be uniquely determined; 
•The solution must depend continuously on the initial or boundary data. 
The first two requirements state that there is one and only one solution. The third 
requirement assures that if the initial or boundary data change slightly, it should also have a 
limited impact on the solution. In other words, the solution should be stable. 
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Regularization is a hot topic. Many techniques are developed to regularize the data, each 
based on a constraint on how one wishes the data to behave without sacrificing too much. 
Well known and abundantly applied examples are: 

D smoothing the data, convolution with some extended kernel, like a 'running average filter' 
(e.g. { f, f, f}) or the Gaussian; 
D interpolation, by a polynomial (multidimensional) function; 
D energy m1mm1zatio11, of a cost function under constraints [Mumford1985a. 
Mumfordl989a, Mumford1994aj; 
D fitting a function to the data (the best known examples are splines, i.e. polynomials fitting 
a curve or a surface up to some order l De Boor! 9781. The cubic splines are named so because 
they fit to third order, x3 ; 
D graduated convexity [Blake1987]; 
D deformable templates ('snakes') [Mclnerney1996]; 
D thin plates or thin plate splines [Bookstein1989] (see also 
mathworld.wolfram.comffhinPlateSpline.html): 
D Tikhonov regularization, discussed in detail in the next section. 

However, smoothing before the differentiation does not solve the ill-posedness problem. The 
crucial difference between the approaches above and scale-space theory is that the first 
methods change the data, your most valuable source of information. before the operation 
(e.g. differentiation) is applied. The derivative is taken of the regularized data. 

When we recall the importance of doing a measurement uncommitted, we surely should not 
modify our data in any way. We need a regularization of the operator, not the operand. 
Actually. the only control we have when we do a measurement is in our measurement 
device. There we can change the size, location, orientation, sensitivity profiles etc. of our 
filtering kernels. That is something completely different from the methods described above. 
It is one of the cornerstones in scale-space theory that the only control allowed is in the 
filters. As such, scale-space theory can be considered the 'theory of apertures'. 

8.2 Regular tempered distributions and test functions 

The formal mathematical method to solve the problems of ill-posed differentiation was given 
by Laurent Schwartz [Schwartz1951] (see figure 8.2) as was noted by Florack 
[Florack l 994a]. The following is adapted from [Niessen l 997a]. A regular tempered 
distribution associated with an image is defined by the action of a smooth test function on the 
image. Smooth is here used in the mathematical definition, i.e. infinitely differentiable, or 
coo. 

The class of smooth test functions ¢ (also called the Schwartz space S(IRP)) is large. It 
comprises all smooth functions that decrease sufficiently fast to zero at the boundaries. They 
are mathematically defined as the functions ¢ that are C00 and whose derivative to whatever 
order goes faster to zero to any polynomial. Mathematically stated: 

</! E S(IRD) = </! E C00 (IR.°) /\sup II x" 8;, ... in <fi(x) II< 00 
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for all m and n. As we consider any dimension here, m and n are multi-indices. 

Let us give an example of such a function. The Gaussian kernel has the required properties, 
and belongs to the class of smooth test functions. E.g. its goes faster to zero then e.g. a 13th 

order polynomial: 

Limit [x13 Exp [-x 2
], x-+ oo] 

0 

Gaussian derivatives are also smooth test functions. Here is an example for the third order: 

Limit [x 13 
Ox,x,x Exp [-x 2

] , x-+ oo] 

0 

The reason that the function e-·'
2 

suppresses any polynomial function, 1s that a series 
expansion leads to polynomial terms of any desired order: 

Series[Exp[-x2 ], {x, 0, 15)] 

2 x4 x6 xa x10 x12 x14 16 

l - x + 2 - 6 + 24 - T2Q + 720 - 5040 + O(x] 

.A. Task 8.1 Find a number of functions that fulfill the criteria for being a member of 
the class of smooth test functions, i.e. a member of the Schwartz space. 

A regular tempered distribution TL associated with image L{x) is defined as: 

The testfunction 'samples' the image, and returns a scalar value. The derivative of a regular 
tempered distribution is defined as: 

Thus the image is now 'sampled' with the derivative of the test function. This is the key result 
of Schartz' work. It is now possible to take a derivative of all the nasty functions we gave as 
examples above. We can now also take derivatives of our discrete images. But we still need 
to find the testfunction <fi. Florack LF1orackl994b] found the solution in demanding that the 
derivative should be a new observable, i.e. that the particular test function can be interpreted 
as a linear filter. 
The choice for the filter is then determined by physical considerations, and we did so in 
chapter 2 where we derived the Gaussian kernel and all its pai1ial derivatives as the causal 
non-committed kernels for an observation. 

We saw before that the Gaussian kernel and its derivatives are part of the Schwartz space. 
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Show[Import["Laurent Schwartz.jpg"], ImageSize -> 150); 

Figure 8.2 Laurent Schwartz (1915 - ). Schwartz spent the year 1944-45 lecturing at the 
Faculty of Science at Grenoble before moving to Nancy where he became a professor at the 
Faculty of Science. It was during this period of his career that he produced his famous work 
on the theory of distributions. Harald Bohr presented a Fields Medal to Schwartz at the 
International Congress in Harvard on 30 August 1950 for his work on the theory of 
distributions. Schwartz has received a long list of prizes, medals and honours in addition to 
the Fields Medal. He received prizes from the Paris Academy of Sciences in 1955, 1964 and 
1972. In 1972 he was elected a member of the Academy. He has been awarded honorary 
doctorates from many universities including Humboldt (1960), Brussels (1962), Lund (1981), 
Tel-Aviv (1981), Montreal (1985) and Athens (1993). 

So we can now define a well-posed derivative of an image L(x) in the proper 'Schwartz way': 

8· · L(x) - (-1)" J"' L(") 8 · · A.(" x) d" l1 ... l,, - - oo .r 11 ••• '11 ¥" _,, _, 

We have no preference for a particular point where we want this 'sampling' to be done, so we 
have linear shift invariance: </J(y; x) = </J(y - x). We now get the result that taking the 
derivative of an image is equivalent with the convol11tio11 of the image with the derivative of 
the test fu11ctio11: 

The set of test functions is here the Gaussian kernel and all its partial derivatives. We also 
see now the relation with receptive fields: they are the Schwartz test functions for the visual 
system. They take care of making the differentiation regularized , well posed. Here is a 
comparison list: 

Mathematics ~ Smooth test function 

Computer vision ~ Kernel. filter 

Biological vision ~ Receptive field 
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Of course, if we relax or modify the constraints of chapter 2, we might get other kernels 
(such as the Gabor kernels if we are confine our measurement to just a single spatial 
frequency). As long as they are pai1 of the Schwartz space we get well posed derivatives. 

The key point in the reasoning here is that there is no attempt to smooth the data and to take 
the derivative of the smoothed result, but that the differentiation is done prior to the 
smoothing. Differentiation is transferred to the filter. See for a full formal treatment on 
Schwartz theory for images the papers by Florack [Florackl992a, Florackl994a, 
Florackl996b, Florackl997a]. 

The theory of distribution is a considerable broadening of the differential and integral 
calculus. Heaviside and Dirac had generalized the calculus with specific applications in 
mind. These, and other similar methods of formal calculation, were not, however, built on an 
abstract and rigorous mathematical foundation. Schwartz's development of the theory of 
distributions put methods of this type onto a sound basis, and greatly extended their range of 
application, providing powe1ful tools for applications in numerous areas. 

8.3 An example of regularization 

The classical example of the regularization of differentiation by the Gaussian derivative is 
the signal with a high-frequency disturbance E cos(w x). Here E is a small number, and w a 
very high frequency. 

We compare the mathematical derivative with convolution with the Gaussian derivative. 
First we calculate the mathematical derivative: 

a. (L [x] + e Cos [w x]) 

-EwSin[xw] +L'[x] 

For large w the disturbance becomes very large. The disturbance can be made arbitrarily 
small, provided that the derivative of the signal is computed at a sufficiently coarse scale cr 
in scale-space: 

[ 
1 x2 l gx [x_, a_] : =Ox -{"2; a E-,-;;,- ; 

Simplify[J~ eCos[w (x-a)] gx[a, a] dla, {w>O, a>O}] 

1 2 2 
-e-T 0 w EwSin[xw] 
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8.4 Relation regularization ~ Gaussian scale-space 

When data are regularized by one of the methods above that 'smooth' the data, choices have 
to be made as how to fill in the 'space' in between the data that are not given by the original 
data. In particular, one has to make a choice for the order of the spline, the order of fitting 
polynomial function, the 'stiffness' of the physical model etc. This is in essence the same 
choice as the scale to apply in scale-space theory. In fact, it is becoming clear that there are 
striking analogies between scale-space regulaiization and other means of regularization. 

An essential result in scale-space theory was shown by Mads Nielsen. He proved that the 
well known and much applied method of regularization as proposed by Tikhonov and 
Arsenin ffikhonov and Arsenin 1977] (often called 'Tikhonov regularization') is essentially 
equivalent to convolution with a Gaussian kernel [Nielsenl996b, Nielsenl997a, 
Nielsenl997bj. Tikhonov and Arsenin tried to regularize functions with a fonnal 
mathematical approach from variational calculus called the method of Euler-Lagrange 
equations. 

This method studies a function of functions, and tries to find the minimum of that function 
given a set of constraints. Their proposed formulation was the following: Make a function 
E(g) = 1: (f - g)2 dx and minimize this function for g. f ai1d g are both functions of x. 

The function g must become the regularized version of f, and the problem is to find a 
function g such that it deviates as little as possible from f. The difference with f is taken 
with the so-called 2-norm, (f - g)2

, and we like to find that g for which this squared 
difference is minimal, given a constraint. 

This constraint is the following: we also like the first derivative of g to x (g,) to behave 
well, i.e. we require that when we integrate the square of gx over its total domain we get a 
finite result. Mathematically you see such a requirement sometimes announced as that the 
functions me 'mapped into a Sobolev space', which is the space of square integrable 
functions. 

The method of the Euler-Lagrange equations specifies the construction of an equation for the 
function to be minimized where the constraints are added with a set of constant factors A;, 

one for each constraint. the so-called Lagrai1ge multipliers. In our case: 
E(g) = 1: (f - g)2 + .11gx2 dx. The functional E(g) is called the Lagrai1gian and is to be 

minimized with respect tog, i.e. we require ~ ~ = 0. 

In the Fourier domain the calculations become a lot more compact. J and g are denoted as 
the Fourier trai1sforms of f and g respectively. The famous theorem by Parceval states that 
the Fourier transfonn of the square of a function is equal to the square of the function itself. 
Secondly, we need the result that the Fourier transform of a de1ivative of a function is the 
Fourier transform of that function multiplied with the factor -i w. So 

'F( a~~rl) = -i w 'F(g(x)) where 'F denotes the Fourier transform. 

For the square of such a derivative we get the factor w2 , because the square of a complex 
function z is the function z multiplied with its conjugate (i ~ -i), denoted as z*, so 
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::2 = z z* which gives the factor (-i w) (-i w)* = w2 . So finally, because the Fourier 
transform is a linear operation, we get for the Lagrangian E: 

- f 00 2 2 f 00 
-

2 2 f 00 
-

2 2 2 E(g) = 'F {J_
00

(j-g) +il.1 8x dw) = J_
00

(j-g) +i\.1 gx dw = J_
00

(j-g) +il.1 W g dw 

The regularized function g is (in the Fourier domain, only taking into account a constraint on 
the first deiivative) seen to be the product of two functions, -

1 
, 
1 

, and J, which product is a 
+Ill(;)'-' 

convolution in the spatial domain. 

The first result is that this first order regularization can be implemented with a spatial 

filtering operation. The filter l+,t'. w2 in the spatial domain looks like this: 

1 
gl [x ] = InverseFourierTransform[ , "'• x J //Simplify 

- 1 + ).1 ,,,, 

.,-Abs[x) .j!i 
).1 = 1; Plot [gl [x], (x, -3, 3}, ImageSize -> 150]; 

12 

-3 -2 -l 

U6 

04 

02 

Figure 8.3 Filter function proposed by Castanet al. [Castan1990]. 

It is precisely the function proposed by Castan et al. [Castanl990]. The derivative of this 
filter is not well defined. as we can clearly see. 

This is a first result for the inclusion of the constraint for the first order derivative. However, 
we like our function g to be regularized with all derivatives behaving nicely, i.e. square 
integrable. When we add the constraint of the second derivative, we get two Lagrangian 
multipliers, il.1 and il.2: 

- f"' - 2 2 f"' - 2 2 2 4 2 E(g)=J_
00

(j-g) +il.18, +i\.z8xxdw=J_
00

(j-g) +i\.1w g +i\.2w g dw and we 
find in a similar way for g: 

This is a regularization involving well behaved derivatives of the filtered J to second order. 
This filter was proposed by Deriche [Derichel987], who made a one-parameter family of 

this filter by setting a relation between the ii.' s: il.1 = 2 ...ff;. The dimensions of il.1 and 1l.2 

are correctly treated by this choice. When we look at the Taylor series expansion of the 
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Gaussian kernel in the Fourier domain, we see that his choice is just the truncated Gaussian 
to second order: 

1 x' 
Simplify(FourierTransform(--- E-,-;;-, x, 01], a> 0] 

--.{2; a 

0 2 w2 0 4 w4 0 6 w6 0 a ws 0 10 w10 
11 

l + -2- + -8- + ----;nJ + 384 + 3840 + O[w] 

Here is how Deriche's filters look like (see figure 8.4): 

.Al=.; .A2 =.; g2 [x_] = 

l 
InverseFourierTransform[ , 01, x] / / FullSimplify 

l + 2 -{ii 012 + .A2 01 4 

1 

2 -{):2 

[ J!i (Cash [ >.. 2~ 14 ] (J..2
114 

+ x Sign [x]) - (x + J..2
114 

Sign [x]) Sinh [ >.. 2~ 14 ] ) l 
and the graph, for A.2 = 1 : 

.A2=l;Plot[g2[x], {x, -4, 4), ImageSize->150]; 

05 

04 

03 

02 

-2 

Figure 8.4 Filter function proposed by Deriche [Deriche1987]. 

From the series expansion of the Gaussian, and the induction from the lower order 
regularization, we may develop the suspicion that by adding the constraints for all 
derivatives to behave well, we get the infinite series 

Nielsen showed that the filter ii is the Gaussian kernel indeed. The reasoning goes as 
follows. We have an infinite number of unknowns here, the "-n's, so we need to come up with 
an additional constraint that gives us just as many equations, so we can solve uniquely for 
this system of equations. We have just as many terms w2 n, so we look for a constraint on 
them. It is found in the requirement that we want scale invariance for the filters, i.e. we want 
two filters h(s) and h(t) to cascade, i.e. h(s EEl t) = h(s) 18> h(t) where 18> is the convolution 
operator. The parameters s and t are the scales of the filters. The operator EEl stands for the 
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summation at any norm, which is a compact wntmg for the definition 
a EB b =(a+ b)P = aP + bP. It turns out that for p = 2 we have the regular addition of the 
variances of the scales, as we have seen now several times before, due to the requirement of 
separability and Euclidean metric. 
Implementing the cascading requirement for the first order: 

I = I I g1v1110 
l+A1(sE!ll)w' 1+.l1(,)w2 . l+,t1(t)w' "' 

1+,t1(sEBt)w2 =1 +,li(s)w2 +,l1(t)w2 +"-1(t)A1(s)w4 and 
"-1(sEBt) = A1(s) + A.1(t) +,t1(t),l1(s)w2 . 

We equal the coefficients of powers of w both sides, so for w0 we find 
,t1 (s EB t) = ,t1 (s) + ,t1 (t) which means that ,t1 must be a linear function of scale, "-1 =as. 

Now for the second order: 

I I 
I +A1 (sE!ll) w' +"-2 (.'Elli) w 4 I +.l1 (s) w2 +,t, (s) ufl . I +.l1 (I) w' +A2 (I) w4 

giving 
,\.J(s EB t) w2 + A2(s EB t) w4 = ,t1 (s) w2 + ,t2(s) w4 + ,t1 (t) w

2 + 

,t1 (t) "-1 (s) w4 + "-1 (t) "-2 (s) w6 + "-2 (t) w4 + "-2(t) "-1 (s) w6 + "-2U) A2(s) w8 

and equating the coefficients for w4 on both sides: 

"-2 (s EB t) = "-1 (t) "-1 (s) + ,t2 (t) + A.2 (t) from which dimension we see that ,t2 must be quadratic 
. al d ' .,2 s' I 2 msc e,an ll2 = - 2- = 2"-1 . 

This reasoning can be extended to higher scale, and the result is that we get the following 

series: 

l ' ' We recall that the series expansion of the Gaussian function E-o-" w- is, using 

Series[Ei-a
2

ra
2

, {M, 0, 10}] 

0 2 w2 0 4 w4 0 6 w6 0 s ws 0 10 w10 
11 

l + -2- + -8- + 48 + 384 + 3840 +O[w] 

l+ ,r2:t2 + l~~.i + ~n4w: + ~ ~s8 + 2~1~ ~!~I) +O[w]ll 
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Figure 8.5 The Gaussian kernel (<T = 1 ). 
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When we take the arbitrary constant a = I , we get as the optimal regularization filter, where 
all derivatives are required to behave normal, precisely the Gaussian kernel! This important 
result is due to Nielsen [Nielsenl996b, Nielsenl997a, Nielsenl997bj. It has recently been 
proved by Radmoser, Scherzer and Weickert for a number of other regularization methods 
that they can be expressed as a Gaussian scale-space regularization [Radmoser1999a, 
Radmoser2000a I . 

.&. Task 8.2 Prove the equations for the coefficients A.n in the section above by 
induction. 

8.5 Summary of this chapter 

Many functions can not be differentiated. A sampled image is such a function. The solution, 
due to Schwartz, is to regularize the data by convolving them with a smooth test function. 

Taking the derivative of this 'observed' function is then equivalent to convolving with the 
derivative of the test function. This is just what the receptive fields of the front-end visual 
system do: regularization and differentiation. It is one of the key results of scale-space theory. 

A well know variational form of regularization is given by the so-called Tikhonov 
regularization: a functional is minimized in L2 sense with the constraint of well behaving 
derivatives. It is shown in this chapter, with a reasoning due to Nielsen, that Tikhonov 
regularization with inclusion of the proper behaviour of all derivatives is essentially 
equivalent to Gaussian blurring. 



9. The front-end visual system -
the retina 

We all share the same biology, regardless of ideology. (Sting) 

9.1 Introduction 

The visual system is our most important sense. It is estimated that about one quaiter of all 
nerve cells we have in our central nervous system (CNS) is related to vision in some way. 
The task of the system is not to form an image of the outside world into the brain, but to help 
us to survive in this world. Therefore it is necessary to pelform a substantial analysis of the 
2D image as a projection of the 3D world. For this reason there is much more measured than 
just the spatial intensity distiibution. We will see that the front-end visual system measures 
simultaneously at multiple resolutions, it measures directly (in the scale-space model) 
derivatives of the image in all directions at least up to fomth order, it measures temporal 
changes of intensity, the motion and disparity paran1eters, and the color differential structure. 
As a consequence, the layout of the receptors on the retina is strikingly different from the 2D 
pixel arrays in our conventional digital camera's. 

There are some excellent books giving a good introduction to the basics of the human visual 
system. A few deserve special mentioning here: 

1. "Eye, Brain and Vision" by David Hubel [Hubel1988a], a Scientific American Library 
book by this Nobel laureate about his pioneering work-of-life. This delightful book is from 
1988, and many new findings have been added since then, but as an introduction it is very 
nice reading. 
2. "The Visual System" by Semor Zeki [Zeki 1993], with more historical descriptions of the 
discoveries. Zeki, as a physician, also incorporates many clinical findings in the quest. 

3. "Principles of neural science" by Eric Kandel, James Schwa11z and Thomas Jessell (4th 

edition [Kandel2000]). An excellent and widely used textbook on neurons, perception and 
vision. 
4. "The First Steps in Seeing" by Robert Rodieck [Rodieckl998] gives a detailed account of 
the neurophysiology of the visual front-end (particularly the retina, but also the lateral 
geniculate nucleus and primary visual cortex). 
5. "Foundations of Vision", by Brian Wandell [Wandelll995] gives attention to both 
biological vision as models for processing. 
6. "Neuro-Vision Systems" by Madan Gupta and George Knopf [Guptal993a]. This is a 
convenient selection of reprints of the classical papers on vision and vision modeling. There 
are quite a few tutorial chapters added. 
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These books focus on the introduction into the visual system, and all cover the essential 
properties and details. They have excellent illustrations, and read easily for computer 
scientists and non-biologically educated people. They all contain pointers to the original 
scientific papers. 

In the next few chapters we give a summary of the properties, subsystems and possible 
models for the front-end visual system as is relevant in the context of scale-space theory. We 
discussed in the previous chapters the multi-scale notion of spatial and spatiotemporal image 
structure, these chapters are about how a biological system may deal with measurement and 
analysis of this structure. 

The most important properties in the context of this book are the following: 

1. The human visual system is a multi-scale sampling device of the outer world. It exploits 
this strategy by the creation of so-called receptive fields (RF's) on the retina: groups of 
receptors assembled in such a way that they form a set of apertures of widely varying size. 
They together measure a scale-space of every image. The hierarchical structure of the input 
image is contained in this multi-scale stack of images measured at a range of scales. We call 
this the deep structure. 

2. The human visual system does ensemble measurements: for every (perceivable) aspect of 
the stimulus it has a dedicated set of detector (receptive fields or receptive field pairs) 

They span the full measurement range of the parameter, i.e. for every location, order of 
spatial and temporal differentiation of the stimulus, for every orientation, for every velocity 
in every direction, for every disparity, etc. Amazing, but there seems to be no lack of 
hardware ('wetware') in the visual system as we shall see. 

3. The visual system is considered layered: its first stages measure the geometrical structure 
by multi-scale partial derivatives in space and time, and subsequent layers perfonn an 
analysis of the contextual structure, by perceptual grouping and hierarchical topological 
analysis, the highest stages do the cognitive, highly associative tasks. This rough division in 
processing layers is also known as front-end. intermediate or high level visual processing. 

We will now look into more detail into the neuro- and electrophysiological (and 
psychophysical) findings that corroborate this model. 

9.2 Studies of vision 

The visual system is a signal processing system with spectacular performance. First of all, 
the mere quantity of information processed in the visual system is enormous. But most 
importantly. the system is capable of extracting structural information from the visual 
picture with astonishing capabilities and with real-time speed. The visual system is one of 
the best-studied systems in the brain. 
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We are however still a long way from understanding its intricate details. In this chapter we 
focus on the first stages of vision, where data from neuro-physiology, anatomy and 
computational models give rise to a reasonable insight in the processing that happens here. 

After the measurement through the eye (the looking) our seeing is done in the visual cortex, a 
number of specialized cortical areas in the back of our brain. It has been estimated that 25% 

of all our estimated 10!0 brain cells are in some way involved with the visual process. 

A study of the visual system can be done from many different viewpoints: 
Eye physics: the study of the physical limitations due to the optics and retinal structure. 

Psychophysics: how well does the visual system perform? What are the limits of 
perception? Can it be tricked? 

Neurophysiology and -anatomy: a study of the system's wetware organization, e.g. by 
measurement of the electrical activity of single or small groups of cells, and by mapping 
neural pathways and connections. 

Functional and optical imaging: measure the functional activity of arrays or large 
clusters of cells (in chapter 8 these methods are described in Intennezzo 8.5). 

Computational models: the field of computer vision mimicking the neural substrate to 
understand and predict its behavior, and to inspire artificial vision algorithms for computer 
vision tasks. Despite many efforts and high mathematical sophistication, today we still see a 
rather limited perf01mance of computer vision algorithms in general. 

Traditionally, vision is coarsely divided into three levels: front-end. intermediate and high 
level vision. Traditionally, the visual front-end has been defined as the measurement and first 
geometric analysis stage, where associative memory and recognition do not yet play a role. It 
is becoming clear that the visual front end receives many inputs from higher levels, making 
the front-end a front-end in a context. The outputs of the front-end go to all further stages, 
the intermediate and high levels. 
In the front-end the first processing is done for shape, motion, disparity and color analysis (in 
more or less separate parallel channels). The inte1mediate level is concerned with perceptual 
grouping, more complex shape, depth and motion analysis and first associations with stored 
information. The high level stages are concerned with cognition, recognition and conscious 
perception. 

This chapter focuses on front-end v1s10n, as this is by far the best understood, and its 
principles may guide progress in the research of higher levels. High-level vision, where the 
cognitive processes take place, is a huge research area, and the most difficult one. It is the 
domain of many scientific disciplines, the cognitive sciences. 

The visual system turns out to be extremely well organized. The retinal grid of receptors 
maps perfectly to the next layers in the brain in a retinotopic fashion: neighborhood relations 
are preserved. 

Two cells, next to each other in the retina, map to cells next to each other in higher stages, 
i.e. the lateral geniculate nucleus (this structure in the brain on which most of the optic nerve 
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projects is explained in detail in chapter 7) and the primary visual cortex. We recognize a 
cascade of steps, many (or all?) of the stages equipped with extensive feedback to earlier 
stages. The mapping is not one-to-one: there is neighborhood convergence (many nearby 
cells to one) and neighborhood divergence (one cell to many nearby). 

Many models can be proposed for the assumed working of the visual front-end in its visual 
processing, and extensive literature can be found. A successful recent realization is that the 
front-end can be regarded as a multi-scale geometry engine 1Koenderinkl984a, 
Koenderinkl 990c, Koenderinkl 992d]. What does this mean? Multiscan, or multi-resolution, 
is the property of the visual system to measure and process the information at many 
simultaneous levels of resolution. It is a direct consequence of the physics paradigm that the 
world consists of objects and structure at many sizes, and they should be measured with 
apertures at these sizes, i.e. at these different resolutions. 

Our retina is not sending down the measurements of single rods and cones, but of groups of 
rods or cones. Such a (typically circular) group is called a receptive field. They come in a 
large range of sizes (minutes of arc to many degrees), and measure the world consequently 
from sharp to very bluITed. For very fine details we employ the smallest receptive fields, for 
the larger structures we employ the larger receptive fields. Moreover: it is an extra dimension 
of measurement: we sample not only the spatial and temporal axes, but also along the scale 
axis. 

The notion of geometry engine is reflected in the important contemporary model that the 
front-end visual system extracts derivatives in space and time to high order from the visual 
input pattern on the retina. 

It turns out that in the visual front-end we have separate parallel channels for shape, motion, 
color and disparity processing. In our visual system we generate an extremely redundant set 
of measurements: for every possible value of a parameter we seem to have a specialized 
receptive field. 

E.g. for every velocity, for every direction, for all sizes, necessary differential order and all 
orientations. We will study this framework in greater detail in the next sections, while 
following the visual pathway, i.e. the neuronal path of the infmmation from the retina into 
the brain. 

9.3 The eye 

The eyes are the two moveable stereo cameras to measure the light distribution reflected and 
emitted from the objects in the world around us. The image is formed upside down on the 
retina, which is the layer of light sensitive receptors in the back of our eye. The breaking 
power of lens optics is defined as I / f where f is the focal distance of the lens, and is 
expressed in diopters (metec 1 ). 

The breaking power of the eye optics cornea system is 60 diopters. This is due to both the 
cornea (43 diopter) and the lens (17 diopter), and can be varied over about 8 diopters 
(accommodation of the lens). 
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<< FrontEndVision'FEV' ; 
Show[Import["binocular projection.jpg"], ImageSize -> 300]; 

Figure 9.1 Where the visual fields of both eyes overlap we are equipped for stereo vision. 
The left and right visual field are each treated in a different hemisphere. The optic nerves 
split underway in the chiasma (from [Kandel 2000)). 

The eye has a diameter of about 17 mm. The processing of infonnation starts already in the 
retina, as this really is extended brain tissue: similar neurotransmitters are found in the retina 
as in the cortical brain tissues, and we recognize the same strictly layered structure in the 
retina as we will meet later in the visual cortex. 

9.4 The retina 

The retina consists coarsely of three layers of cells {figure 9.3). The light sensitive receptors, 
i.e. the rods and the cones, are located in the back of the eye behind the other layers. The 
reason for this is the close neighborhood to the nursing vessel bed in the back of the eye, the 
pigmented cells or chromatoid. 

The rhodopsin molecules in the receptors that are bleached by the light can in this way be 
easily replenished. The middle layer contains horizontal, bipolar and amacrine cells (figure 
9.2). The front layer contains the about one million ganglion cells, whose axons form 
together the optic nerve, the output of the retina. 

The rods and cones are packed tightly together in a more or less hexagonal array. We have 
much more rods then cones. lt is estimated that we have about 110,000.000 to 125,000,000 
rods in our retina, and about 6,400,000 cones [0sterbergl935 [. The diameter of a rod in the 
periphery is about 2.5 µm, or about 0.5 minute of visual angle. Jn the fovea, the central area 
of the retina, the receptors become smaller, about half this size (figure 9.2). 
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Show[Import["rods and cones mosaic.jpg"], ImageSize -> 300]; 

~ ~- --
' I ),# j) I . 
, t , , 1' . f •' • J .. ' , 
;· . er·~·· I~ 

.t • ' , . ~., ' ' . •. ~,,,~;>,J 
•t{ \ ~i>, t ~ ·' 

'" 

Figure 9.2 Hexagonal packing of the cones in the fovea (left) and rods/cones in the periphery 
(right) in the human retina. Scale bar= 10 µm. From: [Curcio et al. 1990]. 

Rods are only used at very dim light levels. This is rod vision, or scotopic vision. In normal 
daylight lighting conditions, they are in a completely saturated state, and have no role in 
perception. Rods are single color, so in the dim light we see no colors. 

Show[Import["retina layers.jpg"], ImageSize -> 240]; 

Figure 9.3 The cell layers of the retina. Light is coming from below (indeed, it must pass all 
the transparent cell layers!). The receptors at the top of the image touch the pigmented cells 
in the highly vascularized chromatoid layer, from which the bleached rhodopsin is 
replenished. The bipolar cells connect the receptors with the ganglion cells. The horizontal 
cells enable lateral interaction. The function of the many types of amacrine cells is unclear. 
They may have a role in motion processing (e.g. as a time-delay cell between time-coupled 
receptive fields). The ganglion cells at the bottom form the output and are the only cells in 
the retina that generate action potentials. The collective axons of all ganglion cells (about 
one million) form the match-thick optic nerve. From [Hubel 1988a]. 

The optimal sensitivity is in the green-yellow. Cones are used at normal light levels, i.e. 
photopic vision. Cones come in three types, for long (red), medium (green) and short (blue) 
wavelength sensitivity. Therefore these types are called L, Mand S cones. 
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Figure 9.5 shows an electron-microscopic cross-section of a single rod. On top the hundreds 
of disks can be seen, which contain the light sensitive rhodopsin molecules in their 
membranes. Even a single photon is capable to evoke a measurable chemical reaction. We 
need about 3-4 photons to see them consciously. The sensitivity range of the retina is 
impressive: the ratio between the dimmest and the brightest light we can see (without 

damage) is 1014 !The caught photon changes the structure of the rhodopsin molecule, after 

which a whole chain of events generates a very small voltage change at the base of the cell. 
where it is transmitted to the next layer of cells, to the horizontal and bipolar cells. A rod or 
cone does not generate an action potential. just a small so-called receptor-potential of a few 
millivolts. Much research has been done on this process; it is beyond the scope of this 
chapter to go into more detail here. A good tutorial overview can be found in [Kandel et al. 
2000, 4th edition]. 

Show[Import["rod disks . jpg"], ImageSize -> 400] i 

Figure 9.4 Electron-microscopic cross-section of a rod. At the right in the image are the disks 
with the membrane vesicles (V}, which contain the visual pigment, i.e. the rhodopsin 
molecules. Ci = cilium, the small connecting tube between the top (outer segment) and 
bottom part (inner segment) of the cell. Mi = mitochondrion. Bl = basal body. Scale bar: 400 µ 
m. From the beautifully illustrated book [Kessel & Kardon 1979) . 

The receptors are not evenly distributed over the retina: in the fovea (about 1.5 mm or 5.2 
degrees in diameter: one degree of visual angle is equal to 288 µm on the retina), we find an 
area free of rods of a roughly 250 - 750 µm. 

The number of cones in the fovea is approximately 200,000 at a density of 17,500 

cones/degree2. The rod free area is about 1°, thus there are about 17,500 cones in the central 

rod-free fovea. The density distribution of rods and cones as a function of eccentricity is 
given in figure 9.5. 
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Show[ 
Import["retinal receptor distribution according to Osterberg.jpg"], 
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Figure 9.5 Density of retinal rods and cones as a function of eccentricity. The central area of 
the fovea is rod-free. From [0sterberg 1935]. 

9.5 Retinal receptive fields 

The story of the receptive fields begins in the early fifties, when Torsten Wiesel and David 
Hubel (see figure 9.6) in the lab of Stephen Kuffler began to map the responses of individual 
ganglion cells in the retina. 

ims = Import/@ {"David Hubel. jpg", 
"Torsten Wiesel. jpg", "Stamp Nobelpris1981. jpg"}; 

Show [GraphicsArray [ims], ImageSize -> 380]; 

Figure 9.6 David Hubel (left) and Torsten Wiesel (middle). They received the Nobel Prize in 
Medicine for their pioneering work in front-end vision neurophysiology in 1981 (right, stamp 
Sweden 1984). 

When a very small electrode (an extruded hollow glass tube filled with electrolyte, or a tiny 
tip of a platinum-iridium electrode, tipsize 0.5 - 1 µm), one can record the action potentials 
of the ganglion cells. In the dark these cells typically 'fire' with frequencies in the 1-2 KHz 
range. Surprisingly, when the retina was illuminated as a whole (with a 'Ganzfeld'), the firing 
rates of ganglion cells did not change, no matter the level of illumination. 

It was not until Hubel and Wiesel discovered that the sensitivity came in receptive field 
sensitivity patterns. Only a tiny spot of illumination could increase or decrease the firing rate 
of the ganglion cell (see figure 9.7). 

This important discovery started a first understanding of the retinal function. 
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Show[Import["retinal RF response.jpg"], ImageSize -> 400); 
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Figure 9.7 Retinal receptive field behavior on light stimulation. First row: In the dark the 
ganglion cell fires at the spontaneous firing rate. Third row: With homogeneous light 
stimulation the average firing rate is the same as in the dark. Second row: central spot 
stimulation. Bottom row: peripheral annular stimulation of the surround. Left: on-center/off
surround receptive field, right: off-center/on-surround receptive field. From [Hubel1988]. 

The area that needed to be illuminated to change the firing rate of a ganglion cell turned out 
to be roughly circular, contained about 30-50 receptors and had a sensitivity pattern which 
was excitatory (frequency-increasing) in the center and inhibitory (frequency-decreasing) in 
the surround in 50% of the cells. This sensitivity pattern was called on-center center
surro11nd. The group of receptors and the single ganglion cell they project on, as well as the 
intermediate cells in between, is called a receptive field. The retinal receptive fields are all of 
the center-surround type. 

For the other 50% of the ganglion cells the situation was reversed: off-center center-surround 
receptive fields. Receptive fields were found at many sizes, from a few minutes of arc to 
many degrees in diameter. One degree of visual angle corresponds to 200 micron distance on 
the retina. 

It turns out that the receptive field structure is a general feature in the human senses when a 
spatial distribution of a signal is to be measured. The organ of Corti on the basilar membrane 
in the inner ear displays receptive fields, and we find them on the skin, where tactile 
receptive fields are formed of Pacini pressure-sensitive receptors (see figure 9.8). 

It is interesting to note that the output of the central nervous system (CNS) exploits a similar 
strategy of 'blurring' the output of force development in a muscle. Typically, a motor neuron 
drives several hundreds of muscle fibres by sprouting of its axon terminals. The set of 
roughly circular and widely overlapping set of muscle fibres belonging and its driving motor 
neuron is called a 'motor unit'. 
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Show[Import["Tactile RFs.jpg"], ImageSize -> 380]; 
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Figure 9.8 Tactile receptive fields of Pacini pressure-sensitive receptors found in the skin 
have a center surround structure, strongly overlap and come at a wide range of sizes. From 
[Kandel et al. 2000]. 

Hubel and Wiesel expanded these experiments, and started to measure the receptive fields of 
many other cells in the visual pathway, such as in the Lateral Geniculate Nucleus (LGN: a 
nucleus in the midbrain, discussed in detail in the next chapter), the primary visual cmtex 
(V 1 ), and higher. 

9.6 Sensitivity profile measurement of a receptive field 

DeAngelis, Ozahwa and Freeman at UC Berkeley (among others) have been able to carefully 
measure the receptive field sensitivity profiles of visual pathway cells in cats and monkeys 
(figure 9.7, see also the demonstrations on the Freeman's Lab website: 
http://neurovision.berkeley.edu/). They recorded the firing of the cell by inserting a very thin 
needle into the cell's soma (Greek: soma= body), and recorded the increase or decrease in 
firing rate dependent on the stimulation of its receptive field with a tiny light stimulus. They 
first found the general coarse location of the receptive field by manually searching the retina 
with a small light stimulus, and then mapped quantitatively the area belonging to it. Small 
light and dark flashes were randomly presented on a gray background in fast sequence (see 
figure 9.9). 
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Figure 9.9 Reverse correlation stimulus. Small dot stimuli with positive or negative contrast 
are presented sequentially. The images shown are row by row the individual frames of the 
presented sequence. 

For every recorded action potential it was checked what has been the location of the stimulus 
before, and the bin of that location was incremented. By dividing the time after the stimulus 
in discrete time slots, for every slot a mapping could be made, thus giving a spatio-temporal 
mapping, i.e. a series of maps of the RF over time (see also chapter 20). This mapping 
technique is known as 'reverse correlation' [de Boerl968, MacLeanl994, Ringachl997] (see 
figure 9. JO). 

The advantages of the reverse correlation are plentiful. The stimulus is a white noise 
stimulus at low intensity, thus operating in the linear domain of the receptive field. The 
correlation between the stimulus and the response is calculated fast. Many stimuli can be 
given in a short peiiod of time. The number of stimuli is larger then the number of responses, 
thus the reversing of the time axis in the analysis pays off. 

An alternative way is to stimulate with white noise with a so-called maximum-length 
sequence. This has the advantage that numerous locations are stimulated at once, and one has 
a better chance of mapping also the weaker outer borders of the receptive field profile. For a 
more detailed discussion, see [DeValois2000], [DeAngelis1995a]. 

A web tutorial from Ralph Freeman's lab is available at 
neurovi sion. berkel ey. edu/Demonstrations/V SOC/teaching/ AA_RFtutorial. html. 
Recently, registrations from 2 neighbouring neurons could be recorded [DeAngelis1999a]. 

.& Task 9.1 With the smallest foveal cone having a diameter of 2.5 µm, what is the 
diameter of the smallest dot you can see from a distance of 10 meters? 
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... Task 9.2 Find literature with actual measurements of the sensitivity profiles of 

the receptive fields in the retina, and cortical cells. 

Show[Import["reverse correlation.gif"], ImageSize-> 250]; 

Figure 9.10 Diagram of the reverse correlation stimulus method. Top: Sequence of stimulus 
images as a function of time, time running to the right. During the stimulus presentation 
action potentials (the spike train) are recorded with a needle electrode from a single cell in 
LGN or cortex. For every spike recorded the causing stimulus is found (reversed in time). 
The time after the stimulus is divided into time bins (slots). If a spike occurs e.g. 25 ms after 
a certain stimulus, it is recorded at the appropriate position in the 2D post stimulus-time 
histogram (PSTH) at that particular time instance after the stimulus (25 ms in this case). This 
25ms-PSTH is depicted vertically in the space-time cube in the middle, and in the lower left 
of the figure. It shows the spatial sensitivity profile of the receptive field of the cell. The set of 
PSTH's for the different time slots form the frames of the temporal behaviour of the cell's 
receptive field sensitivity profile. They can be presented as a movie, showing the dynamic 
change of the sensitivity profile of the receptive field. From [DeAngelis1995a]. 

In the retina only center-surround RF profiles are found, which are static. They are found at a 
wide range of sizes (from a few minutes of arc to tens of degrees). See an example profile in 
figure 9.1 l. This wide range of sizes is the retinal mechanism to sample at a range o 
resolutions simultaneously at the very first stage of the measurement. This is the multi-scale 
sampling strategy. 
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Show[Import ["RF center surround cell. jpg"], ImageSize -> 150]; 

Figure 9.11 Center-surround sensitivity profile on the retina of a receptive field of a cell 
recorded in the lateral geniculate nucleus (LGN) in the thalamus (a midbrain structure). Cells 
in the LGN have the same center-surround structure as retinal ganglion cells. Tiny light 
measurement probe stimulation, measurement is a spatial post-stimulus-time histogram at 
31 x 31 locations. This is an on-center RF: the cell increased firing when stimulated in the 
central area (green), and decreased firing when stimulated in the surround area (red). Field 
of view: 3 degrees of arc. From [DeAngelis et al. 1995]. 

9.7 Summary of this chapter 

The eye optics project the visual world upside down on the retina, which is a receptor layer 
with about 150 million receptors. The retina is brain tissue, and already performs a 
substantial processing in its 4 main types of layered cells (receptors, hoiizontal, amaciine 
and ganglion cells). The receptors come in two types, about 120 million rods for scotopic 
(dim light) black and white vision, and about 30 million cones for photopic (b1ight light) 
color vision. There are three colors cones: types sensitive for light of large wavelengths 
(red), medium wavelengths (green) and sh01t wavelengths (blue). The horizontal cells collect 
the receptor output over a roughly circular area, the bipolar cells transport the signals to the 
collecting large ganglion cells. 

The axons of the about 1 million ganglion cells form together the match-thick optic nerve, 
the output of the retina The optic nerve directly projects to the thalamus in the midbrain, 
ganglion cells looking to the right visual field to the left brain, and vice versa. The amaciine 
cells, which come in a Iich vaiiety, are assumed to play a role in motion detection. 

The contiibution of a set of receptors to the firing of a single ganglion cell is spatially 
organized in a receptive field. A positive sensitivity in the receptive field means that a small 
illumination here increases the firing frequency of the ganglion cell, and vice versa. 
Receptive fields in the retina are 50% on-center/surround and 50% off-center/surround: a 
circular sensitivity profile at a wide range of sizes, reflecting the scale-space multi-scale 
sampling at the retinal level. Receptive fields can be accurately recorded with single cell 
electrophysiological methods. A classical technique is the method of RF mapping by reverse 
correlation. 



10. A scale-space model for the 
retinal sampling 

10.1 The size and spatial distribution of receptive fields 

Why do we have all these different sizes? Smaller receptive fields are useful for a sharp high
resolution measurement, while the larger receptive fields measure a blurred picture of the 
world. We denote the size of the receptive field its scale. We seem to sample the incoming 
image with our retina at many scales simultaneously. 

In regular man-made camera's we don't encounter this situation: we only measure at the 
highest possible resolution, the basic pixel of the grid. If we want a lower resolution, e.g. for 
computational efficiency, we blur the sharp image with a computer afterwards. There must 
be an important reason to have this multi-scale capability at the retina. The different 
resolutions are each sampled as an independent new measurement, and they somehow need 
to be available simultaneously. The retina measures a whole stack of images: a scale-space 
(x-y-a-, recall figure 2.12). We will study this in detail in the chapter on the deep structure of 
images. 

The measurement at the different scales gives an interesting model for the retinal receptive 
field dist1ibution. The debate on why we have such an inhomogeneous receptor and receptive 
field distribution is old and still not set definitively (see e.g. l Williams 1991]). In this chapter 
we present a model from a scale-space perspective. 

We already have seen that the density of receptors is not homogeneous. We may assume here 
the piinciple of scale-invariance, expressed in words as: 'all scales should be dealt with in 
identical fashion, there is no preference whatsoever for a particular scale'. 

This means, that also the processing capability for each scale is equal. and that we may 
expect the same processing capacity for each scale, i.e. the same amount of wetware. This 
boils down to an equal amount of receptive fields for each scale. The densest stacking in 2D 
of equal circular areas is a hexagonal array. Because the eyes can move, it is most logical to 
put the hexagonal arrays of receptive fields all in the center of the retina, superimposed on 
each other so we get a lot of overlap. 

The hexagonal tiling of the smallest scale receptive fields fom1s the fovea. The slightly 
larger scale receptive field array has just as many receptive fields, but naturally these cover a 
slightly larger area. And so on, till we encounter the largest scale, of which the receptive 
fields just cover the whole available retinal area. 
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Figure 10.1 shows the stack model for receptive fields in the retina, as 01iginally proposed by 
Lindeberg and Florack 1Lindebergl992]. It is based on the earlier ground-breaking 
'sunflower' model by Koenderink [Koenderinkl984d, Koenderinkl988d]. 

<< FrontEndVision'FEV'; 
Block [ {$DisplayFunction = Identity, r = 2 Cos [>r I 6] } , circles = 

Flatten [(#Append [Table [(Cos [t] + r Cos [i], Sin [t] + r Sin [i], l}, 
(i, 0, 2>r- .1, >r/3}], (Cos[t], Sin[t], l}]) &/@ 

(Exp[Range[.l, 2, .3]]-.5), l]; 
par= ParametricPlot3D[Evaluate[circles], (t, 0, 2 >r}]; 

shadowplot = Shadow[par, XShadow-> False, 
YShadow-> False, BoxRatios -> { 1, 1, 1}, Boxed-> False, 
ViewPoint -> (0.646, -3.424, 1.057}, ZShadowPosition-> - .5]; 

oe = Exp[l.9] - .5; ob= Exp[.l] - .5; 
lines = Graphics3D [ 

{Line[((O, 0, oe}, (0, 0, OJ)], Line[((O, 0, O}, {oe (r+l), 0, oe}}], 
Line [ { { 0, 0, 0} , { - oe ( r + 1) , 0, oe}}] } ] ; 

$TextStyle = {FontFamily-> "Helvetica", FontSize-> 11}; 
text = Graphics3D [Text ["fovea", { 6, 0, ob}] ] ; 

] ; Show[ {shadowplot, lines, text}, ImageSize -> 230]; 

Figure 10.1 Stack model for the retinal receptive fields. Every scale is treated equally, so we 
assume equal hardware, i.e. numbers of receptive fields in a hexagonal sampling grid for 
that scale. The receptive field arrays are all centered in the middle of the retina, and are 
superimposed. One receptor contributes to all receptive fields that overlap with its position. 
The smallest array (the lowest set in the stack) forms the fovea; the largest array just covers 
the whole retina. From [Lindeberg and Florack 1992]. 

The model states that we do a simultaneous sampling of the image at all scales. We have 
scale-invariance, i.e. there is no preference for a particular scale. So what we measure, and 
send to the brain, is not a single image, but a stack of images, a scale-space. The very first 
stage of the visual front-end is a multi-scale sampling device. Figure IO.I shows an example 
of such a stack of images. 

This model is in good accordance with recent measurements of receptive field sizes. One 
measure for this size is the extent of the dendritic tree of the retinal ganglion cells. Dendrites 
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are the tree branch-like structures on the ganglion nerve cell body, collecting infmmation 
from neighbouring cells that have synaptic connections on them. These dendrites can be 
measured accurately with sophisticated single cell dying techniques, after which the dendritic 
tree can be measured under the microscope (figure 10.3). There are different types of 
ganglion cells in the retina. The two most prominent families are the midget and the parasol 
ganglion cells. The midget cells are smaller, and project to the two layers with small cell 
bodies (the parvo-cellular layers; Latin: parvus = small) in the Lateral Geniculate Nucleus 
(LGN). The parasol cells are larger, and project to the magno-cellular layer in the LGN 
(Latin: ma.gnus= large). 

im = Import [ "lena64. gif"] [ [l, l]]; 
{ yres, xres} = Dimensions [ im] ; max = Max [ im] ; 
Block [ {$DisplayFunction = Identity}, 

bottom= Graphics3D[ListPlot3D[Table[O, {yres}, {xres}], 
Map [GrayLevel, im /max, {2)], Mesh-> False, Boxed-> False]]; 

stack= Table[blur = gD[im, O, O, i]; Graphics3D[ListPlot3D[ 
Table[i 10, {yres}, {xres}], Map[GrayLevel, blur /max, {2}], 
Mesh->False, Boxed->False]], {i, 1, 6)]]; 

scalespace =Show[ {bottom, stack}, BoxRatios-> {l, 1, 1.3), 
ViewPoint -> {l.081, -3.236, 0.930), Boxed-> True, 
DisplayFunction -> $DisplayFunction, ImageSize -> 250]; 

Figure 10.2 The retina does not measure a single image, but a series of images at different 
scales, here depicted as a scale-space stack of the famous 'Lena' image. The scale is the 
vertical dimension. The structural relations over scale in this stack are referred to as the 
'deep structure' of an image. 

As we shall see, the midget ganglion cells are involved in the measurement of shape and the 
parasol ganglion cells are involved in the measurement of motion. 
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Show[ 
Import ["midget and parasol dendritic trees. jpg"], ImageSize -> 250]; 
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Figure 10.3 Dendritic tree size of retinal midget and parasol ganglion cells. The dendritic tree 
size is believed to be a representative measure for the receptive field size. Note the 
substantial range of sizes. Midget cells project to parvo-cellular LGN cells, parasol cells 
project to magno-cellular LGN cells. From [Rodieck 1998]. 

The model predicts that the RF diameter of both parasol and midget cell dendritic tree should 
increase linearly with eccentricity, which (in the macaque, a short-tailed asian monkey often 
used for research) is indeed found. When the measured area is plotted on the retina where 
they have been measured, we clearly see the increase of size with eccentricity (see figure 
10.4). 

Show[Import ["RF eccentricity graph. jpg"], ImageSize -> 300]; 
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Figure 10.4 Largest diameter of the dendritic tree area in macaque retina as a function of 
eccentricity for midget and parasol ganglion cells. The size increases linearly with larger 
eccentricity, in accordance with the model. The upper cloud depicts the larger parasol 
ganglion cells, the lower cloud the smaller midget cells. From [Rodieck1998]. 

Note that there is a lack of small receptive fields at large eccentricities, as expected. We lack 
visual acuity at higher eccentricity due to a lack of small receptive fields. Acuity is so low, 
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that e.g. at 60 degrees eccentricity it is impossible to judge the number of fingers another 
person is sticking up at lm distance! 

Another observation is the lack of large receptive fields in the center, which the model 
predicts. This may be due to the fact that in the fovea it is increasingly difficult to inject the 
ganglion cell bodies with dye, due to the small size. The receptor density in the fovea is so 
high that in that area the ganglion cell bodies are displaced to slightly more outward areas, 
introducing another bias. 

DisplayTogetherArray[ 
Show/@ Import/@ {"midget cell rfs. jpg", "parasol cell rfs. jpg"}, 
ImageSize -> 500] i 

Figure 10.5 Retinal locations of different sizes of dendritic trees of midget (left) and parasol 
(right) retinal ganglion cells in the macaque. From [Rodieck 1998]. 

Very few large receptive fields populate the retina, making it statistically unlikely to hit them 
in the dye injection process. 

Note also that the dendritic areas substantially overlap, another prediction by the model. 
Koenderink [Koenderink1984d] was the first to propose this retinal stack model, or 
'sunflower model'. 

Clearly, the distribution of dendritic tree sizes as a function of eccentricity {figure 10.4) 
shows a linear relation with eccentricity. From psychophysics it is well known that many 
important parameters change linearly with eccentricity. Among these parameters are 
decreasing visual acuity, decreasing velocity discrimination thresholds, and decreasing stereo 
acuity thresholds. 
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The scatter plot (figure 10.4) shows a linear upper and a lower bound to the distribution of 
cells. This can be understood by considering the receptive field sizes at a particular 
eccentricity: the smallest receptive field size is of those cells whose total area is just reaching 
the location at hand. Smaller receptive fields can only be found at smaller eccentricity. All 
the other receptive fields of this size, and all smaller ones, are at a smaller eccentricity. Only 
larger receptive fields are found when we go to greater eccentricity. The largest receptive 
field size at our specific location are bound by the fixed number of receptive fields in our 
tiling grid per scale that fits on the outer bounds of the retina. 

Show[Import["on-off ganglion locations.gif"], Imagesize -> 330]; 
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Figure 10.6 The distance between on- and off center receptive fields is significantly smaller 
than the distance between on-center or off-center cells proper. This implies that at a single 
retinal position the visual system measures both signs simultaneously. From [Dowling1987]. 
See also [Wassle1991]. 

10.2 A scale-space model for the retinal receptive fields 

A good model for the sensitivity profile of a center-surround RF turns out to be Laplacian of 
the Gaussian kernel (figure 10.7). This is the well-known ·Mexican Hat' function, given by 
&G &G 1 ~~ -a, + ,,,,-- where G is the Gaussian kernel given by G(x, y: <T) = -2 , e---,;;r. 

:X uy- TrU-
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Actually, it is a striking finding that we don't look with our rods and cones proper. but with 
receptive fields composed of (up to hundreds of) rods and cones in a center-surround 
structure. In scale-space terminology we 'observe the Laplacian of the world'. Figure 7.8 
shows what is actually transmitted from the retina into the brain. 

lapl =.; lapl [x_, y_, a_] : = 
D[gauss[x, a] gauss[y, a], {x, 2}] +D[gauss[x, a] gauss[y, a], {y, 2}]; 

Block[ {$DisplayFunction =Identity}, a= 11; 
SetOptions[PlotJD, PlotPoints ->SO, Shading-> True, Mesh-> False]; 
{pl, p2} =Plot3D[Evaluate[-lapl[x, y, #]], {x, -a, a}, {y, -a, a}] &/@{l, 3}; 
{p3, p4} =Plot3D[Evaluate[lapl[x, y, #]], {x, -a, a}, {y, -a, a}] &/@{l, 3}; 
{pS, p6} = 
DensityPlot[Evaluate[-lapl[x, y, #]], {x, -a, a}, {y, -a, a}] &/@{l, 3}; 

{p7, p8) = Densi tyPlot [Evaluate[lapl [x, y, #]], {x, -a, a}, {y, -a, a}] & /@ 
{l, 3) l; 

Show[GraphicsArray[{{pl, p2, p3, p4), {pS, p6, p7, pB})], ImageSize-> 480]; 

Figure 10.7 The Laplacian of Gaussian function as a mathematical model for the retinal 
center-surround receptive field sensitivity profile. Top row: small scale and large scale 'on'
center-surround (left) and 'off'-center-surround receptive field. Bottom row: The sensitivity 
profiles plotted as density functions. This is the model for the measurement depicted in the 
previous chapter in figure 9.12. 

_. Task 10.1 If we do not seem to measure the zeroth and first order spatial 

derivatives on the retina, hoes do we then perceive a linear gradient in intensity? 

We know already for a decades that the center-surround receptive fields are causing specific 
'illusions'. Two examples are given below. When we observe an image with a stepwise 
intensity ramp, we notice brighter regions at the side of the step closest to the darker region. 
and darker regions at the side of the step closest to the brighter region. When we take the 
Laplacian of the image. it becomes clear that the up- and downswing of the intensity can be 
nicely explained by taking the second order derivative (see figure 10.9). 

im=Import [ "Utrecht256 .gif"] [ [l, l]]; 
Block[{$DisplayFunction=Identity}, 
{pl,p2}=Table[ShadowPlot3D[# laplaceG[x,y,a], {y, -15, 15}, {x, -15, 
15}, 
PlotLabel-+"a = "<>ToString[a],ShadowPosition->-#],{a,2,6}]& /@ {l,-1}; 
{p3,p4}=Table[ListDensityPlot[# (gD[im,2,0,a]+gD[im,0,2,a])],{a 
,2,6}]& /@ {l,-1}]; 



174 J 0.2 A scale-space model for the retinal receptive fields 

Show[GraphicsArray[{pl,p3,p2,p4}],ImageSize->360]; 
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Figure 10.8 What the off-center surround (top row) and off-center surround (third row) 
receptive fields in the retina and LGN 'see' at a range of respective scales of the RF's. 
Scales: i.T = 2 to 6 pixels. 

steps= Table[Ceiling[x/ 30], {y, 100}, {x, 300}]; 
lap!= - (gD[steps, 2, O, 3] + gD[steps, O, 2, 3]); 
DisplayTogetherArray[ 

{ListDensityPlot [#, AspectRatio-+ Automatic, Epilog -> 
{Hue[!], Line[{{O, 50}, (300, 50}}]}] &/@{steps, lap!}, 

ListPlot [# [ [15]] , AspectRatio -> • 2, PlotJoined ->True, 
Axes-+ False] & /@{steps, lap!}}, ImageSize-+ 400, 

Frame -> True, Epilog-+ {Text [ "brighter\tdarker", (0. 25, 0 .25}], 
Arrow[(.18, .28}, (.21, .35}], Arrow[(.32, .28}, (.28, .35}]}]; 

Figure 10.9 Left: linear intensity step function, resolution 300x100. Human observers see 
brighter intensities near an edge opposite to the darker region (a phenomenon known as the 
Craik-O'Brien-Cornsweet illusion, see www.sloan.salk.edu/~thomas/coce.html for the 
colored version of this illusion). Right: stepfunction convolved with a Laplacian center
surround receptive field. 
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The 2D case of this phenomenon is the illusion of the grey squares in the Heimann grid (see 
figure 10.10): 

hermanngrid = Table[If[(Mod[x, 45] :S 32) && (Mod[y, 45] :S 32), -1, 1], 
(y, 300), (x, 300)]; {lapll, lapl2} = 

(gD[hermanngrid, 2, 0, #] + gD[hermanngrid, 0, 2, #]) & /@ (4, .5); 
DisplayTogetherArray[ListDensityPlot /@ {hermanngrid, -lapll, lapl2}, 

ImageSize -> 350] ; 
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Figure 10.1 O Left: the famous Hermann grid. Resolution 3002
. When we fixate on a crossing 

of the white lines, we notice grey spots at all other crossings. They do not appear at the 
crossing where we fixate. Middle: the grid convolved ('observed') with a Laplacian off-center 
receptive field of scale CT= 4. The grey spots are a result of the Laplacian filtering at a coarse 
scale. Right: idem for a Laplacian center-surround filter of small scale, CT= 0.5 pixels. At the 
fovea (the fixation point) we have small scales of the receptive fields, and do not observe the 
grey spots. For many more illusions, see Al Seckel's illusions webpage 
http://www.illusionworks.com. 

It is unknown why we have this center-surround receptive field structure at the retinal level. 
The traditional textbook explanation stresses the notion of lateral inhibition, the 
enhancement of structure relative to its neighboring structures. 

Another often used model is the representation of the receptive field sensitivity function of 
retinal ganglion cells as a difference of Gaussians function. It is unclear however (other than 
heuristic) how the two widths of the Gaussians should be taken. 

Plot[gauss[x, 2]-gauss[x, 25], (x, -40, 40), ImageSize->150]; 
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Figure 10.11 Model of the on-center receptive field function as a difference of Gaussian 
function. 
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The diffusion equation ~7 = D..L may be interpreted (in a sloppy sense) as 8 L = 8 t D.. L, so 
integration of both sides of the equation over all scales gives a robust measurement in the 
sense that the exclusion of some scales due to damage to some ganglion cells or axons in the 
optic nerve may be less noticeable for the subsequent layers. 

Another interpretation of the diffusion equation may be the conjecture that on the retina we 

actually sample ~7 , the change in luminance when we change locally our ape1ture 
somewhat. 

It is an intriguing observation that the multi-scale sampling of the outside world by the visual 
system takes place at the retinal level. All scales are separately and probably independently 
sampled from the incoming intensity distribution. In multi-scale computer vision applications 
the different scale representations are generated afterwards. The fundamental reason to 
sample at this very first retinal level is to observe the world at all scales simultaneously. 

In chapters 13-15 we will discuss the resulting scale-space proper, i.e. the deep structure of 
the scale-space. 

im = Import ["TL pgm"] [ [ 1, 1] ] 1 lapl = ( gD [ im, 2, 0, #] + gD [ im, 0, 2, #] ) & 1 

stack= lapl /@Table[E', (~, 0, 3, .15}] 1 

DisplayTogetherArray [ {ListDensityPlot /@Take [stack, 7] , 
ListDensityPlot /@Take[stack, (8, 14}], 
ListDensityPlot /@Take [stack, -7]}, ImageSize -> 490] 1 

Figure 10.12 Stack of on-center receptive field function outputs as an exponential function 
of scales. 
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10.3 Summary of this chapter 

The retina is a multi-scale sampling device. A scale-space inspired model for the retinal 
sampling at this very first level considers the retina as a stack of superimposed retinas each at 
a different scale. As a consequence of scale invariance, each scale is likely to be treated 
equally, and be equipped with the same processing capacity in the front-end. This leads to 
the model that each retina at a particular scale consists of the same number of receptive fields 
that tile the space, which may explain the linear decrease of acuity with eccentiicity. 

The reasons why we do a center-surround sampling on the retina are not yet clear. The 
sampling of the Laplacian at a range of scales may be necessary for efficient analysis in a 
proper multi-scale 'deep structure' setting, much of which strategy still needs to be 
discovered. 

DisplayTogetherArray[ 
ListDensityPlot /@ {im, Plus@@ stack, lapl [1. 5]}, ImageSize -> 400]; 

Figure 10.13 Left: original image, resolution 217x181. Middle: Sum of the Laplacians of the 
original image at 16 scales (exponentially sampled between 1 and 20 pixels, see fig. 10.12). 
Right: The Laplacian of the original image at a scale of 1.5 pixels. 



11. The front-end visual system 
LGN and cortex 

What we see depends mostly 011 what we look for. (Kevin Eikenberry, 1998) 

11.1 The thalamus 

From the retina, the optic nerve runs into the central brain area and makes a first 
monosynaptic connection in the Lateral Geniculate Nucleus, a specialized area of the 
thalamus (see figure 11.1 and 11.2). 

< < FrontEndVision .. FEV .. ; 
Show(Import("optic pathway bottom view.jpq"], ImaqeSize -> 360]; 
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Figure 11 .1 The visual pathway. The left visual field is processed in the right half of the brain, 
and vice versa. The optic nerve splits half its fibers in the optic chiasm on its way to the LGN, 
from where an extensive bundle projects to the primary visual cortex V1. From [Zeki 1993]. 

The thalamus is an essential structure of the midbrain. Here, among others, all incoming 
perceptual information comes together, not only visual , but also tactile, auditory and balance. 
It is one of the very few brain structures that cannot be removed surgically without lethal 
consequences. 

The thalamus structure shows a precise somatotopic (Greek: soma= 1.Twµa =body; topos = T 

OHO<; = location) mapping: it is divided in volume parts, each part representing a specific part 
of the body (see [Sherman and Kock 1990)). 
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Show [GraphicsArray[ {Import ["thalamus coronal cut. jpg"] , 
Import["thalamus location.jpg"]}], 

GraphicsSpacing-+ - .15, ImageSize -> 500] ; 
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Figure 11.2 Location of the left and right thalamus with the LGN in the brain. Left: coronal 
slice through the middle of the brain. The thalamus is a very early structure in terms of brain 
development. Right: spatial relation of the thalamus and the cerebellum. From [Kandel et al. 
2000]. 

Show[Import["thalamus with LGN.jpg"], ImageSize -> 450]; 
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Figure 11.3 Subdivisions of the thalamus, each serving a different part of the body. Note the 
relatively small size of the LGN at the lower right bottom. From [Kandel et al. 2000]. See also 
biology.about.com/science/biology/library/organs/brain/blthalamusimages.htm. 
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11.2 The lateral geniculate nucleus (LGN) 

On the lower dorsal part of each thalamus {figure 11.3) we find a small nucleus, the Lateral 
Geniculate Nucleus (LGN). The left and right LGN have the size of a small peanut, and 
consist of 6 Iayers {figure 11.4). 
The top four layers have small cell bodies: the parvo-cellular layers (Latin: parvus = small). 
The bottom two layers have larger cell bodies: the magno-cellular layers (Latin: magnus = 

big). Each layer is monocular. i.e. it receives ganglion axons from a single eye by 
monosynaptic contact. 

Show[Import["LGN layers.jpg"], ImageSize -> 210); 

Figure 11.4 The 6 layers of the left Lateral Geniculate Nucleus (LGN). The top four parvo
cellular layers have relatively small cell bodies; the bottom two magno-cellular layers have 
relatively large cell bodies. The central line connects the cells receiving projections from the 
fovea . Cells more to the right receive projections from the nasal visual field , to the left from 
the temporal visual field . Note that the first and third layers are somewhat shorter on the right 
side: this is due to the blocking of the nasal visual field by the nose. Size of the image: 3 x 4 
mm. From [Hubel 1988a]. 

The order interchanges from top to bottom for the parvo-cellular layers: left, right, left, right, 
and then a change for the magno-cellular layers: right, left. The magno-cellular layers are 
involved in mediating motion information; the parvo-cellular layers convey shape and color 
information. It is so far not known whm is separated in the 2 pairs of parvo-cellular layers or 
in the pair of magno-cellular layers. Some animals have a total of 4 or eight layers in the 
LGN, and some patients have been found with as many as 8 layers. 

The mapping from retina to the LGN is very precise. Each layer is a retinotopic {Greek: 
topos = location) map of the retina. The axons of the cells of the LGN project the visual 
signal further to the ipsi -lateral (on the same side) primary visual cortex through a wide 
bundle of projections, the optic radiations. 
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What does an LGN cell see? In other words, what do receptive fields of the LGN cells see? 

Electrophysiological recordings by DeAngelis, Ohzawa and Freeman [DeAngelis I 995a] 
learned that the receptive field sensitivity profile of LGN cells are the same as those of 
retinal ganglion cells: circular center-surround receptive fields, with on-center and off-center 
in equal numbers, and at the same range of scales. 

However, the receptive fields are not constant in time, or stationary. With the earlier 
mentioned technique of reverse correlation DeAngelis et al. were able to measure the 
receptive field sensitivity profile at different times after the stimulus. The polarity turns out 
to change over time: e.g. first the cell behaves as an on-center cell, several tens of 
milliseconds later it changes into an off-center cell. 

A good model describing this spatio-temporal behavior is the product of a Laplacian of 
Gaussian for the spatial component, multiplied with a first order derivative of a Gaussian for 

the temporal domain. In formula: ( ~X + ~X ) ~~ . So such a cell is an operator: it takes the 
first order temporal derivative. 

Show[Import["Spatiotemporal LGN.jpg"], ImageSize -> 180] i 
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Figure 11.5 Spatio-temporal behavior of a receptive field sensitivity profile of an LGN cell. 
Delays after the stimulus shown 15-280 ms, in increments of 15 ms. Each figure is the 
sensitivity response profile at a later time (indicated in the lower left corner in ms) after the 
stimulus. Read row-wise, first image upper left. Green is positive sensitivity (cell increases 
firing when stimulated here), red is otherwise. From [DeAngelis et al. 1995a]. See also their 
informative web-page: http://totoro.berkeley.edu. 

As in the retina, 50% of the center-surround cells is on-center, 50% is off-center. This may 
indicate that the foreground and the background are just as important (see figure I 1.6) . 



183 11.2 The lateral geniculate nucleus ( LGN) 

DisplayTogetherArray[ 
Show/@ Import/@ {"utensils! .jpg", "utensils2. jpg"), ImageSize -> 400] ; 

Figure 11.6 Foreground or background? The same image is rotated 180 degrees. From 
[Seckel2000). 

11.3 Corticofugal connections to the LGN 

It is well known that the main projection area after the LGN for the primary visual pathway 
is the primary visual cortex in Brodmann's area 17 (see figure 11.8). The fibers connecting 
the LGN with the cortex form a wide and conspicuous bundle, the optic radiation (see figure 
11. J 0). The topological structure is kept in this projection, so again a map of the visual field is 
projected to the visual cortex. A striking recent finding is that 75% of the number of fibers in 
this bundle are corticofugal ('from the cortex away') and project from the cortex to the LGN! 
The arrow in figure 11. 7 shows this. 

Show[Import["visual pathway projections with arrow.gif"], 
ImageSize -> 260] ; 

Figure 11.7 75% of the fibers in the optic radiation project in a retrograde (backwards) 
fashion, i.e. from cortex to LGN. This reciprocal feedback is often omitted in classical 
textbooks. Adapted from Church land and Sejnowski [Churchland1992a) . 

This is an ideal mechanism for feedback control to the early stage of the thalamus. We 
discuss two possible mechanisms: 
l. Geometry-driven diffusion; 
2. Long-range interactions for perceptual grouping. 
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A striking finding is that most of the input of LGN cells comes from the primary cortex. This 
is strong feedback from the primary cortex to the LGN. 

It turns out that by far the majority of the input to LGN cells (nearly 50%) is from higher 
cortical levels such as VI, and only about 15-20% is from retinal input (reviewed in 
[ Guillery l 969a, Guillery l 969b, Guillery I 97 I])! 

It is not known what exact purpose these feedback loops have and how these retrograde {i.e. 
backwards running) corticofugal (i.e. fleeing from the cortex) projections are mapped. It is 
generally accepted that the LGN has a gating I relay function [Shermanl993a, 
Shermanl996a]. 

One possible model is the possibility to adapt the receptive field profile in the LGN with 
local geometric information from the cortex, leading e.g. to edge-preserving smoothing: 
when we want to apply small scale receptive fields at edges, to see them at high resolution, 
and to apply large scale receptive fields at homogeneous areas to exploit the noise reduction 
at coarser scales, the model states that the edginess measure extracted with the simple cells in 
the cortex may tune the receptive field size in the LGN. At edges we may reduce the LGN 
observation scale strongly in this way. See also [Mumfordl99la. Mum:fordl992a, Wilson 
and Keil 1999]). 

In physical terminology we may say that we have introduced local changes in the 
conductivity in the {intensity) diffusion. Compare our scale-space intensity diffusion 
framework with locally modulated heat diffusion: at edges we have placed heat isolators. so 
at those points we have reduced or blocked the diffusion process. In mathematical terms we 
may say that the diffusion is locally modulated by the first order derivative information. 

Of course we may modulate with any order differential geometric information that we need 
in modeling this geometry-driven, adaptive filtering process. We also may modulate the size 
of the LGN receptive field, or its shape. Making a receptive field much more elongated along 
an edge than across an edge, we can smooth along the edge more then we smooth across the 
edge. thus effectively reducing the local noise without compromising the edge strength. In a 
similar fashion we make the receptive field e.g. banana-shaped by modulating its curvature 
so it follows even better the edge locally, etc. 

This has opened a large field in mathematics, in the sense that we can make up new, 
nonlinear diffusion equations. 

This direction in computer vision research is known as PDE {partial differential equation) 
-based computer vision. Many nonlinear diffusion schemes have been proposed so far. as 
well as many elegant mathematical solutions to solve these PDE's. We will study an 
elementary set of these PD E's in chapter 21 on nonlinear, geometry-driven diffusion. 

An intriguing possibility is the exploitation of the filterbank of oriented filters we encounter 
in the visual cortex {see next chapter). The possibility of combining the output of differently 
oriented filters into a nonlinear perceptual grouping task is discussed in chapter 19. 
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Show[Import["Al-02-brodmann.gif"], ImageSize -> 400]; 
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Figure 11.8 In 1909 Brodmann published a mapping of the brain in which he identified 
functional areas with numbers. The primary visual cortex is Brodmann's area 17. From these 
maps it is appreciated that the largest part of the back part of the brain is involved in vision. 
From [Garey1987]). 

11.4 The primary visual cortex 

The primary visual cortex is the next main station for the visual signal. It is a folded region 
in the back of our head, in the calcarine sulcus in area 17. In the visual cortex we find the 
first visual areas, denoted by VI, V2, V3, V4 etc. 

The visual cortex (like any other part of the cortex) is extremely well organized: it consists of 
7 layers, in a retinotopic, highly regular columnar structure. The layers are numbered I 
(superficial) to 7 (deep). The LGN output arrives in the middle layers 4a and 4b, while the 
output leaves primarily from the top and bottom layers. 
The mapping from the retina to the cortical surface is a log-polar mapping (see for a 
geometrical first principles derivation of this transformation LSchwartzl994, Florack2000d]). 

Show[Import["Vl cortical cross section.jpg"], ImageSize -> 320]; 

Figure 11.9 Horizontal slice through the visual cortex of a macaque monkey. Slice stained for 
cell bodies (gray matter). Note the layered structure and the quite distinct boundaries 
between the visual areas (right of b and left of c). (a) V1, center of the visual field. (b) V1, 
more peripheral viewing direction. (c) Axons between the cortical surfaces, making up the 
gross connection bundles, i.e. the white matter. From [Hubel1988a]. 
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If the retinal polar coordinates are (p, 8), with are related to the Cartesian coordinates by 
x = p cos(fJ) and y = p sin(fJ) , the polar coordinates on the cortex are described by (pc, f.lc), 
with pc = In( :U ) and f.lc = q fJ. Here po is the size of the fovea, and I/ q is the minimal 

angular resolution of the log-polar layout. The fovea maps to an area on the cortex which is 
about the same size as the mapping from the peripheral fields. 

• Task 11 .1 Generate from an arbitrary input image the image as it is mapped 
from the retina onto the cortical surface according to the log-polar mapping. 
Hint: Use the Mathematica function Listlnterpolation [iml and resample 

the input image according to the new transformed coordinates, i.e. fine in the 
center, coarse at the periphery. 

Show[Import["Calcarine fissure.jpg"], ImageSize -> 350]; 
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Figure 11 .10 LGN pathway. From the LGN fibers project to the primary visual cortex in the 
calcarine sulcus in the back of the head. From [Kandel et al. 2000] . 
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The cortical columns fom1 a repetitive structure of little areas, about 1 x 1 mm, which can be 
considered the visual 'pixels'. Each column contains all processing filters for local 
geomehical analysis of that pixel. Hubel and Wiesel [Hubell962] were the first to record the 
RF profiles of V 1 cells. They found a wide variety of responses, and classified them broadly 
as simple cells, complex cells and hypercomplex (end-stopped) cells. 

11.4.1 Simple cells 

The receptive field sensitivity profiles of simple cells have a remarkable resemblance to 
Gaussian derivative kernels, as was first noted by Koendeiink [Koenderinkl984a]. He 
proposed the Gaussian derivative family as a taxonomy (structured name giving) for the 
simple cells. 

point=Table[O, (128), {128}]ipoint[[64, 64]] =10001 
Block [ { $DisplayFunction = Identity} , 

pl =Table [ListContourPlot [gD [point, n, m, 15], ContourShading-> True], 
{n, 1, 2), {m, 0, l}]]; 

Show [GraphicsArray [pl], GraphicsSpacing-> 0, ImageSize -> 160]; 

Figure 11.11 Gaussian derivative model for receptive profiles of cortical simple cells. Upper 

left: ~~ , upper right: 8~~ , lower left: ~S , lower right: /x~Y . 
Daugman proposed the use of Gabor filters in the modeling of the receptive fields of simple 
cells in the visual cortex of some mammals. In the early 1980's a number of researchers 
suggested Gaussian modulated sinusoids (Gabor filters) as models of the receptive fields of 
simple cells in visual cortex 1Marceljal980, Daugmanl980J Watsonl982a, Watsonl987a, 
Pribram 1991]. A good discussion on the use of ce11ain models for fitting the measured 
receptive field profiles is given by [Wallisl994]. 

Recall figure 2.11 for some deiivatives of the Gaussian kernel. DeAngelis. Ohzawa and 
Freeman have measured such profiles in single cortical cell recordings in cat and monkey 
IDeAngelis l 993a, DeAngelis 1995a, DeAngelis l 999a]. 

Figure 11.12 shows a measured receptive field profile of a cell that can be modeled by a 
second order (first order with respect to x and first order with respect to t) derivative. 
Receptive fields of simple cells can now be measured with high accuracy (see also Jones and 
Palmer [Jones 1987 ]). 
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Show[ 
Import["RF simple cell XT separable series.jpg"], ImageSize -> 400] i 

Figure 11.12 Receptive field profile of a V1 simple cell in monkey as a function of time after 
the stimulus. Times in 25 ms increments as indicated in the lower left corner, 0-275 ms. Field 
of view 2 degrees. From [DeAngelis et al. 1995a]. 

Show[(Import["Simple cell Vl XT.gif"], Graphics[ 
(Text [ "x->", (5., -5.}], Text [ "tt", (-8., 8)]}]}, ImageSize -> 120] i 

Figure 11.13 Sensitivity profile of the central row of the sensitivity profile in the images of 
figure 11.12 as a function of time (vertical axis, from bottom to top). This cell can be modeled 
as the first (Gaussian) derivative with respect to space and the first (Gaussian) derivative 
with respect to time, at an almost horizontal spatial orientation. From [DeAngelis et al. 
1995a]. 

As with the LGN receptive fields, all the cortical simple cells exhibited a dynamic behaviour. 
The receptive field sensitivity profile is not constant over time, but the profile is modulated. 

In the case of the cell depicted in figure 11.12 this dynamic behaviour can be modeled by a 
first order Gaussian deiivative with respect to time. Figure 11.13 shows the response as a 
function of both space and time. 

11.4.2 Complex cells 

The receptive field of a complex cell is not as clear as that of a simple cell. They show a 
marked temporal response, just as the simple cells, but they lack a clear spatial structure in 
the receptive field map. They appear to be a next level of abstraction in terms of image 
feature complexity. 
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Block [ ($DisplayFunction =Identity}, pl= 
Table [Show [Import ["complex " <> ToString [i] <> ".gif"]], {i, 1, 30)]] I 

Show[GraphicsArray[Partition[pl, 6]], ImageSize -> 260] 1 

• • • • • 

Figure 11.14 Complex cell receptive field sensitivity profile as a function of time. Only bright 
stimulus responses are shown. Responses to dark stimuli are nearly identical in spatial and 
temporal profiles. Bright bar response. XY domain size: 8 x 8 degs. Time domain: O - 150 
msec in 5 msec steps. Orientation: 90 degrees. Bar size: 1.5 x 0.4 degrees. Cell 
bk326r21.02r. Data from Ohzawa 1995, available at 
neurovision. berkeley. ed u/DemonstrationsNSOC/teachi ng/RF/Complex. htm I. 

One speculative option is that they may be modeled as processing some (polynomial?) 
function of the neighboring derivative cells, and thus be involved in complex differential 
features (see also 1Alonsol998a]). 

As Ohzawa states: "Complex cell receptive fields are not that interesting when measured 
with just one stimulus, but they reveal very interesting internal structure when studied with 
two or more stimuli simultaneously" (http://neurovision.berkeley.edu/). 

11.4.3 Directional selectivity 

Many cells exhibit some form of strong directional sensitivity for motion. Small bars of 
stimulus light are moved across the receptive field area of a rabbit directionally selective 
cortical simple cell from different directions (see figure 11.15). 

When the bar is moved in the direction of optimal directional response, a vigorous spiketrain 
discharge occurs. When the bar is moved in a more and more deviating direction, the 
response diminishes. When the bar is moved in a direction perpendicular to the optimal 
response direction, no response is measured. The response curve as a function of orientation 
is called the orientation tuning curve of the cell. 
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Show[Import["directional cell response.jpg"], ImageSize .... 210] i 
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Figure 11 .15 Directional response of a cortical simple cell. This behaviour may be explained 
by a receptive field that changes polarity over time, as in figure 11 .12, or by a Reichart-type 
motion sensitive cell (see chapters 11 and 17). From [Hubel 1988]. 

The cortex is extremely well organized. Hubel and Wiesel pioneered the field of the 
discovery of the organizational structure of the visual system. 

Show[Import["hypercolumn model.jpg"], ImageSize -> 340] J 
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Figure 11.16 Left: projection of the LGN fibers to the cortical hypercolumns in the primary 
visual cortex V1. A hypercolumn seems to contain the full functionality hardware for a small 
visual space angle in the visual field, i.e. the RF's of the cells in a hypercolumn are 
represented for both eyes, at any orientation, at any scale, at any velocity, at any direction, 
and any disparity. In between the simple and complex cells there are small 'blobs', which 
contain cells for color processing. From [Kandel et al. 2000]. 
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One of their first discoveries was that the left and 1ight eye mapping originates in a kind of 
competitive fashion when, in the embryonal phase, the fibers from the eye and LGN start 
projecting to the cortical area. They injected a monkeys eye with a radioactive tracer, and 
waited a sufficiently long time that the tracer was markedly present, by backwards diffusion 
through the visual axons, in the cortical cells. They then sliced the cortex and mapped the 
presence of the radioactive tracer with an autoradiogram (exposure of the slice to a 
photographic film). Putting together the slices to a cortical map, they found the pattern of 
figure 11.17. 

Show(Import("ocular dominance columns.gif"], ImageSize -> 200]; 

Figure 11 . 17 Ocular dominance bands of monkey striate cortex, measured by voltage 
sensitive dyes. One eye was closed, the other was visually stimulated. The white bands 
show the activity of the stimulated eye, the dark bands indicate inactivity. The bands are on 
average 0.3 mm wide. Electrode recordings (dots) along a track tangential to the cortical 
surface in layer 4 revealed that the single neuron response was consistent with the optical 
recording. From [Blasdel1986]. 

11.5 Intermezzo: 
Measurement of neural activity in the brain 

Single cell recordings have for decades been the method of choice to record the activity of 
neural activity in the brain. The knowledge of the behaviour of a single cell however does 
not give information about structures of activity, encompassing hundreds and thousands of 
intercormected cells. We have now a number of methods capable of recording from many 
cells simultaneously, where the mapping of the activity is at a fair spatial and temporal 
resolution (for an overview see [Papanicolaou2000a]). The concise overview below is 
necessaiily short, ai1d p1imarily meant as a pointer. 

Electro-Encephalography (EEG) 

Electro-encephalography is the recording of the electrical activity of the brain by an an-ay of 
superficial (on the scalp) or invasive (on the cortical surface) electrodes. Noninvasive EEG 
recordings are unfortunately heavily influenced by the inhomogeneities of the brain and 
scalp. 
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For localization this technique is less suitable due to the poor spatial resolution. Invasive 
EEG studies are the current gold-standard for localizations, but they come at high cost, and 
the results are often non-conclusive. 

Magneto-Encephalography (MEG) 

The joint activity of many conducting fibers leads to the generation of tiny magnetic fields 
lin the order of femtoTesla = 10-15 T). The high frequency maintained over a so-called 
Josephson junction, a superconducting semiconductor junction, is influenced by minute 
magnetic fields, forming a very sensitive magnetic field detector. Systems have now been 
built with dozens of such junctions close to the skull of a subject to measure a local map of 
the magnetic fields tsee figure 11.18). 

Show[Import["KNAW MEG system.jpg"], ImageSize -> 420]; 

Figure 11.18 The 150-channel MEG system at the KNAW-MEG Institute in Amsterdam, the 
Netherlands (www.azvu.nl/meg/). 

DisplayTogetherArray[ 
Show/@ Import /@ { "MEG-1. gif", "MEG-2. gif"}, ImageSize -> 400] ; 

Figure 11.19 Epileptic foci (in red) calculated from magneto-encephalographic measurements 
superimposed on an MRI image. From: www.4dneuroimaging.com. 
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From these measurements the inducing electrical currents can be estimated, which is an 
inverse process. and difficult. Though the spatial resolution is still poor (in the order of 
centimeters), the temporal resolution is excellent. 

The calculated location of the current sources (and sinks) are mostly indicated on an 
anatomical image such as MRI or CT (see figure 11.19). 

Functional MRI (fMRI) 

Most findings about cotiical cell properties, mappings and connections have been found by 
electrophysiological methods in experimental animals: recordings from a single cell, or at 
most a few cells. Now, functional magnetic resonance imaging fMRI is able, non-invasively, 
to measure the small differences in blood oxygenation level when there is more uptake in 
capillary vessels near active neurons (BOLD fMRI: blood oxygen level dependence). fMRI 
starts to shed some light on the gross functional cortical activity, even in human subjects and 
patients, but the resolution (typically 1-3 mm in plane. 2-5 mm slice thickness) is still far 
from sufficient to understand the functionality at cellular level. 

Functional MRI is now the method of choice for mapping the activity of cortical areas in 
humans. Knowledge of the functionality of certain brain areas is especially crucial in the 
preparation of complex brain surgery. Recently high resolution fMRI has been developed by 
Logothetis et al. using a high fieldstrength magnet (4.7 Tesla) and implanted radiofrequency 
coils in monkeys [Logothetis1999]. 

DisplayTogetherArray[ 
Import/@{"fMRI 01 Max Planck.jpg", "fMRI 02 Max Planck.jpg"}, 
ImageSize -> 370]; 
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Figure 11.20 Functional magnetic resonance of the monkey brain under visual stimulation 
Blood Oxygen Level Dependence (BOLD) technique, field strength 4.7 Tesla. Left: Clearly a 
marked activity is measured in the primary visual cortex. Right: different cut-away views from 
the brain of the anesthetized monkey. Note the activation of the LGN areas in the thalamus. 
Measurements done at the Max Planck Institute, TObingen, Germany, by Nikos Logothetis, 
Heinz Guggenberger, Shimon Peled and J. Pauls [Logothetis1999]. Images taken from 
[http://www.mpg.de/pri99/pri 19_99.htm]. 
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Optical imaging with voltage sensitive dyes 

Recently, a powerful technique is developed for the recording of groups of neurons with high 
spatial and temporal resolution. A voltage-sensitive dye is brought in contact with the 
cortical surface of an animal lcat or monkey) [Blasdell986, Ts'o et al. 1990]. The dye 
changes its fluorescence under small electrical changes from the neural discharge with very 
high spatial and temporal resolution . The cortical surface is observed with a microscope 
through a glass window glued on the skull. For the first time we can now functionally map 
large fields of (superficial) neurons. For images, movies and a detailed description of the 
technique see: http://www.weizmann.ac.il/brain/images/lmageGallery.html. Some examples 
of the cortical activity maps are shown in the next chapter. 

Positron Emission Tomography (PET) 

With Positron Emission Tomography imaging the patient is injected a special radioactive 
isotope that emits positrons, which quickly armihilate with electrons after their emission. 

A pair of photons is created which escape at opposite directions, stimulating a pair of 
detectors in the ring of detectors around the patient. The line at which the annihilation took 
place is detected with a coincidence circuit checking all detectors. The isotopes are often 
short-lived, and are often created in a special nearby cyclotron. The method is particularly 
powerful in labeling specific target substances, and is used in brain mapping, oncology, 
neurology and cardiology. Figure 11.21 shows an example of brain activity with visual 
stimulation. 

Show[Import["PET brainfunction 02.gif"], ImageSize -> 240]; 

Figure 11.21 Example of a transversal PET image of the brain after visual stimulation. From 
www.crump.ucla.edu/lpp/. Note the marked activity in the primary visual cortex area. 
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11.6 Summary of this chapter 

The thalamus in the midbrain is the first synaptic station of the optic nerve. It acts as an 
essential relay and distiibution center for all sensorial information. The lateral geniculate 
nucleus is located at the lower part, and consists of 4 parvocellular layers receiving input 
from the small retinal midget ganglion cells, and 2 layers with magnocellular cells, receiving 
input from the larger retinal parasol cells. The parvocellular layers are involved with shape. 
the magnocellular cells are involved in motion detection. 

No preference for a certain scale induces the notion of treating each scale with the same 
processing capacity, or number of receptive fields. This leads to a scale-space model of 
retinal RF stacking: the set of smallest receptive fields form the fovea, the larger receptive 
fields each form a similar hexagonal tiling. With the same number of receptive fields they 
occupy a larger area. The superposition of all receptive field sets creates a model of retinal 
RF distribution which is in good accordance with the linear decrease with eccentricity of 
acuity, motion detection, and quite a few other psychophysical measures. 
The receptive field sensitivity profile of LGN cells exhibits the same spatial pattern of on
and off-center surround cells found for the retinal ganglion cells. However, they also show a 
marked dynamic behaviour, which can be modeled as a modulation of the spatial sensitivity 
pattern over time by a Gaussian derivative. The scale-space model for such behaviour is that 
such a cell takes a temporal derivative. This will be further explored in chapters 17 and 20. 

In summary: the receptive fields of retinal, LGN and cortical cells are sensitivity maps of 
retinal stimulation. The receptive fields of: 
- ganglion cells have a 50% on-center and 50% off-center center-surround structure at a wide 
range of scales; 
- LGN cells have a 50% on-center and 50% off-center center-surround structure at a wide 
range of scales; they also exhibit dynamic behaviour, which can be modeled as temporal 
Gaussian derivatives; 
- simple cells in V l have a structure well modeled by spatial Gaussian derivatives at a wide 
range of scales, differential order and orientation; 
- complex cells in V l have not a clear structure: their modeling is not clear. 

The thalamic strnctures (as the LGN) receive massive reciprocal input from the cortical areas 
they project to. This input is much larger then the direct retinal input. The functionality of 
this feedback is not yet understood. Possible mechanisms where this feedback may play a 
role are geometry-driven diffusion, perceptual grouping, and attentional mechanisms with 
information from higher centers. This feedback is one of the primary targets for computer 
vision modelers to understand, as it may give a clue to bridge the gap between local and 
global image analysis. 



12. The front-end visual system 
cortical columns 

"Better keep yourself clean and bright; 
you are the window through which you must see tbe world" 

-George Bernard Shaw 

12.1 Hypercolumns and orientation structure 

Hubel and Wiesel were the first to find the regularity of the orientation sensitivity tuning. 
They recorded a regular change of the orientation sensitivity of receptive fields when the 
electrode followed a track tangential to the cortex surface (see figure 12.1). 

« FrontEndVision • FEV'; 
Show[ 

Import ["orientation tangential track 01. jpg"], ImageSize -> 320]; 
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Figure 12.1 A tangential electrode tracking along the surface of the cortex displays a neat 
ordering of orientation selectivity of the cortical receptive fields. Horizontally the electrode 
track distance is displayed, vertically the angle of the prominent orientation sensitivity of the 
recorded cell. From [Hubel1982]. 

A hypercolumn is a functional unit of cortical structure. It is the hardware that processes a 
single 'pixel' in the visual field for both eyes. There are thousands of identical hypercolumns 
tiling the cortical surface. 

The vertical structure in this small patch of cortical surface does not show much variation in 
orientation sensitivity of the cells. hence the name 'columns'. 
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Show[GraphicsArray[ 
Import/@ {"cortical columns model. jpg", "orientation column. jpg"}], 

ImageSize -> 400]; 

Figure 12.2 Left: Cortical columns are found at all places on the cortex. It is a fundamental 
organizational and structural element of topological organization. Right: A visual column in 
V1 contains all orientations (in a pinwheel-like structure). From [Ts'o et al. 1990]. 

They contain cells of all sizes, orientations, differential order. velocity magnitude and 
direction, disparity and color for both left and right eye. It is a highly redundant filterbank 
representation. The left and right eye dominance bands form somewhat irregular bands over 
the cortical smface (figure 11.16). 

From the voltage sensitive dye methods we now know that the fine structure of the 
orientation sensitivity is organized in a pinwheel fashion [Bonhoeffer and Grinvald 19931 
(see figure 12.3), i.e. the spokes connect cells firing at the same orientation. In these 
measurements the monkey is presented with a multitude of sequential lines at particular 
orientations. 

Show[GraphicsArray[Import /@ {"iso-orientation contours.gif", 
"iso-orientation contours zoomed.gif")], ImageSize -> 400]; 

Figure 12.3 Left: Voltage sensitive dye measurements of orientation sensitivity on a small 
patch of V1 in the macaque monkey. Size of the cortical patch: 9x12 mm. Right: enlarged 
section of the rectangular area in the left figure. Shaded and unshaded areas denote the left 
and right eye respectively. Colored lines connect cells with equal orientation sensitivity. They 
appear in a pinwheel fashion with the spokes in general perpendicular to the column 
boundary. From [Ts'o et al. 1990]. 
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Show[GraphicsArray[Import/@{"iso-orientation contours bw.gif", 
"orientation columns model.gif")], ImageSize -> 320]; 
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Figure 12.4 Left: The orientation columns are arranged in a highly regular columnar 
structure. Arrow 1 and 4: the singularity in the pinwheel iso-orientation contours is located in 
the center. Arrow 2 and 3: Border between left and right eye columns. Note that the iso
orientation contours are in majority perpendicular to the boundaries of the columns. Right: 
Model to explain the measured results. The iso-orientation lines mostly reach the ocular 
dominance boundary at a right angle. From [Blasdel and Salama 1986). 

It is not known how the different scales (sizes of receptive fields) and the differential orders 
are located in the hypercolumns . The distance from the singularity in the pinwheel and the 
depth in the hypercolumn form possible mapping possibilities. 

Injection of a pyramidal cell in layer 2 and 3 in a monkey with a dye (horseradish 
peroxidase) reveals that such cells make connections to cells in neighboring columns (see 
figure 12.5). The clusters of connections occur at intervals that are consistent with cortical 
column distances. 

Show[Import["orientation coupling.gif"], ImageSize -> 220]; 
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Figure 12.5 Cells of a hypercolumn at a particular orientation have facilitating connections 
some distance away. This distance is just to cells in neighboring hypercolumns with the 
same orientation sensitivity, thus enabling a strong perceptual grouping on orientation, which 
is essential for the perception of lines, contours and curves. From [McGuire1991], see also 
[Kandel2000). 
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Show[Import["orientation coupling model.gif"], ImageSize -> 240]; 
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Figure 12.6 Model for the excitatory orientation coupling between neighboring columns with 
similar orientation. From [Kandel et al. 2000]. 

This may be particularly important for close-range perceptual grouping [Elderl998, 
Dubuc200la]. It has been shown that the projections are only with those neighboring cells 
that have the same functional specificity (a vertical line in this case), see figure 12.6 and 
[Kandel2000, pp. 542] and [Gardnerl999]. See also Zucker [Zucker200la]. 

12.2 Stabilized retinal images 

DensityPlot[-E-x'-y', (x, -2, 2), (y, -2, 2), PlotRange-+ (-2, 0), 

Epilog-+ {White, Point [ (0, 0)]}, ImageSize -> 300]; 

Figure 12. 7 Stimulus to experience the disappearance of perception (also called visual 
fading) when the image is stabilized on the retina. Fixate a long time on the small central 
white dot. After some time the grey blob completely disappears. From [Cornsweet1970]. 

Wo11h mentioning in the context of the biomimicking of vision into a mathematical 
framework is the amazing fact that vision totally disappears in a few seconds (!) when the 
image is stabilized on the retina [Ditchbuml952, Gerritsl966a]. 
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One can fix the retinal image by an optical projection of a contactlens on the eye attached to 
a fiber bundle carrying the image, or monitor carefully the eye movements and displace the 
stimulus image appropriately counteracting the eye movements. One can appreciate this 
phenomenon with the stimulus depicted in figure 12.7 . 

.._ Task 12.1 Repeat this experiment with a foreground and background of different 

colors. What fills in, the foreground or the background? 

.._ Task 12.2 Why is a gradual slope of the boundary of the blob stimulus required? 

The immediate implication of visual fading with a stabilized retinal image is that we do not 
perceived homogeneous areas, like a white sheet of paper. We perceive the boundaries, and 
fill-in the white of the paper and the background by measuring what happens on both sides of 
the intensity contour. 

We continuously make very small eye movements, possibly in order to keep seeing. It has 
been suggested that eye movements play an important role in the perceptual grouping of 
'coterminous' (non-accidental) edges [Binfordl98 l]. 

Show [Import [ "micromovements .jpg"], ImageSize -> 300]; 

Figure 12.8 Microsaccades are made very precisely synchronously by both eyes, and are 
much larger than single receptor diameters. 
From McCourt, www.psychology.psych.ndsu.nodak.edu. 

These small eye movements are substantially larger than single receptors, and are made 
synchronously by both eyes (figure 12.8). There is also small drift. 

Figure 12.9 shows some stimulus patterns that continuously seem to shimmer. This is due to 
your involuntary eye movements (drift, tremor and micro-saccades). 

Burst in c01tical neurons tend to occur after microsaccades. The investigation of the relation 
between cortical responses and eye movements (in particular microsaccades) is an active 
research area, where one investigates the problem of why we have a stable perception despite 
these eye movements. 
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nf/> • 60; nr = 30; Show (Graphics ( 

{Table( {Black, Polygon( {lo, 0), {Cos [I/>], Sin[</>]}, {cos (<I>+~], Sin( <I>+~]}}]}, 
n</> n</> 

2" {4>, O, 2'1f, -}], Table[{Black, Disk[{2.2, O}, r], 
n</> 

1 1 1 
White, Disk({2.2, O}, r-~]}, {r, 1, ~, --;;;}]}], 

AspectRatio-> Automatic, ImageSize-> 480]; 

Figure 12.9 Stimulus pattern, in which a shimmering effect is seen due to our small 
involuntary eye movements. Note: when viewing on screen, adjust the magification of the 
display for best resolution, and adjust or regenerate the pattern so fresh Postscript is 
generated. nlfi is the number of segmentpairs, nr is the number of ringpairs. 

12.3 The concept of local sign 

How does a cell in the LGN and cortex know from what retinal position the incoming signals 
arrive? How is the map formed? 

The fibers that arrive in the LGN from both retinas all look the same: covered with a white 
myelin sheet. This is different in our modern electronic equipment, where we carefully label 
each wire with e.g. colors in order to know exactly which wire it is and what signal it is 
carrying. Somehow the brain manages to find out how the wiring is done, which was f01med 
in the embryonic stage. 

This philosophical problem was first studied by Lotze [Lotzel884], a German philosopher. 
He coined the German term Lokalzeichen, which means 'local sign'. Jan Koenderink 
followed up on this first thinking, and wrote a beautiful paper which put the Lokalzeichen in 
a computer vision perspective LKoenderinkl984d]. The main line of reasoning is the 
following:Two cells can detennine if they have a neighborhood relation if they are 
correlated. 

Neighboring geometrical properties have to coJTespond, such as intensity, contours with the 
same orientation, etc. 
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A similar situation occurs when we solve a jigsaw puzzle (see figure 12.10). We know to find 
the location of a piece due to its relations to its neighbors. In differential geometric 
terminology: There need to be similar differential structure between two neighboring pieces. 
The zero-th order indicates that the same intensity makes it highly likely to be connected. So 
does a similar gradient with the same slope and direction, and the same curvature etc. It of 
course applies to all descriptive features: the same color, texture etc. The N-jet has to be 
interrelated between neighboring cortical hypercolumns at many scales. 

So during the formation of the visual receptive field structures the system seems to solve a 
huge jigsaw puzzle. Only be looking the cells are stimulated, and the system can accomplish 
its task. When we are born, the neurons are very redundantly wired. A cell is connected to 
too many of its neighbors. 

Only those synapses that are necessary, remain during the formation process, because these 
are the ones that are actually used. 

A frequently used synapse grows, a hardly or not used synapse degenerates and will never 
come back. 

Show[Import["jigsaw.gif"], ImageSize -> 450]; 

Figure 12.1 O We solve a jigsaw puzzle by finding corresponding geometrical properties 
between pieces that have to be close together, in order to form a pair. In this example (from 
http://jigzone.com/) the pieces have not been rotated or occluded. In our scale-space model 
of the front-end visual system the pieces are blobs weighted with multi-scale Gaussian 
derivative functions. 

Receptive fields substantially overlap, and they should in order to create a correlation 
between neighboring fibers. However, they overlap because we have a multi-scale sampling 
structure. At a single scale, our model presumes a tight hexagonal tiling of the plane. There 
is a deep notion here of the correlation between different scales, and the sampling at a single 
location by receptive fields of different scale. 

The reconstruction of the receptive field structure when the overlap relations are known is a 
classical topological problem. 
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The methodology is beyond the scope of this introductory book. It has been solved for ID on 
a circular ID retina lto avoid boundary effects) by Koenderink, Blom and Toet 
[KoenderinkI984c, KoenderinkI984d, Toetl987] but for higher dimensions it is still 
unsolved. 

Note: It is interesting to note that social networks, which can be seen as overlapping 
'receptive fields', have recently been discovered as being 'searcheable'. The psychologist 
Milgram distributed small postal packages among arbitrary people in Nebraska, requesting 
them to send these to someone in Boston. 

Because they did not know this person, there were asked to send the package to someone of 
which they expected he would know him. To Milgram's surprise it took on average only 6 
steps for the packages to reach their target. This has recently been mathematically modeled 
by Watts et al. [Watts2002]. 

Show[Import["owl.gif"], ImageSize -> 250]; 

Figure 12.11 The solution of the jigsaw puzzle of figure 12.10. 

12.4 Gaussian derivatives and Eigen-images 

It has been shown that the so-called Eigen-images of a large series of image small patches 
have great similadty to partial Gaussian derivative functions [OlshausenI996, 
OlshausenI997]. The resulting images are also often modeled as Gabor patches and 
wavelets. In this section we will explain the notion of Eigen-images and study this statistical 
technique with Mathematica. 

We read the many patches as small square subimages of o=I2xI2 pixels, non-overlapping, at 
I7 horizontal and I7 vertical position, leading to a series of 289 patches. Figure I2.I2 (next 
page) shows the location of the patches. These 289 images form the input set. 
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im = Import["forest06.gif"] [ [1, l]]; 6 = 12; 
ListDensityPlot[im, Epilog -> 
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(Gray, Table[Line[{{i, j}, {i+6, j), {i+6, j +6), (i, j +6), (i, j))], 
{j, 2, 256, 15), (i, 2, 256, 15)] ), ImageSize-> 170]; 

Figure 12.12 Location of the 289 small 12x12 pixel patches taken from a 2562 image of a 
forest scene. 

The small 12x12 images are sampled with SubMatrix: 

set:Table[SnbMatrix[im, {j, i), (6, 6}], 
(j, 2, 256, 15), {i, 2, 256, 15}];Dimensions[set] 

{17' 17' 12, 12) 

and converted into a matrix m with 289 rows of length 144. We multiply each small image 
with a Gaussian weighting function to simulate the process of observation, and subtract the 
global mean: 

x2 +y2 
a= 4; g = Table[Exp[- ---], (x, -5.5, 5.5), (y, -5.5, 5.5) J; 

2 a2 
set2=Map[g#&, set, {2)]; 

Plus@@# 
m = Flatten[Map[Flatten, set2, {2)], l]; mean= &; 

Length[#] 

m = N [m - mean [Flatten [m]]]; Dimensions [m] 

(289, 144) 

We calculate mT 111, a 1442 matrix with the Dot product, and check that it is a square matrix: 

Dimensions[mTm = N[Transpose[m] .m]] 

{144, 144) 

The calculation of the 144 Eigen-values of a 1442 matrix goes fast in Mathematica. Essential 

is to force the calculations to be done numerically with the function N []. Because mTm is a 
symmetric matrix, built from two 289xl44 size matrices, we have 144 (nonzero) Eigen
values: 
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Short [Timing [evs =eigenvalues= Eigenvalues [mTm]], 5] 

{0.046 Second, 

{3.08213'<107
, 9.6262lxl06

, 4.30075>.10 6
, 2.83323x10 6

, 1.42025xl06
, 

1.385xlO', 1.20726xlO', 890446., 811958., «126», 670.255, 644.039, 
613.394, 503.244, 442.515, 366.791, 284.952, 250.393, 235.25)) 

We calculate the Eigenvectors of the matrix mTm and construct the first Eigen-image by 
partitioning the resulting 144xl vector 12 rows. All Eigen-vectors normalized: unity length. 

eigenvectors = Eigenvectors [mTm] ; 
eigenimages = Table [Partition[eigenvectors [ [i]], c5], { i, 1, 8)]; 

DisplayTogetherArray [ListDensityPlot /@ eigenimages, ImageSize -> 460]; 

DisplayTogetherArray [ListPlot3D /@ eigenimages, ImageSize -> 460]; 

Figure 12.13 The first 8 Eigen-images of the 289 patches from figure 12.1 O. 

Note the resemblance of the first Eigen-image to the zeroth order Gaussian blob, and the 
second and third Eigen-image to the first order Gaussian derivatives ~~ and ~~ . and the 

4th, 5th and 6th Eigen-image to the second order Gaussian derivatives ~~~ under 120 degree 
different angles. 
We will derive in chapter 19 that a second order Gaussian derivative in any direction can be 
constructed from 3 second order partial derivative kernels each 120 degrees rotated (this is 
the steerability of Gaussian kernels, they form a basis). 

The Eigen-images reflect the basis functions in which the spatial strncture of the images can 
be expressed. The natural basis for spatial image structure are the spatial derivatives 
emerging in the local Taylor expansion. When there is no coherent strncture. such as in white 
noise, we get Eigen-images that reflect just noise. Here are the Eigen-images for white noise 
(we take the same 289 12xl2 patches again): 

noise= Table[Random[], (256), (256)]; 6 = 12; 
set=Table[SubMatrix[noise, {j, i}, (6, 6)], {j, 3, 256, 15), {i, 3, 256, 15)]; 
m = Flatten[Map[Flatten, set, {2}], l]; 
m = N[m - mean[Flatten[m]]]; mTm = N [Transpose[m] .m]; 
{eigenvaluesn, eigenvect.orsn} = Eigensyst.em[mTm]; 
eigenimagesn = Table[Partition[eigenvectorsn[ [i]], 6], {i, 1, 8)]; 

DisplayTogetherArray[ListDensityPlot /@eigenimagesn, ImageSize -> 460]; 

Figure 12.14 The first 8 Eigen-images of 289 patches of 12x12 pixels of white noise. Note that 
none of the Eigen-images contains any structure. 
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Note that the distribution of the Eigen-values for noise are much different from those of a 
structured image. They are much smaller, and the first ones are markedly less pronounced. 
Here we plot both distributions: 

DisplayTogether[ 
LogListPlot [evs, PlotJoined ->True, PlotRange -> { .1, Automatic}], 
LogListPlot [eigenvaluesn, PlotJoined ->True] , ImageSize -> 250]; 

Figure 12.15 Nonzero Eigen-values for a structured image (upper) and white noise (lower). 

When we extract 49 x 49 = 2401 small images of 12 x 12 pixels at each 5 pixels, so they 
slightly overlap, we get better statistics. 

A striking result is obtained when the image contains primarily ve11ical structures, like trees. 
We then obtain Eigenpatches resembling the horizontal high order Gaussian derivatives I 
Gabor patches (see figure 12.16). 

im =Import ["forest02.gif"] [ [l, l]]; .S = 12; 
set= 

Table[SubMatrix[im, (j, i}, {.S, .S)], {j, 2, 246, 5), {i, 2, 246, 5}]; 
x2 + y2 

.S.S = (.S -1) /2; a= .S.S; g = Table[N[Exp[---]], 
2 a 2 

{x, -.S.S, .S.S), {y, -.S.S, .S.S)]; set2=Map[g#&, set, {2}]; 

Plus@@# 
m = Flatten[Map[Flatten, set2, {2}], l]; mean= &; 

Length[#] 

m = N [m - mean [Flatten [m]]]; mTm = N [Transpose [m] .m]; 
eigenvectors = Eigenvectors [mTm] ; 
eigenimages = Table [Partition [eigenvectors [ [ i] ] , .S] , { i, 1, 2 5}] ; 
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Block [ ($DisplayFunction = Identity}, pl = ListDensi tyPlot [im] ; p2 = 
Show[GraphicsArray[Partition[ListDensityPlot /@eigenimages, 5]]] ;] 

Show[GraphicsArray[ {pl, p2}, ImageSize -> 420]]; 

Figure 12.16 Eigen-images for 2401 slightly overlapping patches of 12x12 pixels from the 
image of figure 12.10. Due to the larger number of patches we get better statistics. Note that 
the first Eigenpatches resemble the high order horizontal derivatives 

£ Task 12.3 Show the Eigen-images for a range of patch sizes, from 5x5 to 
15x15 pixels. How can the result be interpreted? 

£ Task 12.4 The visual cortex receives input from center-surround receptive fields, 
thus (scale-space model for front-end vision) from the Laplacian of the input 
image. Show the Eigen-images for the Laplacian of the input image at several 
scales. Interpret the results, especially with respect to the first Eigen-image. 

£ Task 12.5 Find the (color) Eigen-images for patches taken from a RGB color 
image. 

12.5 Plasticity and self-organization 

It can be speculated that the coherent structure in the collective set of first retinal images that 
we perceive after birth creates the internal structure of the observation mechanism in our 
front-end visual system. Numerous deprivation studies have shown the importance of the 
early visual stimulation for visual development. 
The closure of one eye during the first 4 months after birth due to some illness or accident, 
prevents the creation of proper stereopsis (depth vision). It was shown histologically in early 
deprivation experiments by Hubel and Wiesel [Hubell988a] that the involved cells in the 
LGN seriously degenerated in a monkey with a single eye blindfolded the first months after 
birth. Later deprivation showed markedly less such degeneration effects. 
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When we arrive on this world, we are redundantly wired. Each neuron seems to be connected 
to almost all its neighboring neurons. Connections that are hardly used deteriorate and 
disintegrate, connections that are frequently used are growing in strength (and size). 

The same principle is found in the output of the neural circuitry, in the activation of muscles. 
Muscle cells in neonates are innervated by multiple nerve endings but finally a single ending 
remains (synapse elimination), exactly in the middle where the minimum of shear forces is 
felt. 

Here the self-organizing parameter may be the shear-stress. The nasal half of the retina 
projects to a different half of the visual cortex than the temporal half. 

The receptive fields on the vertical metidian on the retina have to communicate with each 
other in different brain halves. The connection is through an abundant array of fibers 
connecting the two cortical areas. This is the fomix, a bundle easily recognized on sagittal 
MR slices as the corpus callosum. 
How do the millions of fibers know where their corresponding contralateral receptive field 
projection locations are? The answer is that they don't have to know this. The connections in 
the redundant and superfluous wiring after birth that are not stimulated by visual scenes on 
the receptive field just bordering the vertical meridian are degenerating, leaving the tight 
system connections in due time (a few months) . 

.&. Task 12.6 In this section we took many patches from a single image. Show that 
similar Eigen-images emerge when we take patches from different images . 

.&. Task 12.7 Show the Eigen-images for a variety of other images, e.g. natural 
scenes, faces, depth maps, ultrasound speckle images. Is there any difference 
between tomographic slice images (where no occlusion is present) or real world 

30 ~ 20 projection images? 

This statistical approach to the emergence of a representation of operators in the early visual 
system is receiving much attention today, see e.g. [Rao2001]. Keywords are principal 
component analysis (PCA), partial least squares (PLS), canonical correlation analysis 
(CCA), independent component analysis (ICA), multiple linear regression (MLR) and sparse 
code learning (SCL). It is beyond the scope of this book to elaborate further on this topic . 

.&. Task 12.8 What determines the orientation angle, the sign and the amplitude of 
the emerging Eigen-images? 

.&. Task 12.9 This formalism is now easily extended to images as scale-spaces. 
When a small stack of Gaussian scale-space images is brought into a column 
vector format, the same apparatus applies. Show the Eigen-images for such 
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scale-spaces, and set up conjectures about the self-emerging operators when 
the neural system is presented with large series of scale-space images as input. 

12.6 Higher cortical visual areas 

Show [Import ["cortical functional areas. jpg"], ImageSize -> 430]; 

Figure 12.17 Functional diagram of the visual pathways. From [Kandel2000]. 

From VI projections go to the higher visual layers in the cortex, such as V2, V3, V 4 and the 
MT (media-temporal) layer. 
It is beyond the scope of this chapter on front-end vision to discuss all layers in detail. Figure 
12.17 summarizes the plincipal connections. It is clear from this diagram, that the visua 
system has dedicated pathways through the multiple visual areas. They are related to the 
separate functional properties that are measured: shape, color, motion, and dispality. The 
current view is that there are two major pathways: a ventral pathway to the inferior temporal 
cortex and a dorsal pathway to the postelior palietal cortex. The projections in each pathway 
are hierarchical, there are strong projections between the subsequent levels as well as strong 
feedback connections. 

The type of visual processing changes systematically from one level to the next (see the 
excellent overview by Robert Wurtz and Elie Kandel [Kandel2000, chapter 28]). 
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12.7 Summary of this chapter 

The visual cortex is a somatotopic visual map of the retina. The visual cortex consists of 6 
structural layers, which can be discriminated by cell type and function. The input from the 
LGN is in the middle layer 4, the output to higher centres is from the layers above and 
below. The visual cortex is a hierarchical cascade of functional areas, VI, V2, V3, V4 and 
up. In VI a precise arrangement of hypercolumns is shown by both single electrode studies 
and voltage sensitive dye functional mapping methods. 

Each hypercolumn contains the cellular machinery for complete binocular analysis of a 
'pixel' in the overlapping visual field of both eyes. The cells sensitive for the same 
orientation are located on 'spokes' of a pinwheel-like arrangement in the hypercolumn. 

The cortex has to infer spatial arrangements of incoming fibers from the mutual relations 
between the signals they carry. The concept of 'local sign' compares this inference with the 
solving of a jigsaw puzzle from the N-jet and orientation information of receptive fields in 
neighboring hypercolumns. 

The structure of spatially and temporally coded receptive field sensitivity profiles is largely 
constrncted after birth by seeing. 

The plasticity of these formations has been shown by deprivation experiments in 
experimental animals, and can be modeled by self organizing neural networks. An analysis 
of the Eigen-images for a large number of patches taken from an image shows great 
similarity of the basis images with the Gaussian derivative receptive field models.The first 
layers of the visual front-end (up to V2) are well mapped and studied. This is much less the 
case for the higher cortical areas. A general strategy seems to be the hierarchical mapping 
onto subsequent layers with substantial divergent feedback connections. 

12.8 Vision dictionary 

Below is a short explanation of the vision related te1ms used in this book. For more complete 
listings see e.g. the Visionary webpages by Li den: (http://cns-
web. bu.edu/pub/laliden/WWW/Visionary/V isionary .html) 
(http://www.4colorvision.com/pdf/glossary.pdf). 

and the glossary by Fulton 

area 17 
afferent 
amacrine cell -
axon 
bipolar cell 
blob 
coronal 
corticofugal 
caudal 
cranial 
dendrite 

visual cortex, in the cortical area. Classification by Brodmann 
direction for nerve signals: from the receptor to the brain 
retinal cell, likely involved in motion processing 
output fiber of a neuron 
cell in the retina with two possible synaptic projection polarities 
group of color processing cells in the center of a hypercolumn 
vertical 3D slice direction, plane through eye centers and cheek 
from the c011ex away 
on the side of the tail 
on the side of the top (of the head) 
treelike branch on a cell body for reception of synaptic input 
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depolarization -
dorsal 
efferent 
excitatory 
fovea 
ganglion cell 
hypercolumn -
hyperpolarization -
inhibitory 
lateral 
macaque 
magno-cell ular -
midget cells 
myelin 
nasal 
nucleus 
occipital 
optic chiasm 
orientation column -
parietal 
parvo-cellular -
parasol cell 
PSTH 
psychophysics -

decreasing the inner voltage of the cell body 
on the side of the back 

12.8 Vision dictionary 

direction for nerve fibers: from the brain to effector (muscle, gland) 
positive input increasing firing rate 
the central portion of the retina with highest acuity 
cell type in the retina, the output cells 
functional unit of the cortex (typ. Ix I x2 mm) 
increasing the inner voltage of the cell body 
negative input, decreasing firing rate 
located at the side 
short-tailed asian monkey, often used in expe1iments 
with large cell bodies (Latin: magnus = big) 
small retinal ganglion cells, involved in shape extraction 
insulating layer of a neuron's axon, white colored 
located at the side of the nose 
a localized small structure in the brain 
located in the back (of the head) 
crossing of the optic nerve 
column of cortical cells containing all local orientations 
on the side 
with small cell bodies (Latin: parvus =small) 
large retinal ganglion cells involved in motion 
post-stimulus-time-histogram 
measurement of human performance in perceptual tasks 

Pacini receptor- onion-shaped pressure sensitive receptor in the skin (after Filippo 
Pacini (1812-1883), Italian anatomist) 
receptive field -
firing rate 
retinotopic 
rhodopsin 
sagittal 
soma 

2D spatial light sensitivity area on the retina with respect to the cell's 

forming a spatial, neighbor-preserving mapping with the retina 
the light-sensitive protein in the rods and cones 
vertical 3D slice direction (Latin: sagitta =arrow) 
cell body (Greek: soma= body) 

somatotopic forming a spatial map with a surface somewhere on the body 
striate striped (Latin: stria= funuw) 
striate cortex area 17. Area 17 is striped, due to a marked stripe of white matter in 
layer 4 of myelinated axons 
synapse 
temporal 
thalamus 
infmmation 
transversal 
ventral 

tiny pedicle where one neuron passes information to the next 
located at the temple of the head (Latin: tempus = temple) 
deep brain structure in the midbrain, receiving all perceptual 

horizontal 3D slice position 
on the side of the belly 

12.8.1 Further reading on the web: 

Some suggested webpages for further exploration: 
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Journal: Perception 
www.perceptionweb.com/perabout.html 

Space-time receptive fields in the visual system (Ohzawa, Berkeley): 
neurovision. berkeley .edu/Demonstrations/V SOC/teaching/ AA_RFtutorial.html 

Voltage sensitive dye research at Weizmann Institute of Science, Israel: 
www.weizmann.ac.il/brain/ grinvald/index. html 

Optical recording literature lcompilation by Steve M. Potter): 
www.its.caltech.edu/-pinelab/optical.html 

LGN research (Dwayne Godwin): 
www.wfubmc.edu/bgsm/nba/faculty I god win/ god win. html 
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Center for Computational Vision and Control (early-vision models and biomedical image 
analysis): cvc.yale.edu/ 
Magneto-encephalography lMEG): www.4dneuroimaging.com/ 
Positron Emission Tomography lPET): www.crump.ucla.edu/lpp/ 
Functional Magnetic Resonance Imaging (fMRI): www.functionalmri.org/, 
www.spectroscopynow.com/Spy/mri/ 
Medical images and illustrations: www.mic.ki.se/Medimages.html 



13 Deep structure I. 
watershed segmentation 

Erik Dam and Bart M. ter Haar Romeny 

"Study the family as a family, i.e. define deep structure, the relation between 
structural features of different derived images" [Koenderink1984al. 

13.1 Multi-scale measurements 

The previous chapters have presented the notion of scale - any observation is, implicitly or 
explicitly, defined in terms of the area of support for the observation. This allows different 
observations at the same location that focus on different structures. A classical illustration of 
this concept is the observation of a tree. At fine scale the structures of the bark and the leaves 
are apparent. In order to see the shapes of the leaves and the twigs a higher scale is required; 
an even higher scale is appropriate for studying the branches, and finally the stem and the 
crown are best described at a very coarse scale. 

A comprehensive description of the tree requires observations at all scales ranging from the 
cellular level to the scale corresponding to the height of the tree. However, in order to give a 
full description of tl1e tree, subsequent inspection at all the relevant scales is not sufficient. 
Even though it is possible to measure the size of the crown and the number of leaves at 
specific fixed scales, inspection of the connections between the structures requires 
simultaneous inspection at all the intennediary scales. If we want to count the number of 
leaves positioned at one of tl1e trees major branches, it is necessary to link the localization of 
the leaves at fine scale through the twigs (possibly at an even finer scale), the thin branches 
and finally reaching the desired branch at a coarser scale. 

The key point is that not only do we need to connect observations at different localizations -
we also need to link observations at different scales. 
In the words of Koenderink. we must study the family of scale-space images as a family, and 
define the 'deep' structure. 'Deep' refers to the extra dimension of scale in a scale-space, like 
the sea has a surface and depth. 

As demonstrated in the previous chapters. differential operators allow detection of different 
features at a given, fixed scale - this is the superficial structure. The scale can be adaptive, 
and different in every pixel. This brings up the notion of scale-adaptive systems like the 
geometry-driven diffusion equations (in the Perona & Malik equations the scale of the 
operator is adapted to the length of the gradient), and of scale selection. 
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This chapter will give examples of how linking of observations through the entire scale
space offers additional information about the observed features. 
The examples cover mechanisms for automatic choice of the appropriate observation scale, 
localization of the proper location for features, and a robust segmentation method that takes 
advantage of the deep structure. 
The chapter is concluded with some thoughts on how the deep structure can be used to 
extract the significant hierarchical information about the image structures and thereby give a 
potentially comprehensive and compact description of the image. 

13.2 Scale selection 

A first step towards exploitation of the deep structure is the automatic selection of the 
appropriate scale for an observation [Lindeberg 1998a, Linde berg l 998b]. Differential 
operators are applied to the detection, localization and characterization of a large number of 
image features such as edges, blobs, comers, etc. The responses from these operators depend 
on the scale at which the operators are applied - therefore it is essential to choose the proper 
scale for the observation. Furthermore, the responses from these differential operators are 
often used to characterize the properties of the feature - for instance the strength of an edge 
or the size of a blob. Since the responses from the operators depend on the scale it is not 
trivial to compare the strength of edges detected at different scales. 

As an example, we inspect the standard blob detector defined by the spatial maxima of the 
Laplacian, V2 L = Lxx + ~·y = L..vw + Lvv, where L is the luminance. The Laplacian can be 
considered a measure of the blob strength in a point - thereby the maxima define the blobs. 
In order to detect both light and dark blobs we use the absolute value of the Laplacian: 

<< FrontEndVision'FEV'; 

blobness[im_, a_] :=Abs[gD[im, 2, 0, a] +gD[im, 0, 2, a]]; 

This is illustrated for an image with a blob and a square, where the blobs are detected at two 
different scales. In order to pick the blobs from these images, we first define a function that 
allows extraction of the positions and values for the n largest maxima (with respect to a 2 * D 
neighborhood) from an image of arbin·ary dimension: 

nMaxima [im_, n_] : =Module [ {l, d =Depth [im] - l}, 
p = Times@@Table[ (Sign[im-Map[RotateLeft, im, {i}]] + 1) 

(Sign[im-Map[RotateRight, im, {i}]] +l), {i, 0, d-1}]; 

1 = Length[Position[p, 4"]]; 

Take [Reverse [Union[ {Extract [im, #], #} & /@Position [p, 4•]]], 
If[n<l, n, l]]] 

With the Sign function we first find maxima in the columns, then in the rows, and we 

multiply (boolean 'and') the result to find the image maxima.The Sign function is -1, 0 or 1 
with negative, zero or positive value of the argument, so we divide by 24 = 16. We then 

Extract in imb the intensity values at every Position where p is 1, Union the result 
{return sorted distinguished entries) and Reverse this list so the largest intensity comes 

first, Take the first n values, and return the intensity value at every Position in this list. 
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The two blobs with largest feature detector responses are extracted from an example image at 
two different scales (a-= 6 and a-= 10 pixels), see figure 13.1. The blobs are illustrated by 
red dots and circles (at the detected blob location, radius proportional to the blob strength): 

im = 1000 Import["squareblob.gif"] [ [1, l]]; 
Block [ {$DisplayFunction = Identity}, pl = ListDensityPlot [-im]; 
(m = nMaxima [imb = blobness [im, #], 2]; Print ["a=", II, ", pos =", 

Part[#, 2] &/@m, "\n resp=", Part[#, l] &/@m];) &/@{7, 11}; 
p2 = ListDensityPlot [blobness [im, #], Epilog -> 

{PointSize [ .03], Hue [ l], Point [Reverse [Part[#, 2]]] & /@m, 
Circle [Reverse [Part [ #, 2]], Part [II, l]] & /@m}] & /@ {7, 11}]; 

Show [GraphicsArray [Prepend [p2, pl]], ImageSize -> 300]; 

a=7, pos =((50, 15), (20, 42)) 
resp= (11.6499, 10.6793) 

a=ll, pos = { (23, 42), {SO, 15)} 
resp= (5.91633, 2.03575) 

Figure 13.1 Detection of the two best blobs from a test image at two scales. At low scale 
(CT = 7) px the square is the most blob-like feature - the circle is too large to be properly 
detected at this scale. At high scale (CT = 1 O px) the circle is detected as the most blob
like shape, but the response is far less than the response for the circle at low scale since 
the responses generally decrease with increasing scale. Note that the center coordinates 
displayed are (X, y) where the origin is the lower left corner. The test image is 64x64 
pixels with values O and 1 . 

At both scales, the two largest blobs are detected approximately at the centers of the square 
and the blob. The response from the blob detector is largest for the square at the low scale. 
This is not surprising since the scale simply is closer to the size of the square than the blob. 
At the high scale the response is significantly higher for the blob than the square. However, 
the response for the blob at high scale is still not higher than the response for the square at 
low scale. Therefore, if we were to choose the single most blob-like feature in the image, we 
would select the square. 

The problem is a well-known property of the gaussian de1ivatives. In general, the amplitude 
of a spatial gaussian derivative is degrading with increasing scale [Lindeberg1994al. 
Therefore, the response from the circle is weaker simply because it is best detected at a 
higher scale since it is larger than the square. 
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13.3 Normalized feature detection 

The classical solution to these problems is to express the differential operators in terms of 
normalized derivatives [Lindeberg1993h, Lindebergl994a]. The basic idea, as we recall from 
chapter 3, is to measure the spatial coordinates relative to the scale - instead of using length x 
we use the dimensionless coordinate t; = x /IT which is normalized with respect to scale 
[Florackl994b]. The normalized derivative operator for the function f with respect to the 

. 1 .,.,. . h of _ of _ !!l 
spatia coo1umate x 1s t en a1; - o(x/(J') - IT ax · 

The standard feature detectors consisting of combinations of differential operators can now 
be reformulated as normalized detectors. Some of the most common detectors are presented 
in [Lindebergl996bJ. 

Analogously, since the Laplacian includes second order derivatives, the normalized blob 
detector should instead be 1T

2 V2 L = IT
2 (Lxx + L_,,,,) = IT

2 lLuu + L""), leading to the 
normalized feature strength measure function: 

nblobness[im_, a_] := Abs[a2 (gD[im, 2, 0, a]+ gD[im, 0, 2, a])]; 

Reassuringly, the normalized detector points out the blob as being the most blob-like feature 
in the image: 

Block [ {$DisplayFunction = Identity}, pl = ListDensityPlot [-im]; 
(m = nMaxima[imb = nblobness[im, #], 2]; Print["a=", #, ", pos =", 

Part[#, 2] &/@m, "\n resp=", Part[#, l] &/@m];) &/@{7, 11); 
p2 = ListDensityPlot [nblobness [im, #], Epilog -> {PointSize [ .03], 

Hue[l], Point[Reverse[Part[#, 2]]] &/@m, Circle[ 
Reverse [Part[#, 2]], Part[#, 1] I 100] & /@m}] & /@ (7, 11)]; 

a=7, pos =((50, 15), (20, 42)) 

resp= (570.843, 523.284) 

a=ll, pos =((23, 42), (50, 15)) 
resp= (715.876, 246.325) 

Show [GraphicsArray [Prepend [p2, pl]], ImageSize -> 300]; 

Figure 13.2 Detection of the two best blobs from a test image at two scales with 
normalized blob detector. The blob gets the highest response (at high scale). The square 
gets a lower response (at low scale). Compare with figure 13.1. 
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13.4 Automatic scale selection 

The example above depends on choosing appropriate scales for the illustrations. However, 
since the normalized feature detector allows comparison of detector responses across scale. 
this can be done automatically. For a given scale, features are detected in an image as the 
spatial local maxima of the feature detector. When the same features are detected for all level 
in a scale-space, the features are detected on a number of consecutive scales. The scale at 
which a feature is best observed is the scale where the normalized feature detector has the 
strongest response. The means that the points mnst not only be local maxima for the feature 
detector in the spatial direction but also in the scale direction. 

Since the function nMaxima was previously defined for an arbitrary dimension we can use 
that for detection of maxima in scale-space as well. Superimposed on the example image are 
the detected blobs illustrated with a circle with radins proportional to the detection scale: 

im =Import[ "blobs.gif"] [ [l, l]]; 
blobSS= Table[nblobness[im, Exp[<]],{<, 1.7, 2.7, .l)]; 
maxs = nMaxima [blobSS, 4] ; blobSizeFactor = 1. 5; 
Table[Print["Blob strength: ", maxs[[i, l]], 

", (x,y): ", Reverse[maxs[ [i, 2, {2, 3)]]]], {i, 4)]; 

Blob strength: 0.72431, (x,y): (57, 107) 

Blob strength: 0. 714045, (x,y): (94, 31) 

Blob strength: 0. 689219, (x,y): (27, 56) 

Blob strength: 0. 439206, (x,y): (97, 101) 

ListoensityPlot[im, Epilog-> {Hue[l], Thickness[.01], oashing[{0.03, 0.02)], 
Table[Circle[ {maxs[ [i, 2, 3]], maxs[ [i, 2, 2]]}, blobSizeFactor 

Exp [ (maxs [ [i, 2, l]] - 1) .1+1. 7]], {i, 4)]}, Imagesize-> 130]; 

. • i 

•• 
Figure 13.3 Detection of the four most blob-like features in a test image with different 
shapes. The blobs are superimposed as circles with a radius proportional to the scale the 
blobs was detected at. The output of the feature response reveals that the circles have 
somewhat higher feature strength (between 0.71 and 0.72) than the square (at 0.68). The 
scale-space is generated in 11 exponential levels from scale er= e1 7 to er= e2·7 . The 
test image is 128 by 128 with values O and 1. 

Inspection of the output reveals that there has been detected three blobs with similar 
no1malized responses (between 0.69 and 0.72) and one with a significantly lower response 
(0.43), and that the three blobs with high responses actually correspond with the symmetric 
blob-like objects in the image. The low-response object is the ellipse. 
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It is also apparent that the detection scales and the sizes of the blobs are approximately 
proportional. With a model of an ideal blob, this can be formalized through analysis of the 
response from the blob detector. This is done for a gaussian bell-shaped model of a blob in 
LLindebergl994aJ revealing that the width of the blob and the detection scale are in fact 
proportional. 

13.4.1 A-Normalized scale selection 

Often. the n01malized derivative operator has an added parameter it which allows the 
operator to be tuned to the specific feature detectors. Instead of writing the normalized n-th 
order derivative as L;1 •• ;,,-norm = <r11 L;1 •• ;,, (an often used notation, slightly different from the 
one used above), tlie normalized derivative has the extra parameter it: 

Intuitively, Lindeberg determines the free parameter it based on an analysis of the dimension 
of the specific feature. For instance, for a blob it is twice the it for an edge since the edge is 
essentially only a I-dimensional feature where the blob is 2-dimensional. For a more 
thorough treatment of it-nonnalized derivatives see [Lindebergl994aj. 

Another approach for determining the it parameter is to use the local fractal dimension 
(defined in terms of the Hausdorff dimension) as a descriptor of the local complexity and 
thereby estimate the it-parameter [Pedersen2000]. 

13.4.2 ls this really deep structure? 

Conceptually, we follow the singulaiity points for the feature detector through scale-space 
and locate the scale where the normalized feature strength is maximal. This is the appropriate 
scale for detecting the feature and for extracting information about the feature. However. we 
have more information: the nice continuous behaviour across scales allows us to locate the 
optimal scale explicitly as the singularities for a local differential operator output in scale
space. 

This approach allows us, e.g. for the Laplacian operator, to select tlie most blob-like features 
in the image and establish their approximate size. In the examples we have not given any 
explicit method for detennining whether or not to consider tliese features for actual blobs -
we have simply selected the n best. For a specific application it would be appropriate to 
determine a threshold for the feature strength of the blob detector - or to establish a more 
elaborate scheme. 

In a sense. the approach ignores the deep structure: we don't explicitly follow the singularity 
points through scale-space. 

However, when establishing the location of the blob, we rely heavily on the deep structure. 
The implicit assumption is that the singularity points form strings that are approximately 
vertical in scale-space, meaning that the location of the blob is equivalent with its location at 
the detection scale. 
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Blobs are "nice" - they move relatively little as the image is blurred. This makes the 
assumption reasonable for practical applications. Other feature are not so stable across scale. 
For these we would have to track the singularity string down in scale from the detection scale 
in order to establish a more precise localization of the feature. The following sections 
investigate this approach . 

.& Task 13.1 For a Gaussian bell-shaped blob the width of the blob and the 
detection scale obtained with the normalized blob detector are proportional 
[Lindeberg1994a]. Analyze whether this is the case for a circular step-edge blob 
like the ones in the illustrations. Determine whether the proportionality factor 
above is appropriately assigned (blobSizeFactor = 1.5). 

13.5 Edge focusing 

When an image is blurred through convolution with Gaussians of increasing aperture, the 
noise in the image is gradually removed. However, the salient features are blurred as well. 
Obviously, small scale structures vanish at high scale, but also the structure that remains is 
affected by the blurring. When the aperture is increased the local features are influenced by a 
large neighborhood in the image. 

This process changes the appearance of objects. As we saw with the rectangles in the 
previous section, the shapes are simplified towards rounded shapes. The blurring also 
dislocates the objects and their edges. 

To a large extent we avoided dislocation in the previous section because the objects in the 
test images had nice spacing in between - thereby the "interaction" between the objects 
during blurring was insignificant. For more complicated images this effect will be more 
pronounced. 

This section investigates how to take advantage of the deep structure in order to link the 
simplified large scale structure to the fine scale origins. Specifically, we illustrate how the 
edges can be tracked down through scale in order to establish the precise location of the edge. 

13.5.1 Simplification followed by focusing 

In chapter 1 we saw a first example that a structure, like an edge, could emerge from the 
noise when we increased the scale of the operator. Both the scale of the structure and the 
scale of the operator had to be larger than the fine grain structure of the noise. We repeat the 
experiment for the detection of the gradient magnitude of a circle in additive uncorrelated 
(white) noise. 
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noise=Table[2550Random[], (256), (256)]; 
noisyDisk = Import [ "blackdisk256 .gif"] [ [l, l]] +noise; 

DisplayTogetherArray(Prepend(ListDensityPlot[ 

gD[noisyDisk, 1, 0, E*]
2 + gD[noisyDisk, 0, 1, E*l

2
] & /@ 

(0, 1, 2, 3), ListDensityPlot[noisyDiskJ], ImageSize-+480]; 
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Figure 13.4 Left: A circular disk embedded in noise. S/N=0.1: Image intensity range 
[0,255], noise intensity range [0,2550]. Right: Image gradient at a-= 1, 2.7, 7.4, and 20 
pixels. Image resolution 2562

. Only at large scales the contour of the disk emerges. 

At scale a-= e2 (<>< 7.4 pixels) we see the contour emerging from the noise. It is difficult to 
find the locations of the edges at fine scale filtering. 

It was suggested by Fredrik Bergholm LBergholml987] to use the large scale representation 
of edges as a guide for the localization of edges at a finer scale. A gradient scale-space is 
constructed and edges are located at a coarse scale where they are clearly visible, or can 
easily be extracted with some thresholding (or e.g. a zero-crossing detection of the derivative 
of this gradient image in the gradient direction, Lw w ). Edges at finer scales are then found by 
searching a small neighborhood around the coarse-scale pixel - the scale-space is traversed 
downwards until the finest scale is reached. The spatial location of the end of the trace is 
considered the location of the edge that 'lived' until the coarse scale where the search started. 
This procedure is named edge focusing. 

13.5.2 Linking in 10 

The phenomenon is studied in somewhat more detail - for the sake of simplicity in ID. 

-2 

noisystep = Table [ 5. 5 Random[] + 2 Tanh [2 (i - 0. 7)] + 
Tanh[4 (i - 1.0)] + 1.4 Tanh[ (i-1.4)], {i, -2, 4, 0.011)]; 

ListPlot[noisystep, PlotRange ->All, PlotJoined ->True, 
ImageSize -> 230]; 

Figure 13.5 A noisy 1 D discrete edge signal. Length 546 samples. 
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We define an edge as a point with maximal absolute incline. These are the zero-crossings for 
the second order dedvative. We are only interested in the location of the edge so we don't 
need to consider normalizing the operators involved. 

First we generate a noisy ID edge: 

The signs for the second order derivative is inspected in order to locate the edge. If there is a 
change in sign between the 'pixel' just left of each 'pixel' of the second dedvative, we have an 
edge location. The graph of the sign-change of a signal as a function of scale is denoted the 
signature of the signal. 

We first calculate a scale-space of the second dedvative on an exponential range of scales, 
and take the Sign. By mapping the 'difference with your neighbor' function 
(Rota teRigh t [ #] -#) & on each scale level, we get the following result (the function 
gDflD is a version of the Gaussian derivative function gD implemented in the Fonder 
domain for ID signals): 

scalespaceLxx = Table[gDflD[noisystep, 2, E'], {r, 0, 4.5, .015)]; 
signature = ( RotateRight [ #] - #) & /@Sign [scalespaceLxx] ; 
ListDensityPlot[signature, AspectRatio-+ .5, ImageSize -> 500]; 

Figure 13.6 The signature function of the noisy edge. Exponential scale-space, scale 
range er= Exp[O < r < 5], 251 scale levels. Edge focusing exploits the signature function 
by tracking the most prominent features down to finer scales. The negative (black) edge 
trace at the border of the signal is a consequence of the cyclic representation of the 
signal in the implementation. 

Positive upgoing edges are white, negative edges are black in the signature plot. We notice 
the clear emergence of one edge, surviving much longer over scale then the other edges. 

The notion of longevity can be viewed of a measure of importance for singuladties 
l Witkin83 J. The semantical notions of prominence and conspicuity now get a clear meaning 
in scale-space theory. 
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In a scale-space we see the emergence of the hierarchy of structures, in this example we see 
edges emerging. A second thing to notice is the arched structure of the smaller edges over 
scale. Positive and negative edges come together and annihilate. 

These arches show interesting behaviour: sometimes three edges come close together, then 
two of them annihilate, and one edge continues. We see here a first example of the behaviour 
of singularity points over scale, in this example the behaviour of extrema for the gradient. In 
the next sections we will study this behaviour in much more detail: this is the analysis of the 
behaviour of structures over scale, the deep structure. 

edgefocus[signature_, startlevel_, dir_] :=Module[{a, b, c, out), 
out = 0. signature; a= Position [signature [ [startlevel]], dir]; 
Do[b = Position[signature[ [i]], dir]; 

c = Select[b, (Position[a, II - 1] ¢ {} 11 
Position[a, II] ¢ {} 11 Position[a, 11 + l] ¢ {}) &] ; 

out[[i]] = ReplacePart[out[[i]], -1, c]; b = c; a= b, 
{i, startlevel-1, 1, -1)]; out] 

focused!= edgefocus[signature, II, 2] & /@ (170, 280); 
focused2=edgefocus[signature, #, -2] &/@{170, 280); 
showarray [ {focused!, focused2}, Frame-> True, FrameTicks ->False]; 

I 

Figure 13.7 Edge focusing for the signature function of our noisy step edge. Top row: two 
different start levels for the search downwards for negative edges. Bottom row: idem for 
positive edges. In both cases a sharp edge position is reached at the bottom level, i.e. at 
the original image. Compare with figure 13.6. 

The edge focusing itself is implemented below for ID signals. From a signature a copy is 
made with zero's, and a start level is chosen from which to start the search downwards. At 

the first level the positions are found (a) of the edge direction (dir = -2 or + 2). From the 
level below (b) those edges are selected ( c), that have a position that is -1, 0 or+ 1 different 
from the position in the level above. The entiies in the copy signature are then replaced at the 
found positions with -1 's, so they plot as black lines. 
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Even though the linking scheme is quite simple and heuristic it reveals the potential. 

The simplified large scale representation of the image is used to single out the prominent 
edge. The deep structure of the singularity strings are then used to link the detected edges 
down to the fine scale where the edges can be precisely located . 

.._ Task 13.2 In 20 the zero-crossings of the second derivative in the gradient 

direction (Lw w) are curves, and form non-intersecting surfaces in scale-space. 

Develop a routine in Mathematica to compute and display such surfaces. Show 

the internal structure by plotting cut-away views. 

13.6 Follicle detection in 30 ultrasound 

Edge focusing is pat1icularly advantageous in noisy data, such as diagnostic ultrasound. We 
discuss the application of detecting and analyzing follicles in 3D ultrasound 
[TerHaarRomeny l 999a]. Part of the implementation is due to Kalitzin. 

DisplayTogetherArray[Show/@ 
Import/@("3dus probe.jpg", "3dus-slice75.gif"}, ImageSize->300]; 

Figure 13.8 Left: 3D ultrasound probe (Kretz Ultrasound) sweeps a 2D sector across in a few 
seconds, effectively acquiring a pyramidal data volume. From this a rectangular Cartesian 
equidistantly sampled dataset is interpolated. Right: slice through the left female ovary, 
showing the follicles as dark hypo-echoic (i.e. with low echo signal) spherical volumes. Size 
of the image 212x164 pixels, approx. 4x3 cm. 

Knowledge about the status of the female reproductive system is imp011ant for fertility 
problems and age-related family planning. The volume of these fertility requests in our 
emancipated society is steadily increasing. 
The number of the female egg cells (follicles) in both ovaries decreases roughly linearly 
from 106 at birth to none at the start of the menopause. The detection, counting, shape 
analysis and growth response to hormonal stimulation of follicles is an importai1t diagnostic 
procedure for ovarian aging. 
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This procedure is however labour-intensive and enor prone, making a computer aided 
analysis system a welcome addition. lntravaginal 3D ultrasound imaging of the follicles in 
the ovary is the modality of choice. 

zdim = ydim = xdim = 128; noise = Compile [ { zdim, ydim, xdim}, 
n = Table [Random [], {zdim}, {ydim}, {xdim}], { {n, _Real, 3}} l ; 

follicle:Compile[{zO, yO, xO, r, zdim, ydim, xdim}, 
f =Table[If[(x-x0) 2 + (y-y0) 2 + (z-z0) 2 <r'. O., l.l, 

{z, 1, zdim), {y, 1, ydim}, {x, 1, xdim}], 
{{f,_Real, 3), {x,_Real}, {y,_Real), {z,_Real}}l; 

testset = follicle [60, 65, 50, 10, zdim, ydim, xdiml + 
follicle [35, 25, 55, 7, zdim, ydim, xdiml + 
follicle [35, 85, 95, 5, zdim, ydim, xdiml +noise [zdim, ydim, xdiml; 

DisplayTogetherArray[Table[ListDensityPlot[testset[[ill, 
PlotRange-> {2, 4), Frame-> True, FrameTicks-> False, 
FrameStyle-> Red, PlotLabel -> "slice"<> ToString[il l, 

{i, 1, 90, 11)], ImageSize-> 5001; 

slicel dice ll slicel3 slice4S diceS6 dice67 slice7S 

Figure 13.9 Some slices from the artificial 30 ultrasound noisy testset with 3 follicles. 

testsetblurred:gDn[testset, {O, O, 0), {3, 3, 3}l; 

We use the function nMaxima (defined in section 13.2) to find the n largest maxima in the 
testset. The minus sign is to find the minima. 

nMaxima[im_, n_l ::Module[{l, d=Depth[iml -1), 
p = Times@@ Table [(Sign [im - Map [RotateLeft, im, {i} l l + 1) 

(Sign[im-Map[RotateRight, im, {i}ll +l), {i, O, d-l}l; 
1 = Length[Position[p, 4•1 l; 
Take [Reverse [Union [{Extract [im, #l, #} & /@ Position[p, 4•1 l l, 
If [n < 1, n, ll Jl 

detected= nMaxima [-testsetblurred, 3 l 

{{-2.50496, {60, 65, 50)), 
{-2.66311, {35, 25, 55)), {-2.93738, {35, 85, 95))) 

Indeed, the right minima positions are found. An alternative method (described in 
[TerHaarRomenyl999aJ) is the use of 3D winding numbers. Winding numbers are explained 
in chapter 15 ). 

We next check if they are sunounded by a sphere (an example of model-based 
segmentation), by tracking linear rays of 30 pixels long, starting in the detected minimum 
position, and over 7 polar (or colatitudinal, 0 < () < n) and 5 azimuthal (or longitudinal. 
0 < <P < 2n) angles. We sample equidistantly along these rays the 3D ultrasound intensities 
using cubic 3D polynomial interpolation (third order is the default interpolation order, linear 
interpolation is acquired by adding the option InterpolationOrder-+1): 
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interpolation= List Interpolation [testset] ; 
6step = ,.. I B; ~'step = 2 ,.. I 5; 

rays[z_, y_, >:_] :=Module[(!/>, 6, r}, Table[N[ 
interpolation[z + rCos[I/>] Cos[6], y+ rSin[I/>] Cos[6], x +r Sin[6]]], 

(6, -Pi/;!+6step, Pi/2-6step, 6step), 
(I/>, 0, 2P.i-l/>step, !/>step), (r, 1, 30)]]; 

The tracking rays are first visualized, to be sure we have the proper sampling in 30. Lines of 
30 pixels long are drawn in the 7 polar and the 5 azimuthal directions for each minimum 
found, the end is indicated with a blue dot: 

star[z_, y_, >:_]:=Module[(!/>, 6, r), 
Graphics3D,[Table[{Wheat, Line[{ (z, y, x}, {z + rCos[I/>] Cos[6], 

y + r Sin [I/>] Cos [6] , x + r Sin [6]}}], Blue, AbsolutePointSize[3] , 

Point [ {z + r Cos [I/>] Cos [6] , y + r Sin [I/>] Cos [6] , x + r Sin [6]}]}, 
{6, -Pi/ 2 + 6step, Pi/ 2 - 6step, 6step}, 
(I/>, 0, 2 Pi - !/>step, !/>step}, (r, 30, 30)], AspectRatio ... l]]; 

Show [Apply [star, Last /@detected, 2] , 
PlotRange ... { (1, xdim}, (1, ydim}, (1, zdim}}, ImageSize -> 270]; 

.. .. 

Figure 13.1 O From each detected minimum rays are cast, along which the 30 US intensity is 
sampled. The blue dots mark the rays' endpoints. 

Let us investigate the interpolated sampled intensity profiles along the radiating rays from 
the minimum point {60,65,50}: 

profiles= rays [60, 65, 50] ; 
ListDensityPl.ot[#, PlotRange ... (2, 4), 

Frame ... True, ImageSize -> 200] & /@profiles; 
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Figure 13.11 Sets of 5 ~ID ultrasound intensity profiles for each of the 7 polar directions. The 
origin, i.e. the start point of the ray in the detected minimum, is to the left. Ray length is 30 
pixels. 

For each ray the position of the follicle boundary is found by edge focusing (function defined 
in section 13.5.2) for the largest edge along the ray: 

edgefocus[signature_, startlevel_, dir_] :=Module[{a, b, c, out), 

out= 0. signature; a= Position [signature [ [startlevel]], dir]; 
Do [b =Position [signature [ [i]], dir]; 

c = Select[b, (Position[a, # -1] f. (} 11 

Position[a, #] f. {} 11 Position[a, # + l] f. {}) &] ; 

out[ [i]] = ReplacePart[out [ [i]], -1, c]; b = c; a= b, 
{i, startlevel-1, 1, -1)]; out] 

findedgelocation [track_] : =Module [ { scalespaceLxx} , 

scalespaceLxx = Table[gDflD[track, 2, E'], {r, 0, 2, .06)]; 
signature = ( RotateRight [#] - #) & /@ Sign[scalespaceLxx]; 

Extract[Position[First[edgefocus[signature, 15, 2]], -1], {l, l}] 

l; 

This finds them all: 

outr =Map [findedgelocation, profiles, { 2} l 

{ (10, 11, 11, 10, 10)' (10, 10, 10, 10, 9)' 
(10, 10, 11, 11, 10), (10, 10, 10, 10' 10}, 
(10, 10, 10, 10, 10)' (11, 10, 10, 9, 10), (10, 10, 3, 11, 10)) 

The proper 3D coordinates of the edge on the ray are found by converting the polar 
coordinates to the Cartesian coordinates. We put the center of the follicle in the position of 
the found minimum, and check the result visually. 
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Clear[f]; f[r_, {n9_, nl/>_}] :=N[{z+rCos[nl/>l/>step] Cos[-7r/2+n99step], 
y + r Sin [nl/> I/> step] Cos [ - ,.. I 2 + n9 9step] , x + r Sin [ - ,.. I 2 + n9 9step] } ] ; 

{z, y, x} = (60, 65, 50}; positions= Maplndexed[f, outr, {2}]; 
Show[Graphics3D[{Wheat, Map[Line[{{60, 65, 50}, #}] &, 

Flatten[positions, l]], Red, AbsolutePointSize[5], 
Map[Point, positions, {2}]}], ImageSize-+215]; 

Figure 13.12 Follicle boundary points (red points) as detected by the edge focusing algorithms 
along each ray. 

13.6.1 Fitting spherical harmonics to 30 points 

A convenient representation for 3D point elands on a detected surface form the spherical 
harmonics. These orthogonal polynomials Yt(B. ¢) are the angular portion of the solution in 
spherical coordinates to the Laplace's equation V2 'l' = ~'l' = 0 (see 
mathworld.wolfram.com/SphericalHarmonic.html). 

The set of spherical harmonics up to second order is given by: 

fitset = 
Flatten[Table[SphericalHarmonicY[l, m, 9, I/>], (1, 0, 2}, (m, -1, 1, l}]] 

{ 
1 1 up/3. 1{3 

2
y;, 2 e- "lj27T srn[e], 2 "1j7T cos[e], 

_ _!_ i o /3- s· [e] _!_ -2 i o {15 s· [eJ' 
2 e "lj 2lT in , 4 e "lj 2lT in , 

1 • {15 . 1 /5 2 

2 .,-, "ljfi cos[e] sin[e], '4"1j7T (-1+3Cos[e] ), 

-} ei• ~- cos[e] Sin[e],-} e"• {H; Sin[eJ'} 

Mathematica's function Fit does a least square approximation with any set of functions. We 
plug in the points and the set of fit functions: 
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points= Flatten[positions, l] i 
rofun[e_, ti>_] = Chop[Fit[points, fitset, {e, ti>}]// ExpToTrig, io-•i i 
rofun[e, <Pl 

58.8381+1.96853 Cos [BJ - 12.0257 Cos[B] 2 + 
4.31706Cos[</l] Sin[e] -4.34484Cos[e] Cos[¢] Sin[B] + 

6.409Cos[2¢] Sin[B] 2 -l.69899Sin[e] Sin[¢]+ 

4.29894 Cos[EJ] Sin[B] Sin[¢]+ 8.01166 Sin[B] 2 Sin[2 ¢] 

This shows the detected follicle as a 3D volume surface: 

ParametricPlotJD[rofun[e, <Pl { Cos[e], Sin[e] Cos[t/>], sin[e] Sin[tl>J}, 
{e, 0, >r}, {<Q'>, O, 2 >r}, AspectRatio-> Automatic, ImageSize -> 150] i 

30 
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Figure 13.13 Spherical harmonic (second order) surface parametrization of one of the follicles 
in the noisy 30 US test dataset. 

Because we have now an analytical expression for the volume, we can easily let 
Mathematica calculate the volume: 

Clear[e, tl>li volume= Integrate[rofun[e, ti>], (e, O, >r}, (ti>, O, 2>r}] 

1042.73 

.._ Task 13.3 Fit the spherical harmonics to 4th order . 

.._ Task 13.4 A high order of spherical harmonics functions as fit functions gives us 
not the correct result, due to overfitting. What do we mean by this? 
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13. 7 Multi-scale segmentation 

The trade-off between simplification and detail is classical. Gaussian blurring allow the 
significant features to emerge from the noise - the price is general dislocation and blurring of 
the objects of interest. As the previous sections indicate there is not need for such a black and 
white perception of bluning. The features can be detected at the appropriate scale where they 
are best distinguished from their surrounding - and then linking down through scale allow a 
conceptual deblurring that allow the fine scale shape and features to be inspected. 

This section presents a segmentation method that takes advantage of the deep structure in 
order to facilitate this simplification followed by extraction of the fine scale shape. The 
method investigates the deep structure of watershed regions. The result is a partitioning of 
the image at all scales simultaneously. The regions from this multi-scale partitioning can 
then be used as building blocks in an interactive segmentation application. 

The multi-scale watershed segmentation method presented here is due to Ole Fogh Olsen 
[Olsenl997]. A similar approach has been presented in [Gauchl999]. In the following, the 
method is presented step by step - at the end the whole method is collected into a single 
Mathematica function. 

13.7.1 Dissimilarity measure in scale-space 

The borders between the regions should be located where there is a large contrast in the 
image. The measure of the contrast - or the dissimilarity measure - can be defined according 
to the specific application. For gray-scale images, a natural and simple definition of the 
dissimilarity measure is the gradient magnitude squared. Below an example image and the 
corresponding dissimilarity image is displayed at a few scales. 

dissimilarity·[im_, a_] := gD[im, 1, 0, a] 2 + gD[im, O, 1, a] 2 1 

noisyShapes = 
Import["bfobs.gif"] [ [l, l]] + Table[Random[], (128), (128)] 1 

disScaleSpace:= Table[dissimilarity[noisyShapes, E'], (1:, 1, 2.2, .3)] 1 

Show[GraphicsArray[Flatten[{ 
ListoensityPlot[noisyShapes, DisplayFunction ->Identity], 
(ListoensityPlot[disScaleSpace[ [#]], DisplayFunction -> 

Ide:ntity]) & /@ (1, 2, 3, 4)}]], ImageSize -> 400] 1 

• • Figure 13.14 Left: The 128 by 128 test image displaying some simple shapes with S/M 
ratio 1. Right: Gradient squared dissimilarity images for four scale levels: 
er= 1.6, 2.6, 4.1, and 6.6 pixels. 
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13.7.2 Watershed segmentation 

Imagine rain pouring down a hilly landscape. After hitting the ground, the individual drops 
run downhill and gather in pools. Every time a drop hits a certain spot the drop will nm into 
the same pool. This implicitly partitions the landscape into regions of support for each pool. 

A part of the landscape that leads water to a specific pool belongs to the catchment basin for 
this pool. The borders between the catchment basins are the watersheds. These geographic 
concepts was introduced in mathematics in [Cayley 1859, Maxwell 1870]. Aside: According 
to Encyclopedia Brittanica, the te1m watershed is actually a drainage basin. Fm1hermore, 
"the term has also been used synonymously with drainage divide, but this use 1s 
discouraged". However, the computer vision community is traditionally not discouraged. 

We use to this principle to pai1ition the dissimilaiity image into regions. In order to calculate 
the catchment basins we first determine the direction of steepest descent for each pixel in a 
dissimilarity image. This is done by checking the difference with each of the four neighbors. 

The function operate on images that have been Flatten'ed. Thereby the neighbors are 
located at offsets 1, -1, xDim, and -xDim. 

checkDirection[disim_, bestDirection_, offset_] : =Module[ 
{disNeighbor, checkNeighbor, 
neighborDif, bestDif, bestOffset, disVal, disNeighborVal}, 

disNeighbor = RotateLeft[disim, offset]; 
checkNeighbor[disVal_, disNeighborVal_, {bestOffset_, bestDif_}] : = ( 

neighborDif = disNeighborVal - disVal; 
If [neighb<>rDif < bestDif, {offset, neighborDif}, {bestOffset, bestDif}]); 

Thread[checkNeighbor[disim, disNeighbor, bestDirection]]]; 

bestDirection[disim_, xDim_, yDim_] : =Module[ 
{bestDir}, 
bestDir=Table[{O, 0), {xDimyDim}]; 
bestDir = checkDirection[disim, bestDir, l]; 
bestDir = checkDirection[disim, bestDir, -1]; 
bestDir = checkDirection[disim, bestDir, xDim]; 
bestDir = checkDirection[disim, bestDir, -xDim]; 
bestDir]; 

From a given pixel, the path given by the local direction of steepest descent are to be 
followed until a local minimum is reached. In order to prepare for this we assign a unique 
label to each local minimum. The local minima are the points with no direction of steepest 
descent. The result is a "label" image with numbers at local minima and zeros elsewhere. 

labelMinima [bestDir_, xyDim_] : = Module [ 

{labels, minima, basinLabels}, 

labels = Table [O, { xyDim}] ; 

minima= Flatten[Position[bestDir, (0, 0)]]; 
basinLabel.s = Range [ 1, Length [minima]]; 

labels [[minima]] = basinLabels; 

labels]; 

The remaining pixels are then to be labelled with a region number. From a given pixel the 
path defined by the directions of steepest descent are followed until a local minimum is 
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reached. The descent path is kept in a stack. When a minimum is reached every pixel in the 
path stack can be labelled with the region number of the minimum (stop reading until this is 
trivial). Furthermore, it is not necessary to continue the path to a minimum if a pixel that has 
already been labelled is encountered on the way. The label of this pixel is equivalent to the 
label of the minimum that would eventually be reached. 

descentToMinima[bestDir_, minLabels_, xDim_, yDim_] : =Module [ 
{xyDim, lalbels, j, stack, stackCount, pixel, basinLabel, i}, 

xyDim = xDim yDim; labels= minLabels; 
For[j = 1, j <= xyDim, j ++, If[labels[ [j]] == 0, 

stack = Table [ 0, { 2 Max [ xDim, yDim] } ] ; stackCount = 1; pixel = j ; 
While [labels [[pixel]] == O, stack [ [stackCount]] =pixel; 
pixel +'= bestDir [[pixel, 1]]; If [pixel < 1, pixel += xyDim]; 
If [pixel > xyDim, pixel -= xyDim]; 
stackCount ++] ; basinLabel = labels [[pixel]] ; 

For[i = 1, i < stackCount, 
i ++, labels [[stack [ [i]]]] = basinLabel]]]; 

labels]; 

The catchment basins can now be constructed through the use of the functions above in the 

following manner. Since the images are Flatten'ed in the calculations, the final image 

with basin labels is Parti tion'ed. 

makeBasins [disim_] : =Module [ 
{xDim, yDi1111, bestDir, labels}, 
{xDim, yDi1111} = Dimensions[disim]; 
bestDir = tiestDirection [Flatten [disim], xDim, yDim]; 
labels = labelMinima [bestDir, xDim yDim] ; 

labels= descentToMinima[bestDir, labels, xDim, yDim]; 
Partition[labels, xDim]]; 

The borders between the regions are more appropriate for illustrations than the region labels. 
The function below finds the pixels where the neighboring labels are different and mark 
these as borders: 

makeBorders [label Image_] : =Module [ 

{left, down, border}, 
left= label Image - RotateLeft [labelimage]; 
down= labE1limage-Map[RotateLeft, labelimage]; 
border[!_, d_] :=If[1==0&&d==0, 0, l]; 
SetAttributes [border, Listable]; 

border[left, down]]; 

The basic watershed segmentation functions are illustrated with the dissimilarity scale-space 
of the example image. 
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basinScaleSpa.ce = Table [makeBasins [ disScaleSpace [ [ i] ] ] , { i, 1, 4}] i 
Show[GraphicsArray[Flatten[{ 

ListDensityPlot[noisyShapes, DisplayFunction ->Identity], 
(ListDensityPlot[makeBorders[basinScaleSpace[[#]]], 

DisplayFunction ->Identity]) & /@ 
(1, 2, 31, 4}}]], ImageSize->400]1 
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Figure 13.15 Left: The 128 by 128 test image. Right: Watershed catchment basins at four 
scale levels. Each object from the original image can be captured as a single region from 
the catchment basins. However, the blurring affects the shapes of the objects. Compare 
with figure 13.17. 

We can see from the example above, that for each object in the 01iginal image, there is 
indeed a corresponding catchment basin at some scale level. However, the blurring has 
caused the captured shapes to be rounded as the edges are dislocated. In order to avoid this 
effect we must "deblur" the shapes by linking down through scale. 

13.7.3 Linking of re!~ions 

As scale is increased, the number of catchment basins decrease - the catchment basins 
gradually merge into larger basins. Each catchment basin corresponds to a local minimum 
for the dissimilarity measure. These minima form singularity strings like the ones showed in 
the previous section on edge focusing. Therefore we could track these minima by a linking 
process similar to the focusing in that section. As we saw in that section, this linking of 
singularity points through scale-space is non-trivial. Therefore, we will here pursue another 
approach where linking is based on regions instead of points. 

The conceptually simple method is to link a region at a given scale to the region at the next 
scale with the maximal spatial overlap. 
As the blurring increases, the borders of the regions move slightly. However, the central part 
of the region remain within the same area. The linking scheme is illustrated in figure 13.16. 

The merging of the catchment basins defines a hierarchy of regions. Each region at a given 
scale is linked to exactly one region at the next, higher scale level. 

The linking is implemented by the function below. The parameters are the labelled basins for 
two adjacent scale levels. The labels must be numbered consecutively from I. 

The function is somewhat complicated. First the two basin images are combined into a single 

list sortedOverlap where each element is a number that signifies a "vote" - a fine scale 
region x has one pixel that overlaps with a coarse scale region y. The number is constructed 
such that all votes from one fine scale region are consecutive when the list is sorted. From 
these votes the the coarse scale region with most votes is extracted for each fine scale region. 
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Show [Graphics.Array[ {Import [ "simple_link. jpg"], 
Import [ "m1erge_link. jpg"]}], ImageSize -> 400]; 

~ : : 
' ' 

; ! : : ~ ! : . ~ ! 

Figure 13.16 Linking1 of regions across scale. As scale is increased, the regions become 
more rounded and the borders move slightly. Left: The shape of the region simplifies but 
the main part of the area overlaps. Right: Two regions merge into one. Both regions link 
to the combined region since this is the region with maximal overlap. 

The extraction is done through a linear pass of the sortedOverlap list. 

The number of votes for the current coarse scale region from the current fine scale region is 
counted during the pass. Whenever there is a change in coarse scale, it is recorded whether 
the previous region got more votes than the one with most votes so far. 

When there is a change is fine scale, the coarse scale region with most votes is the desired 

region to be linked to - this is recorded in linkMap. The pass over sortedOverlap is 

done with a Fold using the function nextLinkVote for each element in the list. The 
function returns a list of labels. For each fine scale label number, the list contains the coarse 
scale label with maximal overlap. 

The linking functions (next page) are very "imperative" in programming style and not very 
Mathematica. Indeed, it can be written much more elegantly. The function below has the 
exact same functionality and is much shorter. However, there is one caveat. The function 
below has runtime proportional to the number of regions - the functions above have runtimes 
proportional to the size of the image. 

This effectively means that the short version below is faster for linking at large scales where 
there a few regions. Unfortunately, it is very much slower at low scales where there are many 
regions. This is an example of how sometimes, in Mathematica, short and elegant is not 
always preferable. 

The linking process result in a mapping between the region labels at low scale and region 
labels at the next scale. This linking tree can be used for the "region focusing" process. A 
given region at high scale can be substituted by the regions at a lower scale that link to it. 
This is done recursively through the scale-space of catchment basins. 
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linkBasins[f ineBasins_, coarseBasins_] : =Module [ 
{maxFine, maxcoarse, overlapidx, sortedOverlap, 
linkMap, LastLimi t, bestCount, bestCoarse, curCount, curCoarse}, 

maxFine =Max [fineBasins]; maxcoarse =Max [coarseBasins]; 

overlapidx = (fineBasins - 1) maxcoarse + coarseBasins; 
sortedOverlap = Sort [Flatten [overlapidx]]; 
linkMap =Table [O, {maxFine)]; 
next [ {fineLimi t_, bestCount_, bestcoarse_, curcount_, curcoarse_}, idx_] . -
Module[ 

{coarse, fine}, coarse= Mod[idx - 1, maxcoarse] + l; 
If [idx > fineLimit, 

(* The series for one fine scale region is done - register previous •) 
fine= Quc>tient[fineLimit, maxcoarse]; 
If [curcount > bestCount, 

linkMapl[ [fine]] = curcoarse, linkMap[ [fine]] = bestcoarse]; 
{fineLimit+maxcoarse, O, O, 1, coarse}, 
(• Else: 

Next coarse scale region for same fine scale region encountered *) 
If [coarse== curcoarse, 
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( * Coarse scale is the same so increment count *) 

{fineLiinit, bestCount, bestcoarse, curcount + 1, coarse}, 
( * Coarse scale new so register previous and start count from 1 *) 
If [curCc)unt >= bestCount, 

{fineL:imit, curcount, curcoarse, 1, coarse}, 
{fineLimit, bestCount, bestcoarse, 1, coarse}]]]]; 

{lastLimit, bestCount, bestcoarse, curcount, curcoarse} = 
Fold [next, {maxcoarse, 0, 0, 0, 0}, sortedOverlap] ; 

(• The last coarse scale region bas not been registered -
check if :1.t is best *) 

If [curcount > bestCount, linkMap[ [maxFine]] = curcoarse, 
linkMap[ [maxFine]] = bestcoarse]; linkMap]; 

linkBasinsShort[fineBasins_, coarseBasins_J : =Module [ 
{ linkVotes, uniquePairs, PairCount, 
bestLink, possibleLinks, possibleCounts, bestPosi tion}, 

linkVotes =Thread[ ({#1, #2) &) [Flatten[fineBasins], Flatten[coarseBasins] J l; 
uniquePairs = Union[linkVotes]; 
PairCount = M;:tp [Count[linkVotes, #] & , uniquePairs]; 
bestLink[fint>_] : = ( 

possibleLi1nks = Position [uniquePairs, _? (# [ [ l] ] = = fine & ) , 1, Heads -+ False] ; 
possiblecounts = Extract[PairCount, possibleLinks]; 
bestPosi tion =First [Posi tion[possibleCounts, Max [possibleCounts]]]; 
uniquePairs[ [Extract[possibleLinks, bestPosition]]] [ [l, 2]]); 

Map [bestLink, Table [i, {i, Max [fineBasins])]]] 

Below, we generate a scale-space of region labels, where the catchment basins are Jinked 
down to the lowest scale level - the localization scale. This done from fine to coarse scale, 
where the linking map provided by the previous function is used to map the catchment basins 
into localized basins. 
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JocalizedScaleSpace = Table [O image, { i, 1, 4}] ; 
localizedScaleSpace [ [l]] = basinScaleSpace [ [l]] ; 

For [level = 2, level < = 4, level++, 
linkMap = 

13.7 Multi-scale segmentation 

linkBasins [basinScaleSpace [[level - 1]] , basinScaleSpace [[level]]]; 

localizedScaleSpace[[level]] = 
linkMap [ [#]] & /@ localizedScaleSpace [[level - l]]] 

Show[GraphicsArray[Flatten[{ 
ListDensityPlot [noisyShapes, DisplayFunction -> Identity], 

(ListDensityPlot[makeBorders[localizedScaleSpace[[#]]], 
DisplayFunction -> Identity]) & /@ 

(1, 2, 3, 4}}]], ImageSize -> 500]; 

• : 
. . 

Figure 13.17 Left: The 128x128 test image. Right: The localized gradient watershed 
regions (to be compared with figure 13.15). The middle three images show the 
intermediate results. The larger structures are segmented well. In particular the rectangle 
has been segmented with sharp corners. 

The regions at the highest scale now clearly correspond to the objects in the original image. 
Notice how regions are merged into larger regions as scale increases - but the location of the 
remaining borders remain fixed due to the linking. 
The obvious improvement from figure 13.15 to figure 13.17 is due to the linking - or, in other 
words, the deep structure. 

13.7.4 The multi-scale watershed segmentation 

The bits and pieces that produce the localized catchment basins can be put together in a 
module. The complete function takes an image and the desired list of scales. 

The scale levels are a parameter since the dimensions of the image, the noise level, and the 
size of the objects of interest all affect the appropriate localization scale, number of scale 
level and scale sampling spacing. The function is named generateBuildingBlocks in 
order to emphasize the nature of the output. 

The method does not provide a complete segmentation, where the image has been pat1itioned 
into background and a number of objects. 

Instead the method provides building blocks of varying sizes that can be used for an 
interactive segmentation process. The user then selects the appropriate regions at the proper 
scales that allow construction of the desired objects. 
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generateBuildingBlocks [image_, scales_] : =Module [ 
(borderScaleSpace, fineBasins, 
coarseBasins, localizedBasins, linkMap}, 

borderScaleSpace =Table [O image, {Length [scales]}]; 
coarseBasins = makeBasins [dissimilarity [image, scales [ [l]]]]; 
localizedBasins = coarseBasins; 
borderScaleSpace [ [l]] = makeBorders [localizedBasins]; 
For [level = 2, level <=Length [scales], level++, 

fineBasins = coarseBasins; 
dissimimage = dissimilarity[image, scales[ [level]]]; 
coarseBasins = makeBasins [dissimimage]; 
linkMap = linkBasins[fineBasins, coarseBasins]; 
localized.Basins= Map[Function[linkMap[ [#]]], localizedBasins]; 
borderScaleSpace [[level]] = makeBorders [localizedBasins]]; 

borderScaleSpace] ; 

238 

The test image resulting in figure 13.17 is certainly not the most difficult segmentation task 
The objects are quite easy to distinguish from the background. The example below with an 
MR brain scan is more realistic - and more challenging. 

scales= Table,[1.4', (t, 1, 8)]; mr = Import["mrl28.gif"] [ [l, l]]; 
borderScaleSp•ace = generateBuildingBlocks [mr, scales]; 

Show [ GraphicsArray [ 
{Flatten[{ListDensityPlot[mr, DisplayFunction -> Identity], 

ListDensityPlot[borderScaleSpace[[#]], DisplayFunction ~ 
Identity] & /@ (2, 4, 6, 8) }] }] , ImageSize -> 500]; 

Figure 13.18 Left: An 128x128 MR brain scan. Right: The localized gradient watershed 
regions for selected scales from a scale-space with 8 levels from CT= 1.4 to CT= 14.8 
pixels. At low scale the finer details can be selected. At coarse scale the larger 
anatomical structures, such as the brain, are available. 

As the example illustrates, a number of building blocks must be selected interactively in 
order to form most anatomical objects in the figure. It is not really surprising that the method 
does not provide perfect partitioning of the brain anatomy. The multi-scale watershed 
segmentation method is completely un-committed. Therefore it can not be expected to 
perfom1 petfectly for a highly specialized task. 

The strength of the method is the generality. The method itself is un-committed towards any 
special task and can be used for n-dimensional data. 

The task specific knowledge is provided by a user in an interactive program. This approach 
will generally not be competitive with highly specialized approaches for specific 
segmentation task. However, for many segmentation task where no specialized methods 
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exist, the multi-scale watershed segmentation method is relevant. The method have been 
implemented with promi:iing results for clinical use in medical imaging [Dam2000c]. 

The segmentation method can be optimized in a number of ways (see [Olsen1997J for 
details). A possibly way of specializing the method towards specific tasks is to design 
suitable dissimilarity measures. Another approach is to specialize the underlying diffusion 
scheme - this is briefly discussed in the next section. 

13.8 Deep structure and nonlinear diffusion 

Linear Gaussian diffusion has a number of appealing theoretical properties. However, as we 
will see in chapter 21, non-linear diffusion is superior for several specific applications. 
Among these are edge detection [Perona1990], edge enhancement, and fingerprint 
enhancement [Weickertl998a]. Generally, linear Gaussian diffusion is inferior in 
applications where elongated structures are to be preserved during the diffusion. 

The deep structure is defined by the diffusion. Non-linear diffusion allows adaptation of the 
local diffusion to the local geometry of the image. Thereby the deep structure can be 
specialized towards specific applications. It is therefore obvious to investigate whether some 
of the non-linear diffusion schemes allow superior performance compared to linear diffusion 
in deep structure applications. 

This section will not give a comprehensive treatment of the effect of the diffusion scheme on 
the deep structure. However, we do provide the following appetizer. 

13.8.1 Non-linear diffusion for multi·scale watershed segmentation 

Diffusion blurs across tlhe borders of the catchment basins and ensures that the watersheds 
are blurred away. The catchment basins merge into building blocks of increasing size as 
scale increases. However, the linear diffusion scheme treats all image regions with the same 
amount of blurring. This causes roundish shapes to be favoured as building blocks. 

Non-linear diffusion schemes allow specification of which image features to "protect" dming 
the diffusion. For instance, the classical Perona-Malik diffusion scheme allows specification 
of an edge threshold defined in terms of the gradient (see chapter 21). In areas where the 
gradient is above this threshold, the blurring is diminished in order to preserve the edge. For 
edge detection this allows simplification of the image while the desired edges are preserved. 

In the multi-scale watershed segmentation method this is also interesting. The goal is to 
provide the user with building blocks that capture the desired image objects in just a few 
building blocks. For elongated objects this is problematic with linear diffusion. At low scale, 
elongated objects will be split into a number of short pieces. In order for these pieces to 
merge together into a single region a scale proportional with the length of the object is 
needed. However, at such a large scale, the blurring across the object is substantial. The 
borders of the elongated structures are likely to be blurring away due to influence from the 
surrounding structures. 
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Show [ Import [ #] , ImaqeSize -> 400) & /f!J 
{ "gaussiansegnaentation .jpg ", "GAN&e9111Bntation. jpg"); 

:~) 
~~ 
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Figure 13.19 The effect of applying non-linear diffusion for multi-scale watershed 
segmentation. Top and bottom rows are the effects of linear and a non-linear scheme 
called GAN, respectively. A brain MR scan is segmented using the multi-scale watershed 
segmentation method. Left images: originals. The next images show the ground truth 
segmentation of the white matter tissue. The colored images are the status of the 
segmentation. Blue areas are correctly segmented, green areas are within the ground 
truth but not segmented, and red areas are segmented but not part of the ground truth. 
The images to the right illustrate the watershed segmentation building blocks that have 
been used for the segmentation. On average, with the GAN scheme in the segmentation 
method, the user is required to supply less than half the number of user interactions 
compared to linear Gaussian diffusion. Visually, the building blocks resulting from GAN 
diffusion correspond much better with the shape of the ground truth. 
GAN (Generalized Anisotropic Non-linear diffusion) is a scheme that has several 
important diffusion schemes as special cases. Here, the parameters make the scheme 
similar to the Perona-Malik scheme. The illustration is from [Damon1995, Damon1997]. 

Non-linear diffusion minimizes the diffusion across the edges: edges of elongated structures 
can survive to higher scales and thereby enable merging of regions inside the objects. For the 
multi-scale watershed segmentation the performance has been evaluated for a number of 
diffusion schemes (among these rnean curvature motion and Weickert's anisotropic 

nonlinear diffusion schemes). The results reveal that, compared to linear diffusion, a scheme 
similar to the Perona-Malik scheme allow the desired objects to be captured using less than 
half as many actions [Dam2000b]. This is illustrated in figure 13.19. Similar results have been 
established for the Hyperstack segmentation method [Niessenl997dl. 



14. Deep structure II. 
catastrophe theory 

Erik Dam and Bart M. ter Haar Romeny 

14.1 Catastrophes and singularities 

The previous chapter illustrates a number of approaches that explore the deep structure. 
However, there are a number of caveats. The edge focusing technique implicitly assumes that 
the edges for the signal can be located at the adjacent lower scale level in a small 
neighborhood around the location at the cun-ent scale. As mentioned, no formal scheme for 
defining the size and shape of the neighborhood is presented. Furthermore, this method 
ignores the problems encountered when edge points merge or split with increasing scale. 
Analogously, the multi-scale watershed segmentation depends on the behaviour of the 
dissimilarity measure singularities tthe notion of dissimilarity is defined in chapter 13, 
section 6.1). Even though the linking of the watershed catchment basins is quite robust due 
to the matching of regions (opposed to tracking of points as in the edge focusing paradigm), 
the linking in the presence of merges and splits of regions is not explicitly established above. 
Without knowledge of how the dissimilarity singularities can behave in scale-space, we can 
only hope that the method will work on other images than the ones used for the illustrations. 
The finding of explicit schemes for linking in the neighborhood of changes in the singularity 
structures requires explicit knowledge of the changes. A change in the singularity structure in 
denoted a catastrophe. Catastrophe theory (or with a broader term: singulaiity theory) is the 
theory that analyses and describes these changes. Catastrophe theory allows prediction of 
which changes in the singulai·ity structure can be expected. Thereby the schemes that involve 
the singularities can be designed to detect and handle these events as special cases. 

Actually, this analysis was done for the multi-scale watershed segmentation method m 
[Olsenl997l 

The field of catastrophe theory is vast and rather complicated. The focus of this introduction 
is to give a condensed introduction of the central definitions, with an intuitive understanding 
of the effects we often observe in 'deep scale-space'. 
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14.2 Evolution of image singularities in scale-space 

An important property of linear scale-space is the overall simplifying effect of increasing 
scale. 
In general, this implies that the number of appearances of a given image feature decreases as 
scale increases. In particular, this is the qualitative behavior for the image singularities -
blurred versions of an image will in general contain less singulaiities than the original one. 
As mentioned in chapter 2 section 2.8, this notion is formalized by Florack [Florack1992a], 
which leads to a prediction on the number of singularities in 11-dimensional signals/images. 
Specifically, the number of singularities can be expected to decrease with a slope of -1 for 
ID signals and -2 for 2D images (in general: -11 for 11-D signals: see chapter l for the 
reasoning to de1ive this). 
More precisely, when the scale levels are generated with the usual exponential sampling 

a= E e' the logaiithm of the number of singularities decrease with these slopes as a 
function of the scale parameter r. 
This is illustrated for the "blobs" image from the scale selection section in the previous 
chapter. For simplicity we count the number of maxima instead of the number of 

singularities (then we can use the function nMaxima). Following the argument of Florack, 
the relative decrease in the number of maxima is equivalent to the decrease in the number of 
singulaiities. 

<< FrontEndVision'FEV'; 

countMaxima[im_] :=Module[{p, d=Depth[im] -1), 
p =Times@@ Table [(Sign [im - Map [RotateLeft, im, {i}]] + 1) 

(Sign[im-Map[RotateRight, im, {i}]] +l), {i, 0, d-1)] /4•; 
Count[Flatten[p], l]]; 

noisyblobs = 
Import["blobs.gif"][[l, l]] +lOTable[Random[], (128), (128)]; 

levels= 15; step= 0.15; 
data = Table [ {step t, countMaxima [nb [ t] = gDf [noisyblobs, 0, 0, E"'"•' l l } , 

{t, levels}]; DisplayTogetherArray[ 
Append[ListDensityPlot /@ {nb[l], nb[8], nb[l5]}, LogListPlot[data, 

PlotJoined ->True, AxesLabel -> { "t", "N"}]], ImageSize -> 400]; 

Print["Slope = ", Coefficient[Fit[Log[data], (1, t}, t], t]]; 

N 

l~I~ 
I 

tJ U.5 J 1.5 :! 

Slope = -1 .79756 

Figure 14.1 The evolution of the number of singularities for a set of noisy 20 blobs. 
Images blurred with <T = e015 = 1.16, <T = 3.32 and <T = 9.49 pixels. The observed slope 
is close to the predicted value of -2. 

The blob image from figure 13.3 is used with noise added (S/N ratio = 1/ 10). First we define 

the scale levels used (such that a-= E estepr where the step ensures sufficiently small scale 
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steps, and E = 1 ). We display the lowest, middle and highest levels of the selected range of 

15 scales and plot the logarithm of the number of maxima as a function of step t. The 

slope is calculated with a linear least square Fit. 

The overall effect of blurring signals and images is simplification. This is examplified by the 
decrease of maxima above. However, this general notion reveals nothing about how the 
singularities disappear. More specifically, it gives no insight into the local structure of the 
signals and images at the specific point in scale-space where a singularity is annihilated. 
Furthermore, we get no information about whether singula1ities are created as well. ln order 
to investigate these matters we need a bit of mathematics - introduced in the following 
through some central concepts from Catastrophe Theory. 

Ji. Task 14.1. Check the expected decrease in the number of singularities for a 1 D 
signal as it was done for a 20 image above. Use the 1 D noisystep signal. 

14.3 Catastrophe theory basics 

The field of catastrophe theory is quite extensive and complicated. This introduction focuses 
on giving an intuitive understanding of the concepts most related to computer vision and 
image processing. Therefore, the presentation is also somewhat less strict than possible. For 
a comprehensive introduction see [Gilmore 1981]. 

The singularities are central feature points of an image - or more general for a function. The 
singularities alone offer a good qualitative description of the structure of a function. When a 
function undergoes an evolution it is therefore central to capture where the set of 
singularities change, in order to analyze the evolution. These points are denoted catastrophes 
since this is where the qualitative structure changes. 
In order to describe these events properly, a few definitions are needed. They are presented 
quite briefly - the concepts are then illustrated by a number of examples. 

14.3.1 Functions 

For a smooth (= infinitely differentiable, indicated with C00
) function f the para1neters are 

divided into n state and 111 control para1neters: j(x1, .. , Xn, c1, .. , Cm) E C00 (IR.n+m, IR). For 
the intuitive understanding, think for the concept of scale-space of the state para.Illeters as 
spatial coordinates, and think of a single control para.Illeter, namely scale. 

14.3.2 Characterization of points 

For a smooth function f(x1, .. , x11 , C1, .. , c111 ) E C00 (IR.n+m, IR) a given point p E IR11+m is 
either: 

Regular : 3 1 E [ 1.. n] such that g !, * 0 

Morse Singularity: _!!__!__ - 0 and Det ( af ) * O d X.l - d X.l XJ 

Catastrophe : _!!__!__ = 0 and Det ( a f ) = O 
dx1 dXi XJ 
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In the equations above, tensor notation is used for the spatial parameters with subscripts i and 
; (but not for 1). 

Note that a regular point is only required to be a singularity with respect to the state (or 
spatial) parameters. Singularities and catastrophes are found at locations where the gradient 
is zero, so at horizontal locations in the image intensity landscape. A catastrophe differs from 
a singularity in that the second order structure has a degenerate Hessian matrix, i.e. the 
determinant of the Hessian matrix vanishes, and the Hessian matrix is thus singular in 
catastrophes. 
Morse singularities are non-degenerate singularities in the state (or spatial) parameters. 
When the determinant of the Hessian matrix for the state parameters is vanishing the 
singularity becomes degenerate. 
A non-degenerate singularity is stable. This means that a slight pertubation of the function 
will not change the local qualitative structure of the function - there will still be a singularity 
of the same type near the original with a value close to the original. 
Degenerate singulmities are not stable - a slight pertubation can cause a change in the local 
structure of the function. Such a pertubation could be caused by a slight change in the 
control parameters. Specifically, in scale-space the singularity structure changes at 
degenerate singularities when the scale is changed. These are the catastrophe points where 
creations or annihilations of singularities occur. 

14.3.3 Structural equivalence 

Two functions are locally structurally equivalent at a point if a diffeomorphism (a smooth 
invertible function with smooth inverse) exists such that a change of the coordinate system 
for one function with this diffeomorphism will make the functions equal in a neighborhood 
around the point. 
Two functions are globally structurally equivalent if they are locally structurally equivalent 
at all points. 

We will not fonnalize this definition in mathematical notation. The key point is that these 
definitions imply that two functions are structurally equivalent if their singularity strnctures 
are corresponding - the topological ordering and the types of the singularities are equivalent. 

Slight pertubations of a function will in general leave it structurally equivalent with itself. 
The singularities move a bit and change value, but the topological structure remains the 
same. However, in the presence of catastrophe points, a slight pertubation will change the 
singularity strncture and the function no longer remains structurally equivalent to itself. 

14.3.4 Local characterization of functions 

Analogous to the characterization of points into three classes, the local structure of a function 
is characterized by the following theorems. Here, f is a given smooth function 
f(X1, .. ,X11,C1, .. ,Cm) E C00 (1R11+m,IR). 
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Implicit Function Theorem: 
At a given regular point the function f is locally structurally equivalent with the function g 
where 

g(x1' .. , Xn, C1' .. , Cm)= Xj 

In other words, the Implicit Function Theorem states that at a regular point the function is 
locally equivalent with its tangent plane. 

The Morse Lemma: 
At a given Morse singularity point the function f is locally structurally equivalent with the 
function g where 

g(x1, ... x11 ,c1, .. ,cm)= fix;x.i 

The Morse Lemma states that at Morse singularity points the local structure is defined by the 
second order terms. 

The Splitting Lemma: 
At a given catastrophe point for the function j; the Eigenvalues for the Hessian matrix can be 
ordered by absolute value with the first d being zero - corresponding to the degree of 
degeneracy. The function f is then locally structurally equivalent with the function g where 

g(x1 . .. , x,,, CJ, .. , C111 ) = g,, 111 (x1 •.. , XJ) + I;~d+ 1 'L't=d+ 1 -f? X; Xj 

The Splitting Lemma states that the function can be split into two parts: A non-Morse part 
and a Morse part. Accordingly. the parameters are split into "bad" and "good" parameters. 
The bad parameters correspond to the degenerate directions of the Hessian matrix. However, 
the Splitting Lenuna does not characterize the local structure of the non-Morse part of the 
function. This is done by a theorem by the French mathematician Rene Thom (1923- ). 

14.3.5 Thom's theorem 

Let f be a given smooth function f(x1 . .. , x,,, CJ, .. , Cm) E c0c'(IR11 +111
, IR). At a catastrophe 

point the eigenvalues for the Hessian matrix cau be ordered by absolute value with the first d 
being zero. The function is then locally structurally equivalent with afimction g where 

g(x1, .. , x11 , c J, .. , c111 ) = CatGenn(d) + Perturb(d, m) + r1' x; Xj 

If m~5 then CatGerm( d) is one of the Catastrophe Germs and Pert( d,m) is the corresponding 
Pertubation listed in the table below: 
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Name Nickname m d CatGerm (d) Perturb {d, m) 

A, Fold 1 1 x' C1 X 

A±J Cusp 2 1 ±x4 C1 X + C2 X
2 

A.i Swallowtail 3 1 x' C1 X + C2 X
2 + C3 X

3 

A±s Butterfly 4 1 ±x6 C1 x + C2 x 2 + C3 x 3 + C4 x 4 

A, D 5 1 x' C1 x + C2 x 2 + C3 x 3 + C4 x 4 
+Cs x

5 

D_4 Elliptic Umbilic 3 2 x' y -y' C1 X + C1 y + C3 y 2 

D+4 Hyperbolic Umbilic 3 2 x2 y +y3 C1 X + C1 y + C3 y 2 

Ds Parabolic Umbilic 4 2 x2 y + y4 C1 X + C1 y + C3 X
2 + C4 y 2 

o_, D 5 2 X2 y _ yS C1 X+C2 y+c3 x
2 

+C4 y
2 

+Cs y 3 

o., D 5 2 X2 y + yS C1 X + C2 Y + C3 X
2 + C4 y 2 + C5 y 3 

E±G D 5 2 x3 ± y4 C1 x + C2 y + C3 xy + C4 y 2 
+Cs xy

2 

Figure 14.2 Table of elementary catastrophes for m :s 5. The names in the first column 
were originally proposed by Thom [Thom1975]. The nicknames come from their visual 
appearance (see MathWorld [http://mathworld.wolfram.com/Catastrophe.html] with 
interactive plots, Gray [Gray1993], Bruce & Giblin [Bruce1984] and Scanns 
[Scanns2000]). The c, to es factors are also called the control factors. 

The Catastrophe Germ is the local structure of the function for the specific set of control 
parameters at the catastrophe point. 

The Pertubatio11 terms determine how the function behaves when the control parameters 
vary (in a neighborhood around the catastrophe point). 

14.3.6 Generic property 

A prope1ty for a system is generic if an open, dense subset of the system possesses the 
property. In probabilistic terms, a property is generic if it is possessed with probability one. 

In this context, the term generic is used to characterize which catastrophes are generic for 
images or for differential operators on images - these are the so-called generic events. 

14.3.7 Dimensionality 

Analysis of the dimension of the involved spaces can often determine whether a property is 
generic. As an example, lets look at the set of singularities in an n-dimensional image. A 
singularity point is determined by all n first order partial derivatives equaling zero. This 
means that we have n conditions in a 11-dimensional space. Under the assumption that these 
conditions are independent, the space where the conditions are met is a n - n = 0 
dimensional space. This means that the set of singularities contains only isolated points - or 
more precisely, a singulaiity point is generically isolated. We know that for a 2D image the 
singularities are the maxima, minima and saddle points of the intensity landscape, which are 
easily recognized as isolated points. 
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What about catastrophes? The potential catastrophe point is required to be a singularity (11 

conditions) and then the Hessian is required to have a degenerate direction (an extra 
condition). This means that n + l conditions are to be met resulting in an 11 dimensional 
space. Or in other words: generically, a given image contains no catastrophe points. 

In scale-space we have an extra parameter - the scale. 

This means that in scale-space the set of singularities is generically a I-dimensional space 
(the 'path' of the singulality over scale) and that catastrophes do genelically occur in isolated 
points. 

This very short and informal treatment of the dimensionalities of the singularity and the 
catastrophe sets is only meant as an appetizer. In order to present the above considerations 
properly mathematically, the image and the set of conditions should be represented as 
manifolds in jet-space where the independency of the terms can be investigated through the 
concept of transversality. However, this is far beyond the scope of this introduction - for a 
richly illustrated interactive tutorial in Mathematica see [Sanns2000], for a more 
comprehensive treatment see [Gilmorel981, Florack1994b, Olsen2000, Dam2000, 
Brucel984l 

14.3.8 Illustration of the concepts 

The example below shows a function with two state parameters x and y and one control 
parameter a. The local structure differs for three choices of the control parameter a: To the 
left the function has a saddle and a local minimum, in the middle a single saddle, and to the 
right no singularities at all. In general, the function has two singularities for negative values 
of a, one singularity for a= 0, and no singularities for positive a. 

f [x_, y_, a_] : = x 3 
- 24 y 2 +ax; DisplayTogetherArray [ 

Plot3D[f[x, y, #], {x, -30, 30), {y, -30, 30)] &/@{-300, O, 300), 

ImageSize -> 480]; 

Figure 14.3 The evolution of the Fold catastrophe as a function of the control parameter 
a. As the control parameter changes, the structure of the function changes. For negative 
values of the control parameter, the function has a local maximum and a saddle point. 
For positive values of the control parameter, the function has no singularities in the 
neighborhood of the observed point. The catastrophe occurs for control parameter equal 
to zero. 
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Since the singularity structure is different for positive and negative values of a, there must be 
a catastrophe point for a = 0. 

And reassuringly. for a= 0 the singularity at (x. y) = (0, 0) is a catastrophe point as well. 
This is easily verified mathematically: for a = 0 the determinant of the Hesssian is 6 x ( -48), 
which is zero at the singularity point (x, y) = (0, 0). 

The Splitting Lemma states that we can split the state parameters into "good" and "bad" 
parameters (locally around the catastrophe point (x, y. a)= (0, 0, 0) where the function 
changes singularity structure for increasing a). 

Actually, it need not be the original state parameters that are split - the degenerate direction 
need not be aligned with the original axes. However, in this case the "bad" parameter is the x. 

As stated by the splitting lemma, the function can be split into a part with the bad 
parameters, and a part with the good parameters in the shape of a sum of second order 
monomials (a monomial is a polynomial consisting of a product of powers of variables, e.g .. 
x, x y3 , x4 y z2 , etc). The non-Morse part of the function can be recognized from the list of 
catastrophe germs in Thom's Theorem. It is known as the fold catastrophe. It should be noted 
that - since there is only one control parameter - this is the only generic catastrophe. 

fold[x_, a_] := x 3 +ax; 
DisplayTogetherArray[ 

Plot[fold[x, #], (x, -30, 30), PlotLabel ->"a="<> ToString[#], 
AxesLabel -> { "x", ""}, Ticks-> None] & /@ 

{ -300, 0, 300}, ImageSize -> 440] ; 

a=-300 

Figure 14.4 The "bad" parameter x from the previous example. The original function can 
be split into the Morse and the non-Morse part. The non-Morse part is structurally 
equivalent to the fold catastrophe. 

The canonical fold catastrophe is further analysed below. We derive the singularity and 
catastrophe sets for the function fold(x. a): 

Solve[ox fold[x, a]== O, (a}] 
Solve[(o,fold[x, a] ==0, a.,.fold[x, a] ==0}, (a, x}] 

{{a->-3x2
}} 

{{a->0, X->0}} 

The above description of the singularity set is used to plot the fingerprint or the signature of 
the function - the position of the singularities against the value of control parameter: 
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Plot[-3 x2
, (x, -1, l}, ImageSize -> 150]; 

-I -05 ll5 
-05 

-1 

-15 

-
-25 

-3 

Figure 14.5 The fold catastrophe. The catastrophe at a=O is where the two singularity 
strings meet and annihilate. A point where several singularity strings meet is also 
denoted a bifurcation. This is the fingerprint of the fold catastrophe. Compare with the 
catastrophes in the fingerprint in figure 14.11. 

The cusp catastrophe from Thom's theorem is also commonly encountered. The canonical 
germ and pertubation that give rise to the cusp catastrophe is x4 + c1 x2 + c2 x. Since there 
are two control parameters, this is slightly more complicated than the fold catastrophe . 

.a. Task 14.2 Illustrate the fingerprint for the cusp catastrophe (like the illustration in 
figure 14.5 for the fold catastrophe). 

Clear [cusp]; cusp [x_, cl_, c2_] : = x4 + c2 x2 +cl x; 
Show[GraphicsArray[ 

Table[Plot[cusp[x, cl, c2], 
{x, -10, 10), DisplayFunction ->Identity, Axes-> None], 

{c2, 0, -30, -15), {cl, -BO, 80, 40)]], ImageSize->440]; 

uuuuu 
uuuuu 
lJlJWlJV 

Figure 14.6 Various perturbed shapes for the cusp catastrophe germ. It has two stable 
states: one with a single minimum and one with a minimum,maximum,minimum triple (or 
the same states with maximum and minimum switched). Conceptually, one control 
parameter allows transition between the states by "tilting" the two minima until one 
minima is annihilated with the central maxima (or the reverse process) - these events are 
fold catastrophes. The other control parameter allows transition between the states by 
letting the two minima approach each other until they are merged together with the 
maxima into one single minimum. The cusp catastrophe point is where both control 
parameters are zero. 

Here are a few other illustrations and some plot commands to study them (see also the 
package Implici tPlot3D. min MathSource: www.mathsource.com): 
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<< FrontEndVision' ImplicitPlot3D'; 
DisplayTogetherArray[{ 

cusp= ContourPlot [x3 
- y 2

, (x, - • 5, 4}, 
(y, -6, 6), Contours-> (0), PlotLabel ->"Cusp"], 

cusp3D=ContourPlot3D[4x3 +2ux+v, (u, -2.5, 2), (v, -2, 2), 
(x, -1, 1), PlotPoints -> 6, PlotLabel -> "Cusp3D", 
ViewPoint -> (-4.000, 1.647, 2.524)], 

swallowtail= ParametricPlot3D[ {u v 2 + 3 v 4
, -2 u v - 4 v 3

, u}, 
(u, -2, 2), (v, -.8, .8), BoxRatios-> (1, 1, 1), 
PlotLabel ->"Swallowtail", ViewPoint -> (4.000, -1.390, -3.520)]}, 

ImageSize -> 420, GraphicsSpacing -> (0, 0)] ; 

Figure 14.7 The cusp (20 and 30) and the swallowtail catastrophe. From the wonderful 
booklet by [Sanns2000]. See also: 
Math World [http://mathworld.wolfram.com/Catastrophe .him I]. 

14.4 Catastrophe theory in scale-space 

As stated earlier, the natural application of catastrophe theory towards scale-space theory is 
to view the spatial parameters as state parameters and the scale as the single control 
parameter. The differentiability of the scale-space even ensures that the functions are 
smooth. However, it is slightly more complicated than that. In scale-space theory, there is a 
fixed connection between the spatial parameters and the scale parameter given by the 
diffusion equation: L1 = Lxx + Lyy. This gives a severe restriction compared to the general 
space of functions with one control parameter. 

Thereby, the canonical catastrophe germs listed in Thom's theorem might not apply to scale
space images. Fortunately, the work of James Damon {UNC) reveals that we can in fact still 
apply similar results to Thom's theorem for all practical purposes [Damonl995, Damonl997J. 

Another caveat in scale-space singularity analysis is the image. Images from natural scenes 
behave nicely, but artificial test images often possess nasty properties. Two typical examples 
are symmetry and areas with constant intensity. Across a symmetry axis singulaiities appear 
in pairs. This means that the expected catastrophes appear in variants where two {or more) 
symmetric catastrophes occur simultaneously at the same place (an example of this is shown 
in the next section). This apparently causes non-generic catastrophes to appear. Actually, it is 
not the catastrophes that are non-generic - symmetry in images is non-generic. 

Areas with constant intensity in artificial test images can cause unexpected results. In theory 
this should cause no problems since the areas no longer have constants intensity at any given 
scale > 0. In practice, implementations with blurring kernels of limited size will however 
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leave areas with constant intensity (gradually smaller with increasing scale). A simple 
consequence is apparent areas of singularities - as opposed to the expected isolated points. 

14.4.1 Generic events for differential operators 

Thom's theorem states that the only generic catastrophe with only one control parameter is 
the fold. 
At first hand, we would therefore not expect to encounter any other catastrophes in scale
space, where we only have scale as control parameter. However most applications, like edge 
detection, examine singularities for differential operators and not singularities for the raw 
image. Depending on the differential operator this induces other catastrophes as well. 

An example of higher order singularities induced by a differential operator is illustrated in 
the following. The operator is the square of the first derivative of the original image (the 
gradient squared). In order to understand why this simple operator can induce other generic 
catastrophes we look at the Taylor series expansion of a one-dimensional function f (around 
0 for simplicity) and the derivative of this expansion squared. 

Clear[f]; Series[f[x], {x, 0, 4}] 

f [OJ+ f" [OJ x +-} f"" [OJ x 2 + i f 131 [OJ x 3 + 2\ f 141 [OJ x 4 + O(xJ 5 

When we look for singuladties the zeroth order term is not interesting. Intuitively we can use 
the spatial parameter x as a free parameter that allows us to find points p where fxlp) is zero. 
Therefore we find singularities in generic signals (and images). When we have a control 
parameter, we can tum this extra "knob" until we find points where f<x(p) is zero as well. 
Then we find catastrophe points where the first and second order structures are vanishing -
the canonical fold catastrophe genn. But since we have no more knobs to tum, we cannot get 
rid of the higher order structure and therefore higher order catastrophes are non-generic. 

D[Series(f[x], {x, O, S)], x] 2 

f' [OJ 2 + 2 f' [OJ f"" [OJ x + (f"" [OJ 2 + f' [OJ f 131 [OJ) x 2 + 

( f"" [ 0 J f 13 } [ 0 J + + f' [ 0 J f 14 } [ 0 J ) x 3 + 

( ..!_ f1 3
} [OJ

2 
+ ..!_ f"[OJ f'4} [OJ+ _-1:__ f'(OJ f 15 } [OJ) x 4 +O(xJ 5 

4 3 12 

The situation is somewhat different for the derivative signal squared. Again, we can use the 
two free parameters (x and the control parameter) to find points p where fx(p) = fxx(P) = 0. 
The remaining part of the derivative of the signal squared is then ± fxxxlP)2 x4 + 0(x5). We 
see that the third order structure completely disappears and we therefore generically have the 
cusp catastrophe present in the derivative of the signal squared. It is also worth noticing that 
this implies that for each fold in the original signal, there is a cusp in the derivative of the 
signal squared. 

We first demonstrate these findings in scale-space by looking at a simple signal composed of 
a few sines and cosines. First the definition of the signal and the derivative squared: 
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from= -100; to= 400; resolution= 25; 
t 

f[t_] :=Sin( . ] + 
resolution 

t t 

Cos [ 1. 
2 resolution + O • 9 J +Sin [ 1. 3 resolution + O • 6 ] ; 

DisplayTogetherArray[Plot[#, {t, from, to)] &/@{f[t], f' [t] 2
), 

ImageSize-> 470]; 

0015 

001 

011075 

Figure 14.8 A simple signal and the corresponding derivative squared. 
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We investigate how this signal evolves in scale-space by convolving with a Gaussian using 
an exact Fourier domain implementation: 

1 x' 
gausskernel[x_, a_] :=----Exp[---,]; 

a~ 2a 

signal[a_, x_] =Simplify[ 
InverseFourierTransform [FourierTransform [ gausskernel [x, a] , x, c.i] 

FourierTransform[f[x], x, c.i], "'• x], a> OJ; 

dsignalsquared[a_, x_] = (ox signal [a, x]) 2 //Chop; 
DisplayTogetherArray[ 

{Plot[signal[#, x], {x, from, to}, Ticks-> {Automatic, None}, 
PlotLabel-> "a = "<> ToString[#]] & /@ (1, 25, 40, 50) , 

Plot[dsignalsquared[#, x], {x, from, to), 
Ticks -> {Automatic, None}] & /@ { 1, 25, 40, 50)} , ImageSize-> 500] ; 

CJ = 1 CJ = 25 CJ = 40 CJ = 50 

-'~" -'~" -'~" ,M, 
LJ ~-~ LJ LJ 

-100 100200300400 -100 100200300400 -100 100200300400 -100 100200300400 

Figure 14.9 Top row: the original signal at scales cr = 1, 25, 40, 50. At the center of the 
signal a maximum and a minimum melt together as scale increases and are annihilated 
in a fold catastrophe. Bottom row: the derivative squared at the same scales. A 
{minimum, maximum, minimum}-triple is annihilated into a single minimum in a cusp 
catastrophe located where the fold is in the original signal. 
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In order to see that these nice derivations actually hold for real discrete images as well, we 
inspect a random signal. First the signal and the derivative squared is constructed. 

random=Table[Random[], {t, from, to}]; 
scaledrandom [a_] : = gDf lD [random, 0, a] ; 

drandomsquared[a_] := gDflD[random, 1, a] 2
; 

We then illustrate the evolution as scale increases: 

view[func_] := 
ListPlot[func[#], PlotJoined-+True, Ticks-+ {Automatic, None}, 

PlotLabel-+"a = "<>ToString[#J] &/@{1, 25, 40, 50); 
DisplayTogetherArray[{view[scaledrandom], view[drandomsquared]), 

ImageSize-+ 500] ; 

tr=l U"=25 U"=40 (T::::5(1 

IUO 200 300 400 500 ~ ~= 1/-: 
O"= I U"=~ U"=40 (J"::::~ 

mlL&Jl~~ 
100 200 300 400 500 lOO 200 300 400 500 !CO 200 300 400 500 JOO 200 ){)(I 400 51..Kl 

Figure 14.1 O The scale-space evolution for a random signal and the derivative signal 
squared. The signals are displayed at scales <r = 1, 25, 40, 50 as in figure 14.9. 

Finally we display the fingerprints for the random signal and the derivative of the signal 
squared. The fingerprints are slightly cluttered at low scale due to the inherent randomness of 
the signal but the fold/cusp pairs are obvious. 

fingerprint [signal_, maxscale_] : =Module [ {scsig, scLx, sig}, 
scsig = Table[signal[EtLog[maxscaleJ/20o], {t, 50, 200)]; 

scLx = scsig - Map [RotateLeft, scsig] ; 
sig:Map[(RotateLeft[#J -#) &, Sign[scLx]]; 
ListDensityPlot [sig, ImageSize-+ 440]]; 

fingerprint[scaledrandom, 60]; 

Figure 14.11 Fingerprints for the random signal and the derivative signal squared. For 
each fold catastrophe in the signal there is a corresponding cusp catastrophe in the 
derivative signal squared. 
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Thom's theorem states that the only generic catastrophe for a function with only one control 
parameter is the fold. However, as we have seen in the previous section, when we construct 
differential expressions from the original generic function we can induce higher order 
catastrophes as well. 

A simple example is the derivative squared where the cusp catastrophe is generic. 

fingerprint[drandomsquared, 60]; 

Other differential expressions can induce catastrophes of even higher order. Therefore, it is 
necessary to analyze each differential expression individually in order to reveal the generic 
events for the singularities as scale is increased. 

14.4.2 Generic events for other differential operators 

Other comers measures are studied in [Sporring1998al. 

Among the investigated differential operators are the gradient magnitude used above as 
dissimilarity measure for the watershed segmentation. The generic events for this operator 
are the fold and the cusp - for both annihilations as well as creations are generic. 

Show[Import["nongeneric_isocat.jpg"], ImageSize-+ 230]; 

Figure 14.12 The singularities for the isophote curvature located on a specific isophote 
The red/blue curves are the maxima/minima. These singularities can be perceived as 
corners. The singularity strings are followed up through scale-space revealing non
generic catastrophes. Both the blue ring and the catastrophe at the top, where eight 
singularities are annihilated, display highly non-generic behavior. This is due to the non
generic test image - a perfect square. Illustration from [Dam1999]. 
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This is derived in [Olsen I 997]. Note, however, that creations only are generic in 2D and 
higher dimensions. Creations in ID can never occur. 

The generic events for the isophote curvature are studied in [Daml999]. Again, the generic 
events are the annihilation and creation fold and cusp catastrophes. From this work we also 
have an ensemble of apparently non-generic catastrophes due to symmetry in the test images. 
An example is displayed in figure 14.12. 

14.4.3 Annihilations and creations 

In traditional catastrophe theory there is no preferred orientation for the control parameters. 
When the singularity structure for a function changes new singularities are as likely to appear 
as old ones are to disappear. Annihilations and creations are simply reverse events between 
different states for the local strncture of a function. This is not the case for linear scale-space 
functions where scale is the control parameter. We only study the evolution of the functions 
for increasing scale. As mentioned earlier, increasing the scale results in a general 
simplification of the image functions. This implies that singularities are annihilated much 
more often that they are created. 

As an example, see the fingerprint for the noisystep signal in figure 14.11. The figure shows 
fold annihilations - but no creations at all. This is in fact no coincidence. For a ID signal 
(with no special properties or symmetries), creations are non-generic in scale-space. For 
images of dimension 2 (or higher) creations are generic. The famous example from the 
literature, where this was first discovered by Lifshitz and Pizer [Lifshitz 1990 J, is the 'dumb
bell example' (see figure 14.13). 

(x-71")2 y2 
db=Table[Chop[Exp[- ]Exp[- ]], 

2 2(Sin[x]+.1) 2 

{ y' -4' 4' • 2} ' { x' 0' 2 ,.. ' • 04} l ; 
DisplayTogetherArray[ 
ListPlot3D[#, ViewPoint -> (1.489, -2.605, 1.968), Mesh-> False] & /@ 

{db, gD [db, 0, 0, 3]), ImageSize -> 300]; 

Figure 14.13 The dumb-bell image (left) consists of two blobs with a narrow bridge in 
between with a maximum. Blurring (right, cr = 3) has much more effect on the bridge, so 
two new maxima and a saddle are created under blurring. Illustration from [Lifshitz1990]. 
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In general for catastrophes from images or differential operators on images, annihilations are 
much more common than creations [Kuijper2002a, Florack2000b, Kuiper2002bJ. 
Furthermore, the scale-range where singularities can be observed resulting from a creation in 
scale-space is generally relatively short. 

Another interesting aspect about singularities resulting from creations is their "validity". In a 
sense, the singularities that arise from creations have no originating structure in the original 
image. The feature corresponding to such a singularity can not be linked down to its "cause" 
in the image. Therefore, the singularities arising from creations are discarded in ce1iain 
applications. An example of this is actually the linking scheme in the multi-scale watershed 
segmentation. Since the regions are linked from fine to coarse scale, regions resulting from 
creations never enter the linking tree. They are simply ignored on purpose. 

14.5 Summary of this chapter 

Catastrophe theory is the theoretical foundation that allows us to analyze the evolution of the 
singularities in scale-space. The theory allows prediction of the behavior of differential 
operators in scale-space. Ideally, any deep structure application should therefore include a 
comprehensive analysis of the generic behavior. 

However, catastrophe theory is quite complicated. Therefore a strict theoretical approach has 
little appeal for the general image analysis community. Fortunately, a number of central 
results can be applied without more than a certain intuitive understanding of catastrophe 
theory. The purpose of this section was to provide a first step towards such a basic intuitive 
understanding. 
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In the previous chapters we detected and followed the singularity strings through scale-space 
in an ac hoc manner. In the scale selection section, the detection of maxima was done by 
simply looking for pixels with values larger than its neighbors. In the edge focusing section, 
minima and maxima were detected (and distinguished) for a ID signal by looking at sign 
changes for the derivative signal. Fmthermore these extrema were tracked down through 
scale-space by simply looking for extrema in a close neighborhood in successive scale levels 
below. Finally, in the multi-scale segmentation section, the dissimilarity minima were 
represented indirectly by the catchment basins, and the linking across scale was done 
robustly by matching regions instead of points. 
These approaches seem somewhat heuristic. However, they can be expressed in a more 
formal manner with solid theoretical foundations. Furthermore, the implementations can be 
refined in order to make them more robust. The approach presented in this section is 
therefore not to be considered superior to the previous. It does, however, have a number of 
properties that are appealing both in theory and implementation. The concept presented in 
the following can be studied in more detail in [Kalitzinl996a, Kalitzinl997b, Staall999a]. 

15.1 Topological numbers 

The topological number defined below is a generalization of the winding number. The 
topological number gives a characterization about the local structure of a function in a point 
by investigating the immediate neighborhood of the point (divergence theorem, see 
http://mathworld.wolfram.com/DivergenceTheorem.html). 

Let L(x): C1 (IR.n, IR) be a differentiable scalar-valued function. For a given regular point p (a 
point with non-vanishing gradient) we define 

Here E is the permutation tensor defined by the following equations: E12 ··· 11 = I and 
Eii ;, ···;,. .. ii··· in = -Ei1 ;, ··· ;, .. ;,. ·in . This is simply a sign change depending on the number of 

permutations. 

For a closed, oriented, 11-l dimensional hypersurface S with no singular points on the smface 
we define: 
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vs = Is <I>(p) 

For a point po, the topological number v(po) is defined as the topological number vs for a 
hypersurface S surrounding p0 closely. By the informal notion "closely" we specifically 
mean that the region bounded by the hypersurface must contain no singularities, other than 
possibly po, for the function L. In order for this to be well-defined, it is required that the 
singular points for the function Lare isolated. 

Characterization of Points: 
For a regular point the topological number is zero. For a singularity point, the topological 
number offer a characterization of that point (examples are given below). 

Invariance: 
The topological number is invariant under homotopic deformations of the 11-dimensional 
space on which the hypersurface is embedded - provided that no singular points cross the 
hypersurface in the deformation. This makes it a non-pe1tubative and topological quantity. 

Additivity: 
For a region constructed as the union of a number of disjoint subregions, the topological 
number for the hypersurface bounding this region is the sum of the topological numbers for 
the subregions. 

Conservation: 
The invariance prope1ty implies the following conservation property. For a family of images 
L(x, <T): C°"(IR.11+1 , IR), depending smoothly on the defo1mation parameter <T, the topological 
number vs for a given hypersurface S is constant for all <T provided that no singular points 
crosses the hypersurface during deformation. This property is central for the tracking of 
singularities and the analysis of catastrophe points in scale-space. 

15.1.1 Topological numbers in scale-space 

The linear scale-space representation for 11-dimensional image functions has three central 
properties that makes the concept of topological numbers applicable: 

• Image functions are infinitely differentiable --+ continuous derivatives in scale-space, 
<T>O. 
• Singulaiities are generically isolated in a scale-space image for a given scale. 
•The deformations defined by Gaussian blurring are smooth. 

Thereby image functions (and their derivatives) qualify for the conditions stated above. The 
topological number is well-defined for scale-space image functions. When analyzing the 
deep structure of image in scale-space. the invariance and conservation properties for the 
topological number mentioned above are central. Below, we will see this with respect to 
tracking of singularities and the analysis of catastrophe points in scale-space. 
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15.1.2 Topological number for a signal 

The above mathematical definition of the topological number simplifies considerably for lD 
signals in scale-space. For a scale-space signal L(x, O"): C00 (1R I+l, IR), the topological 
number for a point p is simply v(p) = Sign(Lx(P+)) - Sign(Lx(p_)) where P- and P+ are 
points close top such that P- < p < P+. 

Here "close" has the same meaning as defined above. For regular points, the topological 
number is zero. For local maxima and minima the topological numbers are -2 and 2, 
respectively. 

In the section on edge focusing, the illustration of the signature of the noisystep signal was 
produced in an ad hoc manner. Inspection of the code reveals that the illustration displays 
exactly the -2 and 2 values for the sign differences for the derivative of the signal. 
Reassuringly, the sensible ad hoc approach proves to be a simple special case of a more 
general principle. 

15.1.3 Topological number for an image 

For 2D images the expressions simplify quite a bit as well. The integrand from the 
topological number simplifies to the following expression: 

Using complex numbers, this can also be written as: 

For a discrete image, this is simply the angle between the gradient vector for two 
neighb01ing pixels. When this expression is integrated (or summed in the discrete setting) the 
topological number is therefore a count of the number of times the gradient vector turns 
around its origin as a contour surrounding a specific point is traversed. This is known as the 
winding number. 

The winding number assumes values of k 2 :rr for some integer k. In order to understand this 
intuitively, picture the gradient direction vector rotating for a moving test point that encircles 
a given image point. 

For regular points the winding number is zero. For local extrema the winding number is + 2 :rr 
. For saddle points the winding number is - 2 :rr. Monkey saddles can be characterized by the 
winding number as well - we will not look into that here. 
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Figure 15.1 Path of the rotating gradient vector with the gradient vectorfield for three 
different functions. Left: f(x, y) = x2 + y2 ; the gradient vector rotates once forward --> 

enclosed is a maximum, the winding number is 27r. Middle: f(x, y) = (X + 2)2 + y2 ; the 
gradient vector does not make any rotation when the path is traversed --> enclosed is a 
regular point, winding number is zero. Right: f(x, y) = x2 - y2 ; the gradient vector rotates 
once backwards --> enclosed is a saddle point, the winding number is -27f. 

• Task 15.1 Show that the winding numbers add for the singularities within a closed path, 
e.g. when 2 maxima (each windingnumber +27r) and a saddlepoint (windingnumber -27r) 
are traversed, the rotation is 27r+27r-27r=27f. 

• Task 15.2 Show that the winding number for a monkeysaddle f(x, y) = x3 + 3x y2 is -47f 
and illustrate this with an animation. A monkeysaddle is so called to accommodate the 
two legs and the tail of the monkey. 

• Task 15.3 Calculate the windingnumber of higher order monkeysaddles, given by 
f(x, y) = Re[(x - I y)n], where n E ~.and illustrate this with an animation. 

15.1.4 The winding number on 20 images 

First, we develop the routine for winding number detection in 2D images. The routine 

windingnumber2D[im,t:] returns a list of two elements {extrema,saddles}, i.e. 
the positions of the extrema and the positions of the saddles, both as triples of coordinates in 
scale-space. 

A triple is {a, y, x}. The routine pursues the complex notation of the integrand <I>(p) above. 

This is calculated in <P for the eight neighbors of each pixel and summed in wn . Each 
extrema and saddle is located twice - therefore the results are "pruned" through pattern 
matching on wn. 
For ease of calculations the components of the gradient are represented as the real and 
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imaginary components of a complex number. The argument Arg of the ratio of two such 
numbers is then the angle between the gradient vectors. 

windingnumber2D[ im_, t=_] : = Module [ 
{grad, v, wn, extrema, saddles}, grad=gDf[im, 1, 0, Et:] +IgDf[im, O, 1, Et:]; 
v=RotateLeft[grad, #] &/@{(O, OJ, (-1, OJ, (-1, -1), (0, -1)); 

1 
wn = - Plus@@Arg[v/RotateLeft[v]] II Round; 

2,,. 

{extrema, saddles}= (Insert[#, E', 1] & /@ Position[wn, #]) &/@{1, -lJ]; 

We calculate the winding numbers on a sagittal MR image (er= 2.7 pixels) and plot the 
extrema and saddle points as white pixels on the image:: 

im= Import["mrl28.gif"] [[l, l]]: 

{extrema, saddles}= windingnumber2D[im, t: = 1.]; 
imbl=gD[im, 0, 0, Exp[l]]; 

white[x_] :=Max[imbl]; disp[pos_] :=Module[(), 

positions = pos /, {a_, y_, x_} -> {y, x}; 

ListDensityPlot[MapAt[white, imbl, positions]]]; 
DisplayTogetherArray[disp /@{extrema, saddles}, ImageSize -> 265]; 

Figure 15.2 The local extrema (left) and saddle points (right) for the MR brain image at 
scale <T = 2.7 (T = 1) superimposed as white dots on the original image blurred to <T = 2.7. 

Where the extrema are typically in the center of regions, the saddle points are located near 
the borders of regions. Here are the ciitical (self-intersecting) isophotes through the saddle 
points #66, #68, #69 and #72: 

saddlephote[nr_] : =Block[ ($DisplayFunction =Identity, saddle}, 
saddle= positions[ [nr]]; pl= ListoensityPlot[imbl, 

Epilog ->{Yellow, Pointsize[. 03], Point[Reverse[saddle]]}]; 
p2 = ListcontourPlot[imbl, ContourStyle ->Wheat, 

Contours-> {Extract[imbl, saddle]}]; 
Show[pl, p2, DisplayFunction-> $DisplayFunction]]; 

DisplayTogetherArray[saddlephote /@(66, 68, 69, 72), ImageSize-> 400]; 

Figure 15.3 The isophote curves defined by the values at some saddle points (yellow 
dots) for the MR brain scan of figure 15.2 at scale <T = 2.7. Note that all these critical 
isophotes intersect themselves in saddlepoints. 
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criticalisophotes[im_, ~_] := 
Module[{), {extrema, saddles} =windingnumber2D[im, ~]; 

imblurred = gD [im, 0, 0, E']; 
saddlepositions =saddles/. {a_, y_, x_} -> {y, x}; 

ListContourPlot [imblurred, ContourShading ->True, 
Contours-> Extract [imblurred, saddlepositions]]]; 

DisplayTogetherArray[criticalisophotes[im, #] & /@ {1.5, 2, 2.5), 
ImageSize -> 300]; 
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Figure 15.4 The isophote curves defined by the values at the saddle points for the MR 
brain scan at scales <T = 4.5 (left) and <T = 7.4 (right} pixels. Note that these critical 
isophotes intersect themselves in saddlepoints. 

In the previous chapter on catastrophe theory we studied the rate of the decrease of image 
maxima. Using the winding number approach we can now detect extrema as well as saddle 
points. For the sake of comparison, we inspect the rate of decrease of the number of 
singularity points for the MR brain image and a white noise image: 

wnimage=Table[windingnumber2D[im, ~], {~, 0, 1, .l)]; 
{nrExtremaimage, nrSaddlesimage} = 

Map [Length, wnimage, { 2} ] I I Transpose; 
wnNoise =Table [windingnumber2D [Table [Random[], { 128), {128)], ~], 

{ ~, 0, 1, .1)]; {nrExtremaNoise, nrSaddlesNoise} = 
Map [Length, wnNoise, {2)] //Transpose; 

disp[nrSingularities_, text_] : =Module [ {}, 
slopeText = "Slope for "<>text<> ": " <> 

ToString[Coefficient[Fit[lOLog[nrSingularities], {l, x), x], x]]; 
LogListPlot [nrSingularities, AxesLabel -> { "~*10", ""}, 

PlotLabel -> slopeText, DisplayFunction ->Identity]]; 
Show [GraphicsArray [ { disp [nrExtremaimage + nrSaddlesimage, "MR image"] , 

disp [nrExtremaNoise + nrSaddlesNoise, "white noise"]}], 
ImageSize -> 345]; 

SlopcforMR1mage -l 66555 Slopefornh1ten01se: -l 91549 

·~~ ... =1~ .... 
246810 246810 

Figure 15.5 The decrease of singularities (the sum of the extrema and saddles) in a 1282 

MR image (left) and an image with white noise (right}. The singularities are detected 
using 20 winding numbers. Especially the curve for white noise has a slope close to the 
theoretically predicted -2. 

We see that for the MR image and the white noise the observed slope talso known as the 
Hausdorff dimension) is close to the theoretical slope of -2. The MR image has a more 
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deviating slope, possibly due to the lesser degree of self-similarity of the MR image at 
different scales (see also [Pedersen2000]). 

We can increase the radius of the path around the singular point to one pixel (8 pixels on our 
track): 

windingnumber2DS[im_, ~-1 := 

Module [ {a, grad, v, tfl, a, i, 

wn, shead, stail, ehead, etail, extrema, saddles), 
a=Exp[~l;grad:gD[im, 1, 0, al +IgD[im, 0, 1, a]; 

v=wn=Table[O, {S)]; 
v[ [1]] = RotateLeft /@grad; v[ [2]] = RotateRight[v[ [1]]]; 
v [ [3]] = RotateRight [grad] ; v [ [ 4]] = RotateRight /@v [ [3]]; 
v[ [SJ]= RotateRight /@grad; v[ [6]] = RotateLeft[v[ [SJ]]; 
v[ [7]] = RotateLeft[grad]; v[ [SJ]= RotateLeft /@v[ [7]]; 

v[ [i]] 
tfl=Table[If[i.,s, a=i, a=i+l];Arg[---], (i, 1, SJ]; 

v[ [a]] 

1 
wn =Round[- Plus@@t/I]; 

2 7r 

wn:wn//. {{shead_, -1, -1, stail_)-+ {shead, 0, -1, stail), 
{ehead_, 1, 1, etail_)-+ {ehead, 0, 1, etail)); 

wn = Transpose [Transpose [wn] I I. 
{{shead_, -1, -1, stail_)-+ {shead, 0, -1, stail), 
{ehead_, 1, 1, etail_)-+ (ehead, 0, 1, etail))]; 

extrema= Insert[#, a, l] & /@ Position[wn, l]; 

saddles= Insert[#, a, l] & /@ Position[wn, -1]; {extrema, saddles) J; 

Sander and Zucker [Sander! 992] employed winding numbers with respect to the vectorfield 
corresponding to the principal directions (of the principal curvatures) to detect umbilical 
points (as singularities in this second order vectorfield). 

15.2 Topological numbers and catastrophes 

The conservation property for the topological number offers a way to analyze catastrophe 
points Specifically, the conservation property (and the additivity property) states that the 
sum of the topological nrs for the pai1icipating singularities are constai1t across a catastrophe. 

{min, max, step)= (-30, 30, .S); {~min, ~max, ~step}= (1, 3.S, 0.3); 
im= Table[x3 -24y2 -300x, {x, min, max, step}, (y, min, max, step)]; 
DisplayTogetherArray[ 

{ListPlot3D [im, ViewPoint -> (3 .147, -0. 630, 1.071), Mesh-> False] , 
ListDensityPlot [Transpose [im]]), ImageSize-+ 400]; 

Figure 15.6 A function with a local maxima and a saddle point. The function is displayed 
both as a height map and a density plot. 
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We illustrate this by the fold catastrophe presented in the catastrophe theory section. The 
family of functions x3 - 24 y2 + ax has a function with a fold catastrophe for a = 0. 

Here we let linear diffusion produce the same catastrophe on a discrete version of the 
function x3 - 24 y2 - 300 x. 

The extrema and the saddle points are calculated with the winding number method: 

wnSingularities = Table [windingnumber2D8 [im, 1:], { "' 1, 3. 5, • 3)] l 

We display the extrema points, saddle points, and the original image via the 3D graphics 
primitive Point. This means that image points, extrema, and saddles are converted into lists 
of triples of {x. y, scale}. For the image the scale level is set to 0. The following code pieces 
are quite simple - however they are somewhat cluttered by the many conversions between 
scale-space coordinates and matrix indices. 

{minL, maxL) = {Max [im] , Min [im]); 

x 3 
- 24 y 2 

- 300 x - minL 
imagepoints = Flat ten [Table [ { GrayLevel [ . ] , 

maxL-minL 
x -min y -min 

Point[{Round[--] +l, Round[---] +l, o}]}, 
step step 

{x, min, max, step), {y, min, max, step)], l]; 

index [coord_] : =coo rd I. { "-' x_, y_) , .. (x, y, Round [(Log[ 1:] - 1) I . 3] + 1); 
allExtrema = 
Flatten [wnSingularities I. {extrema_, saddles_) , .. extrema, l]; 

allSaddles = 
Flatten[wnSingularities I. {extrema_, saddles_), .. saddles, l]; 

Show[Graphics3D[ 
{imagepoints, RGBColor[l, 0, OJ, Point[#] & /@index[allExtrema], 
RGBColor[O, 0, l], Point[#] &/@index[allSaddles])], 

ImageSize -> 400, ViewPoint -> (0.058, -1.840, 0.801)] l 

Figure 15.7 The singularity strings are displayed above the original image with scale level 
as the vertical axis. The red dots are extrema and the blue dots are saddles. All 
singularities but the two strings in the middle of the image are due to the cyclic 
representation of the image in the winding number computation. The red string in the 
center is the local maxima and the blue string is the saddle - see figure 15.6 for 
comparison. 
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The fold catastrophe in the center of the figure obeys the conservation principle of the 
topological number. Below the catastrophe point there are a maximum (winding number 
+2rr) and a saddle (winding number -2rr) - the sum of the winding numbers is 0. 

Above the catastrophe there are no singularities (within the center region) which means that 
the winding number is 0. The winding number for the center region is thus preserved across 
the catastrophe. 

15.3 The deep structure toolbox 

The previous sections in this chapter have presented and applied a number of techniques for 
analyzing and utilizing the deep structure. The purpose of this section is to provide a 
summary of the open problems in deep structure analysis from a pragmatic point of view. 

The desired goal is the to be able to present a complete toolbox consisting of simple, 
intuitive, robust and theoretically well-founded methods that handle the common challenges 
concerning deep structure analysis. Such a toolbox would make deep structure approaches 
more accessible for computer vision and image analysis researchers and programmers 
outside the scale-space community. 

15.3.1 Detection of singularities 

A number of methods have been illustrated in the previous sections. The methods locate 
singularities for a given n-dimensional image and for a given scale-space representation for 
an image as well. The methods allow characterization of the singularities as maxima, minima 
or saddle points. 

This is the best equipped compartment in the deep structure toolbox. 

15.3.2 Linking of singularities 

The previous sections have shown a number of ways to detect and analyze singularities. A 
central aspect of exploring the singularities is the linking across scale. 

The linking method for singularities in the edge focusing section is quite heuristic. A 
singularity is linked with the first singularity of the same type encountered at the adjacent 
scale level in a fixed search space around the location at the current level. 

Especially in the presence of catastrophes, where the singularities will have a large 
horizontal movement between two scale levels. this approach is not as robust as desired. 

The first step towards a more healthy approach is to adapt the search region to the local 
geometry. 

As well as detection the location of the singulaiities in scale-space we can detect their local 
drift velocity [Lindeberg1992b, Lindeberg1994aj. This could be used to give an estimate for 
a sensible location of the search region. 
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For a non-degenerate singularity in the point x0 the singularity will drift according to 

a;/ = -L;j-I Ljt· This describes how the coordinates of the singulaiity change for 
increasing scale (where t = t er). The expression is written in tensor notation, where L;i-l 

is the inverse of the Hessian matrix and Li 1 is the Laplacian of the gradient. 

As an illustration, we equip the singularities from the singularity stlings in figure 15.7 with 
drift velocity vectors. The differential operators are derived in Mathematica symbolically 
and then substituted with the corresponding discrete image data from the previous example. 

. ( ilx,xL[x, y] 
Clear[L, x, y]; hess1an = ilx,yL[x, y] 

grad= {c'l.L[x, y], c'l,L[x, y]}; 

laplaceGrad = ilx,x grad+ c'ly,y grad; 
1 

ilx,yL[x, y]); 
a,,,L[x, y] 

singDri ft = - "2 Inverse [hessian] • laplaceGrad; 

driftField[image_, a_] := 
singDrift I. Derivative [dx_, dy_] [L_] [x, y] , .. gD [im, dx, dy, a]; 

This is the expression for the drift velocity of the singularity points: 

singDri ft I I shortnotation 

{ Lxxy Lxy - Lxxx ~yy - Lxyy Lyy + Lxy Lyyy Lxy ( Lxxx + Lxyy ) - Lxx ( Lxxy + Lyyy ) } 

-2 Lxy + 2 Lxx Lyy 
/ 

-2 Li_y + 2 Lxx Lyy 

For each detected singularity we calculate a drift vector. This vector is represented by a 

Line graphics object from the singularity point in scale-space coordinates. The drift 
velocity vector is a first order estimate of the change in spatial coordinates for a change in 
scale level. Close to a fold catastrophe, the singularity string is approximately horizontal. 
The estimated drift for a chai1ge in scale level is therefore extremely high for the singularity 
points detected close to the catastrophe point. 

Therefore we crop the vectors - otherwise they would point far out of the view volume. 
The extrema and saddle points are picked from the wnSingulari ties variable calculated 
in the previous section. The calculation is done for all singularities from a scale level 
simultaneously such that the drift velocity field need only be computed once per scale level. 

vectors [im_, t:Idx_, extrema_, saddles_] : =Module [ {}, 
athis = Exp[t:min + t:Idx t:step]; 
anext =Exp [t:min + t:Idx t:step + t:step]; 

drift= driftField[im, athis] (anext2 
- athis 2

); 

crop[coordinate_] :=Max[Min[coordinate, l+ (max-min) /step], l]; 
replaceRule = 

{t:t:_, x_, y_} : .. Line[{{x, y, t:Idx), {crop[x+drift[[2, x, y]]], 
crop[y+drift[[l, x, y]]], t:Idx+l}}]; 

{Replace[extrema, replaceRule, l], 
Replace[saddles, replaceRule, l]}]; 

We limit the illustration to the two center singularity strings that meet in the fold catastrophe 
point. The singularity strings resulting from the cyclic borders representation are unnecessary 
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clutter (and their drift velocities are somewhat erratic as well due to implementation details). 
The selection of the center singularities is done in a simple ad hoc manner: 

width= (max - min) I step; 
centerOnly[{t:t:_, x_, y_}] ·-

Abs [y- width I 2] < 0.2 width && Abs [x - width I 2] < 0.2 width; 
centerSing[singList_] : =Select [singList, centerOnly]; 

We compute the drift velocity vectors and attach them to the singularities in the illustration: 

driftLines =vectors [im, #, centerSing [wnSingularities [ [#, 1]]], 
centerSing[wnSingularities [ [#, 2]]]] & /@ 

Range [ 1, Floor [ (t:max - t:min) I t:step] + l]; 
allExtremaLines = driftLines I. 

{extremaLines_, saddlesLines_} : .. extremaLines; 
allSaddlesLines = driftLines I. 

{extremaLines_, saddlesLines_} : .. saddlesLines; 
g3D = Graphics3D[ {imagepoints, RGBColor[l, 0, O], 

Point[#] &/@index[centerSing[allExtrema]], allExtremaLines, 
RGBColor [O, 0, l], Point[#] & /@index [centerSing [allSaddles]], 
allSaddlesLines}, ImageSize .... (440, Automatic}]; 

Show [g3D, ViewPoint .... (0.045, -3 .383, -0.009), AspectRatio -> 0 .3]; 
Show[g3D, ViewPoint -> (-0.700, -3.034, 1.324)]; 

---- -- -~-

/ \ { 
~ . 

"'. " "" """ . 

Figure 15.8 The singularity strings from figure 15.6 with drift velocity vectors added. The 
figure displays the same scale-space from two different angles. The drift velocities of the 
singularities could be applied for a first step towards more robust linking across scale. At 
the catastrophe point, the singularity string is horizontal in scale-space. The drift velocity 
vectors are therefore extremely long for the singularity points just below the catastrophe. 
In the illustration they are cropped to fit inside the view. 

The diift velocity vectors does indicate that the search region for a linking method could be 
refined extensively and thereby make the method much more robust. 
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However, as the figure suggests, the drift velocity is not ideal for handling the linking in the 
presence of catastrophes. Indeed the term is undefined for degenerate singularities. Therefore 
more elaborate schemes are necessary to handle these cases. 

An appealing approach is to exchange the drift velocity vector with a true tangent vector for 
the singularity string curve. This simply implies treating the singularity string as an ordinary 
curve in an ordinary n+ 1 dimensional space. We would then be able to track the curve 
equally well horizontally as vertically in scale-space. However, this is somewhat 
complicated and computationally expensive (or even more complicated) since we then need 
to sample the scale levels arbitrarily depending on the evolution of the string. 

Furthermore. there is still the desire for explicit linking through higher order catastrophe 
points with more complicated bifurcations than the fold. All in all, linking of singularities is 
non-trivial and no simple, general. and robust toolbox method is readily available. However. 
for specific applications where only simple catastrophes occur (i.e. fold catastrophes), an 
approach where the search region is adapted to the differential structure of the singularity 
position could be extremely effective. 

15.3.3 Linking of contours 

In section 13.5 the reader was challenged to extend the edge focusing technique from 10 to 
20. Instead of linking points across scale the task is to link contours. This is indeed a quite 
challenging task. 

We will propose no general method. However, it would appear that the approach in section 
13.6 on multi-scale segmentation is the reasonable solution. Linking of regions with maximal 
overlap is conceptually far simpler than any contour linking scheme. 

However, like linking of singularity points, the catastrophe points pose special problems. For 
the multi-scale watershed segmentation method, derivation and analysis of the generic 
catastrophes reveal that the maximal overlap linking scheme is indeed sensible in the 
presence of catastrophes. This is not necessarily true for regions defined in another manner. 

15.3.4 Detection of catastrophes 

Catastrophe theory reveals the catastrophes that can be expected for a given differential 
operator - at least in principle. The introduction to catastrophe theory given in chapter 14 is 
not detailed enough to allow the reader to derive the generic events for other differential 
expressions. See [Olsen2000J for a more thorough treatment with applications in image 
analysis. 

Even though we know the generic catastrophes, detecting them in images is not trivial. 
Mathematically it is quite simple. For a given image function the catastrophes are located 

where 8
8! = 0 and Oet ( 

8
81 

) = 0 (written in tensor notation). We know that the singularities 
Xi Xi 

are curves in scale-space and the zero-points for the determinant of the Hessian form a 
smface. The catastrophes are located where the singularity curves intersect the surface. 
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These differential expressions can easily be constructed using gaussian derivatives. 
However, we have already seen that forming singularity strings is non-trivial - particularly in 
the presence of catastrophe points. Furthermore, the zero-crossings for scale-spaces 
corresponding to these expressions will generally not coincide with the pixel grid. This 
makes it non-trivial to locate the intersections of the zero-crossings. 

In [Kuijper99] the catastrophes are detected and their locations are determined with sub-pixel 
precision. Here the image is locally modelled at each pixel by a third order model. For each 
pixel the model then points towards a specific location for a catastrophe. For a small 
window, the estimated catastrophe locations are then averaged. 

In the vicinity of catastrophes, the estimates are well-aligned and the averaged estimate have 
a small standard deviation. 

Intuitively, these search windows are then moved across scale-space and catastrophes are 
detected where the standard deviation for the catastrophe location is locally minimal. 
However, this method is not quite as simple and robust as desired. The method depends on a 
arbitrary search window and the estimated catastrophe must be located within the search 
window. Possibly, this makes it particularly sensitive at higher order catastrophes. 

15.3.5 General discrete geometry approach 

The deep structure toolbox should ideally contain a simple unifying approach. The simple 
approach sketched below handles many of the problems regarding linking and detection that 
arises from the discretization of data in image analysis applications. 

From analysis we define conditions in terms of equations and inequalities. Then we combine 
these to get the desired solutions. We simply need to implement this approach for discrete 
data. Equations and inequalities would be defined in terms of differential operators. These 
are naturally discretized by Gaussian deiivatives as described in previous chapters. Zero
crossings in the discrete data corresponds to equations or to separators for inequalities. These 
zero-crossings must be determined with sub-pixel precision. 

A recipe for handling these issues could be: 
a) Express the problem as a set of equations and inequalities using combinations of 
differential operators. 
b) Transfonn each equation or inequality such that the solution is expressed in terms of a 
zero-crossing. 
c) Calculate a discrete "image" volume for each equation and inequality. The involved 
differential operators correspond to a discrete volume for a combination of Gaussian 
derivatives. These can be computed using the implementations from this book. The zero
crossings are then computed for each discrete volume. This results in a new discrete volume. 
For each voxel is established whether the values at the vertices give rise to zero-crossings 
within the voxel. In this case the zero-crossing surface patch is calculated through 
interpolation of the vertex values and possibly the values in the neighboring voxels ve1iices 
for a higher order interpolation. 
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The order of interpolation detem1ines the order of continnonsness across the voxel borders. 
These surface patches for the individual voxels represent the hypersurface that corresponds 
to the zero-crossing of the differential operator. The equations are directly represented by 
this data volume. The inequalities must also represent with part of the voxels are "within" 
and "outside" the set that solves the inequality. 

d) Combine the equations and inequalities through intersections of the discrete 
representations of the zero-crossing hypersmfaces. This can be done voxel-wise. 
e) If the problem was originally formulated in tem1s of equations the result is a discrete 
volume that represents a hypersurface. If the problem fommlation includes inequalities the 
resulting data volume possibly contains a hypersurface or a set enclosed by a hypersurface. 

A simple example could be detection of maxima strings in scale-space for a 2D image: 
a+b) Maxima are singularities with negative second order structure. There is an inequality 
for each of the principal curvature directions. 
c) The zero-crossings as discrete volumes arising from these equations and inequalities are 
calculated. For each spatial derivative equation we get a surface in scale-space. For each 
principal curvature direction the scale-space volume is split in two where the division is a 
smface in scale-space. 
d) The two surfaces corresponding to zero-crossings for the spatial de1ivatives are intersected 
resulting in curve segments. The is done voxel-wise. The curve segment for a voxel will 
intersect the voxel in two points located on the faces of the voxel. These curve segments are 
intersected with the surfaces enclosing the sets dete1mined by the signs for the second order 
structure. For each line segment that crosses a surface, only the pai1 within the corresponding 
set is kept. Now, some curve segments will intersect the faces of their voxel zero or one time 
only. The other end of the line segment will be inside the voxel. 
e) The result is a data volume where the singularity strings are explicitly represented as 
continuous line segments. Notice that the strings are directly available - no linking is 
necessary. 

The thoughts above are not to be considered as a new unifying approach. It is merely a 
statement saying that such a method would be nice to have in the deep structure toolbox. 

The approach sketched above has a major drawback - it is quite cumbersome to implement. 
However, it is geometrically simple and topologically consistent. The generality enables 
applications beyond detection of singularities and catastrophes. 

Points. lines and smfaces are located correctly within the precision of a pixel. The precision 
inside a pixel is determined by the interpolation. Simple linear interpolation will do for a 
start - more sophisticated interpolations with a theoretically well-founded image model will 
provide better precision. 

Such a geometry toolkit, in combination with the implementations of the Gaussiai1 
derivatives from this book, would certainly make the investigation of deep structure simpler. 
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• Task 15.4 Implement a scheme for linking singularity strings that take 
advantage of the drift velocity vector for determining a sensible location and 
shape for the search region. Possibly refine the drift velocity vector to handle 
singularity strings that a horizontal in scale-space (at catastrophe points). See 
[Kuijper1999] for inspiration. 

• Task 15.5 Implement the deep structure geometry toolbox sketched above and 
extend it with function for visualizing the data. And please send a copy to the 
authors of this chapter ©. 

15.4 From deep structure to global structure 

The previous sections have introduced a number of methods for analyzing the deep structure 
of images. For a specific application, such an analysis could result in a comprehensive 
description of the images in tenns of singularity strings and catastrophe points for a number 
of differential operators. 
Such an image description can be considered a simplified and possibly sparse representation 
of the original image where ce1tain features have been selected as the salient ones. However, 
it is not only a simplification - it is also a specification. Where the oiiginal image contains 
implicit information, this image desciiption contain explicit information about these features. 

An example of such a description is the primal sketch [Lindebergl994a]. Here analysis of the 
blobs in scale-space provides the description of the image. 

The purpose of this final section of this chapter is to outline a number of applications that 
could take advantage of such an image description. 

15.4.1 Image representations 

In [Johansenl986] it was showed that the toppoints (the fold catastrophe points) provide a 
complete description of a ID signal. Even though reconstruction of the original image from 
this description is complicated, it does however give an indication of the descriptive power 
of the deep structure elements. 

The purpose of an image description based on the singularity strings and catastrophe points 
in scale-space for a set of differential operators will in general not be to offer a complete 
description from which the original image can be exactly reconstructed. The focus is rather 
to accomplish a simplified description that capture the qualitative prope1ties of the image. 
The desired qualitative properties are defined by the application task of the image 
representation. 

The field of information theory is central in the selection of the relevant differential 
operators. The set should be large enough to represent the image with sufficient precision. 
However, in order to provide a good simplification, the set should be minimized. The 
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applications all rely on a powerful simplification. A way to formalize this is the minimum 
descriptiou length (MDL) principle [Banonl998, Rissanenl978] a statistical inference 
principle. It says that among various possible stochastic models (or model classes) for a data 
sequence, one should select the model that yields the shortest code, taking into account also 
the bits needed to describe the model (model class) that has been used for the encoding. 

Therefore it is central to establish the minimal set of differential descriptors that allows 
representation of the information-bearing pait of the image. 

This could be defined in terms of mathematics or from a more "soft" approach where an 
image representation is measured in terms of the ability to reconstruct an image that 
corresponds well with the humai1 perception of the original image. An obvious application 
for such an image representation is image compression. 

Below. a number of other application areas ai·e listed that can take advai1tage of image 
representations based on deep structure analysis. 

15.4.2 Hierarchical pre-segmentation 

Kuijper et al. [Kuijper2001al discovered that the scale-space surface through a so-called 
scale-space saddle, defined by the simultaneous vanishing of the gradients in the spatial and 
the scale direction (thus of the vanishing of the Laplacian), lead to a remarkable pre
segmentation of the image without prior knowledge. In 2D images the saddle points are the 
points where the characteristic isophotes cross (the only isophotes that intersect themselves 
go through saddlepoints). They form in this way natural 'separatrices' of image structure. 
This works in a similar fashion in the deep structure: the scale-space saddlepoints are the 
only points where the 'hulls' of iso-intensity smfaces in scale-space touch each other. This 
shows the surface through the saddle of a scale-space germ (for details see 
[Kuijper2002b]and [Florack2000b]), using the interactive OpenGL 3D viewer for 
Mathematica (see phong.infonnatik.uni-leipzig.de/-kuska/mathgl3dv3/): 

« MathGLJd'OpenGLViewer'; 

a= 1; f = x 3 + 6 x t +a (2 t + y 2
) 

The saddle occurs for {x, y, t) = {- t, 0, - /8 } with intensity - 2~ : 

sol:Solve[{Clxf==O, CJ,f==O, Cltf==O}, {x, y, t}] //Flatten 

saddleintensity = f I. sol 

1 1 
{y->0, t->-18' X->-3} 
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MVClear[] i a= .Si 

MVContourPlot3D[f, {x, -4, 4), (y, -4, 4), (t, -3, 3), 
Contours-> {N[saddleintensity]}, PlotPoints-> 50, ImageSize -> 150] i 

Figure 15.9 lso-intensity contours for a scale-space saddle. In a scale-space saddle the 
gradient and Laplacian are zero. They form the only points in deep structure where 
isophote surfaces touch. 

15.4.3 Perceptual grouping 

Points and regions in an image provide local contributions to the overall information of the 
image. The human visual system does an excellent job of combining these local input into a 
comprehensive scene description [Elder1998]. The task of combining local information 
indicators into a consistent non-local description is called perceptual grouping. 

An example is the task of grouping the individual pixels into regions that correspond to the 
object in the image. Another example is the task of connecting local edge segments into a 
complete edge contour. 

The deep structure provides a tool for transfo1ming the local features into non-local entities. 
The signature of a signal gives a simple illustration of this (see figure 13.6). Whenever two 
singularity strings meet in a fold catastrophe point, a non-local entity is formed - an edge 

pair. Each positive edge is associated with a negative edge. The two singularity strings 
define a region enclosed by the edge pair in the original image. The scale at which the edge 
pair are annihilated gives an upper bound for the scale of the structures within the enclosed 
region. An edge is essentially an local feature. However, when the deep structure of the edge 
is studied it offers non-local information. 

Another example from this chapter is the grouping of the watershed catchment basins 
defined by the deep structure of the gradient magnitude. 

Perceptual grouping from deep structure has been pursued by a number of researchers. The 
blob inclusion hierarchy of the piimal sketch defines multi-scale grouping [Lindeberg l 994aJ. 
Grouping and detection of elongated structures can also be achieved through analysis of the 
deep structure. An example of this is [Staall999a]. 
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15.4.4 Matching and registration 

Matching is a difficult problem in image analysis. Traditional methods are based on 
templates and deformable models where the correlation between an object prototype and 
subwindows of the image is explored. The key point is that the matching is done between an 
image and a prototype object image. These methods are inherently fragile to changes in the 
lighting conditions and the viewing positions. 

A deep structure based matching algorithm would instead do the matching between the deep 
structure representations of the image. Since these representations are qualitative 
simplifications, matching is theoretically easier. The algorithmic basis is possibly matching 
of the deep structure singularity strings or even simpler matching of the catastrophe points. 
This matching should probably be done in a coarse to fine order where the necessary global 
and local deformations needed in order to achieve a match could be recorded. The matching 
would then result in not only a measure of the "distance" between the images but also a 
description of the transformations needed to map one image into the other. See also recent 
results with shape-context operators [Belongie2002]. 

Algorithms for matching deep structure descriptions could be inspired by the research 
performed within the field of graph theory [Shokoufandeh2002, Dickinsonl999]. Interesting 
and promising work has been done with so-called shocks, singularities in curve evolutions 
[Siddiqil999a], which concepts are ready to be transferred to scale-space singularities and 
catastrophes. 

A number of applications have used approaches similar to the outline above. In 
[Bretznerl999a] the location and scale-range of features in scale-space is used as the 
qualitative model for matching in a tracking algorithm. This approach gives an algorithm 
which is quite robust with respect to change of view. 

Registration is a task quite similar to matching. In registration the match is known 
beforehand. The desired result is a mapping that links points (or feature points) between the 
two images. As described above this mapping can also be achieved from the deep structure 
description matching. A coarse to fine matching on structural information is applied in 
[Massey1999] illustrated by registration of coastlines. The registration is robust with respect 
to translation, rotation and scale differences between the images. 

15.4.5 Image databases 

In medical imaging the rise of the PACS (Picture Archive Computer System) has created 
large image databases. This creates a natural need for algoiithms that allow searching in 
these databases. In piinciple, a matching algorithm allows searching. The obvious problem is 
that explicit matching against every single image in a large database containing tens of 
thousands of images would not be practically feasible. 
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Regular databases have indexes which allow search for specific keywords. Image databases 
need the same concept where the search is defined in terms of a combination of keywords 
and image data. This is by no means a trivial problem. 

Indexing implies a sorting of the descriptions. An image description could be sorted based on 
the coarse to fine hierarchy of the deep structure description and on the differential features 
used in the description. However, the specific sorting is not obvious. 

A further complication is that the searching will often not seek matching of complete images. 
For many applications the image data used in the search is only a small part of the desired 
image. 

Indexing based on the coarse to fine approach would possibly allow the search algorithm to 
enter the search space directly at the proper scale conesponding to the size of the desired 
image object. The problem can then be stated as the matching of a subgraph within a larger 
graph. 

15.4.6 Image understanding 

The listing of applications for a deep structure based image description is by no means 
exhaustive. It is only intended as a short appetizer. 

The wide variety of basic image analysis problems that can be addressed suggests that future 
research within deep structure based image descriptions could have a profound impact on 
image analysis in the years to come. Both as a theoretical basis for image understanding and 
as the foundation for real world applications. 

However, a lot of work needs to be done. A broad impact of deep structure based methods 
requires: 
• General methods for establishing the optimal differential descriptors. 
• Clarification on which deep structure descriptors in terms of properties for singularities and 
catastrophes that should be used in the image representation. 
• Development of algorithms for matching, indexing and searching these deep structure 
descriptions. 
• Simple, intuitive formulations and applications of the theoretical achievements in order to 
make them available to the general computer vision and image analysis community. 

15.5 Summary of this chapter 

Interesting results from vectorfield analysis can be applied to the analysis of singularities in 
scale-space. We discuss the homotopy number, which is also called the winding number for 
2D and 3D images. A vector (e.g. the gradient) does make no rotation when a closed contour 
path is followed around a regular point, but it rotates once around a maximum or minimum, 
and rotates once backwards around a saddle point. The number of rotations (over 2rr) is 
defined as the winding number. For 3D images this is equivalent to the number of complete 
space angles (over 4rr). 
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The singularities' winding numbers add up when contained together within the closed path. 
The vector of its velocity through scale-space can be calculated. 

The number of singularities decreases exponentially with scale, with the coefficient of the 
log-log slope (Hausdorff dimension) roughly equivalent to minus the spatial dimension. 

Catastrophe theory is a mature field describing the events that can occur while evolving the 
image. Extrema always annihilate with saddle points, in dimensions higher then one 
creations can occur generically. A new field is emerging, where the topological, hierarchical 
image structure can be exploited. The study of scale-space singularities and catastrophes is 
the beginning hereof. The development of a 'deep structure toolbox' is an emerging and 
promising field in fundamental multi-scale computer vision research. 

Such a hierarchical representation is the natural input for the application of graph theory for 
the study of topological relations. The toppoint hierarchical tree might be investigated for 
atlas-supported segmentation, object search in images and image content based search and 
retrieval (e.g. x -y- er triples as input for active shape models), as well as logical filtering, 

i.e. the removal of a subtree to remove a structural element out of an image (e.g. trainee 
radiologists learn in an early stage at X-thorax reading: "think away the ribs"). 

Not only the detection of scale-space toppoints is important, the reconstruction from the 
toppoints into an image again is just as important. Recently it has been shown that such a 
reconstruction is feasible [Nielsen200la]. 



16. Deblurring Gaussian blur 

16.1 Deblurring 

To discuss an application where really high order Gaussian derivatives are applied, we study 
the deblurring of Gaussian blur by inve11ing the action of the diffusion equation, as originally 

·described by Florack et al. [Florack et al. 1994b, TerHaarRomenyl994a]. 

Gaussian degradation, as deblurring with a Gaussian kernel is also coined, occurs in a large 
number of situations. E.g.: the point-spread-function of the human lens e.g. has a close to 
Gaussian shape (for a 3 mm pupil its standard deviation is about 2 minutes of arc); the 
atmospheric turbulence blurs astronomical images in a Gaussian fashion; and the thickness 
profile of thin slices made by modem spiral-CT scanners is about Gaussian, leading to 
Gaussian blur in a multiplanar reconstructed image such as in the sagittal or coronal plane. 
Surely, deblurring is of immediate imp011ance for image restoration. 

Due to the central limit theorem, stating that a concatenation of any type of transformation 
gives a Gaussian shape when the number of sequential transformations goes to infinity, many 
physical processes involving sequential local degradations show a close-to-Gaussian blurring. 

There is an analytical solution for the inversion of Gaussian blur. But the reconstruction can 
never be exact. Many practical solutions have been proposed, involving a variety of 
enhancing filters (e.g. high-pass or Wiener) and Fourier methods. Analytical methods have 
been proposed by Kimia, Hummel and Zucker [Kimia1986, Kimial993, Hummel1987] as 
well as Reti [Reti 1995a]. They replaced the Gaussian blur kernel by a highly structured 
Toeplitz matrix and deblurred the image by the analytical inverse of this matrix. Mai1ens 
deblurred images with polynomial transforms !Martens 19901. 

16.2 Deblurring with a scale-space approach 

If we consider the stack of images in the scale-space, we see the images gradually blur when 

we increase the scale. Indeed, the diffusion equation ~~ = ~:f + ~:.f tells us that the 

change 8L in L when we increase the scale t with a small increment 8t is equal to the local 

value of the Laplacian ~f + ~:f . From the early chapters we remember that a scale-space 

is infinitely differentiable due to the regularization properties of the observation process. 

A natural step is to look what happens if we go to negative scales. Due to the continuity we 
are allowed to construct a Taylor expansion of the scale-space in any direction, including the 
negative scale direction. We create a Taylor series expansion of our scale-space L(x, y, t) 

with Mathematica's command Series, e.g. to third order around the point t = 0: 

<< FrontEndVision'FEV'; 
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L =·; Series[L[x, y, t], {t, 0, 3}] 

L[x, y, OJ +L 10
•

0
• 11 [x, y, OJ t+ + L 10

•
0

•
21 [x, y, OJ t 2 + i L'°· 0

·" [x, y, OJ t 3 +O[tJ 4 

The derivatives tot are recognized as e.g. L(O,O,l). It is not possible to directly calculate 

the derivatives tot. But here the diffusion equation rescues us. We can replace the derivative 
of the image to scale with the Laplacian of the image, and that can be computed by 
application of the Gaussian derivatives on the image. Higher order derivatives tot have to be 
replaced with the repeated Laplacian operator. E.g., the second order derivative to t has to be 
replaced by the Laplacian of the Laplacian. To shorten our notations, we define D.. to be the 
Laplacian operator: 

Here the construct of a 'pure function' in Mathematica is used: e.g. (#3 ) & is a function 
without name that raises its argument to the third power. The repeated Laplacian operator is 
made with the function Nest: 

Nest[f, x, 3] 

f [f [f [xJ J J 

We now look for each occurrence of a derivative tot. This is the te1m L (O, o,n_) [x, y, O] 

where n_ is anything, named n, the order of differentiation to t. The underscore _ or 

Blank [] is the Mathematica representation for any single expression). With Mathematica's 

powerful technique of pattern matching (/. is the Replace operator) we replace each 
occurrence of L (O, o,n_) [x, y, 0] with an n-times-nested Laplacian operator as follows: 

expr=Normal[Series[L[x, y, t], {t, 0, 3}]] /. 
L(o,o,n_) [x, y, 0] : .. Nest[A, L[x, y, OJ, n] 

L[x, y, OJ+ t (L 10
•

2
•

01 [x, y, OJ+ L 12
•

0 ·°' [x, y, OJ)+ + t 2 (L'°·" 01 [x, y, OJ+ 2 L 12
•

2
•

01 [x, y, OJ +L'" 0 ·°' [x, y, OJ)+ { t 3 

(L 10 •'•°' [x, y, OJ+ 3 L 12
"·

01 [x, y, OJ+ 3 L 1"
2

•
0

' [x, y, OJ+ L 16
•

0
•

01 [x, y, OJ) 

To get the formulas better readable we apply the function shortnotation (defined in 
chapter 6, section 5), which replaces the formal notations of the derivatives by a shortform 

expressed in a (luminance) function L with appropriate subscripts through pattern matching: 

expr I I shortnotation 

1 2 
L [ X, Y, 0 J + t ( Lxx + Lyy ) + 2 t ( Lxxxx + 2 Lxxyy + Lyyyy) + 

1 3 6 t ( Lxxxxxx + 3 Lxxxxyy + 3 Lxxyyyy + Lyyyyyy ) 

High order of spatial derivatives appear. The highest order in this example is 6, because we 
applied the Laplacian operator 3 times, which itself is a second order operator. With 
Mathematica we now have the machinery to make Taylor expansions to any order, e.g. to 5: 
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expr=Normal[Series[L[x, y, t], (t, 0, 5}]] /. 
L(o,o,n_) [x, y, OJ>+ Nest[.il., L[x, y, OJ, n]; 

expr I I shortnotation 

1 2 
L [x, Y, 0] + t (Lxx + Lyy) + 2 t (Lxxxx + 2 Lxxyy + Lyyyy) + 

1 3 6 t ( Lxxxxxx + 3 Lxxxxyy + 3 Lxxyyyy + Lyyyyyy ) + 

1 4 1 5 2'4 t ( Lxxxxxxxx + 4 Lxxxxxxyy + 6 Lxxxxyyyy + 4 Lxxyyyyyy + Lyyyyyyyy ) + T2Q t 

( Lxxxxxxxxxx + 5 Lxxxxxxxxyy + 10 Lxxxxxxyyyy + 10 Lxxxxyyyyyy + 5 Lxxyyyyyyyy + Lyyyyyyyyyy ) 
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No matter how high the order of differentiation, the deiivatives can be calculated using the 

multi-scale Gaussian derivatives. So, as a final step, we replace by pattern matching(/.) the 
spatial derivatives in the formula above by Gaussian derivatives (HoldForm assures we see 

just the formula for gD [],of which evaluation is 'hold': ReleaseHold removes the hold): 

corr= 
expr I. Derivative [n_, m_, OJ [L] [x, y, a_] -> HoldForm [gD [im, n, m, l]] 

t (gD[im, 0, 2, 1] + gD[im, 2, 0, 1]) + 

-} t 2 (gD[im, O, 4, 1] + 2 gD[im, 2, 2, 1] + gD [im, 4, O, 11) + {- t 3 

(gD[im, 0, 6, l] + 3 gD[im, 2, 4, l] + 3 gD[im, 4, 2, 1] + gD[im, 6, 0, l]) + 

2
1
4 

t 4 
( gD [ im, O , 8 , l ] + 4 gD [ im, 2 , 6 , 1 ] + 

6 gD [ im, 4, 4, 1] + 4 gD [ im, 6, 2, l] + gD [ im, 8, 0, l] ) + 

1
;

0 
t 5 

( gD [ im, 0, 10, 1] + 5 gD [ im, 2, 8, 1] + 10 gD [ im, 4, 6, 1] + 

10 gD [ im, 6 , 4 , l ] + 5 gD [ im, 8 , 2 , l ] + gD [ im, 10 , 0 , l] ) + L [ x, y, 0 ] 

Because we deblur. we take fort= f (!"
2 a negative value. given by the estimated amount of 

bluning (Test we expect we have to deblur. However, applying Gaussian deiivatives on our 
image increases the inner scale with the scale of the applied operator. i.e. blurs it a little 
necessarily. So, if we calculate our repeated Laplacians say at scale (T operator = 4. we need to 
deblur the effect of both blurrings. Expressed in t. the total debluning 'distance' amounts to 
t _ cr2 est +a2 operator 
deblur - - 2 

We assemble our commands in a single deblurring command which calculates the amount of 
conection to be added to an image to deblur it: 

deblur[im_, aest_, order_, a_] :=Module[{expr}, .il.=Clx,x#+Cly,y#&; 

expr = Normal[Series[L[x, y, t], (t, 0, order}]]/, 

aest2 + a 2 

L to,o,i_l [x , y , t] : .. Nest[.i., L[x, y, t], l] /. t->------
- - - - 2 

Drop[expr, l] I. L(n_,m_,O) [x, y, t_]-> HoldForm[gD[im, n, m, a] J] 

and test it, e.g. for first order: 

im=.; deblur[im, 2, 1, a] 

-} (-4 - 0
2

) (gD[im, 0, 2, cr] + gD[im, 2, O, cr]) 
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It is a well known fact in image processing that subtraction of the Laplacian (times some 
constant depending on the blur) sharpens the image. We see here that this is nothing else 
than the first order result of our deblurring approach using scale-space theory. For higher 
order deblurring the formulas get more complicated and higher derivatives are involved: 

deblur[im, 2, 3, a] 

1 2 [. 2 1 4 2 2 

2 (-4-CJ) (gD[irn, 0, 2, CJ] +gD irn, , 0, CJ]) + 8 (- -CJ) 

(gD[irn, O, 4, CJ]+ 2 gD[irn, 2, 2, CJ]+ gD[irn, 4, 0, CJ])+ 
4
1
8 

(-4 - CJ2 
)

3 

(gD[irn, O, 6, CJ]+ 3 gD(irn, 2, 4, CJ]+ 3 gD[irn, 4, 2, CJ]+ gD[irn, 6, O, CJ]) 

We generate a test image blurred with (T = 2 pixels: 

im = Import["mr128.gif"] [ [l, l]]; DisplayTogetherArray[ 
ListDensityPlot/@{im, blur=gDf[im, O, O, 2]}, ImageSize->360]; 

Figure 16.1 Input image for deblurring, blurred at <.T = 2 pixels., resolution 1282
. 

We try a deblurring for orders 4, 8, 16 and 32 (fig. 16.2 next page): A good result. Compare 
with figure 16.1. Mathematica is reasonably fast: the deblurring to 32nd order involved 

derivatives up to order 64 (!), in a polynomial containing 560 calls to the gD derivative 
function. 

The 4 calculations take together somewhat more than one minute for a 1282 image on a 1.7 
GHz 512 MB Pentium 4 under Windows 2000 (the 32°d order case took 50 seconds). This 

counts the occmTences of gD in the 32°d order deblur polynomial, i.e. how many actual 
convolutions were needed: 

dummy=.; Length[Position[deblur[durnrny, 2, 32, 4], gD]] 

560 
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Remove[p]; 
p [i_] : = ListDensityPlot[blur + ReleaseHold [deblur [blur, 2, i, 4]], 

PlotLabel .... "order = "<> ToString[i]]; 
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DisplayTogetherArray [ { {p [4], p [8]}, {p [16], p [32]}}, ImageSize -> 450]; 

or<lcr = 4 onkt= 8 

order= 16 order=32 

Figure 16.2 Deblurring of a blurred image (1282 pixels, O"blur = 2 pixels, left column) with 
different orders of approximation. The 32"d order (bottom right) result comes close to the 
original (figure 16.1, left). 

16.3 Less accurate representation, noise and holes 

The method is reasonably robust to the accuracy or representation of the data. Of course, it is 
essential to retain as much inf01mation as possible during the blurring process. Close to 
precise representation (as high precision real floating point numbers) was the case in the 
above example. When we store the image to disk as a typical unsigned byte per pixel 
representation, we throw away much information. We can study the effect of such round-off 
by rounding each pixel value of the blurred image (making them integers), and do the same 
deblurring again: 
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roundedblur = Round [blur] ; Block [ { $DisplayFunction = Identity}, 

p = Table [corr = deblur [ roundedblur, 2, 2 i , 4] I I ReleaseHold; 
ListDensi tyPlot [roundedblur +corr, 

PlotLabel ->"order = "<> ToString[2 1
]], (i, 2, S}]]; 

Show[GraphicsArray[Partition[p, 2]], ImageSize -> 450]; 

orcL:r =4 or<k'f = 8 

ordcr:1? 

Figure 16.3 Deblurring results when the blurred image is stored as integers (intensity range 
of this particular image is [2-186]). Note that only the deblur results are shown. The 
deblurring order is indicated with each result. 

Clearly the deblurring now fails for the very high order, but the results are still good till 16th 

order. 

Noise is a disaster. When we add Gaussian distributed noise with zero mean and a standard 
deviation of 5 intensity units, we get the following results: 
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<<Statistics'ContinuousDistributions'; 
noisyblur =blur+ Table [Random [NormalDistribution[O, S]], { 128), { 128)]; 
Block [ { $DisplayFunction = Identity}, 

pl = ListDensityPlot [noisyblur, PlotLabel -> "noisyblur"]; 

p2 =Table [corr= deblur[noisyblur, 2, 2i, 4] I I ReleaseHold; 
ListDensi tyPlot [noisyblur +corr, 

PlotLabel ->"order = "<> ToString[2i]], (i, 2, 4}]]; 
Show[GraphicsArray[Prepend[p2, pl]], ImageSize -> 470]; 

11oi:.yblur urJC'r•4 on1t..'f"a8 order• 16 

Figure 16.4 Deblurring results when the blurred image is disturbed by Gaussian additive 
noise (mean= 0, CT;ntensity = 5). The deblurring order is indicated with each result. 

And to conclude. we study the effect of 25 random pixels being 'blanked out', i.e. set to zero: 

coords = Table[Random[Integer, (1, 128)], (SO), {2}]; 
holesblur = ReplacePart [blur, 0, coords]; 
Block [ ($DisplayFunction =Identity}, 

pl = ListDensityPlot [holesblur]; 

p2 =Table [corr= deblur [holesblur, 2, 2i, 4] I I ReleaseHold; 
ListDensityPlot[holesblur+corr, 
PlotLabel-> "order= "<>ToString[2i]], (i, 2, 4}]]; 

Show[GraphicsArray[Prepend[p2, pl]], ImageSize -> 470]; 

order = 4 order= & ordcr= 16 

Figure 16.5 Deblurring results when the blurred image is disturbed by setting a random 
selection of 25 pixels to zero. The deblurring order is indicated with each result. Note that up 
to order 8 the 'blanked' points reconstruct well. At order 16 an overshoot occurs. 

• Task 16.1 Experiment with deblurring images that are blurred with another 

kernel than the Gaussian. 

• Task 16.2 Experiment with blurred images from an external source, e.g. find 

unsharp speed ticket camera images on the internet, digitize your unsharp 

home pictures, etc. 
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.a. Task 16.3 Motion blur may be simulated with anisotropic Gaussian blur, i.e. 
where the 0 is rather different for the x and y direction. It may also be at any 

angle (see also chapter 19 where we discuss Gaussian kernels at arbitrary 
directions). Make such a blurred test image, and come up with a deblurring 
scheme for it. 

.a. Task 16.4 In chapter 21 we discuss nonlinear diffusion equations. After having 
studied this chapter, it is interesting to consider how these nonlinear diffusion 
equations might be applied in the framework presented in this chapter, and what 
is the type of degradation . 

16.4 Summary of this chapter 

The regulaiization property of the Gaussian kernel makes the scale-space continuous, which 
means infinitely differentiable in both the spatial as the scale domain. It was proposed by 
Florack to expand the scale-space of a blurred image into the negative scale direction by 
meai1s of a Taylor expansion. The high order derivatives to scale in this expai1sion can be 
expressed in spatial Laplacians of the image, due to the constraint of the isotropic diffusion 
equation. Mathematica turns out to be an efficient tool to do the analytic calculations of the 
high order Taylor expansion polynomial, in which the derivatives can be replaced by scaled 
Gaussian derivatives. We show some examples to real high order. 

Deblurring is instable, and can only be carried out analytically when no data is lost, for 
example through finite intensity representation (8 bit), noise of other pixel errors. The 
message of this chapter is that the taking of very high order derivatives is feasible, that 
computer algebra is a suitable mean for implementing these calculations, and gives an 
example of deblurring from Gaussian blur. 



17. Multi-scale optic flow 

Bart ter Haar Romeny, Luc Florack, A van Suinesiaputra 

17.1 Introduction 

In this chapter we focus on the quantitative extraction of small differences in an image 
sequence caused by motion, and in an image pair by differences in depth. We like to extract 
the local motion parameters as a small local shift over time or space. We call the resulting 
vectorfield the optic flow from the image sequence, a spatio-temporal feature, and we call the 
resulting vectorfield the disparity map for the stereo pair. As the application of the method 
described in this chapter is virtually the same for stereo disparity extraction, we will focus in 
the treatment on spatio-temporal optic flow. 

<< FrontEndVision'FEV' 
PlotVectorFieldJD[(y, -x, Sin[z]}, {x, -1, 1), 

{y, -1, 1), {z, O, 2), VectorHeads-+True, ImageSize->270]; 

Figure 17.1 An example of a 30 (optic) flowfield. Such flowfields are used in the study of 30 
motion of e.g. the heart from 30-time magnetic resonance imaging (MRI) sequences. 

We need to measure a displacement of something over some distance, in some amount of 
time, in some direction in order to find the vector starting at each point in the image that 
indicates where this point is moving to. Of course, we need to take into consideration that we 
are doing a physical measurement, so we need to apply the scale-space paradigm, and 
secondly we need to consider how constant our 'structure' is when it moves. 
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Many approaches have been proposed to solve the problem of finding the optic flow field of 
an image sequence. Three major classes of optic flow computation techniques can 
discriminated lsee for a good overview Beauchemin and Barron 1Beaucheminl995l): 
- gradient based (or differential) methods; 
- phase-based l or frequency domain) methods; 
- correlation-based lor area) methods; 
- feature-point (or sparse data) tracking methods; 

In this chapter we compute the optic flow as a dense optic flow field with a multi-scale 
differential method. The method, originally proposed by Florack and Nielsen [Florackl 998a] 
is known as the Multiscale Optic Flow Constrain Equation (MOFCE). This is a scale-space 
version of the well known computer vision implementation of the optic flow constraint 
equation. as originally proposed by Horn and Schunck [Hornl981]. This scale-space variation, 
as usual, consists of the introduction of the aperture of the observation in the process. The 
application to stereo has been described by Maas et al. [Maasl995a, Maasl996a]. 

Of course, difficulties arise when structure emerges or disappears, such as with occlusion. 
cloud formation etc. Then knowledge is needed about the processes and objects involved. In 
this chapter we focus on the scale-space approach to the local measurement of optic flow, as 
we may expect the visual front-end to do. 

17.2 Motion detection with pairs of receptive fields 

As a biologically motivated start, we begin with discussing some neurophysiological findings 
in the visual system with respect to motion detection. A popular model, based on 
physiological data involving spatiotemporal receptive fields, is the Reichardt detector, which 
models temporally and spatially coupled pairs of receptive fields. 

pt:zero:Table[50, {64), {64)];pt[[32, 32]] =100; 
rf = gD [pt, 2, 0, 10] + gD [pt, 0, 2, 10]; rf = rf - Min [rf]; 
Block [ {$DisplayFunction = Identity, xres, yres, max}, 

{yres, xres} = Dimensions[rf]; max= Max[rf]; 
rfleft = Graphics3D [ 

ListPlot3D[zero, Map [GrayLevel, rf I max, {2}], Mesh-> False]]; 
rfright = TranslateShape[rfleft, {75, 0, 0)]; 
cube= Graphics3D[Cuboid[{59, 22, 10), {79, 42, 30)]]; 
sphere= 
TranslateShape[Graphics3D[Sphere[l3, 25, 20]], {107, 32, 20)]; 

rightarrow = Graphics3D [{Thickness [ .01], 
arrow3D[{l07, 32, 20), {30, 0, 0), True]}]; 

lines= Graphics3D[{Thickness[.Ol], 
Line[{{32, 32, 50), {32, 32, 20), {107, 32, 20), {107, 32, 50))]}];]; 
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Show [ {rfleft, rfright, cube, sphere, lines, right arrow}, 
ViewPoint-> (0.4, -5, . 8), 
DisplayFunction-> $DisplayFunction, Boxed-> False]; 
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Figure 17.2 A simple model for a retinal Reichardt detector for the detection of motion. Two 
center-surround receptive fields are separated by a center-to-center span of length d. These 
receptive fields both project to the (spherical) output ganglion cell, the right one directly, the 
left one through an intermediate cell (depicted as a cube) which incorporates a small temporal 
delay r. The ganglion cell has the highest chance of firing an action potential when the 
velocity of the object v = d / r. 

When motion needs to be detected directly, the displacement over space in a given amount of 
time has to be measured. One of the strategies of the front-end visual system seems to design a 
detector for every occurrence of a stimulus parameter. For the detection of motion a famous 
proposal was done by prof. Werner Reichardt in the late fifties during his studies on fly 
motion detection. He proposed a simple but very effective correlation type model consisting 
of a velocity and directionally tuued pair of receptive fields. Two center-surround receptive 
fields in a single eye of the same size, separated by a distance (span) d project to the same 
ganglion cell. The first cell projects through an intermediate cell that introduces a small 
temporal delay r. the second receptive field projects directly to the ganglion. The input 
synapses on the ganglion cell create excitatory post-synaptic potentials (EPSPs), small 
intracellular increases of the intracellular voltage with a short duration (some ms). EPSPs that 
arrive simultaneously superimpose and this summed potential gives a higher chance to reach 
the intracellular threshold voltage that leads to an action potential than a single EPSP alone. A 
ganglion cell here (as any neuron) thus acts as a temporal coincidence detector. If an object 
moving with velocity v passes over the two receptive fields such that the inputs to the 
ganglion cell arrive simultaneously we get optimal detection if v = ~. We call v the tuning 
velocity of the receptive field pair. Figure 17.2 shows the model. 

The cell pair is tuned to its characteristic velocity and its characteristic direction only. This 
means we need an abundance of such pairs to have tuning for all possible velocities and 
directions. There are strong indications we have indeed enormous amounts of such receptor 
pairs tuned for a wide perceptual range of velocities and directions. These motion sensitive 
cells are coined the on-off direction selective ganglion cells by Rodieck [Rodieck1998 pp. 
319]. 

The motion selective ganglion cells are the parasol ganglion cells. They are the larger type of 
ganglion cells, and project primarily to the magnocellular layers of the LGN and to the 
superior colliculus (having a role in the control of gaze stabilization by eye movements). The 
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motion selective ganglion cells have a bistratified dendritic field that stretches out into both 
the on- and off-sublayers of the inner synaptic layer in the retina [Amthor1989 I. It is not (yet) 
clear what the physiological mechanism of the delay cell might be. A likely candidate is the 
amacrine cell. This cell is located at the proper location (layer) in the retina, often very close 
to parasol cells, it has only connections to parasol ganglion cells (see figure 17.3) and it comes 
in 30 to 40 varieties (to accommodate for the range of delays?). In the rabbit the on-off 
direction selective cells are aligned with the eye muscles. 

Show(Import["parasol amacrine connections macaque.gif"], 
Frame-> True, FrameTicks ->False, ImageSize -> 250] i 

Figure 17.3 Amacrine cell processes coupled to a parasol ganglion cell . The processes were 
labeled after injection of the ganglion cell. From [Dacey1992], adapted from [Rodieck1998, pp. 
263] . 

Varieties of Reichardt detectors have been proposed. E.g. one can add a delay cell between the 
two receptive fields in the opposite direction (in the figure 17.2 from the right to the left 
receptive field). This results in a bidirectional responsive motion detector and is called a 
generalized Reichardt detector. For the work of Werner Reichardt see the bibliography in 
http://www.kyb.tuebingen.mpg.de/re/biblio.html , and the overview papers m 
[Reichardl988b]. See also the extensive work by van de Grind, Koenderink and van Doorn 
lvandeGrindl999] and by Sperling and coworkers [Sperlingl9981 on physiological motion 
detection models. 

The elegance and simplicity of the Reichardt model is appealing. Many hardware 
implementations exist, as e.g. CMOS chip, or analog VLSI computing device. For an 
interesting overview see: http://www.klab.caltech.edu/-timmer/tell96/motion_chips.html. 

This set of specialized pairs of receptive fields fonns a separate clzannel in the visual pathway 
for motion coding. It is again an example of the functional separation seen in the visual front
end . Another example of paired receptive fields is a disparity pair where two receptive fields. 
one in the left eye and one at or about at the corresponding position in the right eye. form a 
pair for the detection of depth and the extraction of die differential structure of depth. This 
implies that the theory discussed in this chapter is also applicable to the multi-scale extraction 
of stereo disparity and its derivatives (like slant and depth curvature). Again. we find the same 
ensemble tuning: for all disparities a dedicated set seems to be available. 
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17.3 Image deformation by a discrete vectorfield 

As an intermezzo, we discuss the use of vector fields in the calculation of image deformation. 
For such a warping, the pixels are displaced according to a vectorfield, and the intensity of the 
pixels at their new location has to be calculated. This is the inverse process of the extraction of 
optic flow. With the understanding of warping we can easily make e.g. test images for optic 
flow routines, and generate warped images for image matching. The easiest method is to start 
with considering the warped image. and to measure the image intensity at the location where 
the pixel came from. This is often between the original pixels, so the image has to be 
resampled. Mathematica has the function Interpolation and for discrete data 

Listinterpolation that interpolates a function (of any dimension) to some order 
(default is cubic spline interpolation: to third order). This function comes handy for any 
resampling. 

Here is the implementation of a warping routine for 2D images given a 2D vectorfield: 

Unprotect[deform2D]; 

deform2D[im_List, vecf_List] ·-
Module[ (xdim, ydim, m, imp, newx, newy}, 

If[Append[Dimensions[im], 2] != Dimensions[vecf], Break[]]; 
(ydim, xdim} = Dimensions[im]; m = Table[O, (ydim}, (xdim}]; 
imp= Listinterpolation[im]; Do[newx = x - vecf[[x, y, 2]]; 
newy = y - vecf[[x, y, 1]]; If[l <= newx <= xdim && 
1 <= newy <= ydim, m[[x, y]] = imp[newx, newy], m[[x, y]] = O], 
(y, 1, ydim}, {x, 1, xdim}]; m]; 

? deform2D 

deform2D[im, vecf] deforms a 20 image im according to a 
specified discrete vectorfield vecf with the same dimensions. 
The image is interpolated to third order with Listinterpolation. 

im = 20 input image {ydim,xdim} 
vecf = 2D discrete vectorfield {ydim,xdim,2} 

We read a 2562 image of a retinal fundus recording and plot the image, the vectmfield and the 
resulting warped image below: 

im = Import["fundus256.gif"] [ [1, 1]]; {ydim, xdim} = Dimensions[im]; 
vecf = 

x y 
Table[-{sin[7r--.-], Cos[7r--.-]} //N, (y, 1, ydim}, (x, 1, xdimJ]; 

xd1m yd1m 

DisplayTogetherArray[{ListDensityPlot[im], 

PlotVectorField[-{sin[,.. _x_-], Cos[,.. _Y_-]}, 
xdim ydim 

(x, 1, xdim}, (y, 1, ydimJ],ListDensityPlot[deform2D[im, lOvecfJJ}, 

ImageSize-> 480]; 
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Figure 17.4 Left: Image of a retina fundus registered with a scanning laser ophthalmoscope 
(courtesy T. Berendschot, University Medical Center Utrecht, the Netherlands). Image 
resolution 2562

. Middle: the vectors of a given warping vectortield. Right: warped image. The 
new image intensities are sampled from the (cubic spline) interpolated image at a position 
dislocated over the distance of the vector. To enhance the effect, the lengths of the vectors in 
the vectorfield are multiplied by 4 . 

.._ Task 17.1 Modify the warping routine so you get a function for: 

- image rotation over an arbitrary angle; 

- zooming in and zooming out (scaling of the image); 

- affine transformation, like viewing the sheet from an oblique angle; this is often 

called 'perspective horizontal' or 'perspective vertical', or combinations thereof; 

- spiral deformation; 

17.4 The optic flow constraint equation 

When we consider structure in an image, that moves with time to a new position, we need to 
define what we mean with 'structure'. A likely candidate is the local luminance. The classical 
approach to the optic flow equation was proposed by Hom [Hom198 lj in his famous optic 
flow constraint equation t OFCE) for the case of a scalar image sequence, where the total 
derivative of the luminance distribution with respect to time is supposed to vanish: 
dL(x,y.t) = Q 

dt . 

Intermezzo: Total derivatives 
From the Mathematica Help: When you find the derivative of some expression f with respect 
to x, you are effectively finding out how fast f changes as you vary x. Often f will depend 
not only on x, but also on other variables, say y and::. The results that you get then depend on 
how you assume that y and z vary as you change x. There are two common cases. Either y 
and z are assumed to stay fixed when x changes, or they are allowed to vary with x. In a 

standard partial derivative J!x all variables other than x are assumed fixed. On the other hand, 

in the total derivative :·, all variables are allowed to change with x. In Mathematica, 

D [f, x] gives a partial derivative, with all other variables assumed independent of x. 

Dt [f, x] gives a total derivative, in which all variables are assumed to depend on x . 
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Dt[L[x, y, t], t] == 0 

LIO,O,[) [x, y, t] + Dt[y, t] L 10 •
1

•
0

' [x, y, t] + Dt[x, t] L 11 •
0

•
0

) [x, y, t] == 0 

The derivatives ~-; and ~; denote the velocity in the x-direction v'" and the velocity in the)'
direction vY respectively. We write upper indices for the dimensional component and lower 
indices for derivatives with respect to the dimensional component. We get: 

~7 + vx ~~ + vY ~~ = 0. This OFCE has been the basis for numerous computer vision studies 

into optic flow [see also Koenderinkl986c, Koenderinkl987d, Koenderinkl992f (second 
order flow), and see Barron l 994a for a comparison of different techniques]. 

There is, however, a difficulty when we start looking at the flow (the scale-space paradigm of 
observation): because we use physical apertures of finite size, the observed image is a blurred 
version, and the isophote landscape changes with the aperture. When the object comes closer 
or moves further away, the same aperture covers different areas of the object. The isophote 
landscape changes, as we can see in the following exan1ple where we move away from the 
image. The isophotes L = 50 of an image observed at scale er = 1 is compared with the same 
isophotes observed at scale er = 2 at a distance twice as far: 

im=Import["mr64.gif"] [[l, 1]]; {iml, im2} =gD[im, O, 0, #] &/@(l, 2}; 
DisplayTogetherArray[Show[{ListDensityPlot[iml], 

ListContourPlot [iml, Contours -> {SO}, ContourStyle ->White]}] , 
Show [ {ListDensityPlot [im2, PlotRegion-> { (0 .2S, 0. 7S}, (0. 2S, 0. 7S}}], 

ListContourPlot [im2, Contours -> (SO}, ContourStyle ->White, 
PlotRegion .... { (0. 2S, 0. 7S}, (0. 2S, 0. 7S}}]}], ImageSize -> 26S] ; 

Figure 17.5 The isophote landscape of an image changes drastically when we change our 
aperture size. This happens when we move away or towards the scene with the same 
camera. Left: observation of an image with cr = 1 pix, isophotes L=50 are indicated. Right: 
same observation at a distance twice as far away. The isophotes L=50 have now changed. 

Actually, any observation changes the isophote landscape. so there is no way out then to 
include the notion of observation in the derivation of the multi-scale optic flow constraint 
equation. The classic optic flow constraint equation only holds for the mathematical (er= 0) 
case. 

Another 'problem' is the fact that a change of an isophote can only be detected in the direction 
normal to the isophote. It is impossible to detect any change in the direction tangential to the 
isophote. Recall the gauge coordinates of chapter 6, and it becomes clear that this 
phenomenon is called the gauge-condition. The aperture problem (finding a solution for the 
two unknowns vx and vY from only one equation) is actual an aperture property 
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[Florackl 998a]. It limits the outcome of any isophote-related optic flow study to the normal 
component of the flow. In section 17.6 we derive the optic flow with the normal co11strai11t. 

We assume that there is conservation of topological detail, i.e. optic flow field is 
differentiable. This means that there are no discontinuities in the optic flowfield, which occur 
e.g. at occlusion boundaries where structure is emerging or disappearing. This constraint is 

"'"''"' ;, th• foOO tempornl dori .,; " of th• flowfi'1do ' = [ ~ l = [ :: l 
17.5 Scalar and density images 

Two physically different types of images should be considered when studying optic flow. 
When a pixelset is deformed by a motion field, the new pixel can either keep its old value 
(scalar flow), or its value can be corrected for the area (volume) change of the pixel 
undergoing the deformation (density flow). The next illustration shows the difference: 

pxl={(2,2), (2,4), (4,4), (4,2}};px3=#+(10,0)&/@pxl; 
px2 = { { 5, • 5}, { 5, 4. 5}, { 9, 5}, { 9, 1}} ; px4 = # + { 10, 0} & /@ px2; 
Show[Graphics[(GrayLevel[.8], 

Polygon/@{pxl, px2, px3}, Blue, MapThread[Arrow, {pxl, px2)], 
Text["scalar flow", (4, 3)], GrayLevel[.4], Polygon[px4], Red, 
MapThread[Arrow, {px3, px4}], Text["density flow", (14, 3}] )] , 

AspectRatio ->Automatic, ImageSize -> 400]; 

scalar Dow 

Figure 17.6 Left: when a pixel or voxel deforms to a new size due to some flow , the pixel/voxel 
intensity remains the same with scalar flow. Right: with density flow the intensity changes with 
the inverse of the area (volume) change of the pixel (voxel). 

Examples of scalar images are: range (depth) images, CT images. Tl and T2 MRI images; 
examples of density images are: proton density MRI images, CCD camera images, light 
microscope images etc. 

17.6 Derivation of the multi-scale optic flow constraint 
equation 

The following derivation is due to Florack and Nielsen [Florackl994d, Florackl998a, 
Nielsenl998a, Florack2000c] and further implemented and refined by Niessen et al. 
[Niessenl995a, Niessenl996c, Niessenl996d, Niessenl996el for spatio-temporal optic flow, 
and Maas et al. [Maasl995a, Maasl996al for stereo disparity. 
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We derive the equation for 20. We observe the luminance distribution with the spatio
temporal Gaussian kernel glx, y, t: cr, r). The spatial scales are CTx and cry, the temporal scale 
is T. 

Clear[ax, ay, 1:]; 
1 1 1 x2 y2 t2 

g[x_, y_, t_] := ---E-~-~-"'2'72; 

Y2 7rO"X2 Y2 7ray2 ~ 

The observation F is the convolution of the dynamic image sequence Llx, y, t) with the 
Gaussian kernel in the spatial and temporal domain: 

F(x, y, t;cr. r) = L@g = L:L:L:"L(x, y, t)g(x. y, t, cr. r)dxdydt. 

In order to follow constant intensities over time, we need the Lie-derivative of the observation 
with respect to the vectorfield of the motion to be zero. Lie derivatives capture variations of 
space-time quantities along the integral flow of some vectorfield. In every point the direction 
of the differential operator is specified by the direction of the local vector of the vect01field. 
To take a Lie derivative one therefore has to know this vectorfield. In the following we only 
consider the first order Lie derivative of an image. which will give us a linear model of optic 
flow. This however is no restriction, and should not be confused with the spatiotemporal 
differential order we are interested in. 

The Lie derivative (denoted with the symbol Lv) of a function F(g) with respect to a 
vectorfield v is defined as Lv F(g). The optic flow constraint equation (OFCE) states that the 
luminance does not change when we take the derivative along the vectorfield of the motion: 

Lv F(g) = 0 

The Lie derivative of F with respect to the vectorfield v for scalar images is equivalent to the 

directional derivative of F in the direction of v: Lv F(g) = Dµ F(g).v = V F.v where V is the 

nabla operator ( :x, %,. ) in 20, and ( ;, , £v, ;, ) in 30. 

We can derive this as follows. In the scalar intensity function F(y) we study a small excursion 
in the direction of the velocity v by substituting y H x + v t. We get 

F(-X+vt)=F(x)+VF.vt+O(t2 ). The Lie derivative is by definition: 

L F~) r Fcx+vl)-flx) VF~ '\'" 8F i Tl .. I f h f h I 
0 (x = 1m1w 1 · = .v = L...;=J ax' v. 11s 1s tle rate o c ange o t e scaar 

function F when moving in the direction v. 

However, for density images p the Lie derivative with respect to a vector field is equivalent to 

the derivative of the density function together with the vectorfield: Lo p = Dµ (p v) = V .(p v). 

The density function p is real valued and non-zero, so we may write: 

L-v p = p Div v + v.V p = o. 

The derivation of the expression for Lie derivative for density image flow is as follows: In the 
density function p(y) we study a small excursion in the direction of the velocity v by 
substituting y H x + v t. We get pCx + v t). Because we have a density flow. we need to 

consider the 'dilution' of the intensity when a small volume element p(y) d y changes in 

volume during the motion. The notation d y denotes the infinitesimal 11-dimensional volume 
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element d y1 d y2 ... d yn. This 'dilution' is taken into account by the determinant J of the 

Jacobian matrix (the determinant is called the Jacobian) J = det (:) of the transformation: 

p(y) d y H p(x + v t) det ( : ) d y. In Mathematica the Jacobian matrix is conveniently 
calculated with Outer: 

Outer[D, {a[x, y, z], b[x, y, z], c[x, y, z]}, (x, y, z}] //MatrixForm// 
shortnotation 

[

a, [x, y, z] ay [x, y, z] az [x, y, z] l 
b, [ X, y, Z ] by [ X, Y, Z ] bz [ X, Y, Z ] 

c, [x, y, z] Cy [x, y, z] Cz [x, y, z] 

We expand the expression: p(x + v t) det (:) dy. We first study the behaviour of the 

Jacobian matrix ( :; ) for small transformations, i.e. small values of t. The diagonal terms 
N 2 ~W 2 behave as l;; = I + 7iX' t + O(t ) and the off-diagonal terms behave as J, 1 = ax1 t + O(t ) . 

Combined: (: ) = I+ t B + O(t2 ) "' I+ t B where l is the identity matrix. For small t the 
Jacobian matrix is thus polynomial, and we may write for the determinant: 
J = det U + t B) "' detl + ttrace B + O(t2). 

Combining the expansions for p(x + v t) and det ( : ) d y we get: 

p<x+vt)det(: )dy \p(x) + v p.vt+ O(t2 J) p + tV.v+ O(t2 ))dy 

\p+ptV.v+Vp.vt+O(t2 ))dy def {p+Lvp(x).t+O(t2 ))dy, from which we derive: 

Lv p(x) = p V.v + v p.v. 

Just as we have seen in the first chapters, the observation of F is the convolution F ® g where 
g is the Gaussian aperture and F is the spatiotemporal image distribution. Again, the 
differential (Lie) operator may be moved to the Gaussian kernel: Lo F ® g = F ® <Lv g). 

• Task 17.2 Explain what differential operators emerge when the vectorfield 
consists of unity vectors {O, 1} at every point, resp. {1,0}. 

For scalar images the optic flow constraint equation under the convolution is written 
as: 

f(VF.v)gdlx = 0, from which we get by partial integration: - fFV.(gv)dlx = 0, or 
- 1:r:f:L(x -x', y- y', t - t') Gradg(x, y, t). v(x, y, t) dlx' dly' dt' = 0 where Grad is the 

gradient operator (V) and g the Gaussian kernel. 

For density images the optic flow constraint equation under the convolution is written as: 

[V.(pv) g dlx = 0, from which we get by paiiial integration: - f p(V g. v) dx = 0, or 
- 1:r:1:p(x - x', y - y', t - t') Div(g(x, y, t) v(x, y, t)) dlx' dly' dlt' = 0 where Div is the 

divergence operator ( V. ). 

The motion vectorfield v is the unknown in this equation that we like to establish from a series 
of observations of the image. In the following we will derive a set of equations, in which we 
assume some approximated vectorfield for the unknown flow, and find just as many equations 
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as we have unknowns in our approximation of the flowfield. The solution of this set of 
equations in each pixel gives us then the approximated flowfield. 

We approximate the unknown vector field to some order 111. We define the optic flow 

vect01field with 3 components {u[x,y,t] ,v[x,y,t] ,w[x,y,t]}. where u is the x

component, v the y-component and w the t-component of the vectorfield. Here is the 

approximation to order m = 1: 

Clear[u, v, w]; 
vectorfield [x_, y_, t_, m_J : = 
{Normal[Series[u[x,y,t], {x,O,m}, {y,O,m), {t,O,m)]], 

Normal[Series[v[x,y,t], {x,O,m}, {y,O,m), (t,O,m)]], 
Normal [Series [w [x, y, t], {x, 0, m}, {y, 0, m}, {t, 0, m}]]} I. 

{Derivative [a_, b_, c_] [u_] [O, O, OJ I; (a+ b + c > m) -> 0); 
vectorfield[x, y, t, l] 

{u[O, 0, OJ +tu'°• 0
• 11 [O, 0, OJ +yu 10

•
1

•
01 [O, 0, OJ +xu 11

•
0

•
01 [O, 0, OJ, 

v[O, 0, OJ +tv 10
•

0
• 11 [O, 0, OJ +yv 10

•
1

•
01 [O, 0, OJ +xv 11

•
0

•
01 [O, 0, OJ, 

w[O, 0, OJ +tw 10
•

0
• 11 [O, 0, OJ +yw 10

•
1

•
01 [O, 0, OJ +xw 11 •

0
•

01 [O, 0, OJ} 

Note that the Series command gives us more terms because it nests the expansion. With a 

conditional (/ ; is a shortw1ite for Condition) Replace statement (/ . ) we set all terms 

with order higher than m = 1 to zero. So we keep only terms in which the total order is one. 
The expression becomes more readable when we write the derivatives as subscripted variables 

with the function short: 

short[expr_] := Module[{nx, ny, nt, u}, DisplayForm[expr/. 
Derivative [nx_, ny_, nt_] [L_] [x_, y_, t_] -> Subscript [L, 

StringJoin[Table["x", {nx)], Table["y", {ny}], Table["t", {nt}]]] /. 
u_[O, 0, O] ->u]] /. 

Hold[gDn[im, {nt_, ny_, nx_), (r, ay, ax)]]-> Subscript["L", 
StringJoin[Table["x", {nx}], Table["y", {ny)], Table["t", {nt}]]] 

vectorfield[x,y, t, l] //short 

{u + t llt + X llx + y Uy 1 V + t Vt + X Vx + Y Vy 1 W + t Wt + X Wx + Y Wy} 

In this example of a first order vectorfield we encounter an equation where 8 unknown 
components of the vectorfield should be solved: 11, llx. u". 111 , v, Vx, Vv and v1 . With only one 
equation this is of course impossible. However, because the Lie derivative of the image 
vanishes identically, so do all the partial derivatives of this. It can be shown that it is allowed 
to take up to M-th order derivatives provided the flow vector is approximated to M-th 
polynomial order as well. So we may add the equations for the vanishing Lie derivatives with 
respect to x, y and t, because we are studying a first order vectorfield. This gives us three 
extra equations. The remaining 4 have to come from external information. Important external 
information can for example be found when constraints on the flow are known. such as the 
constraint that only n01mal flow can be extracted. 

(
0 -1 )~ 

The normal constraint in 2D is expressed as n.v = 
1 0 

V L.v = 0 or -v Lx + 11 Ly= 0 

where Lx and Ly are constant. This is our fifth equation in the set of optic flow constraint 
equations to be solved for the 8 unknowns. We add the derivatives of the nonual constraint 
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equation with respect to x, y and t, and we have the set of 8 equations complete, which can 
then be solved for each pixel in the temporal sequence to give the nonnal flow components 
and their first order derivatives. 

Other external conditions that give additional constraint equations are for example: 
when we know the flow 1s just a translation m the x-direction: 

v = const, 11 = 0; Vx =Vy= v1 = O; 
- when we know the flow is radial, we zoom in onto a scene or fly to a vanishing point: 
-v+u=O; 
- when we know the camera rotates around the optical axis: v Lx + 11 Ly = 0; 
- the smoothness constraint (e.g. Lucas and Kanade [Lucasl981]) which use a weighted least-
squares solution to the optic flow problem by minimizing k2 W(x) 2 (u Lx + v Lv + L, )2 dx di y. 

We end the chapter with a section on how an appropriate scale can be selected, and numerical 
examples showing the effectiveness of the method. We start with the derivation and 
implementation of the optic flow constraint equation for scalar images. 

17.6.1 Scalar images, normal flow. 

Mathematica has all the machinery on board to analytically calculate the Lie derivatives, and 
subsequently replace the spatio-temporal image derivatives by discrete convolution with the 

appropriate Gaussian derivatives. We load the package Calculus 'VectorAnalysis' 

with the definitions of the nabla operator and its actions on scalar- and vectorfields 
(divergence and gradient operators respectively). We set the coordinates to the spatiotemporal 
Euclidean space (x, y, t): 

<< Calculus'vectorAnalysis'; 
SetCoordinates[Cartesian[x, y, t]]; 

For scalar images the Lie derivative of the observed spatiotemporal image L is defined as 

Lv L(g) = L(Lv 1 g) where L/ g(x) = -V .(g v), so we get 

L~ L(x, y, t; a-, r) = 
f_~L:L:L(x', y', t') L~ T (g(x - x', )' - y'_ t - t', a-, T) v(x - x', y - y', t - t')) dix' df y' dit'= 

LX>L:L:L(x', y', t')(-div(g(x - x', y - y', t - t', a-, T) v(x - x', y - y', t - t'))) dix' dfy' dft' =. 

0 

The triple integral represents the process of 3D (2D-time) convolution. We firstly calculate the 

(polynomial) expression for the Lie differential operator -Div [g [x, y, t] v [x, y, t] 1 
expressed in Gaussian derivatives. By replacing the Gaussian derivatives with our familiar 

convolution operator gD we implement the convolution on the input image L [x, y, t]. 
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m = 11 
scalarflow = Expand[Simplify[ 

{Div[g[x, y, t] vectorfield[x, y, t, m]], 
Div[Clx g[x, y, t] vectorfield[x, y, t, m]], 
Div[Cl,g[x, y, t] vectorfield[x, y, t, m]], 

Div [Cit g [x, y, t] vectorfield [x, y, t, m]]} I g [x, y, t] l l i 

short[scalarflow] 

{
-~ _ .:!._L _ ~ _ t X llt + U _ X

2 
llx _ X y Uy _ 

ax2 ay2 r:2 ax2 x ax2 ax2 

tyvt XYVx _ y 2 Vy +Wt_ t 2 
Wt _ t XWx _ tywy 

~-~+Vy ay2 "[2 1::2 -z::2 

u x 2 u v x y t w x t x2 
llt t llt x 3 

llx 

ax4 - ""OX2 + ax2 ay2 + ax2 r:2 + ~ - ax2 + ~ -

2 X llx + X
2 y Uy _ y Uy + t X y Vt + X

2 y Vx _ X Vy + 
ax2 ax4 ax2 ax2 ay2 ax2 ay2 ax2 

X y 2 
Vy _ X Wt + t 2 

X Wt + t X
2 

Wx + t X Y Wy 

ax2 ay2 ax2 ax2 1:2 ox.2 r:2 ox2 1:2 , 
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V y 2 
_ __:!____ + ~ + ~ + t X y llt _ y llx + X

2 y llx + X Y
2 

Uy + t y 2 
Vt _ 

ay4 ay2 ax2 ay2 ay2 -,: 2 ax2 ay2 ay2 ax2 ay2 ax2 ay2 ay4 

tvt xy2 vx XVx y 3 vy 2yvy YWt t 2 ywt txywx ty2 wy 
ay2 + ~ - ay2 + ~ -~ - ay2 + ay2 r:2 + ay2 r:2 + ay2 r:2 , 

t 2 
W W t U X t Vy t 2 

X llt t llx t X
2 

llx t X Y Uy t 2 
y Vt 

~ - "'i2 + ax2 i::2 + ay2 r:2 + ax2 r:2 - ~ + ax2 r:2 + ~ + ay2 r:2 + 

t X y Vx _ t Vy + t Y2 
Vy + t 3 

Wt _ 2 t Wt + t 2 
X Wx _ X Wx + t

2 Y Wy _ Y Wy } 
ay2 -z:2 r:2 ay2 r:2 r:4 -c2 r:4 r:2 i:4 "'[2 

In the statements above we derive the expression for the scalarflow -div (g(x. y, t) v(x. y, t)) 

and for the first order derivatives of the flow (-div lgx(x, y, t) vlx, y. t)). 
-div (gylX, y, t) v(x, y, t)) and -div (g1(x, y, t) v(x, y, t))). We divide by the always positive 
function g(x, y, t) in order to get the coefficients that occur in front of glx, y, t) and expand 
the expressions to get all polynomial factors as separate te1ms. We study the 4 equations of the 
result in short notation: 

We see that the 8 components of the unknown vectorfield (u, llx, llv, 111, v, Vx. Vv and v1) 

show up, but with difficult to handle terms involving x, x2
, y, y2 , t. tux, t v y, etc. The way 

to cope with these terms was suggested by Florack and Nielsen: Gaussian derivatives are 
equivalent to the Gaussian kernel multiplied with a Hermite polynomial of that order (see 
chapter 4 on Gaussian derivatives). So we are able to convert the set of terms above into 
proper Gaussian derivatives. These Gaussian derivatives convolve with the input image to get 
scaled derivatives of the image, which can all be measured. We define the Hermite function 

( 
-1 )" x hermite[x_, n_, a_] := --- HermiteH[n, ---Ji 

a-{2 a 12 

and construct the spatiotemporal (x. y, t) Hermite polynomial of order n in x, min y and kin 
t (due to separability this reduces to a product): 

polynomial [n_, m_, k_] : = 

Simplify[hermite[x, n, ax] hermite[y, m, ay] hermite[t, k, r], 
{ax>O, ay>O, r>O}] 
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An example: 

polynomial[!, 1, 1] 

txy 

We create a list of all Hermite polynomials having at least a first order expansion in x, y or t. 
We start with an empty list and append only a term when the sum of the orders is nonzero and 
less than or equal to 3. We get 19 combinations: 

terms={}; 
Do[If[O < n +m+k ~ 3, terms= Expand[Append[terms, polynomial[n, m, k]] ]] , 

{m, O, 3), {n, O, 3), {k, 0, 3)]; 

Length[terms] 
terms 

19 

t t 2 t 3 3 t x t x t 2 x x 
{ - -:r2, ~ - r2 ' - -:r6 + ~ ' - (JX2 ' ax2 i:2 ' - ax2 i:4 + ax2 -i:2 ' 

x 2 1 t x 2 t x 3 3 x y ____:t:_x__ 
ax4 - ax2 ' - ax4 i:2 + ax2 -i:2 / - ax.6 + ax4 / - ay2 / ay2 i:2 / 

-~ +--y- _2L_ txy x
2 

y y 
ay2 -i:4 ay2 -i:2 / ax2 ay2 / ax2 ay2 -i:2 / - ax4 ay2 + ax2 ay2 / 

y 2 1 t y 2 t x y 2 x y 3 3 y 
ay4 - ay2 ' - ay4 -i:2 + ay2 -i:2 ' - ax2 ay4 + ax2 ay2 ' - ay6 + ay4 } 

The equivalence relations between these 19 coefficients (as prefactors for the Gaussian kernel) 
and the corresponding Gaussian derivative functions can be found by solving 19 simultaneous 
equations. In the following we explain the steps to build these equations using the pattern 
matching capability of Mathematica step by step. The same machinery can then be easily 
applied to optic flow equations of other orders or higher approximation orders of the velocity 
flowfield. 

We define a set of temporary variables order [a, b, c] capturing the order of the exponents 
of x, y and t as follows: 

Clear[a, b, c]; exponents=Transpose[Exponent[terms, #] &/@{x, y, t}] /. 
{a_, b_, c_} -> order[a, b, c] 

{order[O, O, l J' order[O, O, 2J' order[O, O, 3 J' 
order[l, O, OJ' order[l, O, 1 J' order[l, O, 2 J' order[2, O, OJ' 
order[2, O, 1 J' order[3, O, 0 J , order [ 0 , 1, 0 J' order[O, 1, 1 J' 
order[O, 1, 2J' order[l, 1, OJ' order[l, 1, l J' order[2, 1, 0 J' 
order[O, 2, 0 J , order [ O , 2' 1 J' order[l, 2, 0 J' order[O, 3, 0 J} 

which belong to the 'pure' polynomial tern1s 

vars=Exponent[terms, #] &/@{x, y, t} /.{a_, b_, c_}->x•ybtc 

{t, t 2 
I t 3 

I x, t x, t 2 x, x2 
I t x2 

I x 3 
I 

y, t y, t 2 y, x y, t x y, x 2 y, y', t y', x y', y 3
} 
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We assign these pure polynomial terms to a set of 19 new variables k [i] using MapThread. 
The order of the set of replacement rules must be reversed, in order to replace the higher order 
te1ms first in the step to follow. For example in this way x y2 is replaced before y2 . Otherwise, 
x would be replaced individually which would lead to wrong results. The result is a set of 
assignment rules: 

rules = MapThread[Rule, {vars, Table [k [i], {i, Length [vars]}]}] I I Reverse 

{ y 3 -> k [ 19 J , x y 2 -> k [ 18 J , t y 2 -> k [ 1 7 J , y 2 -> k [ 16 J , x 2 y -> k [ 15 J , t x y -> k [ 14 J , 

xy->k[l3J, t 2 y->k[l2J, ty->k[llJ, y->k[lOJ, x 3 ->k[9J, tx2 ->k[BJ, 

x 2 -> k [ 7 J , t 2 x-> k [ 6 J , t x -> k [ 5 J , x -> k [ 4 J , t 3 -> k [ 3 J , t 2 -> k [ 2 J , t -> k [ l J } 

The set of rules is applied to our initial set of terms: 

kterms = terms I. rules 

{-~ _ ___.!:__ + _1:_El_ ~ _ ~ k[4J k[5J k[4J k[6J 
-r2 , I:2 -r4 , I:4 I:6 , - (JX2, ax2 I:2 , ax2 I:2 - crx2 I:4 ' 

1 k[7J k[lJ k[BJ 3 k[4J k[9J k[lOJ k[llJ 
- CTX2 + crx4 ' crx2 1:2 - crx4 I:2 , ~ - ax6 , - ----ayz-, ay2 -c2 ' 

k[lOJ k[l2J k[l3J k[l4J k[lOJ k[l5J 
ay2 1:2 - ay2 i:4 / ax2 ay2 1 ax2 ay2 i:2 / ax2 ay2 - crx4 ay2 / 

__ l_+~ ~-~ ~-~ ~-~} 
ay2 ay4 ' ay2 -c2 ay4 I:2 / ax2 ay2 ax2 ay4 ' ay4 ay6 

and converted into a set of 19 equations (we show for brevity only the first and last equations, 

with Short): 

set = MapThread [Equal, {kterms, exponents}]; Short [set, 6] 

{ 
k[lJ 1 k[2J 

-~ = = order [ 0, 0, l J , - -;:z + ---;:.---- = = order [ 0, 0, 2 J , « 15 » , 

k[4J k[lBJ 3 k[lOJ k[l9J } 
ux' cry' - ux' cry• == order[l, 2, OJ, ~ -~ == order[O, 3, OJ 

Mathematica must solve this recursively, injecting at each equation one more rule at the time, 
giving a set of rules for k [ i] : 

rk = {); Do[rk = Flatten[Append[rk, Solve[Take[set, i], k[i]] I. rk]], 
{i, l, Length[terms] }] ; 

rk 

{k[lJ-> -i: 2 order[O, O, lJ, k[2J-> i: 2 (1 + i:2 order[O, O, 2J), 

k[3J-> -i:2 (3 i:
2 order[O, O, lJ + i: 4 order[O, O, 3J), k[4J-> -ox2 order[l, O, OJ, 

k[SJ-> ax2 
i:

2 order[l, 0, lJ, k[6J-> -i: 2 (ax2 order[l, 0, OJ+ ax2 
i:

2 order[l, 0, 2]), 

k [ 7 J -> ax2 
( 1 + ax2 order [ 2, 0, 0 J ) , 

k[SJ ->-ax2 (i: 2 order[O, 0, lJ +ax2 
i: 2 order[2, 0, lJ), 

k [ 9 J -> - ax2 
( 3 ax2 order [ 1, 0, 0 J + ax' order [ 3, 0, 0 J ) , k [ 10 J -> -cry2 order [ 0, 1, 0 J , 

k[llJ-> cry2 i:
2 order[O, 1, lJ, k[l2J-> -i: 2 (cry2 order[O, 1, OJ +cry2 i: 2 order[O, 1, 2J), 

k[l3J-> ax2 cry2 order[l, 1, OJ, k[l4J-> -ax2 cry2 
i:

2 order[l, 1, lJ, 

k[lSJ-> -ax2 (cry2 order[O, 1, OJ +ax2 cry2 order[2, 1, OJ), 

k[l6J-> cry2 (1 + cry2 order[O, 2, OJ), 

k [ 1 7 J -> -cry2 
( i:2 order [ 0, 0, l J + cry2 i:2 order [ 0, 2, l J ) , 

k[l8J ->-cry2 (ax2 order[l, O, OJ +ax2 cry2 order[l, 2, OJ), 

k[l9J-> -cry2 (3 cry2 order[O, 1, OJ +cry4 order[O, 3, OJ)} 
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Now we can inject the solutions for k [il into the rules that convert the pure exponential 
te1ms: 

rulef =rules I. rk; Short [rulef, 6] 

{ y 3 -> - oy2 
( 3 oy2 order [ O, 1, O] + oy4 order [ 0, 3, 0] ) , 

x y 2 -> -oy2 
( crx2 order [ 1, 0, 0] + crx2 oy2 order [ 1, 2, 0] ) , 

«15», t 2 -> i: 2 (1 + i: 2 order[O, O, 2]), t->-i: 2 order[O, O, 1]} 

Partial integration gives a minus sign with odd total numbers of differentiation. We can now 
plug in the Gaussian derivative operators to actually calculate the derivatives from the 
spatiotemporal sequence. We replace the terms order by 

Hold [gDn [ im, { nx, ny, nt} , {ax, ay, i::} 11 . The Hold function prevents immediate 

calculation. We need ReplaceRepeated (// .) because sometimes more replacements 
have to be done in more passes. 

scalartmpflow = (Expand[scalarflow //. rulef]) I. 
order[a_, b_, c_] -> (-l)a'b'°Hold[gDn[im, {c, b, a}, {'t, ay, ax)]]; 

short[scalartmpflow] 

{ -W Lt - U Lx - V Ly - -i::
2 Lxt Ut - ax2 Lxx llx - ay2 Lxy Uy -

L
2 Lyt Vt - crx.2 Lxy Vx - ay2 Lyy Vy - -i::

2 Ltt Wt - ax2 
Lxt Wx - ay2 Lyt Wy, 

W Lxt + U Lxx + V Lxy + 1:
2 

Lxxt Ut + Lx llx + OX
2 

Lxxx llx + ay2 
Lxxy Uy + r

2 
Lxyt Vt + 

ax2 
Lxxy V x +Ly Vx + ay2 

Lxyy Vy + r
2 

Lxtt Wt +Lt Wx + ax2 
Lxxt Wx + ay2 

Lxyt Wy, 

U Lxy + W Lyt + V Lyy + -i::
2 

Lxyt Ut + ax2 
Lxxy llx + Lx Uy + ay2 

Lxyy Uy + r
2 

Lyyt Vt + 

ax
2 

Lxyy Vx +Ly Vy + ay2 
Lyyy Vy + r

2 
Lytt Wt + ax2 

Lxyt Wx +Lt Wy + ay2 
Lyyt Wy, 

W Ltt + U Lxt + V Lyt + Lx Ut + r 2 
Lxtt Ut + ax2 

Lxxt llx + ay 2 
Lxyt Uy +Ly Vt + 

r
2 

Lytt Vt + O"X
2 

Lxyt Vx + ay2 
Lyyt Vy +Lt Wt + r

2 
Lttt Wt + O"X

2 
Lxtt Wx + ay2 

Lytt Wy} 

Note that in the approximated flowfield we introduced derivatives of u, v, and w with respect 
to x, y and t. Here w is the component of the velocity field in the temporal direction. The 
velocity component in this direction emerges when structure disappears or emerges, such as at 
occlusion boundaries of objects in the image. However, at this time we will require that there 
is no such disappearance or emergence of structure. This constraint translates to limiting the 
temporal component w of the flowfield to the zeroth order, which we put to unity, and all 
derivatives of w vanish: 

scalardataflow =Expand [scalartmpflow I. {w [O, 0, OJ -> 1, 
Derivative[a_, b_, c_] [w] [O, 0, OJ-> O}]; short[scalardataflow] 

{-Lt - U Lx - V Ly - r
2 

Lxt Ut - ax2 
Lxx Ux - ay2 

Lxy Uy - r
2 

Lyt Vt -

ax2 
Lxy v x - ay2 

Lyy Vy , Lxt + u Lxx + v Lxy + 1:
2 

Lxxt Ut + Lx Ux + 

crx2 
Lxxx Ux + ay2 

Lxxy Uy + r
2 

Lxyt Vt + ax2 
Lxxy Vx +Ly Vx + ay2 

Lxyy Vy, 

U Lxy + Lyt + V Lyy + r
2 

Lxyt Ut + ox
2 

Lxxy Ux + Lx Uy + ay2 
Lxyy Uy + r

2 
Lyyt Vt + 

ax2 
Lxyy Vx +Ly Vy + ay2 

Lyyy Vy, Ltt + U Lxt + V Lyt + Lx Ut + r
2 

Lxtt Ut + 

OX
2 

Lxxt Ux + ay2 
Lxyt Uy +Ly Vt + -i::

2 
Lytt Vt + ax2 

Lxyt Vx + ay2 
Lyyt Vy} 

In matrix notation: Av = b, where A is given by the coefficients in the 4 x 8 matrix above, and 
~I' ~ 

v = [11, v, 111, v1, llx, Vx, lly, Vy) and b = (-L1, -Lu, -Lx 1, L.,,). 
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Note that this set of equations has become quite complex. In order to estimate a flowfield 
approximated to first order we need to extract spatiotemporal derivatives to third order. and 
temporal derivatives to second order. This of course has implications for the requirements to 
the datasets from which the field is to be extracted. The more images in the temporal sequence 
the better. In the limiting case of just 2 images as in a stereo pair we have to approximate the 
first order temporal derivative by the mere difference, and put the second order temporal 
derivative to zero. 

We acquired four equations with the eight unknowns 11, llx, uy, lit, v, vx, vy and Vt. The four 
additional equations required in order to be able to solve the eight unknowns in each pixel can 
only be formulated by incorporating external physical constraints to the flow. We choose in 
this example the constraint of normal ff.ow. which leads to an extra four equations. The normal 
flow is easily derived from the regular flow by the substitution [11, v. 1}---> {-v, u, OJ. It can 
also be expressed as -v Lx + 11 Ly = 0 where Lx and Ly are constant. This equation expresses 

the fact that the tangential component of the velocity field vanishes. We first replace u into a 

temporary vaiiable vtmp, then replace the derivatives of u into the derivatives of vtmp. then 

we replace the v into u and the derivatives of v into the derivatives of u, and finally replace 

vtmp back into v. 

scalarnormalflow = scalartmpflow I. 
{u[O, 0, OJ -> -vtmp[O, 0, OJ, Derivative[a_, b_, c_J [uJ [O, 0, OJ-> 

-Derivative[a, b, cJ [vtmpJ [O, 0, OJ, v[O, 0, OJ-> u[O, 0, OJ, 
Derivative [a_, b_, c_J [vJ [O, 0, OJ -> Derivative[a, b, cJ [uJ [O, 0, OJ , 
w[O, 0, OJ -> 0, Derivative[a_, b_, c_J [wJ [O, 0, OJ -> O} I. vtmp -> v; 

short[scalarnormalflowJ 

{v Lx - u Ly - r 2 Lyt llt - ax2 Lxy llx - ay 2 Lyy Uy + r 2 Lxt Vt + ax2 Lxx Vx + ay2 Lxy Vy I 

-V Lxx + U Lxy + "C
2 

Lxyt llt + OX.
2 

Lxxy llx +Ly llx + 

ay2 
Lxyy Uy - "C

2 
Lxxt Vt - Lx Vx - ax

2 
Lxxx Vx - ay2 

Lxxy Vy I 

-V Lxy + U Lyy + "C
2 

Lyyt llt + ax2 
Lxyy llx +Ly Uy + ay2 

Lyyy Uy - r
2 

Lxyt Vt -

ax 2 
Lxxy Vx - Lx Vy - ay2 

Lxyy Vy I -v Lxt + u Lyt +Ly llt + -z: 2 
Lytt llt + 

ax.2 
Lxyt llx + ay2 

Lyyt Uy - Lx Vt - i::
2 

Lxtt Vt - ax2 
Lxxt Vx - ay2 

Lxyt Vy} 

In matrix notation: N v = 0. The total set of eight equations is the concatenation of the two 
sets, forming eight equations with eight unknowns: 

scalarflowequations = Join [scalardataflow, scalarnormalflowJ; 

17.6.2 Density images, normal flow. 

For density images the Lie derivative is Lv r g(x) = -V g. v = 0. We can now give the full 
derivation of the 8 constraint equations to be solved in each pixel as a single routine, for the 
same conditions as above: approximation of the vector field to first order, no creation of new 
structure and the normal flow constraint: 

<<Calculus "'VectorAnalysis"'; 
Setcoordinates[Cartesian[x, y, t]]; 

densityflowequations[order_] := 

Module[ {g, densityflowO, densityflow, hermite, 

polynomial, terms, exponents, vars, rules, kterms, rule£, rk, 
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densitytmpflow, densitydataflow, densitynormalflow, vtmp}, im =.; 

1 1 1 -~ _ __L___L 
Clear[ax, ay, t:]; g[x_, y_, t J := ---- E 2ax

2 
2cry

2 
2r

2 

- Y2 ,,.ax2 Y2 ,,.ay2 ~ 

Clear[u, v, w]; m =order; 
vectorfield[x, y, t, m] = 

{Normal[Series[u[x, y, tJ, {x, O, m), {y, O, m}, {t, O, m)J J, 
Normal[Series[v[x, y, tJ, {x, O, m}, {y, O, m}, {t, O, m}]], 
Normal[Series[w[x, y, tJ, {x, O, m}, {y, O, m}, {t, O, m)J]) /. 

{Derivative[a_, b_, c_J [u_J [O, O, OJ /; (a+ b + c > m) -> 0); 
densityflowO = Expand[Simplify[ 

(-Grad[g[x, y, tJJ. vectorfield[x, y, t, m]) /g[x, y, tJJJ; 
densityflow =If [m == O, {densityflowO}, 

Expand[Simplify[{-Grad[g[x, y, tJ J. vectorfield[x, y, t, mJ, 
-Grad [ox g[x, y, tJ J. vectorfield[x, y, t, mJ, 
-Grad [Cly g [x, y, tJ J . vectorfield [x, y, t, mJ, 

-Grad [Cit g [x, y, tJ J . vectorfield [x, y, t, mJ} I g [x, y, tJ J J J; 

hermite[x_, n_, a_J := [__:_:___]" HermiteH[n, __ x_]; 
a -../2 a -../2 

polynomial [n_, m_, k_J : =Simplify[ 
hermite[x, n, ax] hermite[y, m, ay] hermite[t, k, t:], {ax> O, ay > O, 't > O}]; 

terms = {}; Do [If [O < n + m + k ~ 3, terms =Expand [Append [terms, polynomial [n, m, kJ J J J, 
{m, O, 3), {n, O, 3), {k, O, 3) J; 

Clear[a, b, cJ; exponents= Transpose[Exponent[terms, #J & /@ {x, y, t)J I. 
{a_, b_, c_} -> order[a, b, c]; 

vars= Exponent(terms, #] & /@ {x, y, t} I. {a_, b_, c_} -> X8 yb tc; 

rules= MapThread[Rule, {vars, Table[k[i], {i, Length[vars])J)J II Reverse; 
kterms =terms I. rules; set= MapThread[Equal, {kterms, exponents}]; 

rk = {); Do [rk = Flatten[Append [rk, Solve [Take [set, iJ, k [iJ J I. rkJ J, 
{i, 1, Length[termsJ )J; 

rule£= rules I. rk; 
densitytmpflow = (Expand [densityflow II. rulef]) I. 

order[a_, b_, c_] -> (-l)a+b+c Hold[gDn[im, {c, b, a}, {t:, ay, ax}]]; 
densitydataflow = Expand[densitytmpflow I. 

{w[O, O, OJ-> 1, Derivative[a_, b_, c_J [wJ [O, O, OJ -> O)J; 
densitynormalflow= densitytmpflow I. {u[O, O, OJ-> -vtmp[O, O, OJ, 

Derivative[a_, b_, c_J [uJ [O, O, OJ -> -Derivative[a, b, cJ [vtmpJ [O, O, OJ, 
v[O, O, OJ -> u[O, O, OJ, 
Derivative[a_, b_, c_J [vJ [O, O, OJ -> Derivative[a, b, cJ [uJ [O, O, OJ, 
w [O, O, OJ -> O, Derivative[a_, b_, c_J [wJ [O, O, OJ -> 0) I. vtmp -> v; 

Join(densitydataflow, densitynormalflowJ] 

The density flow equations for zeroth order lead to the classical Horn and Schunck optic flow 
constraint equations LHorn 1981 j: 

densityflowequations[O] //short 

{Lt +ULx +VLy, -VLx +ULy} 

For a first order approximation of the unknown flow field we get much more delivatives, up to 
third order, and eight equations: 
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densityflowequations [ 1] I I short 

{Lt + U Lx + V Ly + r 2 Lxt Ut + llx + ax.2 Lxx llx + ay2 Lxy Uy + r 2 Lyt Vt + 

ax
2 

Lxy Vx +Vy+ ay2 
Lyy Vy, -Lxt - U Lxx - V Lxy - r: 2 

Lxxt Ut - 2 Lx llx -

ax
2 

Lxxx llx - ay2 
Lxxy Uy - r: 2 

Lxyt Vt - ax
2 

Lxxy Vx - Ly Vx - Lx Vy - ay2 
Lxyy Vy, 

- u Lxy - Lyt - v Lyy - r 2 Lxyt Ut - ax2 Lxxy Ux - Ly Ux - Lx Uy -

ay2 
Lxyy Uy - z: 2 

Lyyt Vt - ax
2 

Lxyy Vx - 2 Ly Vy - ay2 
Lyyy Vy 1 

- Ltt - u Lxt - v Lyt - Lx llt - r 2 
Lxtt Ut - Lt llx - ax 2 

Lxxt llx -

ay2 
Lxyt Uy - Ly Vt - r

2 
Lytt Vt - ax

2 
Lxyt Vx - Lt Vy - ay2 

Lyyt Vy 1 

-V Lx + U Ly + L:
2 Lyt Ut + ax2 Lxy llx +Uy + ay2 Lyy Uy - L:

2 Lxt Vt - Vx -

ax
2 

Lxx Vx - ay2 
Lxy Vy, V Lxx - U Lxy - r

2 
Lxyt Ut - ax

2 
Lxxy llx - Ly llx -

Lx Uy - ay2 Lxyy Uy + r 2 Lxxt Vt + 2 Lx Vx + ax2 
Lxxx Vx + ay2 

Lxxy Vy 1 

V Lxy - U Lyy - I:
2 

Lyyt llt - ax
2 

Lxyy llx - 2 Ly Uy - ay2 
Lyyy Uy + 

r
2 

Lxyt Vt + ax
2 

Lxxy Vx +Ly Vx + Lx Vy + ay2 
Lxyy Vy, 

v Lxt - u Lyt - Ly Ut - r
2 

Lytt Ut - ax
2 

Lxyt Ux - Lt Uy - ay2 
Lyyt Uy + 

Lx Vt + L:
2 

Lxtt Vt +Lt Vx + ax
2 

Lxxt Vx + ay2 
Lxyt Vy} 
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All eight equations in this set have to vanish, leading to a simultaneous set of eight equations 
with eight unknowns. In the next section we test the procedure on a spatio-temporal sequence 
of known defomrntion . 

.._ Task 17.3 Compare the above derived equations with the results of Otte and 
Nagel [Otte1994], by taking the limit of 1.rx--> 0, 1.ry--> 0 and r--> 0. For a detailed 
description of this comparison see [Florack1998a]. 

17.7 Testing the optic flow constraint equations 

In order to test the multi-scale optic flow constraint equations, we have developed a 
convenient package OFCE.m, which defines the commands to calculate the first order 
flowfield, and to display the result as a vectorfield. 

The package, written by A. Suinesiaputra, is a good example of how to make complex 
functions available in notebooks, and is read by: 

<< FrontEndVision'OFCE'; 

As a test stimulus for scalar flow, we create a movie of deforming vessels, which we take 
from the fundus image of figure 17.4. We take a 64x64 section around the fovea, where we 
have vessels in different directions. We use the same vectorfield for warping as in figure 17.4. 
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im =Take [in= Import [ "fundus256 .gif"] [ [l, l]], 
(128, 128 + 64)' (180, 180 + 64) l; 

{ydim, xdim} = Dimensions[im]; 
DisplayTogetherArray[ 

{ListDensityPlot [in, Epilog-+ {RGBColor [l, 1, l], Line [ { { 180, 128), 
(180 + 64, 128)' (180 + 64, 128 + 64)' (180, 128 + 64)' (180, 128)} l}], 

ListDensityPlot[im]}, ImageSize -> 300]; 

.··.~ 

- r . ___ ,. \ 

- ) 

Figure 17.7 For the scalar optic flow test image we select a 64x64 pixel subregion around the 
fovea of the fundus image. 

This generates the warping sequence: 

vecf = Table [ 
N[-{Sin[(7rx) /xdim], Cos[(y7r) /ydim])], (y, 1, ydim), (x, 1, xdim}]; 

stim:Table[deform2D[im, ivecf], (i, 0, 4, 1/5)]; 

We then calculate the first order optic flow vecto1field for scalar images, with spatial scale 
CT = 2.0 pixels and temporal scale T = 1.0 pixel. The function FirstOFCE [] is defined in 
the package MOFCE . m. 

opticflowscalar = 
FirstOFCE [stim, 2 .0, 1.0, FlowType-+ scalar, Singularities-+ zeroVector]; 

Calculate first order optic flow at (cr,<)=(2.,1.) 

create scalar OFCE matrix 

create OFCE result vector 

... . solving .... 

The stimulus and the vectorfield plots are calculated and displayed, where we omit the first 
and last two images of the series, because of boundary effects: 

stimulusplot = ListDensityPlot [#, PlotRange-+ {Min [stim], Max [stim]}, 
DisplayFunction -> Identity] & /@ stim; vectorfieldplot = 

VectorPlot [ #, HeadScaleFactor-+ 2, Sampling-+ { 3, 3}, AspectRatio-+ 1, 
PlotRange-+ { { 1, 64}, { 1, 64}}, ColorFunction-+ Automatic, 
DisplayFunction-+ Identity] & /@Take [20 opticflowscalar, { 4, 14)]; 

Show[#, PlotRange-+ ((1, 64), (1, 64)), 
DisplayFunction-+ $DisplayFunction, ImageSize -> 220] & /@ 

Transpose[{Take[stimulusplot, (4, 14)], vectorfieldplot)]; 
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Figure 17.8 The resulting vectorfield for the scalar optic flow test sequence of a warped 
fundus image. The vectors have been plotted 20 times their actual length, to show the 
direction and magnitude better. Note that most velocities and their directions are found 
correctly, and that the normal constraint is the main reason for some (well understood) 
deviation. 

17. 8 Cleaning up the vector field 

The option Averaging in the function VectorPlot denotes the size of a small 
neighborhood over which the velocity vectors are uniformly averaged. This value must be a 

nonnegative odd integer. When the Average window size is 5 we get a much smoother 
vectorfield: 

vplot3 = VectorPlot [ 20 #, Sampling-+ { 2, 2}, HeadScaleFactor-+ 2, 
AspectRatio -+ 1, Averaging -+ 5, ColorFunction -+ Automatic, 
DisplayFunction-+ Identity] & /@Take [opticflowscalar, (3, 14)]; 

Show[#, PlotRange-+ ((0, 65), (0, 65)), Background-+RGBColor[O, 0, OJ, 
DisplayFunction-+ $DisplayFunction, ImageSize -> 200] & /@ 

Transpose [{Take [stimulusplot, (3, 14)], vplot3}]; 

Figure 17.9 The vectorfield for the scalar optic flow test sequence of figure 17.8 with vector 
averaging over a 5 x 5 region. Note the much smoother result. 
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.a. 17.4 Show that with a 25 x 25 averaging area the original smoothing vector field 
is recovered. Why is this so? 

.a. 17.5 Show the result with a 25 x 25 averaging area for a much faster varying 
vector field deformation. 

However, averaging the vector field may introduce deviations from the true normal motion. A 
better way is to weight the surround of a vector with a Gaussian function, and multiply with a 

penalty function given by Exp[ - ~;; ] , where K,, is a normalized matiix condition number and 

mis just a constant. We set m = 0.1. The value of K,, = ~::: where Kmax and Kmin are the 
largest and smallest Eigenvalue of the matrix, so K11 will be in the range of (0 .. 1 J. 

opticflowScalar = FirstOFCE[stim, 2.0, 1.0, 
F lowType -> sea lar, Singularities -> ZeroVector, Smoothing -> True] ; 

Calculate first order optic flow at (cr,<)=(2.,1.) 

create scalar OFCE matrix 

create OFCE result vector 

... . solving .... 

integration of scale space 

vplotl = 
vectorPlot [20 #, Sampling-> {2, 2}, HeadScaleFactor-> 2, AspectRatio-> 1, 

ColorFunction-> Automatic, DisplayFunction-> Identity] & /@ 
Take[opticflowScalar, {4, 14)]; 

Show[#, PlotRange-+ {{O, 65), (0, 65)), Background->RGBColor[O, O, O], 
DisplayFunction-> $DisplayFunction, ImageSize -> 200] & /@ 

Transpose[{Take[stimulusplot, (4, 14)], vplotl}]; 

Figure 17.1 O The vectorfield for the scalar optic flow test sequence of figure 17.8 with a 
weighted penalty based on the condition number of the matrix. 
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17 .9 Scale selection 

One of the major problems in making an effective extraction of the optic flow vectors, is the 
appropriate choice of scale. This is a general and fundamental issue in scale-space theory. 
Selection of scale must be treated at two levels: 

First of all it is always present in the task we perform on the image. Do we want to segment 
the leaves or the tree? A careful specification of the image analysis task should make the 
choice of scale explicit. Secondly, we can look for automatic scale selection, by optimizing 
some criterion over a range of scales. For example, in feature detection one might look for the 
maximized output amplitude of some feature detector for each location (see Lindeberg for a 
detailed discussion). 

For our optic flow we have a different criterion: in stead of the generation of a (sophisticated) 
filter output. we solve locally a set of equations, which is a process. When the matrix of 
coefficients in the matrix equation becomes singular, we know that the solution cannot be 
found. In other words, the further we are off from singularity, the better we can solve the set 
of equations. This means that we need some measure of how far we are from singularity. 
From linear algebra we know that the condition number of a matrix is a proper choice. There 
are a number of possibilities [from Ruskeepaal999, section 17.3.41: 

normLl [x_] : =Max [(Plus @@Abs[#]) & /@Transpose [x]] i 

normLinf[x_] :=Max[(Plus@@Abs[#]) &/@x]i 

normL2 [x _] : = Max [SingularValues [N [x] ] [ [2]] ] i 

The L1 -norm (normLl) is the largest of the absolute column sums, and the L00 -norm 

(normLinf) is the largest of the absolute row sums. The L2 -norm (normL2) is the 
maximum of the singular values. 

SingularValues [N [x] ] gives the singular value decomposition, and the second 
component of this decomposition contains the singular values. This norm can be written as 

normL2b[x_] := YMax[Abs[Eigenvalues[Conjugate[Transpose[x]] .x]]] i 

because the norm is also the square root of the largest absolute eigenvalue of the matrix 

Conjugate [Transpose [x]] . x. In fact, the singular values are simply the square roots 
of the eigenvalues of this matrix. 

We use the Frobenius norm defined as: 

FrobeniusNorm[mat_] : =Module [ {a, J. = DeleteCases [ 

Re [ YEigenvalues [Transpose [Conjugate [mat]] .mat] ] , 0. J}, 
a= Plus@@J.2 i Check [If [a< 10-50 I I a- 1 ===Indeterminate I I 

a- 1 === Complexinfinity, $MaxMachineNumber, Plus@@X 2
], mat]] i 

We choose here for the maximum norm of the coefficient matrix over scale. Does this norm 
display a maximum over scale anyway? We calculate the nonn for 22 spatial scales, ranging 

from CT== 0.8 to CT== 5 pixels in steps of 0.2, for the eighth frame in the sequence (f=B). 
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matL2:Table[Lx:gDn[stim, (0, O, 1), (1, a, a)]; 

Ly:gDn[stim, (0, 1, 0), (1, a, a)]; 

(
Lx[[f]] Ly[[f]]) 

mat [f_] : = Ly [ [f]] -Lx [ [f]] l 

Map[FrobeniusNorm, Transpose[mat[B], (3, 4, 1, 2)], {2}] 

, (a, .8, 5, .2)]; Dimensions[matL2] 

(22, 65, 65) 

Indeed quite a few pixel locations show a maximum, when we plot the logarithm of the nom1 
as a function of scale index for all pixels: 

DisplayTogether[Table[ 

LogListPlot [Transpose[matL2, (3, 2, 1)] [ [i, j]], PlotJoined ->True, 
PlotRange-> (.01, 500), AxesLabel-> {"scale index", "norm")], 

(i, 1, 64, 10), (j, 1, 64, 10)], ImageSize->290]; 

Figure 17.11 Logarithmic plot of the L2 norm in every pixel as a function of spatial scale 
(range: CT= 0.8 to 5.0 pixels) for the eighth frame in the retinal fund us sequence. 

The plot of the scale index as a function of location in the frame is indicative for what 

happens: a small scale is best at locations with image structure, such as the location of the 
main vessels. In more homogeneous areas a larger scale gives a better condition number. 

ShowLegend[DisplayTogetherArray[ 
{ListDensityPlot[stim[[B]]], ListDensityPlot[-Log[matL2[[8]]]]}, 
DisplayFunction ->Identity], {GrayLevel[l - #] &, 10, "a=3.0", 

"a=O. B", LegendPosition-> (1.1, - • 4}}, ImageSize -> 400]; 

rr=J.O 

Figure 17.12 Left: eighth frame of the image sequence. Right: scale index for the maximum 
singular value of the coefficient matrix of the optic flow equations, for the scale range er= 0.8 
to 3 pixels. Note the smaller scales for the locations rich with image structure, such as the 
vessels, and the use of larger scales for the more homogeneous areas. 
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_. Task 17.6 Investigate the behaviour of other definitions of condition numbers. 

_. Task 17.7 Investigate the influence of the temporal scale. 

_. Task 17.8 Investigate the influence of both the spatial scales and the temporal 
scale simultaneously. 

_. Task 17.9 Implement scale selection by selecting in each pixel the scale with the 
largest Frobenius norm. 

17 .1 O Discussion 

Many authors have proposed a multi-scale approach to the detennination of optic flow. Weber 
and Malik [Weber l 995b] used a filtered differential method. 

They applied a set of filters of various spectral contents, and also got a set of equations which 
can be solved to get a unique solution for the optic flow. Fleet and Jepson [Fleetl990] extract 
image component velocities from local phase information. Weickert recently introduced an 
approach for discontinuity preserving flow determination [Weickertl998d], and a method 
using a variational (energy minimizing) approach [Weickert200la]. 

So far, we have extracted the derivatives in the temporal direction in the same way as in the 
spatial direction(s), through convolution with a Gaussian derivative kernel with an appropriate 
temporal scale. For a pre-recorded temporal sequence this is fine. When the Gaussian kernel 
extends over the border of the image, the image can be periodically extended, as we did for 
the spatial case. In a real-time situation however, the only infonnation available is the past, 
and we cannot use the half of the Gaussian kernel that extends 'into the future'. This problem 
has been elegantly solved by Jan Koende1ink, who proposed to resample the temporal axis 
with a logarithmic reparametrization, based on arguments of temporal causality. This is 
discussed in detail in chapter 20. 

Of course, a local method where a measurement is done through an ape1ture, faces the 
aperture property (for a nice set of demo's of the aperture 'problem' see 
www.illusionworks.com). A common extra constraint is the 'smoothness constraint, where the 
local vector is considered in its relation to its direct vicinity, and should not change much over 
a small distance. A natural step in the context of multi-scale optic flow extraction is the use of 
deep structure scale space theory: the singularity points in the deep structure have no aperture 
problem, they forn1 a set of natural intrinsic and hierarchically ordered multi-scale image 
pointset. 
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17.11 Summary of this chapter 

Two main features stand out in the treatment of optic flow in this chapter. The classical Hom 
& Schunck optic flow constraint equation is brought 'under the aperture', as it should for 
observed variables. The application of scaled derivatives brings the approach under the scale
space paradigm. 

Secondly, the notion of Lie-derivatives of the image intensity time series with respect to some 
unknown vectorfield enables us to form a set of equations from which the unknown 
parameters of the flow field can be calculated. The ape1ture problem is the consequence of the 
fact that we in typical cases have more unknowns then equations. However, when additional 
physical constraints are given, such as the constraint of normal or expanding flow. the solution 
can be found exact. The theory enables the solution for different orders of the vector field 
approximation. 

Earlier tests of the method have shown that this physics based scale-space approach 
outperforms all other methods. The main reason must be the full inclusion of the physical 
model of the observed flow. 
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Jan-Mark Geusebroek, Bart M. ter Haar Romeny, Jan J. 
Koenderink, Rein van den Boomgaard, Peter Van Osta 

18.1 Introduction 

Color is an important extra dimension. Infonnation extracted from color is useful for almost 
any computer vision task, like segmentation, surface characterization, etc. The field of color 
science is huge [Wyszecki2000], and many theories exist. It is far beyond the scope of this 
book to cover even a fraction of the many different approaches. We will focus on a single 
recent theory, based on the color sensitive receptive fields in the front-end visual system. We 
are especially interested in the extraction of multi-scale differential structure in the spatial and 
the color domain of color images. This scale-space approach was recently introduced by 
Geusebroek et al. [Geusebroekl999a. Geusebroek2000al, based on the pioneering work of 
Koenderink's Gaussian derivative color model [Koenderink1998a]. This chapter presents the 
theory and a practical implementation of the extraction of color differential structure. 

18.2 Color image formation and color invariants 

What is color invariant structure? To understand that notion, we first have to study the process 
of color image fonnation. 

<< FrontEndVision'FEV'; 
pl:Plot[Sin[.06.A] +Sin[.l.A] +5, (.A, 350, 700), PlotRange-> (2, 8), 

ImageSize -> 275, Ticks -> {Automatic, None}, AspectRatio -> • 4] ; 
p2 = Densi tyPlot [.A, (.A, 350, 700), {y, 0, 2}, AspectRatio -> .1, 

ColorFunction -> (Hue[-0.001964 ll + 1.375] &) , 

ColorFunctionScaling ->False, Frame-> False, ImageSize -> 275]; 

400 ,50 500 550 600 650 700 

Figure 18.1 An arbitrary spectrum (distribution of the energy over the wavelengths) reflected 
from an object. For different colored objects we have different spectra. Horizontal scale: nm, 
vertical scale: energy ( W / m2

). 



312 18.2 Color image formation and color invariants 

Figure 18.1 shows an arbitrary spectrum that may fall onto the eye (or camera). The spectrum 
as reflected by an object is the result of light falling onto the object, of which part of the 
spectral energy is reflected towards the observer. Hence, the light spectrum falling onto the 
eye results from interaction between a light source, the object, and the observer. Color may be 
regarded as the measurement of spectral energy, and will be handled in the next section. Here, 
we only consider the interaction between light source and material. 

Before we see an object as having a particular color, the object needs to be illuminated. After 
all, in darkness objects are simply black. The emission spectra l(:t) of common light sources 
are close to Planck's formula [Wyszecki 1999] 

h = 6. 626176 10-34
; c = 2. 99792458 108

; k 1. 38066 10-23
; 

he -1 

l[J._, T_] :: 8:n-hcK5 (Em -1) 

where h is Planck's constant, k Boltzmann's constant, and c the velocity of light in vacuum. 
The color temperature of the emitted light is given by T, and typically ranges from 2,500K 
(warm red light) to 10,000K (cold blue light). Note that the terms "wmm" and "cold" are given 
by artists, and refer to the sensation caused by the light. Representative white light is, by 
convention, chosen to be at a temperature of 6500K. However, in practice, all light sources 
between 2,500K and 10,000K can be found. Planck's equation is adequate for incm1descent 
light and halogen. The spectrum of daylight is slightly different, and is represented by a 
correlated color temperature. Daylight is close enough to the Planckian spectrum to be 
characterized by a equivalent parameter. 

The part of the spectrum reflected by a surface depends on the smface spectral reflection 
function. The spectral reflectance is a material property, characterized by a function c(:t). For 
planar, matte surfaces, the spectrum reflected by the material e(:t) is simply the multiplication 
between the spectrum falling onto the surface l(:t) and the smface spectral reflectance function 
c(:t): e(:t) = c(:t) l(:t). For exmnple, figure 18.2 shows the emission spectrum of three 
lightsources, resp. of 2500K, 4500K and 1 OOOOK. 

1 
Plot [ { 1 [J. lo-•, 2500] , 1 [J. 10-9

, 4500] , - 1 [J. 10-9
, 10000] } , 

50 
{J., O, 2000), PlotRange ->All, ImageSize -> 200]; 

35WUU 

30UUUO 

250000 

~(XX1(1(J 

150000 

HXXJOO 

50000 

500 1000 1500 ~ouu 

Fig 18.2 Emission spectrum of a black body light source with a temperature of resp. 2500K, 
6500K and 10,000K. The emission at 10,000K is much larger than at the 2 lower 
temperatures, and for that reason, is plotted at 1/50 of its amplitude. 
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Now that we have the spectral reflectance function, we can examine how the reflected 
spectrum would look with a different light source. In figure 18.3 the reflected spectrum for a 
2500K, 4500K and a 1 O,OOOK radiator is demonstrated. 

Block [ { $DisplayFunction = Identity}, 

plots=Plot[l[J.10-9
, #] (Sin[.06.A] +Sin[.l.A] +5), 

{.A, 350, 700}, PlotRange .... All, ImageSize .... 300, 
Ticks .... {Automatic, None}] & /@ { 2500, 4500, 10000}] ; 

Show [GraphicsArray [plots], ImageSize -> 500]; 

400 450 500 550 600 050 700 400 450 500 550 600 650 700 -IOU 450 500 550 tiOO 650 700 

Fig 18.3 Object reflectance function for the observed spectrum shown in figure 18.1 for a resp. 
2500K, 6500K and 10,000K light source. As opposed to the reflected spectrum (fig. 18.1), this 
object reflectance function is a material property, independent of the illumination source. 

At this point it is meaningful to introduce spatial extent, hence to describe the spatio-spectral 
energy distribution e(x,y.;[) that falls onto the retina. Further, for three-dimensional objects the 
amount of light falling onto the objects surface depends on the energy flux, thus on the local 
geometry. Hence shading (and shadow) may be introduced as being a wavelength independent 
multiplication factor m(x,y) in the range [0 ... 1]: e(x, y, A.)= c(x, y. A.) /(.:\.)m(x, y). 

Note that the illumination /(;[) is independent of position. Hence the equation describes 
spectral image formation of matte objects, illuminated by a single light source. For shiny 
surfaces the image formation equation has to be extended with an additive tenn describing the 
Fresnel reflected light, see [Geusebroek2000b] for more details. 

The structure of the spatio-spectral energy distribution is due to the three functions c(.), I(.), 
and 111(.). By making some general assumptions, these quantities may be derived from the 
measured image. Estimation of the object reflectance function c(.) boils down to deriving 
material properties, the "true" color invariant which does not depend on illumination 
conditions. Estimation of the light source l(.) is well known as the color constancy problem. 
Determining m(.) is in fact estimating the shadows and shading in the image, and is closely 
related to the shape-from-shading problem. 

For the extraction of color invariant properties from the spatio-spectral energy distribution we 
search for algebraic or differential expressions of e(.), which are independent of /( .) and m( .). 

Hence the goal is to solve for differential expressions of e(.) which results in a function of c(.) 

only. 
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To proceed, note that the geometrical term m is only a function of spatial position. 
Differentiation with respect to tl, and normalization reduces the problem to only two 
functions: e(x, ,\) = c(x, ,\) /(,\) =} ~> aea(~,Al = l..

1
1 + ~ (indices indicate differentiation). 

etX,ll "- t 

After additional differentiation to the spatial variable x or y, the first term vanishes, since/(.) 
only depends on ,\: 

e [x, .A] = c [x, .A] 1 [.A]; 

Ox ( o,_ e [ x, J.] ) 
e [x, .A] 

0 

The left-hand side, after applying the chain rule, 

( 
o;i.e[x, y, .A]) 

Ox I I shortnotation 
e[x, y, J.] 

e [ x, y, A. J e., [ x, y, A. J - ex [ x, y, A. J e, [ x, y, A. J 

e[x, y, .A.J 2 

is completely expressed in spatial and spectral derivatives of the observable spatio-spectral 
energy distribution. 

As an example in this chapter we develop the differential properties of the invariant color

edge detector 8 = + ie , where the measured spectral intensity e = e(x, y, ,\). Spatial 
derivatives of 8, like ~~ , contain derivatives to the spatial as well as to the wavelength 
dimension due to the chain rule. In the next section we will see that the zero-th, first and 
second order derivative-to-,\ kernels are acquired from the transformed RGB space of the 
image directly. The derivatives to the spatial coordinates are acquired in the conventional way, 
i.e. convolution with a spatial Gaussian kernel. 

18.3 Koenderink's Gaussian derivative color model 

We have seen in the previous chapters how spatial structure can be extracted from the data in 
the environment by measuring the set of (scaled) derivatives to some order. For the spatial 
domain this has led to the family of Gaussian derivative kernels, sampling the spatial intensity 
distribution. These derivatives naturally occur in a local Taylor expansion of the signal. 

Koenderink proposed in 1986 to take a similar approach to the sampling of the color 
dimension, i.e. the spectral information contained in the color. If we construct the Taylor 
expansion of the spatio-spectral energy distribution e(x, y, ,\) of the measured light to 
wavelength, in the fixed spatial point (xo, Yo). and around a central wavelength Ao we get (to 
second order): 

Series[e[xO, yO, .A], {J., .AO, 2}] 

e [xO, yO, .A.OJ+ e 10
•

0
•

11 [xO, yO, .A.OJ (A-.A.O) + 

} e 10
•

0
•

21 [xO, yO, .A.OJ (.A.-.A.0) 2 +O[.A.-.A.OJ 3 
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We recall from chapter 1 that a physical measurement with a aperture is mathematically 
described with a convolution. So for a measurement of the luminance L with aperture function 
G(x, er) in the (here in the example ID) spatial domain we get: 
L(x; er)= 1:L(x - a) G(a, er) da where a is the dummy spatial shift parameter running over 
all possible values. 

For the temporal domain we get L(t; er) = 1: L(t - /3) G(f3, er) d f3 where f3 is the dummy 
temporal shift parameter running over all possible values in time (in chapter 20 we will take a 
close look at this temporal convolution). Based on this analogy, we might expect a 
measurement along the color dimension to look like: L(,\; er)= 1: L(,\ - y) G(y, er) dy where 
,\is the wavelength and y is the dummy wavelength shift parameter. 

The front-end visual system has implemented the shifted spatial kernels with a grid on the 
retina with receptive fields, so the shifting is implemented by the simultaneous measurement 
of all the neighboring receptive fields. The temporal kernels are implemented as time-varying 
LGN and cortical receptive fields (explained in detail in chapters 11 and 20). However, in 
order to have a wide range of receptive fields which shift over the wavelength axis in 
sensitivity, would require a lot of different photo-sensitive dyes (rhodopsins) in the receptors 
with these different -shifted- color sensitivities. 

The visual system may have opted for a cheaper solution: The convolution is calculated at just 
a single position on the wavelength axis, at around lo = 520 nm, with a standard deviation of 
the Gaussian kernel of about CT,t = 55 nm. The integration is done over the range of 
wavelengths that is covered by the rhodopsins, i.e. from about 350 nm (blue) to 700 nm (red). 
The values for lo and CT,t are determined from the best fit of a Gaussian to the spectral 
sensitivity as measured psychophysically in humans, i.e. the Hering model. 

So we get for the spectral intensity e(x, 10 ; CT,t) = .£.~7:' e(x, ,\) G(l, lo, cr,t) d 1. This 1s a 

'static' convolution operation. It is not a convolution in the familiar sense, because we don't 
shift over the whole wavelength axis. We just do a single measurement with a Gaussian 
ape1ture over the wavelength axis at the position lo. Similarly, the derivatives to,\ 

aecx.A,i J = er r-tm" e(x ,\) oG(A,Ao ·"" J d ,\ and 
oA A J,tm, ' oA 

it' e(x.A.o) _ 2 /-tm" (~ ') 82 G(A.;\,, .cr.d Al 1 
a-t' - CT,t JAm e x, ll a-t' <all 

describe the first ~nd second order spectral derivative respectively. The factors cr,t and (T,t 
2 

are included for the normalization, i.e. to make the Gaussian spectral kernels dimensionless. 

Here are the graphs of the 'static' normalized Gaussian spectral kernels to second order as a 
function of wavelength: 
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gauss.A[.A_, a_]= D[gauss[.A, a], .A]; 

gaussll[.A_, a_] = D[gauss[.A, a], (.A, 2}]; 

.AO= 520; a.A= 55; 

Plot [{gauss [ (.A-.AO), a.A], a.A gauss.A[ (.A-.AO), a.A], 

a.A' gaussll [(.A- .AO) , a.A]}, (.A, .AO - 3 a.A, .AO+ 3 a.A}, 

PlotRange->All, AxesLabel-> {".A (run)",""}, ImageSize->250]; 

Figure 18.4 The zero-th, first and second derivative of the Gaussian function with respect to 
wavelength as models for the color receptive field's wavelengths sensitivity in human color 
vision. After [Koenderink 1986]. The central wavelength is 520 nm, the standard deviation 55 
nm. 

We recall from the human vision chapter that the color sensitive receptive fields come in the 
combinations red-green and yellow-blue center-surround receptive fields. The subtraction of 
yellow and blue in these receptive fields is well modeled by the first order derivative to A, the 
subtraction of red and green minus the blue is well modeled by the second order derivative to A 
. Alternatively, one can say that the zero-th order receptive field measures the luminance, the 
first order the 'blue-yellowness', and the second order the 'red-greenness'. The sensitivity of 
the three types of cones (L-, M- and S-cones: long. medium and ~h01t wavelength sensitivity) 
is given in figure 18.5. 

Show[Import["ConesColors.gif"], ImageSize -> 200]; 

Figure 18.5 The relative spectral sensitivity of the three types of cones in the human retina. 
From [Geusebroek et al. 1999a]. 

The Gaussian model approximates the Hering basis [Hering64a] for human color vision when 
Ao :>< 520 nm and o-"- :>< 55 nm (see figure 18.6). They also fit very well the CIE 1964 XYZ 
basis. which is a famous coordinate system for colors, much used in technical applications 
involving color. 
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Note: the wavelength axis is a half axis. It is known that for a half wcis (snch as with positive
only values) a logarithmic parametrization is the natural way to 'step along' the axis. E.g. the 
scale axis is logarithmically sampled in scale-space (remember the 'orders of magnitudes'), the 
intensity is logaiithmically transformed in the photoreceptors. and, as we will see in chapter 
20, the time axis can only be measured causally when we sample it logarithmically. We might 
conjecture here a better fit to the Hering model with a logarithmic wavelength axis. 

Show[Import["HeringColormodel.gif"], ImageSize -> 300]; 

Figure 18.6 The Hering basis for the spectral sensitivity of human color receptive fields. From 
[Hering1964a]. 

The Gaussian color model needs the first three components of the Taylor expansion of the 
Gaussian weighted spectral energy distribution at A.0 and scale a-,i.. An RGB camera measures 
the red, green and blue component of the incoming light, but this is not what we need for the 
Gaussian color model. We need a method to extract the Taylor expansion terms from the RGB 
values. The figure below shows the RGB color space. The black color is diagonally opposite 
the white cube. 

sc = .2; n = 6; Clear[gr]; 
Show[gr = Graphics3D[Table [ {RGBColor[x In, y In, z In], 

Cuboid[(x-sc, y-sc, z-sc), {x+sc, y+sc, z+sc)]}, 
(z, 1., n), (y, 1., n), (x, 1., n)], Lighting->False], 

ViewPoint-> (2.441, 1.600, 1.172), ImageSize->200]; 

Figure 18.7 RGB color space. 

LiveGraphics3D is a Java class w1itten by Maitin Kraus to real-time rotate and 
manipulate Mathematica Graphics3D objects in a browser. The package is available at 
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wwwvis.informatik.uni-stuttgart.de/~kraus/LiveGraphics3D/. With the command 

li veFormWri te we write the above graphic to a temporary file. 

liveFormWrite[$TopDirectory<> 
"\ \AddOns\ \Applications\ \FrontEndVision\ \LiveGraphics3D\ \data.m", gr] 

Hit show.html to stait your browser and play with the 3D structure. 

This plots all pixels of a color image as points (with their RGB color) in RGB space: 

Block [ {$DisplayFunction = Identity, im, data}, 

im = Import [ "hybiscus2 .jpg"] ; data= Flatten [im[ [l, l]] , l]; 
pl =Show [im, ImageSize -> 150]; 

# 
p2 = Show [ Graphics3D [ { RGBColor @@ -- , Point [ #] } & /@data J , 

255 

Axes-> True, AxesLabel-+ { "R", "G", "B"} J J; 
Show[GraphicsArray[(pl, p2}], ImageSize -> 470]; 

Figure 18.8 Left: color input image. Right: distribution of the pixels in the RGB space. Note the 
wide range of green colors (in the left cluster) and red colors (in the right cluster) due to the 
many shadows and lighting conditions. 

An RGB camera approximates the CIE 1964 XYZ basis for colorimetry by the following 
linear transformation matrix: 

( 

0.621 0.113 0.194 l 
rgb2xyz = 0.297 0.563 0.049 ; 

-0.009 0.027 1.105 

Geusebroek et al. 1Geusebroek2000a] give the best linear transform from the XYZ values to 
the Gaussian color model: 

(

-0.019 0.048 

xyz2e = 0.019 0. 

0.047 -0.052 

0.011 l 
-0.016 ; 

o. 

The resulting transform from the measured RGB input image to the sampling 'a la human 
vision' is the dot product of the transforms: 
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colorRF = xyz2e. rgb2xyz; colorRF I I MatrixForm 

[ 

0.002358 0.025174 0.010821 l 
0.011943 0.001715 -0.013994 

0.013743 -0.023965 0.00657 
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Indeed, when we study this transfmm and plot the rows. we see the likeliness with the 
Gaussian derivative sensitivity (see figure 18.6). 

Block [ {$DisplayFunction =Identity}, 
pl= Table[ListPlot[colorRF[ [i]], PlotJoined ->False, 

PlotStyle -> PointSize[0.05], Ticks-+ None], {i, 3}]]; 
Show [GraphicsArray [pl] , ImageSize -> 200]; 

Figure 18.9 The transformations of the input RGB values to the Gaussian color model 
coarsely resemble the Gaussian derivatives to ;\. Left: zero-th order. Middle: first order, right: 
second order. The three center wavelengths roughly correspond with 400, 475 and 575 nm of 
the Gaussian derivative functions of figure 18.4. 

The set of spatio-spectral Gaussian derivative cortical simple cells thus looks like (from 
[Geusebroek et al. 2000a]): 

Show[Import["ColorRFs.gif"], ImageSize -> 250]; 

~ 
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• 
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Figure 18.1 OThe Gaussian color model for cortical receptive fields. Left: zero-th order to 
wavelength, measuring the luminance and the spatial derivative structure. Middle: first order 
derivative to wavelength, yellow/blue - spatial derivatives. Right: second order derivative to 
wavelength, red/green-spatial derivatives. 

The Gaussian color model is an approximation, but has the attractive property of fitting very 
well into Gaussian scale-space theory. The notion of image structure is extended to the 
wavelength domain in a very natural and coherent way. The similarity with human differential
color receptive fields is more than a coincidence. 

Now we have all the tools to come to an actual implementation. The RGB values of the input 
image are transformed into Gaussian color model space, and plugged into the spatio-spectral 
formula for the color invariant feature. 
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Next to the derivatives to wavelength we need spatial derivatives, which are computed in the 
regular way with spatial Gaussian derivative operators. The full machinery of e.g. gauge 
coordinates and invariance under specific groups of transformations is also applicable here. 
The next section details the implementation. 

18.4 Implementation 

We start with the import of an RGB color image (see figure 18.11). The color pixels are RGB 
triples in the very first element of the imported object: 

image= Import [ "colortoys2. jpg"]; 
im = image [ [ l , l] ] ; 
im [ [ l] ] I I Short 

{{67, 104, 148), {67, 104, 148), {66, 103, 147), {66, 103, 147), 
{66, 103, 147), {66, 103, 147), «167»' {119, 40, 87), {119, 40, 87), 
{120, 41, 88), {119, 40, 87), {119, 40, 87), {120, 41, 88)) 

Dimensions[im] 

{228, 179, 3) 

The RGB triples are converted into measurements through the color receptive fields in the 

retina with the transformation matrix colorRF defined above: 

colorRF = xyz2e. rgb2xyz; colorRF I I MatrixForm 

(

0.002358 0.025174 

0.011943 0.001715 

0.013743 -0.023965 

0.010821 l 
-0.013994 

0.00657 

To transform every RGB triple we map the transformation to our input image as a pure 
function at the second listlevel: 

observed image = Map [Dot [ colorRF, ll] & , im, { 2}] ; 

The three 'layers' of this observed image obs represent resp. e, e;t and e;u. We 'slice' the 
dataset smai1ly by a reordering Transpose whereby thee-, e,t - and e;u -values each form a 
plane: 

obs = Transpose [observed image, { 2, 3, l}] ; 
Dimensions [obs] 

{3, 228, 179) 

Let us inspect what the color receptive fields see: 
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DisplayTogetherArray[ 
Prepend [ListDensi tyPlot I@ obs, Show[image]] , ImageSize -> 470]; 

~o 
• 
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Figure 18.11 The input image (left) and the observed images with the color differential 
receptive fields. Image resolution 228x179 pixels. 

We now develop the differential properties of the invariant color-edge detector 8 = + ~~ , 
where the spectral intensity e = e(x, y, A.). The derivatives to the spatial and spectral 
coordinates are easily found with the chainrule. Here are the explicit forms: 

D[e[x, y, J.], J.] 
s : = , a. s 

e[x, y, J.] 

9 (0,0,1) [x, y, .A.] 9 (1,0,0> [x, y, .A.] + 9 11,0,11 [x, y, .A.] 

e[x, y, .A.] 2 e[x, y, .A.] 

To make this more readable, we apply pattem matching to make the expression shorter (for 
the code of shortnotation see FEV.nb) 

8, 8 I. e [x, y, J.] -> e 11 shortnotation 

e e., [x, y, .A.] - e, [x, y, .A.] e, [x, y, .A.] 
e' 

a, 8 I. e [x, y, J.] -> e 11 shortnotation 

e ey, [x, y, .A.] - ey [x, y, .A.] e, [x, y, .A.] 
e' 

8A 8 I. e [x, y, J.] -> e I I shortnotation 

- e, [ x, y, .A.] 2 + e e,, [ x, y, .A.] 
e' 

8,,A8 I. e[x, y, J.] -> e II shortnotation 

1 2 '&"' (e e,,, [x, y, .A.] - 2 e e., [x, y, .A.] e, [x, y, .A.]+ 

e, [x, y, .A.] (2 e, [x, y, .A.] 2 
- e e,, [x, y, .A.])) 

8y,A8 I. e[x, y, J.] -> e II shortnotation 

1 2 e" (e ey,, [x, y, .A.] - 2 e ey, [x, y, .A.] e, [x, y, .A.]+ 

ey [x, y, .A.] (2 e, [x, y, .A.] 2 
- e e,, [x, y, .A.])) 

The gradient magnitude (detecting yellow-blue transitions) becomes: 
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g = Simplify [,} (13, 6) 2 + (13, 6) 2 
] I I shortnotation 

t( 1 
4 ((e[x,y,.A]e.,[x,y,.A]-e,[x,y,.A]ez[x,y,.A.]) 2 + 

'V e[x,y,.A] 

( e [ x, y, .A] eyz [ x, y, .A] - e, [ x, y, .A] e, [ x, y, .A] ) 2 
) ) 

The second spectral order gradient (detecting purple-green transitions) becomes: 

'W= Simplify[,} (13.,,.8) 2 + (13.,,.8) 2
] II shortnotation 

'1 ( e[x, ~' .A.] 6 

( ( e [ x, y, .A] 2 e," [ x, y, .A] + 2 e, [ x, y, .A] e, [ x, y, .A] 2 
- e [ x, y, .A] 

(2e,,[x, y, .A] e, [x, y, .A] +e,[x, y, .A] ezz [x, y, .A.]))
2 

+ 

(e[x, y, .A.] 2 eyzz [x, y, .A]+ 2 ey [x, y, .A] e, [x, y, .A.] 2 
-

e[x, y, .A] (2eyz[x, y, .A] e, [x, y, .A] +ey[x, y, .A] ezz [x, y, .A.]))
2

)) 

Finally, the total edge strength N (for all color edges) in the spatio-spectral domain becomes: 

N =Simplify [,} (13, 6) 2 + (13, 6) 2 + (13.,,. 6) 2 + (13,,,. 6) 2 
] i N I I shortnotation 

'1 ( e[x, ~' .A.] 6 

( e [x, y' .A] 2 (e [x, y' .A] e,, [x, y' .A] - ex [x, y' .A] e, [x, y' .A]) 2 
+ 

e[x, y, .A.] 2 (e[x, y, .A] eyz[x, y, .A] -ey[x, y, .A] ez[x, y, .A.]) 2 + 

( e [ x, y, .A] 2 exzz [ x, y, .A] + 2 e, [ x, y, .A] e, [ x, y, .A] 2 
-

2 
e[x, y, .A] (2exz[x, y, .A] e,[x, y, .A] +e,[x, y, .A] ezz[x, y, .A])) + 

( e [ x, y, .A] 2 e,,z [ x, y, .A] + 2 e, [ x, y, .A] e, [ x, y, .A] 2 
-

e[x, y, .A] (2e,, [x, y, .A] e,[x, y, .A] +ey[x, y, .A] ezz [x, y, .A] ))
2

)) 

As an example, we implement this last expression for discrete images. 

As we did in the development of the multi-scale Gaussian derivative operators, we replace 

each occurrence of a derivative to A with the respective plane in the observed image rf (by 
the color receptive fields). Note that we use rf [ [nA.+1]] because the zero-th list element is 

the Head of the list. We recall the internal representation of a derivative in Mathematica: 

Ful1Form[e<" 0" 1 [x, y, .A]] 

Derivative[l, 0, 2] [e] [x, y, \(Lambda]] 

We will look for such patterns and replace them with another pattern. We do this pattern 

matching with the command I. (ReplaceAll). We call the observed image at this stage 
rf, without any assignment to data, so we can do all calculations symbolically first: 

Clear[rfO, rfl, rf2, a] 7 
rf = {rfO, rfl, rf2} 1 
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N =NI. {Derivative [nx_, ny_, nl._] [e] [x, y, .A] :-+ 
Derivative[nx, ny] [rf[ [nl. + l]]] [x, y], 

e[x, y, .A] :-+rf[[l]]} //Simplify 

I (-
1
- 6 (rf0 2 (rf 1 [x, y] rfO ' 0

"' [x, y] - rfO rf 1 ""' [x, y]) 
2 

+ 
'V rfO 

(2 rfl [x, y] 2 rfo""' [x, y] - 2 rfO rfl [x, y] rfl ' 0
"' [x, y] + 

rfO (-rf2[x, y] rf0 10
"' [x, y] +rf0rf2' 0

•
11 [x, y]))

2 
+ 

rf0 2 (rfl [x, y] rf0'" 0
' [x, y] - rfO rfl '"" [x, y] )

2 
+ 

(2 rfl [x, y] 2 rf0 1"" [x, y] - 2 rfO rfl [x, y] rfl '" 01 [x, y] + 

rfO (-rf2 [x, y] rfO '"" [x, y] + rfO rf2 <
1

•
01 [x, y])) 

2
)) 
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Note that we do a delayed rule assignment here(:...; instead of--+) because we want to evaluate 
the right hand side only after the rule is applied. We finally replace the spatial derivatives with 

our familiar spatial Gaussian derivative convolution gD at scale <r: 

N = N /. {Derivative [nx_, ny_] [rf_] [x, y] :-+ gD [rf, nx, ny, a], 

rfl [x, y] :-+ rfl, rf2 [x, y] :-+ rf2} 

I (-1
-, (rf0 2 (rfl gD[rfO, O, 1, CJ] - rfO gD[rfl, O, 1, CJ] ) 2 + 

'V rfO 
rf0 2 (rflgD[rfO, 1, 0, CJ] -rfOgD[rfl, 1, 0, CJ]) 2 + 

(2 rfl 2 gD[rfO, 0, 1, CJ] - 2 rfO rfl gD[rfl, 0, 1, CJ]+ 
2 

rfO (-rf2 gD[rfO, 0, 1, CJ]+ rfO gD[rf2, 0, 1, CJ])) + 

(2 rfl 2 gD[rfO, 1, O, CJ] - 2 rfO rfl gD[rfl, 1, 0, CJ]+ 

rfO (-rf2 gD[rfO, 1, 0, CJ]+ rfO gD[rf2, 1, 0, CJ]) )
2

)) 

This expression can now safely be calculated on the discrete data: 

{rfO, rfl, rf2} =obs; a= l.; 
ListDensityPlot[-N, PlotRange -> {- .4, 0), ImageSize -> 220]; 

Figure 18.12 The color-invariant N calculated for our input image at spatial scale <T = 1 pixel. 
Primarily the total color edges are found, with little edge detection at intensity edges. Image 
resolution 228x179 pixels. 
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The following routines are implemented as standard FEV functions: 

8[im,a] 

8J.. [im, a] 

8.ll[im,a] 

g§'[im,a] 

g'W[im,a] 

gN[im,a] 

o=_!_ae 
e a-t 1 · · I ae co or mvanant -;; o-t 

first wavelength derivative of 8 

second wavelength derivative of 8 

yellow-blue edges 

( iJ2 S )2 ( a' S )2 
axa,l + aya,t red-green edges 

as 2 ( as )2 ( az s )2 ( a' s )2 
( ox) + ay + axa-t + aya,t total color edge strength 

The prefix g stands for the multi-scale Gaussian derivative implementation. For the code, see 
appendix D. 

Here is an example of finding blue-yellow edges: 

image= Import["terre indigo.jpg"]; im = rasterpixels[image]; 
DisplayTogetherArray[ 

{Show[image], ListDensityPlot [ -gi:;> [im, l] , PlotRange-> {- .15, - • 08)]}, 
ImageSize-> 510]; 

-----~ lillID .___ _____ ,, 

Figure 18.13 The yellow-blue edge detector {} = ( " 6 )
2 

+ (De )
2 

calculated at a spatial scale ax Dy 

<.T = 1 pixel. Image resolution 288x352. Note the absence of black-white intensity edges in the 
day and time indication. Example due to J. Sparring. 

This example shows the color-selectivity of the spatio-color differential invariants: 
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image= Import["colortoys.jpg"]; im = rasterpixels[image]; 

DisplayTogetherArray[{Show[image], 
ListDensityPlot[-g@[im, a= l.], PlotRange-> (-.2, -.06J], 
ListDensityPlot [-g'W[im, a= l.], PlotRange-> (-1. 2, OJ] J, 

ImageSize-> 510] ; 
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Figure 18.14 Detection of the yellow-blue edge detector {] = ( 
38 

)
2 

+ ( a8 
)
2 

(middle) and the ax ay 

( •8)2 (•8)2 . . I red-green edge detector 'lt' = axm + aym (nght} at a scale of er= 1 p1xe. 

As a histological example, spatio-color differential structure can accentuate staining patterns. 
The next example shows the advantage of a specific red-green detection in the localization of 
the edges of a stained nucleus in paramecium caudatum. a common freshwater inhabitant with 
ciliary locomotion. 

im = rasterpixels [image= Import ["Paramecium caudatum. jpg"]]; 
DisplayTogetherArray[ 

{Show[image], ListDensityPlot[-g!i'[im, a= 3.], PlotRange-> (-.012, OJ], 
ListDensityPlot [-g'W[im, a= 3.], PlotRange-> {- .15, OJ] J, 

ImageSize-> 510] ; 

l 

Figure 18.15 The color-invariant {] (middle) and W (right} calculated for a histological image 
of a fungus cell, paramecium caudatum (left). The red-green color edges found by W form a 
good delineation of the cell's nucleus. 

18.5 Combination with spatial constraints 

Interesting combinations can be made when we combine the color differential operators with 
the spatial differential operators. E.g. when we want to detect specific blobs with a specific 
size and color, we can apply feature detectors that are best matching the shape to be found. 
We end the chapter with two examples: color detection of blobs in a regular pattern. and 
locating stained nuclei in a histological preparation. 
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Blobs are detected by calculating those locations (pixels) where the Gaussian curvature 1.gc = 

Lxx Lyy - Lx/ on the black-and-white version (imbw) of the image is greater then zero. This 
indicates a convex 'hilltop'. Pixels on the boundaries of the 'hilltop' are detected by requi1ing 
the second order directional derivative in the direction of the gradient Lww to be positive. 
Interestingly, by using these invariant shape detectors we are largely independent of image 
intensity. For the color scheme we rely on 8 and its first and second order derivative to A. The 
Mathematica code gives some examples of specific color detection: 

imbw = colorToBW [im = rasterpixels [image= Import [ "colorblobs .gif" J J J; 
lww = gauge2DN[imbw, 0, 2, 2J ; 
lgc = gD [ imbw, 2, 0, 2 J gD [ imbw, 0, 2, 2 J - gD [ imbw, 1, 1, 2 J 2 ; 

el= 6.A[im, 2J; ell= 6.AA[im, 4J; 
tl = Map[If[# > 0, 1, OJ&, lww, {2)J; 
t2 = Map[If[# > 0, 1, OJ&, lgc, {2)J; 
t3 = Map[If[# > 0, 1, OJ&, el, {2)J; 
t4 = Map[If[# > 0.001, 1, OJ&, ell, {2)J; 
ts= Map[If[# > o, 1, OJ&, el +ell, {2)J; 

Block [ ($DisplayFunction =Identity}, 
pl = Show [image J ; 

blue= ListDensityPlot [ (1 - tl) t2 (1 - tS) (1 - (1 - tS) t3) J; 
yellow= ListDensityPlot[ (1- tl) t2 (1- t4) tSJ; 
redandmagenta = ListDensityPlot[ (1- tl) t2 t4J J; 
Show[ 

GraphicsArray[(pl, blue, yellow, redandmagenta)J, ImageSize->420J; 

• 

• • 

• • • • 
• • • • 
• • • • 
• • • • 
• • • • 

Figure 18.16 Detection of color blobs with spatial and color differential operators. Blobs are 
spatially described as locations with positive Gaussian curvature and positive second order 
directional derivative in the gradient direction of the image intensity, color is a boolean 
combination of the color differential features. Example due to P. van Osta. 

_. Task 18.1 Find the total detection scheme for all individual colors in the example 

above, and for combinations of two and three colors. 

A last example detects stained carbohydrate deposits in a histological application. 

imbw = colorToBW[im = rasterpixels [image= Import ["pas. jpg" J J J; 
lww = gauge2DN[imbw, 0, 2, 4J; 

lgc = gD [ imbw, 2, 0, 4 J gD [ imbw, 0, 2, 4 J - gD [ imbw, 1, 1, 4 J 2 
; 

el=s.A[im, 4J;ell=s.AA[im, 4J;tl:Map[If[#>0, 1, OJ&, lww, {2)J; 
t2 = Map[If[# > 0.2, 1, OJ&, lgc, {2)J; 
t6 = Map[If[# > O, 1, OJ&, ell - el, {2)J; 
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DisplayTogetherArray[ 
{Show[image], ListDensityPlot[tl t2 t6]}, ImageSize-> 500]; 

Figure 18.17 Detection of carbohydrate stacking in cells, that are specifically stained for 
carbohydrates with periodic acid Schiff (P.A.S.). The carbohydrate deposits are in magenta, 
cell nuclei in blue. The blob-like areas are detected with positive Gaussian curvature and 
positive Lw w, the magenta with a boolean combination of the color invariant 8 and its 
derivatives to A.. Example due to P. Van Osta. Image taken from 
http://www.bris.ac.uk/Depts/PathAndMicro/CPUpas.html 

18.6 Summary of this chapter 

The scale-space model for color differential structure, as developed by Koenderink, states that 
the wavelength differential structure is measured at a single scale (er,>,_ = 55 nm) for zeroth 
order (intensity), first order (blue-yellow) and second order (red-green). There is a good 
analogy with the color receptive field structures found in the mammalian visual cortex. 

The chapter shows an actual implementation of this color differential structure. The 
wavelength derivatives can be extracted from the transf01med ROB triples in the data. 

In a similar way as for the spatial differential structure analysis of gray valued data, invariants 
can be defined, with combined color and spatial coordinate transformation invariance. A 
number of these color-spatial differential invariants are discussed and implemented on 
examples. 
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19.1 Introduction 

Clearly, orientation of structure is a multi-scale concept. On a small scale, the local 
orientation of structural elements, such as edges and ridges, may be different from the 
orientations of the same elements at a larger scale. Figure 19.1 illustrates this. 

<< FrontEndVision 'FEV' 
im = Import("fabric.gif"] [ (1, l]]; 
DisplayTogetherArray(Prepend( 

(ListDensityPlot(gauge2DN[imO, 2, O, #] /. imo .... im]) &/@{1.5, 5}, 
ListDensityPlot [im]], ImageSize -> 350]; 

Figure 19.1 The multi-scale nature of local orientation. Left original, basket texture. Middle: 
at a small scale (er= 1.5 pixels), orientation is governed by the fibers as is shown by the 
'ridgeness' Lv v. Right: at a larger scale (er= 5 pixels), an other orientation can be seen by 
calculating the Lv v ridgeness (bright areas, more or less horizontal in the picture). 

Orientation plays an important role as parameter in establishing similarity relations between 
neighboring points. As such, it is an essential ingredient of methods for perceptual grouping. 
E.g. the grouping of edge pixels in a group that defines them as belonging to the same 
contour, could be done using similarity in orientation of the edges, i.e. of their respective 
gradient vectors. In chapter 12 we have seen that the visual system is particularly well 
equipped to take measurements of differential properties at a continuum of orientations: 

the typical spokewheel structure of orientation columns that make up each hypercolumn (the 
wetware for the analysis of a single binocular visual field 'pixel') in the visual primary 
cortex, where the receptive fields were found at all orientations. In this chapter, we will study 
in detail the orientation properties of Gaussian derivative filters, and a concept named 
'steerability'. We come to a proper definition of a directional derivative for all orders of 
differentiation, and how this can best be computed in a Cartesian framework. We then study 
as an application of orientation analysis the detection of stellate tumors in mammography 
(example taken from [Karssemeier1995a, Karssemeier1996a]), which is based on a global 
analysis of orientation. This is an example of computer-aided diagnosis (CAD). 
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Other examples of context dependent perception of curvature are some of the well known 
obscured parallel lines illusions, shown in figure 19.2. 

square [x_, y_, s_] : = 
Line [ { { x, y}, { x + s, y}, { x + s, y + s}, { x, y + s}, { x, y}}] ; 

oisplayTogetherArray[ 
{Show[Graphics[{Thickness[.01], Line[{{#, O}, {O, #}}], If[EvenQ[#], 

Table[Line[{{#-n, n-1}, {#-n, n+l}}], {n, .1, 10, .S}], 
Table[Line[{{#-n-1, n}, {#-n+l, n}}], {n, .1, 10, .S}]]} &/@ 

Range [l, 20, 3]], PlotRange -> { {O, 10}, {O, 10}}], 
Show[Graphics[{Table[Line[{{-Cos[~], -Sin[~]}, {Cos[~], Sin[~]}}], 

{~, 0, 11:, 11:/16}], square[-.2S, .2S, .SJ, square[-.2S, -.7S, .SJ, 
Circle[{-.S, O}, .2S], Circle[{.S, O}, .2S]}], 

PlotRange -> { {-1, 1}, { -1, 1}}, AspectRatio ->Automatic] } , 
ImageSize -> 400]; 

Figure 19.2 Obscured parallel lines illusions. Left: We perceive the lines as not parallel, in 
reality they are parallel. Right: the squares seem parallelograms, the circles seem to have an 
egg shape. The context around the contours of the figures determines the perceived 
orientation. 

19.2 Multi-scale orientation 

We define the orientation of a vector relative to a coordinate frame as the set of angles 
between the vector and with the frame vectors of the coordinate frame. Because we deal with 
orthogonal coordinates in this book, we need a single angle for a 2D vector, and two angles 
for a 3D vector. 

Formal definition of angulation (2D), tilt and spin (3D). Figures. 

The direction of a vector is the absolute value of the orientation. E.g. the direction of the x

axis is horizontal, and a identical direction is created when we rotate the x-axis over 7f 

radians (180 degrees). 

In chapter 6,section 5, we studied the orientation of first order differential structure: the 
gradient vector field, and in chapter 6, section 7.3 we encountered the orientations of the 
principal curvatures, as the orientations of the Eigenvectors of the Hessian second order 
matrix. 
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19.3 Orientation analysis with Gaussian derivatives 

In order to build the machinery for the extraction of orientation inf01mation, we need to fully 
understand the behavior of the Gaussian derivative operator at different orientations, and 
how to control this behavior. We will limit the analysis to 2D. The zeroth order Gaussian is 
isotropic by definition, and has no orientation. The action of this operator on an image is 
rotational invariant. All non-zero partial derivatives are equipped with a direction. 

The first order Gaussian derivative kernel ~~ is shown in figure 19.3, and we define the 
orientation of this kernel to be zero, i.e. the angle ¢ of its axis along which the differentiation 
is done is zero radians with the x-axis. The orientation¢ of the Gaussian derivative kernel to 
y, ~~,is 11/2, pointing upwards along the positive y-axis. So increments in¢ are positive 

in a counterclockwise fashion. 

The first order Gaussian derivative kernel in another orientation can readily be made from its 
basic substituents: it is well known that a kernel with orientation ¢ can be constructed from 
Cos( A.) aa +Sin( A.) aa . 

'I' ax 'I' ay 

Figure 19.3 illustrates this on the convolution of the kernel on a Dirac-delta function, i.e. a 
single spike, which gives us the figure of the kernel, as we have seen in chapter 2: 

im=Table[O, {128), {128)]; im[[64, 64]] =100; 
q, = 71' / 6; Block [ { $DisplayFunction = Identity}, 

imx = gD[im, 1, 0, 15]; imy = gD[im, 0, 1, 15]; 
imq, =Cos [q,] gD [im, 1, 0, 15] +Sin [q,] gD [im, 0, 1, 15]; 
pl=ListDensityPlot[#] &/@{imx, imy, imq,}]; 

Show[GraphicsArray[pl]]; 

Figure 19.3 A first order Gaussian derivative at any orientation can be constructed with the 
partial derivatives ~~ (left) and °i: (middle) as a basis. Right: Cos(</>) ~'; +Sin(</>) ~~ , for 

<1>=11/6. 

A class of filters where a filter of any orientation can be constructed from a linear 
combination of other functions is called a steerable filter [Freemanl99la]. The rotational 
components form a basis. A basis will contain more elements when we go to higher order. 
The question is now: what are the basis functions? How many basis functions do we need for 
the construction of a rotated Gaussian derivative of a particular order? We will discuss two 
important classes of basis functions (see figure 19.6): 

a. basis functions that are rotated copies of the Gaussian derivative itself: 
b. basis functions taken from the set of all partial derivatives in the Cartesian framework; 



19. Steerable kemels 332 

In particular, we will derive later in the text general formulas for e.g. the rotation of 
81 ~;~·._vJ 

over 30 degrees clockwise (-Jr/ 6 radians). In the two bases the results are the same 

( 
83 ~;;·-") /45,, denotes the 45° rotated version of the third derivative kernel): 

a3G(x.y) I = {3 8
3
G(x.y) I"+ -3+{3 8

3
G(x,y) I "+-'- 8

3
G(x.y) I 0 - 3+'13 8

3
G(x,y) I u 

~ -30" 4 oxl 0 4-{2 8x3 45 4 iJxl 90 4-{2 iJxl 135 

a3 G(x,y) I - - _!_ 83 G(x,y) + 3 {3 83 G(x,y) + _2_ 83 G(x,y) - 3 {3 83 G(x,y) 
~ -30" - 8 iJyl 8 iJxiJy' 8 8x2 a_v 8 8x3 

The first class will be derived in of basis functions may have interesting similarities in the 
control of directional derivatives in the visual system because of its self-similarity, symmetry 
and a reduced set of receptive field sensitivity profiles, the second is more apt for computer 
implementation. The derivation for the first class will be given in section 19.4, the second 
class will be deiived in section 19.5. The two basis sets are different, and an illustrating 
example of multi-scale steerable filters. 

19.4 Steering with self-similar functions 

We need to know what is the necessary condition for a function to be steerable. We look at 
the first order Gaussian derivative as a first example. We express the kernel in polar 
coordinates {x, y) = {r Cos(¢), r Sin(¢)} where r is the distance to the origin, and <(! the angle 

with the real x-axis. With the function TrigToExp we express the result in complex 
exponentials ei<P: 

Clear [If>]; {TrigToExp [Cos [If>] +I Sin [If>]], Exp [I If>] I/ ExpToTrig} 

(e' 0 , Cos[¢]+ i Sin[</>]} 

We transfonn our Gaussian kernel and some of its partial derivatives, and display the result, 

after division by the Gaussian kernel, in MatrixForm for notational clarity: 

1 J[2 +y2 

g := --E-~; t/J=.; 
2 >ra2 

( 
g a, g ) 

t = a, 9 a.,, 9 
I. {x--> r Cos [4(>], y--> r Sin [4(>]} I I TrigToExp I I Simplify; 

t I I MatrixForm 

r2 
i e -"'2'"7-1. op (-l+e2 1. .P) r 

4 :rra a 

r' 
e-~-1..p (l+e2 J.lfl) r 

41w a 

r' 
1e_"'2"7_2

1.¢ (-l+e4 1.<fl) r 2 

8 :rm a 

To see the structure more clearly, we divide the Gaussian itself out and collect the complex 
exponentials: 



333 19.4 St<?ering with self-similar functions 

t 
Collect[ , E'"] 11 MatrixForm 

t[[l,l]] 

The resulting function is separable in a radial part a(r) and an angular part e111 i/J where n is 
equal to the differential order: f(r, </!) = LJ~1 a11 (r) e111 i/J. A function with these properties 
steers when it can be written as rotated versions of itself. 

The so-called steerability constraint is f 8(x, y) = :z::J:,1 k1 (B) f 8
1 (x, y), where M is the 

number of filters, j-e(x, y) is the rotated kernel, and the f 81(x, y) are the rotated basis 
kernels. The weighting factors k1 (B) are to be determined, as follows. When we fill in the 
polar representation of the kernel in the steerability constraint, we get 

(1) 

We can divide by a11 (r), and when a11 (r) = 0 for some n we just remove this constraint from 
the set of equations. The equations are equal for -n and n, so we have to consider only 
angular frequencies in the range 0 < n < M. Because n is equal to the order of 
differentiation, we have here as first result that the number of necessary basis filters for 
steerability in n + 1 . 

To steer the first order Gaussian derivative, we needed two basis functions, for steering a 
second order derivative kernel we need three basis functions. Equation (I) is a set of 
equations from which we can solve the weighting constants k1 (B). Written more explicitly, 
they look like 

J[ 
k1(B) l 
k2(()) 

k";(()) 

The l's in the top row are for e' 0 8 . Let us solve this set of equations. 

We need to choose the orientations 01 of the basis functions such that the columns in the 
matrix above are linearly independent. For symmetry reasons we choose them equally 
spaced over the space of directions, i.e. over the range 0 - 7r. So, for the first order Gaussian 
derivative the basis orientations are 0 and 7r / 2, for the second order they are 0, n / 3 and 
2n/3, etc. Starting from an arbitrary angle ¢ we get (¢, ¢+n/2} and 
(¢, ¢ + n I 3, ¢ + 2 n I 3) etc. 

i7f 
n:2;9n:Table[t/>+--, {i,O,n}] 

n+l 

{ "' 7f "' 237f + "'} "'' 3 +.,,, "' 
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Exp[I 2 en] 

Because the complex exponentials are complex, we have to solve them separately for both 
the real and the imaginary pai1. 

n = 2; kj = Array[k, n + 1); 
{ComplexExpand[Re [Exp[I n e)) "Re [kj .Exp[I n en)]], 
ComplexExpand [Im [Exp [In e]) == Im [kj. Exp [In en])) } 

{cos[28] ==Cos[2¢] k[l] +Cos[2 (-T +¢)] k[2] +Cos[2 ( 
2
3
n +ct>)] k[3], 

Sin[28] ==k[l] Sin[2¢] +k[2] Sin[2 (-T +¢)] +k[3] Sin[2 ( 
2
3
n +ct>)]} 

For the even orders of differentiation we need to solve the equations specified by the top row 
and the even rows (if n is even, we start in row 0), for the odd orders we need the odd rows 
(if n is odd we start in row 1). The equation set is easily solved with Mathematica: 

angularweights [n_) : = Module [ {k, i, ni}, Clear [e, ~, k] ; 

i ,. 
en= Table[~+ -- , {i, 0, n} J; kj = Array[k, n + 1); 

n+l 
sol= Solve [Flatten [ 

Table [ {ComplexExpand [Re [Exp [I ni e]) " Re [kj. Exp [I ni en)) ) , 
ComplexExpand [Im [Exp[I ni e)) == Im [kj .Exp[ I ni en]))}, 

{ni, If[EvenQ[n], 0, l], n, 2)) 

] , kj); Flatten[kj I. sol]// Simplify// TrigReduce] 

For the first order we find for the angular weights k1 (8): 

angularweights[l] 

(Cos[8-¢], Sin[8-¢]} 

Indeed, a correct result, found from these equations: 

i ,. 
n = l; Clear[e, ~. k); en= Table[~+--, {i, 0, n} J; kj = Array[k, n + 1); 

n+l 
Table[ { 

ComplexExpand[Re [Exp[I ni e]) "Re [kj .Exp[I ni en])), 
ComplexExpand[Im [Exp[I ni e]) == Im [kj .Exp [I ni en)])}, 

{ni, If[EvenQ[n], 0, l], n, 2)) 

{{Cos [8] ==Cos[¢] k [ l] - k [2] Sin[¢], Sin [8] ==Cos[¢] k [2] + k [ l] Sin[¢]}} 

For the second and third order Gaussian derivatives things get more complicated: 
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angularweights[2] 

{-} (1+2Cos[2e-2cp]),-} (l-Cos[2e-2¢] +'13sin[2e-2¢]), 

9 ( (-1) 116 '13 - (-1) 516 '13 - (-1) 116 '13 Cos [2 e- 2 <Pl+ 

( -1) 516 '13 Cos [ 2 e - 2 cp] - 2 '13 Sin [ 2 e - 2 <Pl -

(-1) 113 '13sin[2e-2¢] + (-1) 213 '13sin[2e-2¢J)} 

angularweights[3] 

{-} (Cos[3e-3¢] +Cos[e-¢]), 

4 
( --./2 Cos [ 3 e - 3 cp] + -./2 Cos [ e - <P] + -./2 Sin [ 3 e - 3 cp] + -./2 Sin [ e - cp] ) , 

-} (-Sin[38-3¢] +Sin[B-cjl]), 

{ (-./2 cos [3 e - 3 <Pl - -./2 Cos [e - <Pl + -./2 Sin[3 e - 3 <Pl + {2 Sin [e - <Pl l} 

We have found the general result for steerability of Gaussian derivative kernels. 
A Gaussian derivative kernel can be steered, i.e. made in any orientation, by a linearly 
weighted sum of rotated versions of itself, the basis functions. There are n + 1 functions 
required, equally spaced over an angle range of 0 - 7r. 

For 11 = 1 the basis includes () = 0 ° and 90 °; 
For n = 2 the basis includes()= 0 °, 60 ° and 120 °; 
For 11 = 3 the basis includes () = 0 °, 45 °, 90 ° and 135 °; 
For n = 3 the basis includes()= 0 °, 36 °, 72 °, 108 ° and 144 °; etc. 
In other words: for each value of n we have a different set of basis functions. 

ang2 = angularweights [2] ; ang3 = angularweights [3]; 
~ = 0; Block [ { $DisplayFunction = Identity} , 
pl= PolarPlot[#, (e, O, 2 ,,.} , 

PlotRange-> ((-1, 1), (-1, 1)), Frame->True] &/@ang2; 
p2 = PolarPlot[#, (e, O, 2,,-), PlotRange-> ((-1, 1), (-1, l}), 

Frame-> True] & /@ang3]; 
Show [GraphicsArray [{pl, p2}] , ImageSize-> 500] ; 

Figure 19.4 Top row: polar plot of the three coefficients to construct the rotated second order 
Gaussian derivative kernel. Bottom row: Polar plots of the 4 coefficients for the third order 
rotated derivative operator. A polar plot j(B) is the radial plot of the radius f versus the angle 
e. 



19. Steerable kernels 336 

The weights are found from a set of linear equations originating from the steeribility 

constraint. So the third order derivative Gxxx I¢ under an arbitrary angle of </I with the x-axis 
can be constructed from four basis kernels, each 45 degrees rotated, i.e. 

Gxxx l<t> = t (Cos[3 </I]+ Cos[rp])Gxxx lo 
+ t (--./2 Cos[3 ¢] + -./2 Cos[¢]+ -./2 Sin[3 ¢] + -./2 Sin[</ll) G.nx lei

+ t (-Sin[3 </I]+ Sin[¢]) Gxxx I.;. 
+ t ( -./2 Cos[3 ¢] - -./2 Cos[¢]+ -./2 Sin[3 ¢] + -./2 Sin[r/Jl) Gx xx l.!!E. 

4 

When we fill in ¢ = -n / 6 we get the formula from the beginning of this chapter. It is 
instructive to look at the polar plots of these coefficients. This is the plot of the function as a 
function of the angle, with the amplitude of the function as distance to the origin. We quickly 
see then how the angular weights are distributed over the orientations, and we recognize the 
orientations of the basis functions, see figure 19.4. 

19.5 Steering with Cartesian partial derivatives 

When we just rotate our coordinates, we get a particular convenient representation for 
computer implementations. We use the same strategy as developed for the gauge coordinates 
in chapter 6. Instead of a locally adaptive set of directions for our frame to the orientation of 
the gradient vectorfield, we now choose a fixed rotation of our frame vectors. 

We use the same formulas, and notice that the orientation of the [Lx, Ly} unit vector frame is 
given by (Sin(¢), Cos(¢)} where </I is our required angle of rotation: 

Unprotect[gD,P]; 
gD,P[im_, nv_, nw_, a_, ,P_] := 
Module [ {Lx, Ly, v, w, imO}, v = {-Ly, Lx); w = {Lx, Ly); 

Simplify[Nest[(v.(c3,#, c3y#} &), Nest[(w.(c3,#, c3y#} &), L[x, y], nw], 

nv] I. {Lx-> Sin [I/I], Ly-> -Cos [I/I]}]] 

We denote gD4J [im , nv , nw , a , 4J ] our rotated Gaussian de1ivative operator, and 
define this function in the appropriate way by repeated action of the differential operators 

(with Nest) and thereafter replacing the fixed direction (Lx, Ly} with the particular choice 
of (Sin(</!), -Cos(¢)}. A final step is the replacement of any appearance of a de1ivative into 

our regular (and now familiar) multi-scale Gaussian derivative operator gD. 

Some examples: Here is the third derivative Gxxx rotated over -n I 6 (30 degrees 
clockwise). the example of the beginning of this chapter, both in explicit formula and plotted 
at a scale of a-= 15 pixels (1282 image): 

im =·; gD,P[im, 3, 0, 15, -7r/ 6] // shortnotation 

} ( 3 {3 Lxxx - 9 Lxxy + 3 {3 Lxyy - Lyyy ) 

And a 4th order example: 
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gD,P[im, 3, 1, 15, 71"/5] // shortnotation 

3
1
2 

((-/so -10 Vs + 2 -/10 -2 Vs) Lxxxx + 

8 Lxxxy - 6.) 10 - 2 Vs Lxxyy - 8 Vs Lxyyy -.J 50 - 10 Vs Lyyyy) 

Task 19.1 Show that Lxxxy, when rotated over n/2, gives Lxyyy. Explain this. 

The numerical version for discrete images is gD<t>N: 

Unprotect[gD,PN] i 

gD,PN[im_, nv_, nw_, a_, <P_] := gD,P[im, nv, nw, a, <Pl I. 
Derivative[n_, m_] [L] [x, y]-+ gD[imO, n, m, a] I. imO -> im 

im=Table[O, {128), {128)]1im[[64,64]] =100; 
DisplayTogetherArray[ListDensityPlot/@ 

{gD[im, 3, 0, 15], gD,PN[im, 3, 0, 15, -71"/6]}, ImageSize->380]; 

Figure 19.5 Left: the third order Gaussian derivative kernel to x. Right: the same kernel 
rotated 30 degrees clockwise, calculated from the expression in partial Cartesian derivatives 
above. 

This is the proper multi-scale directional derivative. Any angle can now readily be 
constructed, no more need for 'only in 8 directions'. 

To summarize this section we show the figures of the two different bases discussed. The first 
basis is a good starting point for models of oriented simple cells in the primary visual cortex. 
In chapter 9 we have seen that the orientation columns in the mammalian visual cortex 
contain the simple cells in a strikingly regular anangement of ordered orientation. All 
orientations are present to analyze the local visual field in the hypercolumns, the 
arrangement in a pinwheel fashion. This representation is the topic of the last section of this 
chapter. The second basis, made up of Cartesian separable functions, is the basis of choice 
for computer implementations as these functions are just our familiar Gaussian derivative 

convolution kernels (gD). As we now have all tools for making the oriented kernels, we 
show both multi-scale steering bases for Gaussian de1ivative kernels below for the second 
order derivative. 
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im = Table[O, (128), (128)]; im[ [64, 64]] = 100; 

Block[ ($DisplayFunction =Identity}, 

i:>r 
n = 3; en= Append[Table[--, {i, o, n}], -n/ 6]; 

n+l 
pl= ListDensityPlot[gD<f>N[im, 2, o, 15, #]] & /@en; 
p2 =Apply[ListDensityPlot[gD[im, #1, #2, 15]] &, 

((3, 0), (1, 2), (2, 1), {O, 3)), 2]; 
tl = Graphics[Text["\!\(\• 
StyleBox [\ ""\", \nFontFamily-> \"Courier New 

\",\nFontSize->24,\nFontWeight->\"Plain\"]\)", {O, O}]]; 

ttl = Insert[pl, tl, SJ]; tt2 = (p2, tl, pl [ [5]]} //Flatten; 

Show[GraphicsArray[ {ttl, tt2}], Imagesize -> 350]; 
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Figure 19.6 Two different sets of basis functions can be used for the construction of a 
steered Gaussian derivative kernel. Upper row: the basis set is formed from rotated versions 
of the kernel itself; bottom row: the basis set is formed from Cartesian x, y-separable 
Gaussian derivative kernels. The weights are calculated in the section above. Kernel as in 
figure 19.5. 

19.6 Detection of stellate tumors 

Computer-aided diagnosis (CAD) is the branch of computer v1s10n in medical imaging 
concerned with the assistance of the computer in the diagnostic process. This is a rapidly 
growing field. There are two major reasons for its growth: a increasing array of 
methodologies outperfom1 the human diagnosis in specificity, and the sheer volume of 
medical diagnostic data necessitates support. The system is always used as a 'second opinion' 
system, the final responsibility of the diagnosis is always laid on the medal specialist. 

Recently, a number of commercial products have acquired FDA approval to put the system 
on the market and into clinical use. See e.g. the web pages of R2 Technology 
(www.r2tech.com), Deus Technologies (www.deustech.com) and Fujifilm 
(www.fujifilm.com). It is expected that more products soon will follow. 

CAD up till now is mainly applied in fields where large scale screening of patients is 
perfom1ed. Two classical areas are screening for microcalcifications and stellate (stella = 

Latin: star; stellate = star-shaped) mammographic tumors (also called spiculated lesions), 
and screening for X-thorax deviations (tuberculosis screening, lung cancer etc.). We discuss 
the detection of stellate tumors in mammography. The following procedure has first been 
presented by Karssemeijer [Karssemeier1995a, Karssemeierl996a]. This is now the basis of 
one of the methods employed by R2 Technology. 

A mammogram is a 2D X-ray photograph of the female breast, taken at high resolution 
(typically 20002 or higher) and with a low X-ray tube voltage (typically 28-35 kiloVolt), in 
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order to enhance the contrast between the soft tissue structures. The structure of the tissue is 
highly tubular: many channels are present, all converging in a tree-like structure to the 
nipple, so when a tumor expands, it is likely its outgrowth follows the channels. This gives 
often rise to a particular stellate pattern seen around the shadow of the lesion. 

The geometric reasoning: when we investigate a pixel for the presence of a stellate structure, 
we actually have to investigate its immediate surrounding for the presence of lines oriented 
towards the pixel. Because we study a large group of surrounding pixels, we can approach a 
good statistical mean. The local orientation is detected by convolution of the second order 
Gaussian derivative, a 'classical bar-detector'. The oriented kernel is a function of L.u, Lxy 

and Lyy: 

Clear[,P, a]; gD,P[im, 2, 0, a, .Pl// shortnotation 

Cos[¢] 2 Lxx +Sin [2 <Pl Lxy +Sin[¢] 2 Lyy 

For each pixel in the neigborhood of the pixel for which we inspect a stellated surround, we 
calculated the three 'basis' derivatives Lxx, Lxy and Lyy. We create a kernel for the same 
area where each pixel indicates under which angle this pixel is located with respect to the 
central pixel. In this kernel we calculate again a triplet. now of the trigonometric coefficients 
of the second order oriented Gaussian derivative. 

We use the speed of ListCorrelate to multiply all triplets in the kernel with the triplets 
of basis derivatives in the same area in the mammogram. The resulting area is somewhat 
smaller than the original image. It is not useful to take information into account from a 
periodic or mirrored boundary. The input image is mammo, at scale a of the differential 
operator and size is the size of the search region: 

stellatedetection[mammo_, a_, size_] ·-
Module [ { derivs, kernel}, derivs = Transpose [ {-gD [mammo, 2, 0, a], 

gD[mammo, 1, 1, a], gD[mammo, 0, 2, a]), (3, 1, 2}]; 

kernel= Table[With[{4'=ArcTan[x, y]), {Cos[,P]', Sin[2,P], Sin[,P] 2
}], 

(x, -size-0.5, size+0.5), (y, -size -0.5, size +0.5)]; 
Flatten /@ListCorrelate[kernel, derivs]]; 

We start with an artificial mammogram of 200x200 pixels, containing two stellate patterns 
with diameters of 30 and 20 pixels resp. (see figure 19.8, left). and uniformly distributed 
noise: 

insert [mammo_, stellate_, x_, y_] : = 
Module[(ydim, xdim, xl, yl}, (ydim, xdim} = Dimensions[stellate]; 

locsm =Flatten [Table [ {yl, xl}, 
{yl, y, y+ydim-1), {xl, x, x+xdim-1)], l]; 

locss=Flatten[Table[{yl, xl), {yl, 1, ydim), {xl, 1, xdim)], l]; 
ReplacePart[mammo, stellate, locsm, locss]]; 

stellate[diam_] :=Table[ 
If [x == y I I x ==Round [diam I 2] I I y ==Round [diam I 2] I I x ==diam - y, 1, OJ, 
{x, diam), {y, diam}]; 

mammo=Table[O, (y, 200), (x, 200)]; 
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noise=Table[Random[], (200), (200)]; 
mammo = insert[mammo, stellate[30], SO, 70]; 

mammo=insert[mammo, stellate[20], 120, 140] +noise; 
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We extract the n largest maxima with the following function, which was first defined in 
chapter 13: 

nMaxima[im_, n_] :=Module((p, d=Depth[im] -1), 

p =Times@@ Table [(Sign [im - Map [RotateLeft, im, {i}]] + 1) 

(Sign[im-Map[RotateRight, im, {i}]] +l), {i, 0, d-1)] /4•; 
maxs = Take[Reverse[Union[(lOExtract[im, #],Reverse[#]} & /@ 

Position [p, l]]], n] ; 

10 #1 
Apply( { , #2} &, maxs, (1)]]; 

maxs[[l, l]] 

The resulting detection is indicated with circles. The radii of the circles indicate the 
likelihood of being the center of a stellate region. The radii are normalized to the highest 
likelihood with a radius of 10 pixels. 

(ydim, xdim} = Dimensions [mammo]; size= 20; 

n = 2; 
smammo = Take [mammo, { 1 +size, ydim - size - 1} , { 1 + size, xdim - size - 1}] ; 
DisplayTogetherArray[{ListDensityPlot[smammo], 

ListDensityPlot [pl = stellatedetection [mammo, 4, 20], Epilog-+ 
{Red, Circle@@@ Reverse /@ nMaxima [pl, n] } ] } , ImageSize-+ 450] ; 

Figure 19.7 Computer-aided diagnosis in mammography: detection of two artificial stellate 
tumors in a noisy mammogram. Left: the input artificial mammogram (size 200x200 pixels) 
with 2 stellate regions. Right: the detected cumulative response of an oriented second order 
Gaussian derivative kernel, integrated over an area of 20x20 pixels. 

_. Task 19.2 Experiment with different values for the following parameters: 

- the scale er of the differential operator; 

- the signal to noise ratio of the input image; 

- the area of the search around each pixel; 

- the distance between two stellate lesions; 
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- the size of the stellate lesion; 
- the weight over the search area as a function of distance to the central pixel. 

Now for a digital mammogram: 

mammo =Import ["mammogram04 .jpg"] [ [l, l]]; 
{ydim, xdim} = Dimensions[mammo]; 
detected= stellatedetection[mammo, a= 3, size = SO] ; n = 3; 
smammo =Take [mammo, {size+ 10, -size - 11), {size+ 10, -size - 11)]; 
sdetected = Take [detected, { 10, - 10} , { 10, -10}] ; 
circles= {Red, Circle @@@Reverse /@nMaxima [sdetected, n]}; 
DisplayTogetherArray [ListDensityPlot [ #, Epilog-> circles] & /@ 

{smammo, sdetected}, ImageSize-> 480]; 

Figure 19.8 Left: Selection from a digital mammogram (size 403x291 pixels). Right: the 
detected cumulative response of an oriented second order Gaussian derivative kernel at 
er= 3 pixels, integrated over an area of 50x50 pixels. The number of maxima to be reported 
is 3. 

_. Task 19.3 Experiment with other line detection kernels, such as a strongly 
elliptical oriented Gaussian kernel of zeroth order. 

_. Task 19.4 Find images with stellated tumors on the internet. See e.g. 
marathon.csee.usf.edu/Mammography/Database.html. 

Note that this section only introduces the notion of using orientation sensitive responses in a 
geometric reasoning scheme, which might be pa1t of a computer-aided diagnosis procedure. 
The method described above should never be used in any diagnostic judgement. 
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19. 7 Classical papers and student tasks 

The paper by Freeman and Adelson [Freemanl99la] formed the basis of this section. The 
references therein give a good overview of the literature on steerable filters. Other instructive 
(and historical) papers are by Jan Koenderink in his classical paper on receptive field models 
[Koenderinkl 988b I, by Pietro Perona [Perona! 99la, Perona! 992, Perona! 995], by 
Wolfgang Beil [Beill994], by Per-Erik Danielson [Danielsonl990] and Eduard Simoncelli 
and coworkers [Simoncelli1995, Simoncelli1996a, Farid1997a]. The construction of rotated 
partial derivatives can also be set up with Lie group theory, finding the Lie 'infinitesimal 
generators'. The papers by Michaelis and Sommer [Michaelis1995a, Michaelis1995b] and by 
Teo and Hel-Or [Teo 1998 J give a fine introduction. many examples and references of this 
powerful technique. One of the early theoretical studies of orientation tuning in the context 
of the front-end visual system is by Daughman [Daughmanl983, Daughmanl985]. See for 
an invertible orientation 'bundle' the paper by Kalitzin [Kalitzin1997a, Kalitzin1998al. Multi
scale orientation analysis, based on models inspired by the 'spokewheel' structure as 
observed in the columns in the visual primary cmtex, is a promising terrain for perceptual 
grouping research. 

Task 19.5 Find the expressions for the weighting functions for a mixed Gaussian 
· · a1 c derivative kernel, e.g. ax' ay , for both bases. 

Task 19.6 Pentland [Pentland1990] has suggested that shape-from-shading 
analysis can be performed by a linear filtering operation in many situations, e.g. 
when the reflectance function is approximately linear. Freeman and Adelson 
[Freeman1991 a] give suggestions how to implement this with steerable 
functions. Make a Mathematica scale-space implementation for linear shape 
from shading. 

Task 19.7 Make a Mathematica implementation, based on the results developed 
in this chapter, for 30 steerable filters. See again Freeman and Adelson 
[Freeman1991 a] for theoretical support. 

Task 19.8 Trabecular bone (the sponge-like interior of most of our bones) has an 
intricate multi-scale orientation structure. Extract from 20 and 30 datasets the 
local orientation structure at multiple scales, and come up with sensible 
definitions for the local structure of the bone. For inspiration, see 
[TerHaarRomeny1996f, Niessen1997b, Lopez200a]. 
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19.8 Summary of this chapter 

The local vectorfield specified by the gradient and its clockwise rotated perpendicular vector 
form the first order orientation structure. This vect01field is also specified by the 
Eigenvectors of the local structure matrix. 
The local vect01field specified by the unit vectors of the principal curvature vectors in each 
point form the second order orientation structure. This vectorfield is also specified by the 
Eigenvectors of the local Hessian matrix. 
Gaussian derivative kernels are steerable kernels. They can be constructed in any direction 
(as directional derivative operators) in two ways: as a polynomial expressed in rotated 
versions of the Gaussian derivative kernel itself, or as a polynomial combination of Cartesian 
partial derivatives. 
The geomet1ic reasoning for the detection of structures can now be expanded to the inclusion 
of responses to oriented structures, such as lines. An example is given for the detection of 
stellate tumors in mammography. 
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"The dilemma is complete" -Jan Koenderink, [Koenderinkl988a] 
"It is later then you think" -Chinese proverb 

"You are young and life is long and there is time to kill today" -Pink Floyd 

20.1 Introduction 

In the time domain we encounter sampled data just as in the spatial domain. E.g. a movie is a 
series of frames, samples taken at regular intervals. In the spatial domain we needed an 
integration over a spatial area to catch the information. Likewise, we need to have an 
aperture in time integrating for some time to perform the measurement. This is the 
integration time. Systems with a short resp. long integration time are said to have a fast resp. 
slow response. Because of the necessity of this integration time, which need to have a finite 
duration (temporal width) in time, a scale-space construct is a physical necessity again. 

<< FrontEndVision'FEV'; 
Show[Import [ "DaVinci watch 512x540 .jpg"], ImageSize ·-> 160]; 

Figure 20.1 This watch Da Vinci Rattrapante (IWC Schaffhausen, Switzerland), named after 
Leonardo da Vinci who did many inventions in the area of clocks, indicates time at many 
different time scales, i.e. seconds, minutes, hours, weekdays, day of months, months, years 
and lunar cycle. 

Furthermore, time and space are i11co111mens11rable dimensions (measurements along these 
dimensions have different units), so we need a scale-space for space and a scale-space for 
time. 

Time measurements can essentially be processed in two ways: as pre-recorded frames or 
instances, or real-time. Temporal measurements stored for later replay or analysis, on 
whatever medium, fall in the first category. Humans perf01m continuously a temporal 
analysis with their senses, they measure real-time and are part of the second category. The 
scale-space treatment of these two categories will tum out to be essentially different. 
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Prerecorded sequences can be analyzed in a manner completely analogous with the spatial 
treatment of scaled operators, we just interchange space with time. The notion of temporal 
scale a, then naturally emerges, which is the temporal resolution, a device property when 
we look at the recorded data (it is the inner scale of the data), and a free parameter temporal 
scale when we do the multi-scale analysis. 

In the real-time measurement and analysis of temporal data we have a serious problem: the 
time axis is only a half axis: the past. There is a sharp and unavoidable boundary on the time 
axis: the present moment. This means that we can no longer apply our standard Gaussian 
kernels, because they have an (in theory) infinite extent in both directions. There is no way to 
include the future in our kernel, it would be a strong violation of causality. 

But there may be a way out when we derive from first principles a new kernel that fulfils the 
constraint of causality: a kernel defined on a logarithmically remapped time axis. From this 
new causal kernel we might again derive the temporal and spatio-temporal family of scaled 
derivative operators. Jan Koenderink [Koenderink1988a] has presented the reasoning to 
derive the theory, and we will discuss it in detail below. 

We will now treat both the pre-recorded and real-time situation in more detail, and give the 
operational details of the scale-space operators. The best source for reference is Jan 
Koenderink's original contribution on scale-time [Koenderink1988a]. 

There have appeared some fine papers discussing the real-time causal scale-space in detail by 
Luc Florack [Florackl 997a, chapter 4.3] and Lindeberg, Fagerstrom and Bretzner 
[Lindeberg1996b, Lindeberg1997a, Bretzner1996a, Bretzner1997a]. Lindeberg also 
discusses the automatic selection of temporal scale [Lindeberg1997b]. 

20.2 Analysis of prerecorded time-sequences 

Prerecorded temporal sample-sequences can be treated just as spatial sample-sequences. The 
causality constraint is satisfied because we include the whole available axis in our analysis. 
Boundary effects at both sides of the finite series in a practical situation are dealt with in a 
proper manner: we choose a way to extend the data (recall the discussion in chapter 5). This 
choice is essentially arbitrary, and the results can be predicted from the choice taken. The 
most common choice, also the choice taken throughout his book, is the cyclic representation: 
an infinite repetition of the data in all dimensions. Other feasible choices are mirroring, 
extending with zero's, extending with the mean etc. 

The Gaussian derivative kernels with respect to time fonn the complete family of the 
temporal differential operators. They take the derivatives with respect to time, just as we 
have seen for the spatial derivative kernels. The temporal scale <.T7 is a free parameter, and 
the set of results of the operator for a range of scales is called a temporal scale-space. 
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When we combine the class of spatial differential operators with the class of temporal 
differential operators. we get the complete family of spatio-temporal operators. They take 
simultaneously derivatives to space and time, and can be constructed to any order through 
the constrnct of the familiar convolution with the Gaussian kernel. 

For each dimension we can define a scale: the temporal scale o·r, the spatial scales 
{a-x, <Ty, a-=}. Typically, the spatial scales are identical (isotropy). 

The Gaussian kernels can extend both into the past and the future in this case, because we 
know both. 

The full signal is available, the complete recording duration is the available time axis, in 
analogy with the spatial domain of e.g. images. So the kernels extent over both the positive 
(the 'future') and the negative time axis (the 'past'). There is no real notion of future or past 
here, such as in the real-time case. The future resp. past here merely refers to data measured 
later resp. earlier than the datapoint (moment) we are currently analyzing. but which we have 
already in memory. Here are the graphs of some temporal derivative kernels of low order: 

Block [ ($DisplayFunction =Identity}, 

pl= Table[Plot[Evaluate[D[gauss[t, a= l], (t, n}]], 
(t, -4, 4}, AxesLabel ->{"time",""}, 

PlotLabel-> "order: "<>TOString[n]], (n, O, 3}]]; 

Show [GraphicsArray [pl], ImageSize -> 500] ; 
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Figure 20.2 Proper temporal scale-space kernels for the temporal domain for prerecorded 
sequences. From left to right: Gaussian temporal derivatives for order O to 3. The oth order 
kernel is the appropriate sampling kernel without differentiation, the temporal 'point-operator'. 

Mixed partial spatio-temporal operators are spatial Gaussian derivative kernels concatenated 
with temporal Gaussian derivative kernels. This concatenation is a multiplication due to the 
separability of the dimensions involved. 

spike= Table[O, (128), (128)]; spike[ [64, 64]] = 108
; 

gx :=gD[spike, 1, O, 20]; lapl :=gD[spike, 2, O, 20] +gD[spike, O, 2, 20]; 
gxt = Table[Evaluate[gx •D[gauss[t, L], t]], {t, -4, 4}]; maxgxt = Max[gxt]; 
laplt=Table[Evaluate[lapl•D[gauss[t, L], t]], {t, -4, 4}]; 
maxlaplt =Max [laplt]; 
Block[ {$DisplayFunction =Identity}, 

pl= ListDensityPlot[#, PlotRange-> {-maxgxt, maxgxt}] & /@gxt1 
p2 = ListDensityPlot[#, PlotRange-> {-maxlaplt, maxlaplt}] & /@laplt]; 

Show [GraphicsArray [{pl, p2}], ImageSize -> 400]; 

Plot[Evaluate[D[gauss[t, l.], t]], (t, -4, 4}, 

AxesLabel -> {"time -->", ""}, AspectRatio -> .1, ImageSize -> 430] ; 
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Figure 20.3 Spatio-temporal Gaussian derivative kernels. Top row: g:~-, , the first order 

derivative in x and t, second row: fi ( ;;, + ;,'., ) G, the first order time' derivative of the 
spatial Laplacian operator. Bottom plot: First order Gaussian temporal derivative operator, 
showing the temporal modulation of the spatial kernels. In the second half of the time domain 
the spatial kernels are reversed in polarity. The horizontal axis is the time axis. 

So the appearance of a spatiotemporal operator is as a spatial operator changing over time, 
with a speed indicated ('tuned') by the temporal scale parameter. We illustrate this with an 
example in 2D-t. The mathematical expression for the mixed partial derivative operator, first 

order in the x-direction and time, is ft ;, . This translates in scale-space theory into a 

convolution with a concatenation of the Gaussian derivative kernels ~~ and ~~ . leading to 

a convolution operator %,'f,. due to the separability of the kernels. 

The following commands generate the sequence as an animation (electronic version only). 
Doubleclick the image to start the animation. Controls appear in the bottom of the notebook 
window. 

spike=Table[O, (64), (64)]; spike[[32, 32]] = 103
; 

gx := gD[spike, 1, 0, 10]; 
gxt = Table[Evaluate[gx*D[gauss[t, l.], t]], (t, -4, 4, .5)]; 
maxgxt = Max[gxt]; pl= 
ListDensityPlot[#, PlotRange-> {-maxgxt, maxgxt), ImageSize-> 100] &/@ 

gxt; 

Figure 20.4 Animated sequence of the spatio-temporal Gaussian derivative kernel ::.~ . In 
the second half of the time domain the spatial kernels are reversed in polarity. Similar 
sequence as the top row in figure 20.3. 

Note that these temporal derivatives are point operators, they merely measure the change of 
the parameter (e.g. luminance) over time at the operational point. so per pixel. This is 
essentially different from the detection of motion, the subject of chapter 17, where relations 
between neighboring pixels are established to measure the optic flow. 
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20.3 Causal time-scale is logarithmic 

For real-time systems the situation is completely different. We noted in the introduction that 
we can only deal with the past, i.e. we only have the half time-axis. This is incompatible with 
the infinite extent of the Gaussian kernel to both sides. 

With Koenderink's words: "Because the diffusion spreads influences with infinite speed any 
blurring will immediately spread into the remote future thereby violating the principle of 
temporal causality. It is clear that the scale-space method can only lead to acceptable results 
over the complete axis, but never over a mere semi-axis. On the other hand the diffusion 
equation is the unique solution that respects causality in the resolution domain. Thus there 
can be no hope of finding an alternative. The dilemma is complete" ([Koendeiinkl988a]). 

The solution, proposed by Koenderink, is to remap (reparametrize) the half t-axis into a full 
axis. The question is then how this should be done. We follow here Koendeiink's oiiginal 
reasoning to come to the mapping function, and to derive the Gaussian derivative kernels on 
the new time axis. 

We call the remapping s(t). We define to the present moment, which can never be reached, 
for as soon as we try to measure it, it is already further in time. It is our reference point, our 
only point in time absolutely defined, our fiducial moment. Every real-time measurement is 
relative to this point in time. Thens should be a function ofµ= t0 - t, sos(µ)= s(to - t) . 

We choose the parameter µ to be dimensionless, and µ = 0 for the present moment, and 
µ = -oo for the infinite past. So we get s(µ) = s( 10

;' ). The parameter T is some time 
constant and is essentially arbitrary. It is the scale of our measurement, and we should be 
able to give it any value, so we want the diffusion to be scale-invaiiant on the µ-domain. 

We also want shift invariance on this time axis, and the application of different clocks, so we 

require that a transfo1mation t' = at+ b leaves s(t) invariant. µ is invariant if we change 
clocks. 

Plot[O, {t, -10, OJ, 
Ticks-> (((-6, "µ 2 "), (-2, "µ 1 ")), None), PlotRange-> (-1, 5), 
AspectRatio -> .1, Epilog ->{Text["<- time", (-10, .5)], 

Text["O (=present)", (.6, .5)]}, ImageSize->440]; 

=~-------~---------~---J=p<0>000 
µ, 

Figure 20.5 The time-axis has only the negative half. The right end is the present moment. 
The moments in the past µ 1 and µ2 are observed with a resolution that is proportional with 
their 'past time', i.e.µ. 

On our new time-axis s(t) the diffusion should be a normal, causal diffusion. On every point 
of the s-axis we have the same amount of diffusion, i.e. the diffusion is lzomogeneous on the 
s-domain. 
The 'inner scale' or resolution of our measurement has to become smaller and smaller when 
we want to approach the present moment. But even if we use femtosecond measuring 
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devices, we will never catch the present moment. On the other side of the s-axis, a long time 
ago, we don't want that high resolution. An event some centuries ago is placed with a 
resolution of say a year, and the moment that the dinosaurs disappeared from earth, say some 
65 million years ago, is referred to with an accuracy of a million years or so. 

This intuitive reasoning is an expression of the requirement that we want our time-resolution 
T on the s -axis to be proportional to µ. i.e. T "' µ or * = constant. So for small µ we have a 

small resolution, for large µ a large one. 

to= i; ~ = i; 
inset= LogLinearPlot[O, (x, O, l}, Grid.Lines-> Automatic, Frame-> True, 

FrameTicks ->False, DisplayFunction ->Identity, AspectRatio -> .25]; 
to - t 

Plot[-Log[---], (t, -1, tO), PlotRange-> (-1.5, 4}, 
~ 

AxesLabel -> {"t", "s"}, 
Epilog-> {Rectangle[(-1, -Log[tO+l]}, (.75, -Log[tO- .75]), inset], 

Dashing[(.01, .01}], Line[{(l, -1.5}, (1, 4}}] }, ImageSize -> 300]; 

' 
05 

-L 

Figure 20.6 The logarithmic mapping of the horizontal t-time half-axis onto the vertical s-time 
full axis. The present moment to (at t = 1 in this example, indicated by the vertical dashed 
line) can never be reached. The s-axis is now a full axis, and fully available for diffusion. The 
rectangular inset box with gridlines shows a typical working area for a real-time system. The 
response time delimits the area at the right, the lifetime (history) at the left. Figure adapted 
from [Florack1997a]. 

On the s -axis we should have the possibility for nomial. causal diffusion. This means that the 

'magnification' I ;~ I should be proportional to *.Then the s-axis is 'stretched' for everyµ 

in such a way that the scale lOr 'diffusion length' as Koenderink calls it) in the s-domain is a 
constant relative diffusion length in the µ-domain. 

Uniform san1pling in the s-domain gives a graded resolution history in the t- or µ-domain. 

In formula : I ;~ I "' f or I ;~ I= *. From this partial differential equation we derive 

that the mapping s(µ) must be logarithmic: 

a 
DSolve[a.s[µ] == -, s[µ], µ] 

µ 

[ { s [ µ] -> c [ l] + ex Log [ µ] } } 



20. Scale-time 351 

So our mapping for s is now: s =a In( !22) +constant. The constant is an arbitrary 
T 

translation, for which we defined to be invariant, so we choose this constant to be zero. We 

choose the arbitrary scaling parameter a to be unity, so we get 

s =Jn ( !22 ). 
T 

This is a fundamental result. For a causal interpretation of the time axis we need to sample 
time in a logarithmic fashion. It means that the present moment is mapped to infinity, which 
conforms to our notion that we can never reach it. We can now freely diffuse on the s-axis, 
as we have a well defined scale at all moments on our transformed time axis. This mapping 
also conforms to our notion of resolution of events in the past: our memory seems to do the 
same weighting of the aperture over the past as the transformation we introduced above. 

In the s-domain we can now run the diffusion equation without violation of temporal 

causality. The diffusion equation is now ~:f = g;, , where Vs = f T 2 is the temporal 

variance. We recall from the diffusion equation in the spatial domain that the Laplacian (of 
the luminance in our case) along the diffusion axis is equal to the rate of change (of the 
luminance) with the variance of the scale. The check of dimensions on both sides of the 
equation is always a good help. The temporal blurring kernels (the scale-space measurement 
apertures) are now given by 

~i ~~ 
K(s s" er ) = --1- e---,:;-2 or K(s s'· v ) = --1- e--.;;;-. , , s ~ ' ''s ~ 

20.4 Other derivations of logarithmic scale-time 

Florack [Florackl997a] came to the same result from a different perspective, from abstract 
mathematics. He used a method from group theory. Essentially, a group is a mathematical 
set of operations, which On popular words) all do the same operation, but with a different 
parameter. Examples of a transfmmation group are the group of rotations, the group of 
additions, the group of translations etc. A group is formally defined as a set of similar 
transfonnations, with a member that does the unity operation (projects on itself, i.e. does 
nothing, e.g. rotation over zero degrees, an enlargement of 1, a translation of zero etc.), it 
must have an inverse (e.g. rotation clockwise, but also anti-clockwise) and one must be able 
to concatenate its members (e.g. a total rotation which consists of two separate rotations after 
each other). 

Florack studied the group properties of whole and half axes of real numbers. The group of 
summations is a group on the whole axis, which includes the positive and the negative 
numbers. This group however is not a group on the half axis. For we might be able to do a 
summation which has a result outside the allowed domain. The group of multiplications 
however is a group on the positive half axis. 

Two numbers multiplied from the half axis give a result on the same half axis. If we could 
make all sums into multiplications, we would have an operation that makes it a group again. 
The fonnal transformation from sums into multiplications is the logarithmic function: 
ea+b = ea * eb and its inverse ln(a * b) = ln(a) + ln(b). The zero element is addition of zero, 
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or multiplication with one. So the result is the same logarithmic function as the function of 
choice for the causal parametrization of the half axis. 

Lindeberg and Fagerstrom [Lindeberg1996b] deiived the causal temporal differential 
operator from the non-creation of local extrema (zero-crossings) with increasing scale. 
Jaynes' method of 'transformation groups' to constrnct p1ior probabilities has a strong 
similarity to the reasoning in this chapter. For details see [Jaynesl968]. 

Interestingly, we encounter more often a logarithmic parametrization of a half axis when the 
physics of observations is involved: 

- Light intensities are only defined for positive values, and form a half axis. It is well known 
e.g that the eye performs a logaiithmic transformation on the intensity measured on the retina. 
- Sound intensities are measured in decibels (dB), i.e. on a logarithmic scale. 
- Scale is only defined for positive values, and form a half axis (scale-space). The natural 

scalestep T on the scale-axis in scale-space is the logarithm of the diffusion scale er: 
T = ln(cr)- ln(cro) (recall chapter 1). 

Another example of the causal logarithmic mapping of the time axis is the stJiking Law of 
Benford, which says that in a physical measureme11t that involves a duration, the occurrence 
of the first digit has a logarithmic distribution. I.e. a "1" as the first digit occurs roughly 6.5 
times more often than a "9"! This law follows immediately from the assumption that random 
intervals are uniformly distiibuted on the logarithmic s-axis [F1orackl997a, pp. 112]. 

• Task 20.1 The decay times of a large set of radioactive isotopes is available on 
internet: isotopes.lbl.gov and ie.lbl.gov/tori.html. Show that the first digits of 
these decay times indeed show Benford's Law, with a much pronounced 
occurrence of "1 "'s. [Buck1993]. 

Our perception of time also seems to be non-linear. We have more trouble remembering 
accurate events that took place a long time ago, as in our childhood, than events that just 
recently happened. Why has last year passed by so quickly. and did a year at highschool 
seem to last so much longer? Our perception is tlrnt time seems to go quicker when we get 
older. We have a increasingly longer reference to the past with which we can compare, and 
our notion is that time seemed to go slower a longer time ago. These observations suggest 
some logarithmic scaling: stretched out at the low end and compressed at the high end. It is 
known in psychological literature that our perceived time 'units' may be related to our age: a 
10% of age for a 5-year old is half a year, for a 50-year old it is 5 years. A half year seems to 
pass just as quick for the 5-year old as 5 years for the 50-year old. This also leads to a 
logarithmic notion of time. See also [Gibbon18981] and [Pi:ippe11978a]. 
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20.5 Real-time receptive fields 

We have now all information to study the shape of the causal temporal derivative operators. 
The kernel in the transformed s-domain was given above. The kernel in the 01iginal temporal 
domain t becomes 

I I l t0 -t 2 
K(t to· T) = -- e---,-;r- nl---,---J 

' ' ,,/2i[ T 

In figure 20.7 we see that the Gaussian kernel and its temporal derivatives are skewed, due to 
the logarithmic time axis remapping. It is clear that the present moment t0 can never be 
reached. 

Clear [gt]; Block [ {$DisplayFunction = Identity}, 

pl= Table[-.:= .2; t 0 = O; Plot[Evaluate[gt[n] = D[ 

1 1 t 0 - t 2 

---Exp[--, Log[--]], {t, nJ]], 
~.. 2-.: " 

(t, -.4, 0), PlotRange->All, 
PlotLabel-+ "temporal order = "<> ToString[n], 

Epilog->Text["time -+", {-.45, OJJ], {n, 0, 2J]]; 

Show [GraphicsArray [pl], ImageSize -> 400] ; 

temporalor<ler= 1 temporalo1det = 2 
IOIJO 

10 500 

ttme~-="---+--~-+ 
-04 

ttme~~-+---+--'---+ 
-04 

-10 
-30 -1000 

Figure 20.7 Left, middle, right: the zero1h, first and second Gaussian temporal derivative 
operator in causal time. The timescale in each plot runs from the past on the left, to the 
present on the right. The temporal scale r = 200 ms, the right boundary is the present, t0 = O. 
Note the pronounced skewness of the kernels. 

The zerocrossing of the first order derivative (and thus the peak of the zeroth order kernel) is 
just at t = -T. The extrema of the first derivative kernel are found when we set the second 
derivative of the time kernel to zero. Here are both solutions: 

Clear[t, -.:, timekernel]; t 0 = O; Off[InverseFunction: :ifun, Solve: :ifun]; 

1 1 t 0 -t 2 

timekernel[t_] = Exp[---, Log[--] ] ; 
~ .. , 2-.: " 

zerot = Solve [at timekernel [t] == 0, t] 
zerott = Solve[at,t timekernel[t] == 0, t] 

{{t-+-r}, {t-->-r}} 

It is now easy to combine the spatial and temporal kernels. Time and space are separable 
incommensurable dimensions, so we may apply the operators in any order: first a spatial 
kernel and then a temporal kernel is the same as first a temporal and then a spatial kernel. 
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The most logical choice is the simultaneous action. When we make a physical realization of 
such an operator. we have to plot it in the spatial and time domain. An example is given 
below for a 20 first order spatial derivative, and first order temporal derivative. We get a 20-
time sequence: 

spike= Table [O, { 128), { 128)]; spike [ [64, 64]] = 108
; 

1: = .3; gt= o,timekernel[-t]; gx = gD[spike, 1, 0, 20]; 
max= Max [gx o, timekernel [t] /. First [zerott]]; 
pl= Table[ListDensityPlot[gt gx, PlotRange ->{-max, max}, 

DisplayFunction -> Identity], {t, .1, • 6, • 05)]; 
Show[GraphicsArray[pl], ImageSize -> 500]; 

Figure 20.8 Eleven frames of a time series of a 2D-time spatio-temporal time-causal 
Gaussian derivative kernel, which takes the first order derivative to time and the first order to 
space in the x-dimension. The present moment is on the left. Note the inversion that takes 
place in the spatial pattern during the time course. 

This has been measured in cortical simple cells by single cell recordings {see figure 20.9). 
See for the methodology to map receptive field sensitivity profiles chap. 9 and figure 11.12. 

Show[GraphicsArray[Partition[ 
Import/@ ( "separablext " <> ToString[#] <> ". gif" & /@Range [60]), 
10]], ImageSize -> 500]; 

' ~ I I I '. 

Figure 20.9 Time sequence of a cortical simple cell. Frames row-wise, upper left frame is 
first. Time domain: O - 300 msec in 5 msec steps. Data of the cell: on-center X cell, non
lagged; X-Y domain size: 3 x 3 degs; Bar size: 0.5 x 0.5 degs; Eye: left; Total time for 
receptive field measurement: 19 min. Number of repetitions: 50; Duration of stimuli: 26.3ms. 
From: neu rovision. berkeley.edu/DemonstrationsNSOC/teaching/R F/LGN. him I. 

20.6 A scale-space model for time-causal receptive fields 

The temporal behaviour of cortical receptive fields has been measured extensively. The 
method most often used is the method of 'reverse correlation' {explained in section 9.6). 
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Figure 20.9 shows a recording of a cortical simple cell from Freemans' lab in Berkeley, that 
shows clearly the spatial similarity to the first Gaussian derivative kernel, and the modulated 
amplitude over time. The spatio-temporal relations become more clear when they are plotted 
in the spatio-temporal domain. Figure 20.10 shows a plot where the horizontal axis displays 
the spatial modulation, the vertical axis displays the temporal modulation. 

Show[Import["Simple cell Vl XT.gif"], 
Frame-> True, FrameLabel -> { 11 space ---+", "time ---+ 11

}, 

FrameTicks ->None, ImageSize -> 100]; 

Figure 20.10 Spatio-temporal response of a cortical simple cell. From [DeAngelis1995a]. The 
polarity of the spatial response reverses sign during the time course of the response of the 
cell. Horizontal axis is space (6 degs). vertical axis is time (0-300 msec). Time zero is at the 
bottom. Cell data: X-Y domain size: 6 x 6 degs; X-Y grid: 20 x 20 points; time domain: O -
300 msec in 5 msec steps; orientation: 15 degs; bar size: 2.5 x 0.5 degs; duration of 
individual stimuli: 52.8 msec (4 frames).From [neurovision.berkeley.edu]. Copyright Izumi 
Ohzawa, UC Berkeley. 

Here is another cell measured by Dario Ringach and coworkers [Ringachl997]. Data from 
manuelita. psych. ucla. edu/ ~dario/research.htm: 

Show[GraphicsArray[Partition[ 
Import/@ {"Ringach Vl "<> ToString[#] <> ".gif" & /@Range[l2]), 
6]], ImageSize -> 500]; 

Figure 20.11 Timescale 35 ms (first frame) to 90 ms (last frame) in 5 ms intervals. Upper left 
frame is the start of the sequence. 

Recent more precise measurements of the spatio-temporal properties of macaque monkey 
and cat LGN and cortical receptive fields give support for the scale-time theory for causal 
time sampling. De Valois, Cottaris, Mahon, Elfar and Wilson [DeValois2000J applied the 
method of reverse correlation and multiple receptive field mapping s1imuli (m - sequence, 
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maximum length white noise stimuli) to map numerous receptive fields with high spatial and 
temporal resolution. Fig 20.12 shows some resulting receptive field maps: 

Show[GraphicsArray[Import/@ 
("Valois RF "<> ToString[#] <> ".jpg" & /@{a, b, c, d, e, f})], 

ImageSize -> 500]; 

Figure 20.12 Examples of spatio-temporal receptive field maps of a sample of V1 simple cells 
of macaque monkey. Vertical axis in each plot: time axis from O ms (bottom) to 200 ms (top). 
Horizontal axis per plot: space (in degrees}, a: 0-0.9, b: 0-1.2, c,d: 0-0.6, e: 0, 1.9, f: 0-1.6 
degrees. Note the clearly skewed sensitivity profiles in the time direction. Every 'island' has 
opposite polarity to its neighboring 'island' in each plot. Due to black and white reproduction 
the sign of the response could not be reproduced. The scale-space models for the plots are 
respectively: a: ~; , b: :,; , c: ~: , d: ~: , e: a~;~' , f: g;~, . Adapted from [DeValois2000]. 

If we plot the predicted sensitivity profiles according to Gaussian scale-space theory we get 
remarkably similar results. In figure 20.13 the space-time plots are shown for zeroth to second 
spatial and temporal differential order. Note the skewness in the temporal direction. 

Impo11ant support for especially the Gaussian scale-time derivative model comes from 
another observation by De Valois et al. [DeValois2000]. They state: 'Note that the response 
time course of these two non-directional cell populations are approximately 90 degrees 
shifted in phase relative to each other. that is, they are on average close to temporal 
quadrature. 

That is, the population of biphasic cells is shifting over from one phase to the reverse at the 
time that the monophasic cell population reaches its peak response' (a quadrature filter can be 
defined. independently of the dimensionality of the signal space, as a filter that is zero over 
one half of the Fourier space. In the spatial domain, the filter is complex: an even real pai1 
and an odd imaginary part). 

Clear [gt, gs, n] ; ?: = 0. 3; to = 0; a = 2; 

1 1 to - t 2 

gt[n_] = D[ Exp(-- Log(---] ] , {t, n} J; 
~ .. 2 2?:2 

1' 

1 1 
gs[n] =D[ Exp(---x2

], (x, nJ]; 
- ~a2 2a2 

Block [ {$DisplayFunction =Identity}, 
p = Table [ContourPlot [Evaluate [gt [i] gs [j]] , 

{x, -15, 15), {t, .01, .8), PlotPoints -> 30, 
ContourShading ->True, FrameLabel-+ {"space", "time"}, 
PlotLabel -+ "nspace =" <> ToString [ j J <> ",ntime =" <> ToString [ i J J , 

{j, 0, 2), {i, 0, 2}]]; 
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Show [GraphicsArray (p ] , ImageSize -> 390]; 
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Figure 20.13 Model for time-causal spatio-temporal receptive field sensitivity profiles from 
Gaussian scale-space theory. All combinations from zeroth to second order partial derivative 
operators with respect to space and time are shown. Vertical axis: time. Horizontal axis: 
space. 

This fits very well to the model: The receptive fields are the zeroth and first order temporal 
Gaussian derivative, and for these functions the zerocrossing of the the first order derivative 
coincides with the maximum of the zeroth order. 
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Show [GraphicsArray [Import /@ {"Valois time to peakOl. jpg", 
"Valois time to peak02.jpg"}], ImageSize->360]i 
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Figure 20.14 Distribution of time-to-peak responses, calculated from the spatio-temporal 
receptive field mappings of the population of monophasic cells, and of both the initial and 
later reversed phase of the biphasic cells. Note that the time of peak response for the 
monophasic cells almost exactly coincides with the time of polarity reversal of the biphasic 
cells, in perfect agreement with the Gaussian temporal derivative model. Horizontal axis: 
time-to-peak response time, in ms. Vertical axis: number of cells. Right figure: Time-to-peak 
response of a random sample of just 5 cells, showing that even a small sample set has the 
properties of the larger collection. Adapted from [DeValois2000]. 

De Valois et al. define the biphasic index to be the ratio of the amplitude of the 2nd temporal 
peak and the amplitude of the first peak of the temporal response function. The maximum 
and minimum value of the first order temporal derivative of the kernel {8t temprf) are 

where the second order temporal derivative (at,t temprf) is zero. We simplify the 
expression knowing that cr1 > 0, and get two values, one for the minimum amplitude and one 
for the maximum amplitude: 

1 1 t 2 

Clear[r, tO];temprf= Exp[--- Log[--]]; 
.y-2; r' 2 r 2 tO 

peaks= Simplify[Clt temprf I. Solve[Clt,t temprf == 0, t], r >OJ 

ei-(-zn2+r--/4tt2) (i:+~) ei-(-z+-i:2--i:~) (-r:+~) 

{ - 2 -{27f to r 3 ' 2 -{27f to r 3 

The biphasic index is no longer a function to to, and only depends on cr1 : 

. . . peaks [ [2]] 
biphasicindex = - I I Simplify 

peaks [ [1]] 

e--}-i:~ (-r+~) 

r+~ 

So we may expect a range of values for the biphasic index. De Valois et al. found values for 
the biphasic index having a distinct peak between 0.4 and 0.8, which corresponds well with a 
temporal scale range of 100 - 500 milliseconds {see graph in figure 20.15). 
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Plot[biphasicindex, {r, .1, .5}, ImageSize -> 140, 
AxesLabel--> { "timescale\nr", "Biphasic\nindex"}] 1 
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Figure 20.15 Predicted biphasic index according to the Gaussian time-causal tempora I 
differential operator model. The biphasic index is defined [DeValois2000] as the ratio 
between the amplitude magnitudes of the first and second peak in the response in the time 
domain. 

J. Task 20.2 Give a measure for the skewness of the time-causal Gaussian kernel. 

20.7 Conclusion 

The causal time-scale, multi-scale temporal differential operator model from Gaussian scale
space theory has not yet been tested against the wealth of currently available receptive field 
measurement data. 

It may be an interesting experiment, to test the quantitative similarity. and to find the 
statistics of the applied spatial and temporal scales, as well as the distribution of the 
differential order. 

The Gaussian scale-space model is especially attractive because of its robust physical 
underpinning by the principal of temporal causality, leading to the natural notion of the 
logarithmic mapping of the time axis in a real-time measurement. 

The distributions of the locations of the different scales and the differential orders have not 
yet been mapped on the detailed cortical orientation column with the pinwheel structure. 
Orientation has been clearly chaited due to spectacular developments in optical dye high 
resolution recording techniques in awake animals. Many interesting questions come up: Is 
the scale of the operator mapped along the spokes of the pinwheel? Is the central singularity 
in the repetitive pinwheel structure the largest scale? Is differential order coded in depth in 
the columns? 

These are all new questions arising from a new model. The answer to these questions can be 
expected within a reasonable time, given the fast developments, both in high resolution 
recording techniques. and the increase in resolution of non-invasive mapping techniques as 
high-field functional magnetic resonance imaging (fMRI) [Logothetisl999j. 



360 20.8 Summary of this chapter 

20.8 Summary of this chapter 

When a time sequence of data is available m stored form, we can apply the regular 
symmetric Gaussian derivative kernels as causal multi-scale differential operators for 
temporal analysis, in complete analogy with the spatial case. When the measurement and 
analysis is real-time, we need a reparametrization of the time axis in a logarithmic fashion. 
The resulting kernels are skewed towards the past. The present can be never reached, the new 
logarithmic axis guarantees full causality. The derivation is performed by the first principle 
of a scale of observation on the new time axis which is proportional to the time the event 
happened. This seems to fit well in the intuitive perception of time by humans. 

Recent physiological measurements of LGN cell receptive fields and cortical V 1 simple cell 
receptive fields reveal that the biological system seems to employ the temporal and 
spatiotemporal differential operators. Especially striking is the skewness in the temporal 
domain, giving strong support for the working of the biological cells as time-causal temporal 
differential operators. 
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To teach is to learn twice. (Joseph Joubert, 1754-1824) 

21.1 Adaptive Smoothing and Image Evolution 

So far we calculated edges and other differential invariants at a range of scales. The task 
determined whether to select a fine or a coarse scale. The advantage of selecting a larger 
scale was the improved reduction of noise, and the appearance of more prominent structure, 
but the price to pay for this is reduced localization accuracy. Linear, isotropic diffusion 
cannot preserve the position of the differential invariant features over scale. 
A solution is to make the diffusion, i.e. the amount of blurring, locally adaptive to the 
structure of the image. E.g. in order to preserve edges while reducing the noise by area
averaging such as blurring, one may try to prevent blurring at the location of the edges, but 
do a good noise-reducing job at pixels (voxels) in a homogeneous area, i.e. where there are 
no edges. E.g. the well-known Sobel and Prewitt edge operators do an averaging in the 
direction perpendicular to its differential operation (as opposed to the Roberts operator). 
This adaptive filtering process is possible by three classes of (all nonlinear) mathematical 
approaches, which are in essence equivalent: 

1. Nonlinear paitial differential equations (PDE's), i.e. nonlinear diffusion equations which 
evolve the luminance function as some function of a flow. This general approach is known as 
the 'nonlinear PDE approach': 
2. Curve evolution of the isophotes (curves in 2D, surfaces in 3D) in the image. This is 
known as the 'curve evolution approach'. 
3. Variational methods that minimize some energy functional on the image. This is known as 
the 'energy minimization approach' or 'variational approach'. 

The word 'nonlinear' implies the inclusion of a nonlinearity in the algorithm. 
This can be done in an infinite variety, and it takes geometric reasoning to come up with the 
right nonlinearity for the task. 

This explains the commonly used term 'geometry-driven diffusion' for this field. Otherwise 
stated, this gives us a tool to include knowledge in the way we want to modify the images by 
some evolutionary process. We can include knowledge about a prefen-ed direction of 
diffusion, or that we like the diffusion to be reduced at edges or at points of high curvature in 
order to preserve edges and corners, etc. As we study the evolution of images over time, we 
also call this field evolutionary computing of image structure, or the application of 
evolutionary operations. 

The applicability of these mathematically challenging and nonrigid (but 'only requiring a lot 
of clever well-understood reasoning') approaches to image processing sparked the attention 
of both pure and applied mathematicians. In each of the general approaches mentioned below 
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a wealth of methods have been proposed. From 1993-1996 a consortium of laboratories in 
the US and Europe (sponsored by the US National Science Foundation and the European 
Community) was active in this field. The result of their work is a rather complete recording 
of this field at the time [ter Haar Romeny 1994f]. 

This chapter is an introduction to this rapidly expanding field. Excellent reviews have 
appeared for each of the above general approaches. A good point for further introduction into 
nonlinear diffusion equations are the review papers by Weickert [Weickert 1997d, 1998a, 
1999b]. Curve evolution was given much momentum by the important discovery by Osher 
and Sethian that the process of curve evolution became much more stable and flexible when 
the curve was considered the zero level set of some characteristic function. The nonlinear 
evolution is done on the characteristic function. 

Many, if not most, aspects of this level set approach are treated in the book by Sethian 
[Sethian 19991. The variational approaches were pioneered by Mumford and Shah [Mumford 
and Shah 1985a]. A detailed overview of these methods is given in the book by Morel and 
Solemini [Morel and Solemini 1995]. 
In the early visual pathway we see an abundance of feedback. A striking finding is that the 
majority of fibers (roughly 75% !) in the optic radiation (the fibers between the LGN and the 
primary visual cortex) are projecting in a retrograde (backwards) fashion, from co1iex to 
LGN [Sherman and Kock 1990, Sherman 1996a], recall chapter 11. 

These cortico-thalamic projections may well tune the receptive fields with the differential 
geometric information extracted with the receptive fields in the visual cortex. 

It is long known that the receptive field sensitivity functions of LGN receptive fields are not 
static. They may be temporally modulated as temporal differentiating operators, they may 
also be some function of the incoming image under control of the cortical input. 
Unfortunately little is still known about the exact wiring. It is clear that any LGN cell 
receives input from the cortical cell it projects to [Mumford 199la], but the cortico-fugal 
(Latin: fugare = to escape) connections seem to project all over the LGN fLogothetis 19991. 
making long-range interactions possible. 

Nonlinear diffusion techniques have become an important and extensive branch in computer 
vision theory. It is impossible to explain all approaches. theories and techniques in this 
chapter. This chapter is a starting point for interactive study and a basic understanding of the 
mathematics involved. such as the underlying geometric reasoning leading to the particular 
PDE and numerical stability of approximations. 

21.2 Nonlinear Diffusion Equations 

The introduction of a conductivity coefficient (c) in the diffusion equation makes it possible 
to make the diffusion adaptive to local image structure: 

aL = V.cVL as 
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where the function c = c(L, ~;, f,f, ... ) is a function of local image differential structure, 
i.e. depends on local partial derivatives. The general structure of a diffusion PDE is shown in 

the formula above: The change of luminance with increasing scale is a divergence (V.) of 

some flow (c V L). We also call c V L the flux function. With c = 1 we have normal linear, 
isotropic diffusion: the divergence of the gradient is the Laplacian. The most famous case, 
introduced by Perona and Malik in their seminal paper [Perona and Malik 1990] which 
sparked the field, is where c is a decreasing monotonic function of the gradient magnitude, 

c = c( I V L I). The diffusion is reduced at the location of edges because c is small at strong 
edges, and vice versa. 

The term conductivity is understood when we consider the analogon of diffusion of heat in a 
metal plate. The local flow of heat can be influenced by the insertion of local heat isolators in 
the plate, which act as barriers for the heatflow, leading to a non-isotropic diffusion of heat 
and thus to a non-isotropic temperature distribution over the plate over time. The 
conductivity c is different for every pixel location, and is a function of the local differential 
structure. We will discuss several possible classical functions proposed in the literature. 

The nonlinear diffusion paradigm enables geometric reasoning, we may put knowledge in 
the task of the evolution of the image. Examples of such reasoning statements are: 
- 'reduce the diffusion at locations where edges (or other local features such as comers, T
junctions, etc.) occur', or 
- 'adapt the diffusion so it is maximized along edges and minimized across edges', or 
- 'enhance the diffusion in the direction of ridges and reduce the diffusion perpendicular to 
them' etc. 

The naming of nonlinear diffusion equation is sometimes not consistent in the literature. We 
list some names and their meaning: 
- linear diffusion, equivalent to isotropic diffusion: the diffusion is the same in all directions, 
for all dimensions; the conductivity function c is a constant: 
- geometry-driven diffusion, the most general naming for the use of geometric reasoning: it 
includes (invariant) local differential geometric prope1ties in the diffusion equations, curve 
evolution schemes and variational, energy minimizing expressions; 
- variable conductance diffusion, the 'Perona and Malik' type of gradient magnitude 
controlled diffusion; 
- inhomogeneous diffusion: the diffusion is different for different locations in the image; this 
is the most general naming: 
- anisotropic diffusion: the diffusion is different for different directions; the Perona and 
Malik nonlinear diffusion scheme is not an anisotropic diffusion (despite the title of their 
original paper); it says nothing about the direction, only about the magnitude of the 
diffusion; it is an example of inhomogeneous diffusion, or variable conductance diffusion: 

- coherence enhancing diffusion: a particular case of anisotropic diffusion where the 
direction of the diffusion is governed by the direction of local image structure, for example 
the eigenvectors of the structure matrix or structure tensor (the outer product of the gradient 
with itself, explained in chapter 6), or the local ridgeness. 
- tensor driven diffusion: the diffusion coefficient is a tensor, not a scalar. Mathematically. 
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this is the most general form. The tensor operates as a Euclidean operator on the gradient 
flow vector, and can modify its magnitude and direction accordingly. The tensor can be 
calculated on a different scale than the gradient. 

21.3 The Perona & Malik Equation 

Perona and Malik [Perona and Malik 1990] proposed to make c a function of the gradient 
magnitude in order to reduce the diffusion at the location of edges: 

~: = V .c( IV LI) \7 L (l) 

_tt I~ I' 
with two possible choices for c: CJ = e ,, , and c2 = 1 / ( 1 + ~~ - ) . Note that these 

expressions are equal up to a first order approximation: 

<< FrontEndVision'FEV'; 

(VL) 2 

c 1 =Series[Exp[-~], {(VL), 0, 4}] 

c2 = Series[l / (1 + (Vk~)
2

), { (VL), 0, 4}] 

1- (VL)' (VL)4 O[ L]' 
k 2 + 2 k 4 + v 

1 - (VL)
2 

(VL)
4 

O[ L]' 
k 2 + k 4 + v 

im = Import["mr256.gif"] [ [l, l]]; a= 2; 

gD[im, I, O, a] 2 +gD[im, O, I, a] 2
] 

DisplayTogetherArray[ ListDensi tyPlot[ Exp [ - #
2 

, 

PlotLabel -> "k "<> ToString[#J] & /@ (5, 10, 20), ImageSize -> 400]; 

h l O 

Figure 21.1 The conductivity coefficient c1 in the Perona & Malik equation as a function of 
the parameter k. Gradient scale: (T = 2 pixels, image resolution 2562

. For higher k, larger 
gradients are taken into account only. 

The geometric reasoning here is to let intra-region smoothing occur preferentially over inter

region smoothing. In this particular choice the conductivity function c(V L) is small for large 
edge-strength and vice versa, i.e. the image is diffused most where the gradient is smallest. 

ll'LI' 
Figure 21.1 shows CJ = e-..,,- for a sagittal MR image for crVL = 2 and three values fork. 
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We see clearly the reduced conductivity at the edges (darker in the pictures), and we see that 
we can control the relative influence of the effect with the free parameter k. This parameter 
has the dimension of the gradient (meter-1 ) as we want the exponent to be dimensionless. 

In the rest of the examples we take the first choice for the conductivity coefficient: c1 . So. 
the Perona and Malik (P&M) equation becomes 

Expanding the differential operators for the right hand side, we get in lD: 

( 
(o,L[x])

2 
) o, Exp [ - k

2 
] Ox L (x] I I Simplify 

.,-~ (k2 -2L'[x] 2 )L"[x] 

k' 

and in 2D: 

k =.; 

( 

(BxL[x,y])2+(ByLJx,y))2 l ( _ (tlxL(x,y])2+(ByL[x,y))2 

PM= o, E k Ox L (x, y] + Oy E k 

FullSimplify; PM I I shortnotation 

L~ +L~ 
.,-~ ( (k2 

- 2 L~) Lxx - 4 Lx Lxy Ly+ (k2 
- 2 L~) Lyy) 

k' 

(2) 

o,L[x, y] J // 

We recognize the strongly nonlinear character of this equation. Unfortunately, there is no 
analytical solution for this PDE. So we have to rely on numerical methods to approximate 
the solution. Fmtunately there are many efficient and stable numerical schemes for the time
evolution of an image governed by this type of divergence of a flow-type PDE's. We will 
discuss some of them in the course of this chapter. 

The most straightforward numerical approximation of ~~ = V .c V L is the forward-Euler 
approximation 6 L = 6 s (V .c V L) where 6 L is the increment in L and 6 s is the (typically 
small) stepsize in scale: the evolution stepsize. Through iteration (calculation of many small 
consecutive increments) we can calculate the image at the required level of evolution, i.e. at 
the required level of adaptive blurring. 

The images in between fo1m a scale-space again, or alternatively, a series of images over 
evolution-time. For the limit k --> oo, we get the linear diffusion equation again: 

Limit (PM, k -> oo] I I shortnotation 

Lxx + Lyy 
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21.4 Scale-space implementation of the P&M equation 

To work on discrete images, we replace (with the Replace operator, short notation I . ) 
every occurrence of a spatial derivative in the right-hand side of the P&M equation (pmcl 

resp. pmc2) with the scaled Gaussian derivative operator gD: 

Forc1: 

For c2: 

(axL[x,yJJ 2 +(OyL(x,y]) 2 

Clear[im, a, k]; c 1 = E >' 

pmcl[im_, a_, k_] =Cl, (c 1 Cl,L[x, y]) + o, (c1 o,L[x, y]) I. 
Derivative[n_, m_] [L] [x_, y_] -+gD[im, n, m, a] II Simplify 

1 ( _ gD[lltl,0,1,cr]2 +qD[lltl,l,O,o)2 
2 k2 e ,r ( (k2 -2 gD[im, O, 1, er] ) gD[im, O, 2, er] -

4 gD[im, 0, 1, er] gD[im, 1, O, er] gD[im, 1, 1, er]+ 

(k2 
- 2 gD [ im, 1, 0, er] 2

) gD [ im, 2, O, er])) 

Clear[im, a, k]; c 2 = 1 1 + ; I ( (o,L[x, y] ) 2 + (o,L[x, y] ) 2 ) 

k2 

pmc2[im_, a_, k_] =Ox (c2 Cl,L[x, y]) +Cly (c2 o,L[x, y]) I. 
Derivative[n_, m_] [L] [x_, y_] -+gD[im, n, m, a] II Simplify 

(k2 (gD[im, 0, 2, er] (k2 -gD[im, O, 1, er] 2 +gD[im, 1, O, er] 2
) -

4 gD[im, 0, 1, er] gD[im, 1, 0, er] gD[im, 1, 1, er]+ gD[im, 0, 1, er] 2 

gD[im, 2, 0, er]+ (k2 -gD[im, 1, 0, er] 2
) gD[im, 2, 0, er]))/ 

(k2 + gD[im, 0, 1, er] 2 + gD[im, 1, O, er] 2
)

2 

We calculate the variable conductance diffusion first on a simple small (64x64) noisy test 
image of a black disk (minimum: 0, maximum: 255): 

imdisk=Table[If[(x-32) 2 + (y-32) 2 <300, O, 255], {y, 64), {x, 64)]; 
noise:Table[lOORandom[], (64), (64)]; im=imdisk+noise; 

ListDensityPlot[im, ImageSize -> 120]; 

Figure 21.2 Simple 64x64 test image of a black disk on a white background (intensities O 
resp. 255) with additive uniform noise (amplitude=100). 

A rnle for the choice of k is difficult to give. It depends on the choice of which edges have to 
be enhanced, and which have to be canceled. The histogram of gradient values (at IT = l) 
may give some clue to how much 'relative edge strength' is present in the image: 
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Histogram[Flatten[grad = y (gD [im, 1, 0, l] 2 + gD [im, 0, 1, l] 2)], 

HistogramCategories-> Range[O, 200, SJ, ImageSize -> 280]; 
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Figure 21.3 Histogram of the (scalar) magnitude of the gradient values at <T = 1 of the disk 
image of figure 21.2. 

In section 21.5 we derive that k determines the 'turnover' point of edge reduction versus 
enhancement. A forward-Euler approximation scheme now becomes particularly simple: 

peronamalikcl [im_, lis_, a_, k_, niter_] : =Module [ {), evolved= im; 

Do [evolved+= lis (pmcl [evolved, a, k]) , {niter}]; evolved] ; 

where im is the input image, c5s is the time step, o is the scale of the differential operator, k 
is the conductivity control parameter and niter is the number of iterations. Here is an 
example of its performance: 

line= {Red, Line [ { (0, 32), (64, 32}}]}; DisplayTogetherArray [ 
{ListDensityPlot [#, Epilog ->line] & /@ 

{im, imp=peronamalikcl[im, .1, .7, 25, 20]}, 
ListPlot /@ {im [ [32]] , imp [ [32]]}}, ImageSize -> 380]; 
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Figure 21.4 Top left: input image; top right: same image after variable conductance diffusion, 
with operator scale <T = .8 pixels, timestep os = 0.1 , k = 100, nr. of iterations = 10. Bottom 
row: intensity profile of middle row of pixels for both images. The edge steepness is well 
preserved, while the noise is substantially reduced. A little overshoot is seen at the edges. 
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We can define a signal-to-noise ratio (SNR) for this particular image by taking two square 
(16x16) areas, one in the middle of the black disk and one in the lower left corner in the 
background. The signal is defined as the difference of the means, the noise as the sum of the 
variances of the intensity values in the areas: 

<<Statistics-DescriptiveStatistics-; 

snr[im_] := 

Module[(), ml:SubMatrix[im, (24, 24), (16, 16)] //Flatten; 

m2:SubMatrix[im, (3, 3), (16, 16)] //Flatten; 

Mean [m2] - Mean [ml] 

Variance[ml] +Variance[m2] J; 
ListDensityPlot[im, Epilog -> {Hue[l], Thickness [ .01], 

Line [ { { 3, 3} , { 3, 19} , { 19, 19} , { 19, 3} , { 3, 3} } ] , 
Line[{{24, 24), (24, 40), (40, 40), (40, 24), (24, 24))]), 

ImageSize -> 150]; 

Figure 21.5 Areas through which the signal-to-noise ratio (SNR) is defined. 

Clearly. the signal-to-noise ratio increases substantially during the evolution until 
t = niter x c5s = 1: 

evolved= im; out={}; a= .8; c5s = .1; k = 100; niter= 10; 

Do[evolved += c5s (pmcl [im, a, k]); 
out= Append[out, snr[evolved]], {niter}]; 

ListP lot [out, P lotJoined -> True, AxesLabel -> 
{ "evolution\ntime\n (in iterations)", "SNR"}, ImageSize -> 250]; 
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Figure 21.6 The signal-to-noise ratio (SNR) increases substantially with increasing evolution 
time. 
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But this cannot continue, of course, for physical reasons. When we continue the evolution 
until t = 20 (in units of iterations), we see that the gain is lost again: 

evolved= im; out= {}; a= • 8; lis = • l; k = 100; niter= 20; 
Do[evolved+=lis (pmcl[im, a, k]); 

out= Append[out, snr[evolved]], {niter}]; 
ListPlot[out, PlotJoined ->True, AxesLabel -> 

{"evolution\ntime\n(in iterations)", "SNR"}, ImageSize -> 190]; 
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Figure 21.7 There is a maximum in the signal-to-noise ratio (SNR) for variable conductance 
diffusion with increasing evolution time . 

.A. Task 21.1 Play with this maximum in SNR as a function of timestep, er and k . 

.A. Task 21.2 Show that this maximum in SNR occurs fort= 4 er - 2 . 

.A. Task 21.3 Investigate the Perona & Malik equation and the SNR for 30. 

A good empitical value for k is the 80% or 90% percentile of the cumulative frequency 
distribution of the gradient magnitude values in the image. Of course, this is a 'rule of 
thumb', the best choice may depend on the image and the task at hand and may need some 

experimentation. The function kpercentile[im, a, perc, nbins] calculates the 
percentile value kperc for the image im, gradient scale a, percentage perc ([0-1]) in the 

number of bins nbins: 

Needs["Statistics'DataManipulation'"]; 

kpercentile [im_, a_, perc_, nbins_] : =Module [{max, cummax}, 

grad2 = "\/ (gD [im, 1, 0, a] 2 +gD [im, 0, 1, a] 2 ); max= Max[grad2]; 
counts = BinCounts [Flatten [grad2], (0, max, max I nbins}]; 
cumcounts = Rest[FoldList[Plus, 0, counts]]; 

cummax =Max [cumcounts] ; 

Length [Select [cumcounts, (# < perc cummax) &] ] max I nbins]; 

Here is the result for an image of man-made structures. We first find an estimate for k at 
er= I: 
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im =Import ["Utrecht256.gif"] [ [1, l]]; 
k90 = kpercentile[im, 1, .9, 100] 

77 .1295 

We choose deliberately a smaller k = 25 to get more bhming overall: 

c5s = .02; a= l; k = 25; evolved= im; 
Do [evolved+= c5s (pmcl [im, a, k]) , {60)] 
Show[GraphicsArray [ListDensityPlot [#, DisplayFunction-+ Identity] & /@ 

{im, evolved}], ImageSize -> 400]; 

Figure 21.8 Left: original image, resolution 256x256. Right: Variable conductance diffusion 
with k = 25, er= 1, os = 0.02 and 60 iterations. Note the good keeping of the gradient 
steepness at the edges and the reduction of the brick and rooftile texture. 

21.5 The P&M equation is ill-posed. 

It is instructive to study the P&M equation in somewhat more detail. Let us look how the 
diffusion process depends on the gradient strength, so we consider lin ID for simplicity) 

c = c(Lx). So the P&M equation is Ls = :, l c( ~; ) ~; ) = c' Lx + c Lx x . Suppose that the 
flow (or flux function) c Lx is decreasing with respect to Lx at some point xo , then we have 

at le Lx) = c + c' Lx =-a with a> 0. Now c' = :L . So the nonlinear diffusion equation 

reads in this situation Ls +a Lx x = 0. from which we get Ls = -a Lxx. Locally we have an 
inverse heat equation which is well known to be ill-posed. This heat equation locally blurs or 
deblurs, dependent on the condition of c. We study this condition in lD. For c1 and cz we 
find: 

Clear[k, Lx, cl, c2]; cl[Lx_] := Exp[-Lx2 /k2
]; 

c2 [Lx_] : = 1 I (1 + Lx2 I k 2
); OLx (cl [Lx] Lx) //Simplify 

Lx2 
.,--;;r (k2 - 2 Lx2 ) 

k' 

OLx (c2 [Lx] Lx) I I Simplify 

k 4 - k 2 Lx 2 

(k2 + Lx2
) 

2 
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The function c1 Lx decreases for Lx > f .,/2 k and c2 Lx decreases for Lx > k. This implies 
that with k we can adjust the turnover point in the gradient strength, below which we have 
blurring, and above which we have deblurring. This is a favorable property: small edges 
disappear through blurring during the evolution, while the stronger edges are not only kept 
but even made steeper through the deblurring. Here are the graphs of the flux c Lx and of 
o(cl) ----aC- for both e's with k = 2: 

x 

k = 2; DisplayTogetherArray[ 
{{Plot[cl[Lx] Lx, {Lx, O, 5), AxesLabel .... {"L,", "flow c 1 Lx"}], 

FilledPlot[Evaluate [<hx (cl [Lx] Lx}], 
{Lx, O, 5), AxesLabel .... {"L,", "ih, (c1 Lxl"}, 

epilog = Epilog -> {Text[ "blurring", { 1.5, . 8)], Arrow[ (1.5, . 7), (1.1, . 5)], 
Text["deblurring", (3, .4)], Arrow[(J, .3), (2.8, .l)] }] }, 

{Plot[c2[Lx] Lx, {Lx, O, 5), AxesLabel .... {"L,", "flow c 2 Lx"}], 
FilledPlot[Evaluate[chx (c2 [Lx] Lx)], {Lx, O, 5), 
AxesLabel .... { "Lx", "ih, (c2 Lx) "}, epilog]}}, ImageSize -> 310]; 
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Figure 21.9 The value of k determines the turnover point of the direction of diffusion. Top 
row: Flow function and its derivative with respect to the gradient for conductivity function c1 . 

Bottom row: idem for c2. For both e's: k = 2. For positive slope of the flux as a function of 
the gradient we get local blurring, for negative slope we get local deblurring. 

We saw before that a reasonable value for k is the 90% percentile, i.e. all edges with 
strength below this value will be smoothened out, and all edges stronger than this value will 
be enhanced. 

The original fo1mulation by Perona and Malik employed nearest neighbor differences in 4 
directions to calculate the local gradient strength. This introduces artefacts because there is a 
bias for direction. We now understand that the Gaussian derivative kernel is the appropriate 
regularized differential operator, which does not introduce a bias for direction. This was 
introduced first by Catte, Lions, Morel and Coll LCatte et al. 1992]. 
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21.6 Von Neumann stability of numerical PDE's 

When we approximate a partial differential equation with finite differences in the forward 
Euler scheme, we want to make large steps in evolution time (or scale) to reach the final 
evolution in the fastest way, with as little iterations as possible. How large steps are we 
allowed to make? In other words, can we find a criterion for which the equation remains 
stable? A famous answer to the question of stability was derived by Von Neumann [Ames 
1977a], and is called the Von Neumann stability criterion. We explain the concept with a 

simple lD evolution equation, the lD linear diffusion equation: ~7 = ~:f 

L11+1 -L'! L 11 -2L11 +L11 

This equation can be approximated with finite differences as ~ = 1+
1 t>.x~ 1

-
1 

, where 
we use a forward derivative for the time derivative in the left-hand side of the equation and 
centered differences for the second order spatial derivative in the right-hand side. The upper 
index n denotes the moment in time, the lower index j denotes the spatial pixel position. We 
define R = _At__ so we rewrite L'i+l - L" - R(L" - 2L" + L'! ) = 0 in Mathematica (we 

!!>. x' ' J J J+I .! J-1 ' 

define the finite difference function f [ j, n] ): 

Clear [L, f]; 
f[j_, n_] :=L[j, n+l] -L[j, n] -R (L[j +l, n] -2L[j, n] +L[j -1, n]) 

Let the solution L'J of our PDE be a generalized exponential function, with k a general 
(spatial) wavenumber: 

Clear[{, j, n, k, b.x]; 

L[j_, n_] := {" Exp[I j kb.x] 

When we insert this solution in our discretized PDE, we get 

f [j, n] 

- e]_ j k .ll.x ~n + e]_ j k bx ~l+n - R ( ei (-l+j) k .ll.x ~n - 2 ei j k .ll.X ~n + e1 ( l+j) k AX ~n) 

We want the increment function j(j, n) to be maximal on the domain j, so we get the 

condition 81~~.n) = 0. The Mathematica function ExpToTrig rewrites complex 

exponentials into sinusoidal functions, using Euler's formula eic/J =cos(¢>)+ i sin(¢>): 

ExpToTrig [EI• i 

Cos[¢] +iSin[¢] 

The maximum criterion 8 tyn) = 0 can be solved for q: 
.I 

Solve [ExpToTrig[o; f [j, n]] == 0, {] I/ Simplify 

{ { ~ _, 1 - 2 R + 2 R Cos [ k nx] } } 

The amplitude q11 of the solution q" e'jkt>.x should not explode for large n, so in order to get 
a stable solution we need the criterion I q I ,,; 1. This means, because Cos(k d x) - 1 is 
always non-positive, that 
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(3) 

This is the Von Neumann criterion. For the 2D case we can prove in a similar way (assuming 
A - A )· R - ~ < .!. ax - '-"Y · 2D - Jl.x2 - 4 · 

... Task 21.4 Show that the Von Neumann criterion for N-dimensional isotropic 
d"ff . I ii.I 1 1 us1on equa s AX2 ~ 2N. 

This is an essential result. When we take a too large step size for ~t in order to reach the 
final time faster, we may find that the result gets unstable. We show an example in section 
21.8. The Von Neumann criterion gives us the fastest way we can get to the iterative result. It 
is safe to stay well under the maximum value, to not compromise this stability close to the 
criterion. 

The pixelstep ~x is mostly unity, so the maximum evolution stepsize should be 
~ t < ± (pixel2

). This is indeed a strong limitation, making many iteration steps necessary. 
Gaussian derivative kernels improve this situation considerably, as we will see in the next 
section. 

21.7 Stability of Gaussian linear diffusion 

The numerical stability criterion for Gaussian derivative implementations was derived by 
Niessen et al.[Niessen et al. 1997]. The difference is that we now do not take the nearest 
neighbor differences for an approximation of the derivatives, but a regular convolution with 
the Gaussian aperture function, as scale-space theory prescribes. We do the analysis in ID 
first, then in 2D. 

We start again with a general possible solution for the luminance function L(x, j, n), where x 
is the spatial coordinate, j is the discrete spatial grid position, and n is the discrete moment 
in evolution time of the PDE. 

Clear[g, gxx, s, ~. j, k, n, Ax] i 

L[x_, j_, n_] := ~· Exp[I j x] i 

We define the Gaussian kernel and the Laplacian (in ID it is just the second order spatial 
derivative): 

1 x 2 

g[x ] •= --- Exp[--] i 
- ~ 4s 

gxx[x_] = Simplify[ox.x9[x], s >OJ 

.,-T',. ( -2 s + x 2 ) 

8 y; 55/2 

We recall that the convolution of a function f with a kernel g is defined as 
f ® g = L:f(y) g(y - x) dx. The dummy variable y shifts the kernel over the full domain of 
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f, and the result f ® g is a function of x. So for discrete location j at timestep n we get for 
the blmTed intensity: 

convolved[x_] = Simplify [ 1: L [y, j, n] gxx [y - x] di y, s > 0 J 

-ej (-js+iLxl j2 i;n 

If we compare this with the original intensity function, we find a multiplication factor 
-e-Ps j2: 

convolved[x] 
factor= I I Simplify 

L[x, j, n] 

s = l; Plot[factor, {j, 0, 3), 
AxesLabel -> {"j (time)", "factor"), ImageSize -> 230]; 

factor 

05 1 5 
-005 

-01 

-015 

-02 

-U25 

-03 

-035 

Figure 21.1 O There is a clear minimum of the multiplication factor -e-l 5 j 2 as a function of j. 
With this value the largest steps in the evolution can be made, giving the fastest way to the 
result. 

We are looking for the largest absolute value of the factor. because then we take the largest 
evolution steps. Because the factor is negative everywhere we need to find the minimum of 
the factor with respect to j. i.e. iJf~ctor = O: 

.I 

Clear[s]; solution= Solve[o; factor== O, j] 

Only positive times j make sense. so we take j = ~ . We then find for the maximum size of 

the timestep factor -=.!. : es 

1 
factor I. j -> --

Ys 
1 

"'s 
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So we find for the Gaussian deiivative implementation g = I - :~ , so I g I :,;; 1 implies 
~ :,;; 2, thus lit :,;; 2 es. Introducing this in the time-space ratio R = ~l' we finally get the 
I'S (Ll.X -

limiting stepsize for a stable solution under Gaussian blumng: 

R=~oS2es=e<T2 
~x-

(4) 

Note that this enables substantially larger stepsizes then in the nearest neighbor case. E.g. 
when <T = 2, we get (for .:ix = I) a timestep of lit:,;; I 0.87. We give the reasoning for the 2D 
case for completeness. We define a 2D image L(x, y, j, k, n) on our discrete giid with (x, y) 

the spatial coordinates, (j, k) the spatial integer grid positions, and n the discrete evolution 
time: 

Clear[x, y, j, k, n];L[x_, y_, j_, k_, n_] :=CE';'E'kY; 

1 x 2 + y 2 

g = -- Exp [- ---]; laplacian [x_, y_] =Simplify [o.,, g +a.,, g, s >OJ 
47rs 4s 

e-¥ (-4s+x2 +y2
) 

16 7T s 3 

First we integrate with respect to the shift ff in x. then to the shift f3 in y (we may do this due 
to the separability of the Gaussian kernel, and thus of the Laplacian function): 

convolutionl:Simplify[J:L[a, fj, j, k, n] laplacian[a-x, fj-y] dla, s>O] 

e 4j2s2-41jsx+y2s_4iksj3-2y/3+.B
2 (-2s-4 j2 s2 + (y-(3)2) c;n 

8 y;r ss12 

convolution = Simplify [ 1: convolution! di fJ, s > 0 J 

-e-j
2

s-k
2

s+ijxuky (j2 +k2) ~n 

The factor relative to the original luminance function is now: 

convolution 
factor= 11 Simplify 

L[x, y, j, k, n] 

This function has a minimum at ( ar~~tor = O, iif~~tor = O): 

solution= Solve[ {o; factor== O, ok factor== 0), s] 

1 
{ { s _, j 2 + k' } } 

From the graph of the factor we appreciate that the solution space is on a circle in the spatial 
(j, k) domain: 
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s = 1; Plot3D[factor, {j, 0, 3), {k, 0, 3), Axes-> True, 
AxesLabel-> {"j", "k", "factor"), ImageSize->320];Clear[s]; 

Figure 21.11 There is a clear circular line of minima of the multiplication factor 
-e-U'+k'Js (j2 + k 2) as a function of j and k. With these values the largest steps in the 
evolution can be made, giving the fastest way to the result. 

So j2 + k2 = _!_. As in the ID case, we find for the minimum factor .=.!. · s es 

1 
factor I. {j 2 + k 2 -> - } 

s 

es 

So in 2D we find for the Gaussian derivative implementation the same result: 

R= ~ ,;2e s = ei:r2 
~xA.y 

21.8 A practical example of numerical stability 

(5) 

The following example is from [Niessen 1997a]. The stability criterion for Gaussian 

implementation is ,88 
2 < 2 es = e er2 (because s = -

2
1 er2 ). For the Gaussian blurring of an 

l'->X) 

image with er= 0.8 pixels for the Laplacian operator, we get .6.s < e 0.82 = 1.74. Let us 
study the effect of taking a range of evolution steps from somewhat smaller to somewhat 
larger than the critical evolution step .6.s = 1.74. As test image we take a white circle on a 

black background. We blur this image to er= YTi8 pixels (which is to s = 64 pixels2
) in 

two ways: a) with normal Gaussian convolution and b) with the numerical implementation of 
the diffusion equation and Gaussian derivative calculation of the Laplacian. 

disk = Table [If [ (x - 64) 2 + (y - 64)' < 1000, 1, OJ , {y, 128}, { x, 128}] ; 

diskblurred = gD(disk, 0, 0, v'128]; 
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DisplayTogetherArray[{ListDensityPlot[disk], 
ListDensityPlot [diskblurred]}, ImageSize-> 280] ; 

377 

Figure 21.12 Test image and its Gaussian blurred version at (J' = ../128 pixels. Resolution 
image 128 x 128. 

This function implements the numerical approximation of the linear. isotropic blurring of the 

image im: 

num [im_, nrsteps_, a_, evolutionrange_] : = 
Module [ (6s, imt}, 6s = evolutionrange I nrsteps; imt = im; 
Do[imt+=6s (gD[imt, 2, 0, a] +gD[imt, 0, 2, a]), {nrsteps}]; imt]; 

To show the critical effect of the Von Neumann stability criterion, we evolve the image to a 
scale s = 64 and plot the numerical result for a nan·ow range of timestep sizes (timestep = 

64 Insteps) around the critical value 1.74: 

DisplayTogetherArray[ 
Table[ListDensityPlot[num[disk, nsteps, .8, 64], 

PlotLabel-+ "timestep = "<> ToString[N[64 Insteps]]], 
{nsteps, 35, 39)], ImageSize -> 400]; 

1imcstcp= I .828j7 timc1tc11= i 7297.3 timc.i.trp= t.68421 timc!>lcp= 1.6410.3 

Figure 21.13 Study of the influence of time stepsize on the accuracy of the result in the 
numerical approximation of the linear diffusion equation. Image resolution 1282

, evolution to 
s = 64 pixel2 

, scale Laplacian operator (J' = 0.8 pixel. The critical timestep 
Ll8 = e(J'2 =2.1718x0.82 =1.74. 

• Task 21.5 Why are the artefacts at left/right, top/bottom? 

It is clear from the results that timesteps larger than the critical timestep (two left cases) lead 
to erroneous results. It is safe to take the timestep at least 10% smaller than the critical 
timestep. Note the amazingly sharp transition around the critical timestep. 
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21.9 Euclidean shortening flow 

Alvarez, Guichard, Lions and Morel [Alvarez 1992a] realized that the P&M variable 
conductance diffusion was complicated by the choice of the parameter k. 

They reasoned that the principal influence on the local conductivity should be to direct the 
flow in the direction of the gradient only: we want a lot of diffusion along the edges, but 
virtually no diffusion across the edges. This led to the proposal to make the intensity flow a 

function of the unit gradient vector l~~I =(cos(</>). sin(</>)), so we get the (nonlinear) 

diffusion equation 

.JL as= 

In Mathematica: 

Clear[L]; << Calculus'vectorAnalysis'; 
SetCoordinates[Cartesian[x, y, z]]; 

VL = Grad[L[x, y, 0]] 

{L(1,o,01 [x, y, O], L(o,i.01 [x, y, OJ, 0) 

VL 
YVL .VL Div[ ] 11 Simplify// shortnotation 

YVL.VL 

- 2 Lx Lxy Ly + Lxx L; + L~ Lyy 

L~ + L~ 

(6) 

This is exactly K IV L J, i.e. the isophote curvature K (see chapter 6) times the gradient 

magnitude IV L J. From the discussion of the gauge coordinates we recall that this is equal to 

the second order derivative in the direction tangential to the isophote: K IV LI = Lvr, 

The nonlinear diffusion according to this paradigm becomes particularly concise: 

(7) 

Because the Laplacian /1 L = Lxx + Lyy = Lvv + Lww, we get ~; = /1 L- Lww. We see that 
we have cmTected the nmmal diffusion with a factor proportional to the second order 
derivative in the gradient direction (in gauge coordinates: Lww ). This subtractive term 
cancels the diffusion in the direction of the gradient. This gives us also a recipe for 30: 

~; = /1 L- Lw 1v where /1 L =Luu+ Lvv + Lww = Lxx + Lyy + Lzz is the 30 Laplacian and It 
and v are the gauge directions tangential to the isophote surface. 

The enthusiasm of Alvarez et al. about this equation led them to the name 'fundamental 
equation of image processing' (!), This PDE is better known as the Euclidean shortening flow 

equation, for reasons we will discuss in the next section. 
There are a number of differences between this equation and the Perona & Malik equation: -
the flow (of flux) is independent of the magnitude of the gradient; - There is no extra free 
parameter. like the edge-strength turnover parameter k; - in the P&M equation the diffusion 
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decreases when the gradient is large, resulting in contrast dependent smoothing; - this 
equation is gray-scale invariant. 

21.1 O Grayscale invariance 

A function is grayscale invariant, if the function does not change value when the grayscale 
function L is modified by a monotonically increasing or decreasing function flL), f * 0. 
Grayscale invariance is an attractive prope11y: image analysis is the same when we change 
e.g. the contrast or brightness on a monitor, or if we put up sunglasses. The gradient is 
dependent on f: 

Clear[f, L]; u = f[L[x, y, s]]; 

gradu = --) (Bx u)2 + (By u)2 ; gradu I I shortnotation 

~ (Lx [x, y, s] 2 +Ly [x, y, s] 2
) f' [L[x, y, s] ] 2 

The Euclidean shortening flow equation ~~ = Iv LI v.( l~~I) is independent off: 

FullSimplify[os u - gradu (ox~+ By~) == 0, f' [L[x, y, s]] ¢OJ I I 
gradu gradu 

shortnotation 

(2 Lx [x, y, s] Lxy [x, y, s] Ly [x, y, s] + 

Ly[x, y, s] 2 (-Lxx[x, y, s] +L,[x, y, s]) + 

Lx [x, y, s] 2 (-Lyy [x, y, s] +Lz [x, y, s])) I 

(Lx[x, y, s] 2 +Ly[x, y, s] 2
) ==0 

The function f does not show up anymore: the equation is greyscale invariant. 

21.11 Numerical examples shortening flow 

Let us study some numerical examples of this PDE on a simple image. We first define the 
numerical iterative approximation to the nonlinear PDE: 

euclideanshortening[im_, nrsteps_, a_, evolutionrange_] • -
Module [ {c5s, imt}, c5s = evolutionrange I nrsteps; imt = im; 

Do[imt += c5s (gD[imt, O, 2, a] gD[imt, 1, 0, a] 2 
-

2 gD[imt, 0, 1, a] gD[imt, 1, O, a] gD[imt, 1, 1, a]+ 

gD[imt, 0, 1, a] 2 gD[imt, 2, O, a]) I 
(gD[imt, 0, 1, a] 2 +gD[imt, 1, 0, a] 2

), {nrsteps)];imt]; 

In gauge coordinates the expression becomes more compact: 

euclideanshortening [ im_, nrsteps_, a_, evolutionrange_] • -
Module [ {c5s, imt}, c5s = evolutionrange I nrsteps; imt = im; 

Do [imt += c5s gauge2DN[im0, 0, 2, a] I. imO -> imt, {nrsteps}]; imt] ; 

We study the disk image again, with additive uniform uncorrelated noise: 
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disk = Table [ 

If[(x-64) 2 +(y-64) 2 <1000, 1, O] +Random[], {y, 128), {x, 128)]; 

diskblurred = gD [disk, 0, 0, -Yi28] ; 
DisplayTogetherArray[{ListDensityPlot[disk], 

ListDensityPlot[diskblurred]}, ImageSize-> 230]; 

Figure 21.14 Noisy disk image. Image resolution 1282
, disk=1, background=O, noise 

amplitude [0-1]. Right: image blurred with CT= '1128, or s = 64 with linear Gaussian 
diffusion. By blurring the image the noise is gone, but the edge is gone too. 

The critical timestep for this numerical scheme is again 1 :~J < 2 es. We check this with the 
same settings as above for the linear diffusion example: 

Block [ { $DisplayFunction = Identity} , 
pl= Table[ListDensityPlot[euclideanshortening[disk, nsteps, .8, 64], 

PlotLabel-> "timestep = " <> ToString [N [64 Insteps]]], 
{nsteps, 32, 42)]]; 

Show[GraphicsArray[Partition[pl, 5]], ImageSize-> 355]; 

linle"lcp 1. lime~tcp - I 9J<>l9 lillle(lt.'fi LRR2J5 lifllt(~p 1 S2K.'i7 timc.<-t~p 1.77771\ 

aaaa 
timt~tcp= 1.68-121 timcstcp= 1.64 103 timc:.tcp= 1.6 1tmCbt.:p= 1.56091:1 

aaaaa 
Figure 21.15 Euclidean shortening flow on the noisy disk image for a range of timestep sizes 
around the critical timestep tis = e O .82 = 1 . 7 4. Clearly artefacts emerge for timestep sizes 
larger than the critical timestep. 

And here is the evolution itself (we choose s = 1.6 pixels2 as time step) for s = 1 to 57 in 8 
steps, with the scale of the flux operator er = 0.8: 

Block [ { $DisplayFunction = Identity} , pl = Table [nsteps = Ceiling [s I 1. 6] ; 
ListDensityPlot[euclideanshortening[disk, nsteps, .8, s], 

PlotLabel->"time = "<>ToString[s]], (s, 1, 57, 8}]]; 
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Show[GraphicsArray[Partition[pl, 4]], ImageSize-+ 510]; 

time = 1 tirnc : 9 1imc= 17 timc=2.'i 

time- 33 time• ll9 timc • .57 

Figure 21.16 Euclidean shortening flow on the noisy disk image as a function of evolution 
time/scale (in pixel2 

). Noise is significantly reduced, the edge is preserved. 

The noise gradually disappears in this nonlinear scale-space evolution, while the edge 
strength is well preserved. Because the flux term, expressed in Gaussian derivatives, is 
rotation invariant, the edges are well preserved irrespective of their direction: this is edge
preserving smoothing .. 

DisplayTogetherArray[ 

15 

05 

ListPlot[disk[ [64]], PlotJoined-> True, PlotLabel-+ "original"], 
ListPlot [euclideanshortening[disk, 32, . 8, 32] [ [64]], 

PlotJoined-> True, PlotLabel-+ "time = 31"], ImageSize -> 350]; 

ongma.l t1me:::;3J 

14 
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Figure 21.17 Plot of the middle horizontal row of pixel values for the original noisy disk image 
(left) and the image at time t = 31 with Euclidean shortening flow. Note the overshoot at the 
edges, and the good noise removal while keeping a steep edge. 

This is an example for an ultrasound image with its particular speckle pattern: 

us= Import ["us. gif"] [ [ 1, l]]; Block [ {$DisplayFunction = Identity, s = 9}, 
pl= ListDensi tyPlot [us, PlotLabel-+ "Original"] ; 
p2 = ListDensityPlot[use = euclideanshortening[us, 6, .8, s], 

PlotLabel-+ "scale = "<> ToString[s]]]; 



382 21.11 Numerical examples shorteningjluw 

Show[GraphicsArray[ {pl, p2}], ImageSize-+ 500]; 

Original 

Figure 21.18 Euclidean shortening flow on a 260 x 345 pixel ultrasound image (source: 
www.atl.com). 

Many improvements and acceleration schemes have been proposed recently. It is beyond the 
scope of this book to discuss these developments in detail. Good references to study are: 
Kacur and Mikula [Kacur2001J. Weickert et al. [Weickertl997e, Weickertl998b]. 

21.12 Curve Evolution 

We can consider an image as a collection of sampled luminance points. Alternatively, we can 
consider an image as a set of isophotes (or level sets). They too describe the image 
completely. When we consider the evolution of this set of isophotes under the control of a 
nonlinear diffusion equation, we consider the evolution of curves. This has become an 
important branch of nonlinear evolutionary image processing. Mathematically a lot was 
known about the evolution of curves and surfaces, among others from the studies of the 
propagation with time of the firefronts (iso-temperature surfaces) in flames and combustion 
[Sethian 1982]. 

Consider a parameterized closed curve without self-intersections C(p): S1 
-4 IR. and let 

x = x(p) be a regular parametric representation of the curve C with g;, * 0. The evolution 

of the curve makes sure that the curve deforms. These deformations are functions of local 
geometry, so we get in general a motion of each point on the curve. This deforming motion 

can be decomposed in a component along the inward unit normal vector N. and a component 

along the tangential unit vector 'f. When the parameter t measures evolution time, we get 

'Z = a(p, t) 'f + /3(p, t) N. 

But an infinitesimal displacement along the tangential unit vector has no effect. We could as 
well see the curve as a rope and shift the rope while keeping the same form of the curve 
itself: only a displacement of points perpendicular to the curve will shift the shape of it. This 
was first proved by Gage [Gage 1983], who showed that the previous equation is equivalent 

to 'Z = /3' (p. t) N with x(p, OJ= x 0 (p). 
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We consider planar curves, which are totally determined by their curvature as we recall from 

chapter 6. So, the first order expansion for /3' in terms of its curvature is 'fr = (/30 + /31 K) N. 

This describes a deformation characterized by a constant motion term /30 N and a motion due 

to curvature /31 KN, both in the direction of the inward normal. 

So we can discriminate three interesting cases: 
- /30 = 0, {3 1 * 0: pure curvature motion. This flow is Alvarez's fundamental equation 
discussed before, and is known as the Euclidean shortening flow. 

The reason that it is called this way we will discuss in the next section. This flow evolves 
concave regions to convex regions [Gage and Hamilton 1986], and shrinks convex regions to 
circular points [Gage 1983, Gage 1984]. Curvature motion has a smoothing effect on curves. 
- /30 * 0, /31 = 0: constant motion or normal motion flow. The isophotes move in the 
direction of their normal with velocity /30 . This flow is intimately related to the dilation and 
erosion operators with a disk as structuring element from mathematical morphology. We will 
discuss mathematical morphological operators in the next section in more detail. Constant 
motion has a sharpening effect on curves. 
- /30 * 0. {3 1 * 0: both curvature and constant motion. Both deformations are in a sense each 
other's opposite and could be appropriately weighted, prescribed by the task, to come to a 
satisfactory shape deforniation. This framework was developed by Kimia et al. as the 
'reaction-diffusion' (sharpening resp. smoothing) framework [Kimia 1992, Kimia 1996a]. 
Note that /30 and /31 do not have the same dimensionality, so we need to work with natural 
coordinates (x --> ~, see chapter 6). This 2-dimensional scale-space with parameters {30 and 
{3 1 is also known as the entropy scale-space. 

21.13 Duality between PDE- and curve evolution formulation 

It was proven by Osher and Sethian [Osher and Sethian 1988, Sethian 1990a] that for all 

points on a level set (defined by L(x) =a where a is a constant) for all a and where V L * 0, 
and with the evolution of the intensities of the image (the generation of a scale-space) 

specified by the evolution equation ~7 = V.F(a;L, auL, ... ),then the levelsets of L evolve 

db h f II . I . . ac -V.P(8;L.8;,L, ... ) ~N 
governe y t e o owmg curve evo ut10n equat10n: a, = IVLI · · 

Here F is the (arbitrary) flow vector expressed in any partial spatial derivative of the image, 

and N is the inward unit normal. 

In general, a point on a curve can move in any direction. This direction can be decomposed 

as a component in the tangential (to the curve) direction T, and a component in the normal 

direction N. So the most general curve evolution equation is ~~ = u:T + f3N. However. a 
motion tangential to the curve in unnoticeable, the exact position of the curve (isophote in 
our situation) is inelevant. Compare the situation with a rubber band running over two 
rotating wheels: two photographs taken at different moments show the band in different 
positions, but this cannot be seen on the pictures of the structureless band. This irrelevance 

of the component a T was shown mathematically by Gage l Gage 1983]. 
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So the level sets evolve according to ~~ = f3 N. 

This is an important formulation, as we can now relate both schemes directly together. It 

implies that when we consider a curve evolution scheme ~~ = g( K, :; , :;~ , ... ) N of a 

curve C(x(p), y(p)) where p is the curve arclength parameterizing the curve and K the 
isophote curvature , we know that the luminance L evolves according to 

~7 = - 4, g(- t'. , ... ) . We recall from chapter 6 that K = - i: . The PDE for the evolution 

of the luminance for the entropy scale-space becomes now: ~7 = f3o Lw + /31 Lvv, belonging 
to the class of Hamilton-Jacobi equations. 
Olver, Sapiro and Tannenbaum [Olver l 994d] give a very useful generalization to the 
Euclidean shortening flow equation. They show that when the evolution of the curve C is 
expressed in the second order derivative with respect to the intrinsic curve arclength r, i.e. 

~~ = ~
2

,f , then this equation defines a flow which is invariant to any Lie group action (an 
action which can be expressed in infinitesimal form, like translations, rotations, scalings) for 
which the arclength is invariant. They show that these equations locally behave as geometric 

heat equation ~~ = ;2 /1 L, where g is the group-invariant metric g = :~ . If r is the (usual) 

Euclidean arclength we get the Euclidean shortening flow discussed above. 

Name of Luminance Curve Timestep Time step 
flow evolution evolution N.N. Gauss der. 

Linear OL = .6.L •c .,. ~ 2 es .. .. = - IVLI 

Variable -¥,- =v.(ch) •c _ V. (cVL) ~ 2 es 
conductance 

.. --~ 
Normal or .L = CLw •c =cN ~ 

constant motion 
. , .. 

Euclidean OL = Lvv 
•c = xN ~ 2 es 

shortening 
.. .. 2 

OL 
1 2 oc _!_ ~ 

Affine = Lvv 3 L. T = x3 N 

shortening 
.. ., 

1 2 

.L [Lvv J Lw 3 ]111 oc 1 2 

Affine shortening = = xl (~r' N .. 2 .. 
modified 1-1:'-I'" ., 

Entropy .L = /Jo Lw + /J1 Lvv ~ = (/Jo +/h x) N - ~ - ' 2 es .. .. 2 

Figure 21.19 Table of some popular nonlinear diffusion equations with their name, PDE 
formula for the luminance evolution, the PDE formula for (isophote) curve evolution, the 
maximum allowed timestep for nearest neighbor implementations (N.N.), and the maximum 
allowed timestep for Gaussian derivative implementation. 

When ra is the affine arclength (invariant under affine transformations) they derive the curve 
. . ac a2 c _1_ ~ • aL _1_ .=. 

evolut10n equat10n -a = -a 2 = K' N, or eqmvalently -a = Lvv' L,,.' . 
t r11 f 

Table 21.19 summarizes the properties of a number of important nonlinear diffusion schemes 
[adapted from Niessen l 997d]: 

Here are the Mathematica forward-Euler implementations of constant-motion (normal) flow, 
affine shortening flow. and a modified version of affine shortening flow (proposed by 
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Niessen [Niessen 1997c]) to slow down the evolution at high gradients so it maintains 
comers better: 

constantmotion[im_, nrsteps_, a_, evolutionrange_) := 

Module [ {c5s, imt}, c5s = evolutionrange I nrsteps; imt = im; 

Do[imt+=c5s~gD[imt, 1, 0, a] 2 + gD[imt, 0, 1, a] 2
, {nrsteps}]; imt]; 

affineshorteninq[im_, nrsteps_, a_, evolutionranqe_] : = 
evolutionranqe 

Module[ {c5s, imt}, 6s = ; imt = im; Do[ 
nrsteps 

imt += 6s (qD[imt, O, 2, a] qD[imt, 1, O, a] 2 - 2 qD[imt, O, 1, a] qD[imt, 1, O, a] 

gD[imt, 1, 1, a] +gD[imt, O, 1, a] 2 gD[imt, 2, O, a])'(l/3) 

(qD[imt, O, 1, a] 2 +qD[imt, 1, O, a] 2
)

113
, {nrsteps}]; imt]; 

The modified affine shortening flow applies a different scale CTgrad for the modifying 
gradient, weighted by a factor k: 

affineshorteningmodified[im_, nrsteps_, a_, agrad_, k_, evolutionranqe_] : = 

. evolutionranqe . . 
Module[ {6s, 1mt}, 6s = ; 1mt = 1m; 

nrsteps 

Do[imt+=c5s (gD[imt, O, 2, a] gD[imt, 1, O, a] 2 -2gD[imt, O, 1, a] 

qD[imt, 1, O, a] qD[imt, 1, 1, a] +qD[imt, O, 1, a] 2 qD[imt, 2, O, a])"' 

(l / 3) (gD[imt, O, 1, a] 2 + gD[imt, 1, O, a] 2
) 

113 

( 
1 i-2/3 k (gD[imt, O, 1, agrad] 2 +gD[imt, 1, O, agrad] 2

) , {nrstepsJ]; imt]; 

We use a test image of a square (intensities between 0 and 100) with added Gaussian noise 
(mean= 0, er= 50). 

<< statistics .. ContinuousDistributions .. ; 
noisysquare= Table[If[35 < x < 93&&30 <Y < 93, O, 100] + 

Random[NormalDistribution[O, 50]], {y, 128), {x, 128)]; 
DisplayTogetherArray[ListDensityPlot/@{noisysquare, 
euclideanshorteninq[noisysquare, 32, 1, 32]}, Imaqesize -> 315]; 

Figure 21.20 Euclidean shortening flow is a curvature-driven flow; in curve evolution 
terminology: curves are moved in the gradient direction with a speed proportional with the 
curvature. Clearly the corners with K >> O are smoothed, while the straight (K = 0) edges are 
preserved. 
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Why the name 'shortening flow'? 

Sapiro and Tannenbaum LSapirol993e] proved that the length of the curve under a 
shortening flow indeed shrinks. They showed for the metric of the curve, defined as 

g(p, t) = I ~ I, where p is an arbitrary parametrization of the curve 1, that the evolution of 

the metric is equal to: ~; = -K2 g. 

rz" The total length of the curve L =Jo g(T, t)dr evolves as 

~7 = fi fo2
" g(T, t) dr = - fo2

" K2 g(r, t) dr = - foL K2 dv, from which we see that the length 
is always decreasing with time. 

21.14 Mathematical Morphology 

Mathematical morphology is one of the oldest image processing and analysis techniques. 
The original idea is the application of a logical area-operator (called structuring element) on 
areas of the image in the same way as convolution filters. The following example illustrates 
this. We define a simple binary image lbin and a structuring element structel: 

lbin=PadRight[Table[l, {3}, {3}], [7, 7}, O, 2]; 

structel =Table[!, {3}, {3}]; MatrixForm /@{!bin, structel} 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 1 1 1 0 0 

, [ ~ 
1 

~ l } 0 0 1 1 1 0 0 

0 0 1 1 1 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

The structuring element is shifted over the image exactly as in a 2D convolution. The logical 

operation Bi tor applied on all elements that are in both the structuring element and the 
underlying image patch lthis is detected with Bi tAnd) give a dilation of the object in the 
image: 

ListConvolve[structel, !bin, {2, 2}, O, BitAnd, BitOr] // MatrixForm 

0 0 0 0 0 0 0 

0 1 1 1 1 1 0 

0 1 1 1 1 1 0 

0 1 1 1 1 1 0 

0 1 1 1 1 1 0 

0 1 1 1 1 1 0 

0 0 0 0 0 0 0 

Reversing the operations gives an erosion: 
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ListCorrelate[l - structel, !bin, (2, 2), 1, BitOr, BitAnd] // MatrixForm 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

0 0 0 0 0 0 0 

Show[Import["erosions-dilations.gif"], ImageSize -> 350]; 

Figure 21.21 Erosion and dilation of a curve with a ball rolled over it at the outer and inner 
borders. The larger structuring element smoothes the curve more. The size of the ball is the 
scale of the smoothing process. From van den Boomgaard [vandenBoomgaard1993a]. 

The relation with normal flow now becomes clear: the motion of the contour of the image is 
governed by the structuring element in exactly the same way as the level set is moved in the 
direction of the normal. 

This is only true for an isotropic convex (i.e. round) structuring element. One also says that 
the unit gradient vector IV LI is the infinitesimal generator for the nomial motion evolution 
equation. Figure 21.21 shows the concept. 

We define the following functions in Mathematica lfor application on binary images only): 

Unprotect[binarydilate, binaryerode]; 

binarydilate [im_, structel_] : = ListConvolve [structel, 
im, Ceiling[Dimensions[structel] I 2], 0, BitAnd, BitOr]; 

binaryerode [im_, structel_] : = ListCorrelate [l - structel, 
im, Ceiling[Dimensions[structel] I 2], 1, BitOr, BitAnd]; 

The sequence of erosion followed by dilation removes small structures selectively from the 
image: 

textim = Import["Text.gif"] [ [1, l]]; 
im = textim; Block [ {$DisplayFunction = Identity}, 

pO = ListDensityPlot[im]; 
pl= Table[ListDensityPlot[im = binaryerode[im, structel]], {i, 3)]; 
p2 = Table[ListDensityPlot[im = binarydilate[im, structel]], {i, 3)]]; 
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Show [GraphicsArray [ {pO, p2 [ [3]] } ] , ImageSize -> 340] ; 

,,,,,,. . ----,SM Cl 4 8 9 
098641 
8833VC 

.-1 ,-:'•~ I. 

Figure 21.22 Left: original binary image. Right: result after three erosions followed by three 
dilations with a square 3x3 structuring element. The smaller structures have been eroded 
fully and did not return upon subsequent restoration of the contour by dilation. 

Here are the intermediate steps: 

Show [GraphicsArray [{pl, p2}], ImageSize -> 330]; 

-- - -ls t,1 1, ,.1: ~ 
u ! ' •. , ~ 1 
r. J : • c - - .-.-

Figure 21.23 Top row: three consecutive erosions of the text image. Bottom row: Three 
consecutive dilations of the eroded image. 

Subtracting the result of the operation of erosion (of the miginal image) from the result of the 
operation of dilation (of the original image) gives us the result of the morphological gradient 
operator: 

ListDensityPlot[binarydilate[textim, structel] -
binaryerode [textim, structel], ImageSize -> 180]; 

Figure 21.24 The subtraction of an eroded and dilated image gives the morphological 
gradient of the image. The scale of the operation is hidden in the size of the structuring 
element. 
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21.15 Mathematical morphology on grayvalued images 

The classical way to change the binary operators from mathematical morphology into 
operators for gray-valued images. is to replace the binary operators by maximum/minimum 
operators. 
Mathematical morphology is a mature and well documented branch of computer vision. We 
will limit ourselves here to the Mathematica implementation of the grayvalue-erosion and 

grayvalue dilation operators. Dilation employs the Max operator, erosion the Min operator. 

Unprotect[dilate, erode]; dilate[im_, el_] := 
Listconvolve[el, im, Ceiling[Dimensions[el] /2], Min[im], Plus, Max]; 

erode[im_, el_] := Listcorrelate[-el, im, 
Ceiling[Dimensions[el] /2], Max[im], Plus, Min]; 

Here is an example for a 2562 image: 

immr:Import["mr256.gif"][[l, l]];el:Table[l, {3}, {3}]; 
DisplayTogetherArray[ 

{ListDensityPlot [immr], ListDensityPlot [imd =dilate [immr, el]] , 
ListDensityPlot[ime = erode[immr, el]]}, ImageSize -> 510]; 

l~c~ •. ~ 
f .. ,. 

I •' • ~ . . ~ ' :.... 

it . '. c'l.·. "\· . .' ' · .. -;:f I .. 
I 

. _,,...--------,. <I ;to 
' . , ..., 

I :. ~ '{;"')). i 

\ .· · ~ 
,\. , it~ ; 

' .,_!• 
Figure 21.25 Left: original image. Middle: grayvalue dilated, right: grayvalue eroded version. 

Structuring element = [ ~ ~ ~ ) · 
And here is the morphological gradient for this image and structuring element: 

ListDensityPlot[ime - imd, ImageSize -> 450]; 

( 
Figure 21.26 Grayvalue morphological gradient . Structuring element as in fig. 21.25. 
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21.16 Mathematical morphology versus scale-space 

It was shown by van den Boomgaard and Dorst that a parabolic structuring element leads to 
Gaussian blurring [van den Boomgaard 19971. This establishes an elegant equivalence 
between mathematical morphology and Gaussian scale-space. 

Florack, Maas and Niessen [Florack 1999al related mathematical morphology and Gaussian 
scale-space by showing that both theories are cases from a more general formulation. 

It can be shown that dilation or erosion with a ball is mathematically equivalent to constant 
motion flow, where the isophotes are considered as curves and they are moved in the gradient 
(or opposite) direction. Here is the Mathematica code and some examples: 

constantmotion[im_, nrsteps_, a_, evolutionrange_] := 

Module [ (c5s, imt}, c5s = evolutionrange I nrsteps i imt = imi 

Do [ imt += c5s y (gD [imt, 1, O, a] 2 + gD[imt, O, 1, a] 2 ), {nrsteps} Ji imt Ji 

DisplayTogetherArray[ 
ListDensityPlot[constantmotion[textim, 10, 1, 10]], 
ListDensityPlot[constantmotion[textim, 10, 1, -10]], ImageSize -> 440] i 

Figure 21.27 Grayvalue morphological dilation and erosion are equivalent to non-linear 
diffusion with constant motion flow (with the PDE ~~ = ± I \i LI). The expansion of the 
contour by the morphological structuring element is equivalent to the curve motion of the 
isophote in the gradient direction. Left: constant motion dilation. Right: constant motion 
erosion. 

21.17 Summary of this chapter 

The diffusion can be made locally adaptive to image structure. Three mathematical 
approaches are discussed: 

1. PDE-based nonlinear diffusion, where the luminance function evolves as the divergence of 
some flow. The nonlinear PDE's involve local image derivatives, and cannot be solved 
analytical 1 y; 
2. Evolution of the isophotes as an example of curve-evolution; 
3. Variational methods, minimizing an energy functional defined on the image. 
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Adaptive smoothing requires geometric reasoning to define the influence on the diffusivity 
coefficient. The simplest equation is the equation proposed by Perona & Malik, where the 
variable conduction is a function of the local edge strength. Strong gradient magnitudes 
prevent the bluITing locally. the effect is edge preserving smoothing. The strong feedback 
connections seen from Vl to LON may be involved (among many other possible 
mechanisms) in a locally adaptive scheme for image enhancement. 

The numerical implementation of the nonlinear PDE's is examplified with an iterative 
forward-Euler scheme. This is the simplest scheme to start with, but is unstable for stepsizes 
larger than the Von Neumann criterion. We derive this criterion again and expand it for 
scaled (regularized) differential operators. The stepsize can then be made substantially larger. 

The Perona & Malik equation leads to deblmTing tenhancing edges) for edges larger than the 
turnover point k, and blurs smaller edges. This is one of the reasons why the pe1formance of 
this PDE is so appreciated. 

There is a strong analogy between curve evolution and PDE based schemes. They can be 
related directly to one another. 

Euclidean shortening flow involves the diffusion to be limited to the direction perpendicular 
to the gradient only. The divergence of the flow in the equation is equal to the second order 
gauge derivative L.•v with respect to v, the direction tangential to the isophote. Normal 
motion flow is equivalent to the mathematical morphological erosion or dilation with a ball. 
The dilation and erosion operators are shown to be convolution operators with boolean 
operations on the operands. 



22. Epilog 

Computer vision is a huge field, and this book could only touch upon a small section of it. 
First of all, the emphasis has been on the introduction of the notion of observing the physical 
phenomena, which makes the incorporation of scale unavoidable. Secondly, scale-space 
theory nicely starts from an axiomatic basis, and incorporates the full mathematical toolbox. 
It has become a mature branch in modern computer vision research. 

A third major notion is the regularization property of multi-scale operators, in particular 
spatio-temporal differential operators. This enables the use of powerful differential geometric 
methods on the discrete data of computer vision, for the many fields where differential 
structure is part of the analysis, such as shape, texture, motion etc. 

A next major emphasis has been the inspiration from the workings of the human visual 
system. Here too is still much to be learned, especially in the layers following the visual 
front-end, where perceptual grouping and recognition is performed. The intricate feedback 
loops and the local orientation column linking should be among the first to be studied in 
detail. Modern neuro-imaging technology is about to give many clues. 

The theory covered in this book, focusing on bio-mimicking front-end vision, is primarily 
applied to the local analysis of image structure. The extraction of global, intelligently 
connected structure is a widely explored area, where model-based and statistical methods 
prevail to arrive to good perceptual grouping of local image structure. The study of the multi
scale relations in the deep structure in scale-space, and the use of hierarchical, more 
topological multi-scale methods, has just only started. 

Finally, computer vision is solidly based on mathematics, rn any applicable field. Image 
processing has become a science. 

This book showed the use of Mathematica, as a powerful combination of a complete high
level mathematical programming language. from which through pattern matching the 
numerical implementation can be automatically generated, enabling rapid prototyping for 
virtually all the concepts discussed in this book. Many of the functions are intrinsically 11-

dimensional. 

The role of and need for robust computer vision techniques is ever increasing. In diagnostic 
radiology, computer-aided diagnosis will see great successes in the next decade, and the 
availability of huge image databanks will stimulate the study to image guided retrieval and 
self-organization of analysis systems. 

Much has been left untreated, the main reason is that the field is so huge. A possible sequel 
of this book might include multi-scale methods for shape from shading, texture analysis 
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(locally orderless images), 3D differential geometry, wavelet based analysis, nonlinear and 
statistical methods, and deep structure analysis. 

This book is meant to be a interactive tutorial in multi-scale image analysis, describing the 
basic functionality. It is my sincere wish that this book has invited you to actively explore 
this fascinating area. 

Eindhoven, Summer 2002. 

<< FrontEndVision' FEV'; 
Show[Import [ "ScaleSpaceForest2. jpg"]]; 

Figure 22.1 Artist's impression of a 'deep structure scale-space' forest, where the geodesic 
paths of the extrema and saddlepoints are shown as brown branches, and the points of 
annihilation of extrema and saddlepoints are depicted as green balls. Scale runs vertical. 
The mist is a partly transparent surface where the determinant of the Hessian vanishes. 
Artist: ir. Frans Kanters, University of Technology Eindhoven, Department of Biomedical 
Engineering, Biomedical Image Analysis Group, 2003. 



A. Introduction to Mathematica 

After finding the next-to-last bug. c/eau up your debugging sill.ff. The last bug in any 

piece of code is invariably found by the first user of the code a11d never by the progrmnmer. 
Roman Maeder, Programming in Mathematica I, pp. 43. 

Mathematica is an fully integrated environment for technical computing. It has been 
developed by prof. Stephen Wolfram and is now being developed and distributed by 
Wolfram Research Inc. Mathematica comes with an excellent on-board help facility, which 
includes the full text of the handbook (over 1400 pages). 

Mathematica used to be slow and memory-intensive. This might be the reason why so many 
computer vision labs have not considered applying it to images. It is a pleasant 'discovery' 
that Mathematica is now fast and efficient with memory. 

As a concise quick reference guide, here are the most important things to know when you 
want to get started with Mathematica: 

A.1 Quick overview of using Mathematica 

Mathematica consists essentially of two programs, that communicate with each other: the 
kernel for the calculations and the front-end for the graphical user-interface (input and 
presentation of data). The front-end is an advanced text processor. It creates notebooks, 
portable documents that consists of cells, indicated by the brackets to the right of the cell. 
The front-end and kernel together form an interactive interpreter. 

Cells come in many styles, like 'title', 'text', 'input' etc. The front-end takes care of automatic 
grouping of the cells (this, as any function, can be turned off). 

By double-clicking on the group bracket a group of cells can be closed or opened. for quick 
overview of the document. 

Input style cells are sent to the kernel and executed by pressing 'shift-return'. Commands can 
extend over several lines in an input type cell, separated by returns. Cells can be edited, and 
run again. Mathematica remembers activities in the order of processing. not by the location 
of the cell in the notebook. 

The f01mat menu item contains all commands for formatting text. The style sheets set the 
definitions for appearances of elements for each cell type. We initialize every chapter with 
the following commands. The first sets paths and options for often used functions. the second 
contains the functions predefined for the book: 

« FrontEndVision' FEV'; 
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Mathematica can do both symbolic and numerical calculations. It has arbitrary precision. 

N [Jr, 100] gives the numerical value of 1T in 100 significant digits, D [Log [x] , x] gives 
the first derivative of the natural logarithm of x. 

N[:>r, 100] 

3.1415926535897932384626433832795028841971693993751058209749445923078' 
16406286208998628034825342117068 

D[Log[x], x] 

x 

Use of brackets in Mathematica: 
{ } List Example: 
[ ] Function Example: 

( ) Example: 

{x,y,z} 
HermiteH[n,x] 

(x + 3) 2 

( * ••• *) 

Combine 
Comment Example: ( * This function . . *) 

The internal structure of every expression is a Head in front of a list of operands. Check the 

internal representation with FullForm: 

FullForm[{l, 2, ab, c 2
, {p, q}}] 

List[l, 2, Times[a, b], Power[c, 2], List[p, q]] 

Mathematica is strongly list oriented. Lists can be nested in any order. Every expression is a 
list, as are our image data. Most commands are optimized for list operations. 

Notation: 

- Multiplication is indicated with a space or*· 

- A semicolon ; at the end of a command means "Print no output". Useful when a lot of 

textual output is expected. The semicolon ; is also the regular expression statement separator. 

- Enter Greek letters with the escape key : before and after it: E.g.: : p : turns into lT. Any 
symbol can be entered through 'palettes' (see the File menu on the title bar of your 
Mathematica session). 

- Enter superscript with control-A, subscript with control- , division line with 

control- I, a square-root sign with control-2. 
- Mathematica's internal variables and functions all begin with a capitalized letter, your own 
defined variables should always begin with a lower case for clear distinction: Pi, 
Plot3D[], myfunction[], {x, y, z }· 

- Often we use the 'postfix' form for the application of a function: 2 A 10 0 I I N is 
equivalent to N [ 2 100 ] . 

2 A 100 I IN 

1. 26765 '1030 
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Some front-end tips: 
- The menu item Format - Show Toolbar gives a handy toolbar below the title bar of your 
window. 

- Keeping the alt-key press while dragging the mouse gives smooth window scrolling. 

- Help is available on any command. 

The full 1400 page manual is online under the Help menu item. 

There is a very useful 'getting started' section, and a 'tour of Mathematica'. Shortcut for help: 
Highlight the text and press Fl. 
- Command completion is done with control-k, the list of arguments of a function with shift
control-k. 
- The notebook can be executed completely with the Kernel menu commands. 
- All output can be deleted, which may save disk space considerably. 
- A series of Graphics output can be animated by double-clicking one of the figures. The 
bottombar of the window show steering controls for the animation. 
- The input menus contains many interesting features, as 3D viewpoint selection, color 
selection, hyperlinks, sound, tables and matrices, automatic numbering objects etc. and is 
w01th studying the features. 

A.2 Quick overview of the most useful commands 

The commands below occur often in this book. Full explanation and many examples are 
given in the Help browser of Mathematica. For the sake of the readers that do not have 
Mathematica running, available or at hand while reading this book, some short examples are 
given of the actions of the commands. 

Plot commands come with many options. See available options in the Help browser or with 

e.g. Options [Plot3D]. 

Plot, PlotJD, ContourPlot, ListPlot, ListDensityPlot 

Mathematica shows every plot it creates immediately. The output of the plot commands is 
controlled by the option DisplayFunction. It specifies the function to apply for displaying 
graphics (or sound). 

To prevent intermediate results, e.g. while preparing a senes of plots to be shown with 
GraphicsArray, a useful construct is to create a scoping construct with 

Block [ {vars} ] . Within a block, all variables vars are hidden from the main 

global context. E.g. in the following example the setting for $DisplayFunction ts 

temporarily set in the block context to Identity, which means: no output. 
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Block [ { $DisplayFunction = Identity}, 
pl= Plot[Sin[x], (x, 0, 6 :>r}]; 

p2 = Plot3D [Sin [x] Cos [y] , {x, 0, 2 :>r}, {Y, 0, 2 :>r}]] ; 

Show [GraphicsArray [{pl, p2}]]; 

115 

- - (•.5 

-l 

Mathematica is List oriented. This is a short nested List: 

ma= {{a, b, c}, (d, e, f), (g, h, i}} 

{{a, b, c}, (d, e, f), {g, h, i}} 

FullForm gives the internal representation, i.e. a Head with a series of operands: 

FullForm[ma] 

List[List[a, b, c], List[d, e, f], List[g, h, i]] 
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Listable is an attribute of many functions. It means that they perforn1 their action on all 
elements of a list: 

ma+ 1 

{{l+a, l+b, l+c}, {l+d, l+e, l+f}, {l+g, l+h, l+i}} 

ma2 

{(a', b 2
, c 2

}, (d2
, e 2

, f'), {g2
, h 2

, i 2
}} 

Clear [x] or f [x] =. clears f [x]. Remove [f] completely removes the symbol f. 

f =.; f 3 

Nest applies a function multiple times. 

f=.; Nest[f, x, 3] 

f [f (f (x]]] 

With repeated operations (using Nest) a wide variety of self-similar structure can be 
generated. From Stephen Wolfram's new book [Wolfram2002] the gasket fractal: 
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Nest (SubsuperscriptBox [ #, #, #] &, "n", 5] I I DisplayForm 

Figure A.1 The gasket fractal is created by repeated action, which is implemented with the 
function Nest. See also mathforum.org/advanced/robertd/typefrac.html. 

Map maps a function on the elements of a list: 

Map[f, ma] 

{f[{a, b, c)], f[{d, e, f}], f[(g, h, i}]} 

You can specify the level in the list where the function should be mapped: 

Map [f, ma, 2] 

{f[{f[a], f[b], f[c])], f[{f[d], f[e], f[f]}], f[{f[g], f[h], f[i]}]} 

Map [ f, ma, { 2 } ] 

{{f[a], f[b], f[c]), {f[d], f[e], f[f]), {f[g], f[h], f[i]}} 

Apply replaces the head of an expression with a new head. This sums the columns: 

Apply(Plus, ma] 

{a+d+g, b+e+h, c+f+i} 

This sums the rows, i.e. Plus is applied at level 1 in the List: 

Apply(Plus, ma, {l}] 

{a+b+c, d+e+f, g+h+i} 

Apply can even replace at level 0, i.e. the head itself. This sums all elements of a matrix: 

Apply(Plus, ma, (0, l}] 

a+b+c+d+e+f+g+h+i 

Some often used commands have short notations: 

Apply 

Map 

@@ 
/@ 
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Replace 

Condition 

Postfix 

1. 
I; 

II 

Times@@ma/. {c->c2
) 

{ad g, be h, c 2 f i} 

.f.00 

In the following lines, the first statement rotates (cyclic) the elements one position to the 
right, while the second rotates one position downward (rowshift down). 

RotateRight /@ma 

{{c, a, b}, {f, d, e}, {i, g, h}} 

RotateRight[ma] 

{{g, h, i}, {a, b, c}, {d, e, f}} 

Plus@@ma 

{a+d+g, b+e+h, c+f+i} 

ma I I MatrixForm 

(
a b cl 
d e f 

g h i 

To execute a function on every dimension of a multidimensional an-ay (e.g. 2D the columns 

and the rows). use the function Map [ f, data, level] with indication of the level of 
mapping. Here is an example for an operation on a 3D array, for the z, y and x direction: 

Clear[a, b, c, d, e, f, g]; m2 = {{{a, b}, {c, d}}, {{e, f}, {g, h})}; 

Map[RotateRight, m2, {O}] 
Map [RotateRight, m2, { 1}] 

Map [RotateRight, m2, {2}] 

{ { {e, f}, {g, h}}' {{a, b}' {c, d))} 

{ { {c, d)' {a, b}}' { {g, h}' {e, f}}} 

{ { {b, a}, {d, c}}' { {f' e}' {h, g))} 

Table generates lists of any dimension, e.g. vectors. matrices, tensors: 

rt=Table[Random[], {i, 1, 3), {j, 1, 4}]; rt//MatrixForm 

( 

0.419066 
0.898048 

0.0873124 

0.685606 0.696535 
0.0157444 0.0700894 
0.818922 0.833205 

0.470892 l 
0.44903 

0.0487981 



401 A.3 Pure fu11ctio11s 

A.3 Pure functions 

An operator is a 'pure function', e.g. (# 2 ) & is a function without name, where some 
operation on the operand # is pe1formed, in this case squaring the variable. So (# 2 ) & 

means: 'square the argument'. Multiple variables are indicated with #1, #2 etc. 

(#2) & [f] 

f' 

p = (Sin [#1 + #2] +Sqrt [#2]) &; 

p[f, g] 

yg + Sin[f + g] 

We use a pure function frequently when we have to apply a function repeatedly to different 
arguments: 

f = windingnumber[#] &; 

f /@ { 1, 4' 6} 

{windingnurnber [ 1] , windingnurnber [ 4] , windingnurnber [ 6] } 

f[4] 

windingnurnber[4] 

or when we want to plot something for a particular range of scales: (the pure function is now 

'Lis tDensi tyPlot the output of gD at some scale for the scales 2, 3 and 6'): 

im = Import["mr256.gif"] [ [1, l]]; 
DisplayTogetherArray[ 

ListDensityPlot[gD[im, 1, 0, #]] &/@{2, 3, 6), ImageSize->410]; 

Figure A.2 Use of the function Map(/@). 

A.4 Pattern matching 

To show the usefulness of pure functions and the technique of pattern matching we work out 
an example in some more detail: We do manipulations on words of a complete English 
dictionary, consisting of 118617 English words. 
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We find palindromes (words that are the same when written in reverse order) and word 
length statistics. The example is taken from one of the Wolfram Mathematica tutorials, see 
library. wolfram.com. 

We read the data with Reac!List and check its size with Dimension. Note that we put a 

; (semicolon) at the end of the next cell. This prevents the full text of the dictionary to be 
printed as output to the screen, which is in this case a very useful feature! 

data= ReadList [ "dictionary118617. txt", String] ; 
Dimensions[data] 

(118617) 

These are the first 20 elements: 

Take[data, 20] 

{aardvark, aardvarks, aaronic, abaca, abaci, aback, abacterial, abacus, 
abacuses, abaft, abalienate, abalienated, abalienating, abalienation, 
abalone, abalones, abandon, abandoned, abandonedly, abandonee} 

We use the commands for counting the number of letters in a string, and to reverse a string: 

StringLength [ "FrontEndVision"] 

14 

StringReverse [ "FrontEndVision"] 

noisiVdnEtnorF 

The following command selects those elements which are equal to its reverse, and are longer 

then 2 letters. && denotes the logical And. Note the use of the pure function: 

Select[data, (# == StringReverse[#] && StringLength[#] > 2) &] 

{adinida, aha, ama, ana, anna, bib, bob, boob, civic, dad, deed, deified, 
deled, did, dud, eke, ene, ere, ese, esse, eve, ewe, eye, gag, gig, hah, 
huh, kayak, kook, level, madam, malayalam, minim, mom, mum, nisin, 
non, noon, nun, pap, peep, pep, pip, poop, pop, pup, radar, redder, 
refer, reviver, rotator, rotor, sagas, sees, sexes, shahs, sis, 
solos, sos, stats, succus, suus, tat, tenet, tit, tnt, toot, tot, wow} 

To calculate the length of each word, we map StringLength on data: 

wordLengths =Map [StringLength, data] ; 
Max [wordLengths] 

45 

Count [list, pattern] gives the number of elements in list that match pattern. 
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Count [wordLengths, 10] 

14888 

t = Table[Count[wordLengths, i], {i, 1, Max[wordLengths] }] 

{O, 93, 754, 3027, 6110, 10083, 14424, 16624, 16551, 14888, 12008, 
8873, 6113, 3820, 2323, 1235, 707, 413, 245, 135, 84, 50, 23, 

16, 9, 4, 2, 1, 0, o, 0, 0, 0, o, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2) 

ListPlot[t, Plotstyle--> PointSize[0.02], 
AxesLabel -> { "wordlength", "occurrence"}, 
PlotJoined ->False, ImageSize -> 230]; 
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Figure A.3 Histogram of word lengths in a large English dictionary. 

Pattern matching is one of the most powe1ful techniques in Mathematica. There are three 

symbols for a pattern: _ denotes anything which is a single element, _ denotes anything 

which is one or more elements, denotes anything which is zero, one or more elements. 

x denotes a pattern which is known under the name x. Replacement (/.) is by Rule 

( ..:). The following statement replaces every occurrence of a into ...[';; : 

f=.;ma/. {a->~} 

{{,,;a, b, c}, (d, e, f}, (g, h, i}} 

This returns the positions in the dictionary where words are found of more then 23 letters: 

Position[data, x_/; StringLength[x] > 23] 

{(5028), (17833), (33114), (33134), {35841), (49683), (50319), 

(57204)' {57205)' {60016)' (62133)' {62598)' (62599)' {63552)' 

{63723)' {63724)' {63725)' {67140)' {67141)' {70656)' {74099)' 
{74101), {74103), {74166), {79229), {79273), {79274), {79500), 

{83241)' (104039)' (105810)' (106774)' {113411)' {114511)} 

This returns the first pair of two consecutive 13-letter words in the dictionary: 

Dimensions[data] 

(118617) 
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data I. {a __ , b_ I; StringLength [b] == 13, 

c_/; StringLength[c] == 13, d __ } -> (b, c} 

{abstentionism, abstentionist} 

A.5 Some special plot forms 

../04 

ParametricPlot3D [ { fx, fy, fz}, { t, tmin, tmax}, {u,umin, umax}] creates a 
surface, rather than a curve. 

The surface is formed from a collection of quadrilaterals. The corners of the quadrilaterals 
have coordinates corresponding to the values of the /, when t and u take on values in a 
regular grid. 

v 2 
r[u_] := -1 +E-.".; x = 2 r(u] Cos(u] Cos[ 2 J ; 

v 2 1 
y = 2 r[u] Cos[-] Sin[u]; z = --- r(2 u] + r(u] Sin[v]; 

2 Y2 
shell:ParametricPlot3D((x, y, z}, (u, 0, 6Pi}, (v, 0, 2Pi}, 

PlotPoints-+ (100, 40), PlotRange-+ All, Axes-+ False, Boxed-+ False, 
ViewPoint->(2.581, 1.657, 0.713), ImageSize->200]; 

Figure A.4 An example of ParametricPlot3D for the plotting of more complicated 30 

manifolds. 
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Clear[x, y, z]; << FrontEndVision'ImplicitPlot3D'; 
torus= ImplicitPlot3D[zA2 == 1- (2 -Sqrt[xA2 +yA2]) A2, 

(x, -3, 3), (y, -3, 3), (z, -1, 1), PlotPoints .... (15, 15, 10), 
Passes .... Automatic, ImageSize -> 200]; 

Figure A.5 An example of ImplicitPlot3D for the plotting of more complicated 30 
manifolds. 

A.6 A faster way to read binary 30 data 

Mathematica has a set of utilities to read and write binary data from and to files. Examples of 

such commands are ReadBinary [ ... ] and Wri teBinary [ ... ] . They are available 
in the package Utilities - BinaryFiles - (see the help browser). These commands 
however are slow. 
A faster way is to use an external C program to read the data, and to communicate with this 
program with MatlzLink. The program binary.exe (for Windows) is an executable C-program 

that contains all commands of the package BinaryFiles - in a fast version. This 
executable is available from MatlzSource at the URL: 
www.mathsource.com/Content/Enhancements/MathLink/0206-78 3. 

Here also versions for other platforn1s are available. It is beyond the scope of this book to 
explain MatlzLink, but in the help browser and at the MatlzSource repository good manuals 
are available. The package is installed by Install: 

Install["binary.exe"]; 

The taskbar in Windows at the bottom of the screen should now display the active program 
binary.exe with which we now will communicate. 

Let us read a file in raw bytes dataformat with a 30 MRI dataset. It is given that the set 
mri 01.bin contains 166 slices with 146 rows (x-dimension) and 168 columns (y
dimensions ). Each pixel is stored as an unsigned byte. To read this file we first need to open 
it: 

channel = OpenReadBinary [ 
$FEVDirectory <> "Images\mri02.bin", FilenameConversion .... Identity]; 

It is fastest to read the binary 30 image stack slice by slice. We first define space to store the 
image, then we read 166 slices as bytes. Each slice is partitioned into 146 rows. At the end 
we close the file. 
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im=Table[{}, (166)]; 
Table[ 

im[ [i]] = Partition[ReadListBinary[channel, Byte, 168 146], 146];, 
{i, 1, 166)] 1 

Close[channel]; 

We check for the dimensions of our 3D image, about 4 million pixels: 

Dimensions [im] 

(166, 168, 146) 
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By calculating the Transpose of the 3D image, we can interchange the coordinates. The 
second argument is the new ordering of the coordinates. In this way it is easy to plot the 
other perpendicular planes. Let us look at the 85th image of the original stack, and the 85th 
image of two transposed forms respectively, as shown in the statement below. As we see 
from the left figure, the original slices were acquired in the coronal plane. The transposed 
images show us the sagittal plane (middle, Latin 'sagitta' = arrow) and the transversal plane 
(right). This method of transposing the data so we get other perpendicular planes is called 
m11ltipla11ar reformatting. 

DisplayTogetherArray[ 

ListDensityPlot /@ {im [ [85]], Transpose [im, (3, 2, 1)] [ [85]], 
Transpose[im, (3, 1, 2}][[85]]), ImageSize .... 500]; 

Figure A.6 Mu/tiplanar reformatting is the visualization of perpendicular images in a 30 
dataset by transposing the 30 dataset. The left image is one of the original acquisitions in 
the coronal plane. The middle image shows the 85th image in the sagittal plane. It is formed 
by showing all rows of pixels perpendicular to the pixels in the 85th column in the left image. 
The right image shows the 85th image in the transversal plane. It is formed by showing all 
rows of pixels perpendicular to the pixels in the 85th row in the left image. 

Multiplanar reformatting is of course only of high quality if the voxels are isotropic. Note in 
this example that slight differences in overall intensities in the original 3D MRI acquisition 
show up as vertical lines. 

By manipulation of the pointer Strean1Position we can read an arbitrary slice from the 3D 
dataset. This pointer points at the position just preceding the next bytes to read. After 
opening the file, the streamposition is set to zero, which is at the beginning of the data. By 
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setting the stream pos1t1on pointer 84 images further (84* 168* 146 locations further from 
zero), the next statement reads the 85th image only: 

channel = OpenReadBinary [ 
$FEVDirectory <> "Images\mri02. bin", F ilenameConversion-+ Identity] ; 

SetStreamPosition [channel, 84 * 168 * 146]; 
im85 =Partition [ReadListBinary [channel, Byte, 168 146] , 146] ; 
ListDensityPlot [im85, ImageSize -> 150] ; 

Figure A.7 Direct read of a single slice from a 30 dataset is best done by manipulation of the 
stream position pointer. 

Close[channel]; 

A. 7 What often goes wrong 

In this section we give a random set of traps in which you may easily fall if not warned: 

A7.1 Repeated definition 

When a function from a package is called before the package is actually read into the kernel, 
Mathematica adds the name to its global list as soon as it appears: 

Remove[Histogram] 

Histogram 

Histogram 

The function does not work, because the package Graphics· Graphics· has not been 
read. 

When subsequently the package is read, Mathematica complains that it may overwrite a 

previous definition, and does not redefine the function Histogram. The natural way out is 

to Remove the first definition, and to read the package again. 
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<< Graphics' Graphics'; 

Histogram::shdw: 
Symbol Histogram appears in multiple contexts {Graphics~Graphics~, Global~}; 

definitions in context Graphics~Graphics~ may 
shadow or be shadowed by other definitions. 

Remove[Histogram]; 
<< Graphics'Graphics'; 

Now the definition is fine: 

? Histogram 

Histogram[{xl, x2, ... }] generates a bar graph representing a histogram of the 
univariate data {xl, x2, ... }. The width of each bar is proportional 
to the width of the interval defining the respective category, and 
the area of the bar is proportional to the frequency with which the 
data fall in that category. Histogram range and categories may be 
specified using the options HistogramRange and Histogramcategories. 
Histogram[{fl, f2, ... }, FrequencyData ->True] generates a histogram 
of the univariate frequency data {fl, f2, ... },where fi is the 

frequency with which the original data fall in category i. More ... 

Histograrn[{xl, x2, ... }] generates a bar graph representing 

a histogram of the univariate data {xl, x2, ... } . More ... 

A7.2 Endless numerical output 

Prevent accidental output to the notebook if not necessary and very long, eg. when an image 
is calculated. 

Any output is not printed when the statement is concluded with a semicolon. The first 
statement generates about a million random 1111mbers to the screen, which will take a very 
long time to generate and prevent you from continuing (luckily, we made the cell 
inevaluatable). The second statement with the semicolon is fine. 

m = Table [Random [] , { 1000), { 1000}] 

m =Table [Random[] , { 1000), { 1000)]; 

Use Alt-. to abort an unwanted evaluation. 

A7.3 For speed: make data numerical when possible 

Be careful with symbolic computations on larger datasets. You may only be interested in the 
numerical result. Compare the examples below: 

mml = Table[Sin[xy], {y, 1, 8), {x, 1, 8)]; 
Timing [symbolicinverse = Inverse [mml] ; ] 

(36.343 Second, Null} 

Even for this small matrix, each symbolic tem1 is huge, and very impractical to handle. The 
numerical result is very fast: 
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Timing [numerical Inverse = Inverse [N [mml)) ; ) 

[O. Second, Null} 

We look at the result: 

Short[numericalinverse, 4) 

((0.150096, -0.00900765, 0.16249, -0.295079, 

-0.194507, -0.0870855, 0.139714, 0.336583), «6», {«l»}} 

Another example: the nume1ical Eigenvalues of a matrix with 10,000 elements is computed 
fast: 

mm2 = Table [Random [] , { 100) , { 100)] ; 

Timing[Eigenvalues[mm2);) 

[0.032 Second, Null} 

And use functional programming and internal functions as much as possible. 

Timing [array= Range [ 107
);) 

(0 .031 Second, Null} 

Timing[array=Table[i, (i, 1, 107
));) 

(5.906 Second, Null} 

A7.4 No more loops and indexing 

E.g. to multiply each 2 elements of an array, from head to tail: 

kl=m=Table[Random[], {i, 1, 106
)); 

Timing [For [i = O, i < 106
, kl [ [i]) = m [ [i]) m [ [106 

- i + l)), i ++)) //First 

18. 719 Second 

The same result is acquired much faster if we use mathematical programming with native 
Mathematica functions. They are optimized for speed, and programming becomes much 
more elegant. 

Timing [k = m Reverse [m)) / / First 

0.406 Second 

A7.5 Copy and paste in lnputForm 

There are 4 format types for cells in Mathematica. InputForm, OutputForm, 

StandardForm and Tradi tionalForm. See the help browser for a description of these 

types. Be alert when pasting a Tradi tionalForm cell as input cell, Mathematica may be 
not able to interpret this unequivocally. When you attempt this, Mathematica will issue a 
warning, and you see the wigged line in the cell bracket. 
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A.8 Suggested reading 

A number of excellent books are available on Mathematica. A few of the best are listed here: 

[Blachmanl999] N. Blachman. Mathematica: A practical approach. Prentice Hall, 2nd 
edition, 1999. ISBN 0-13-259201-0. 
This complete tut01ial is the easiest, quickest way for professionals to learn Mathematica, the 
world's leading mathematical problem-solving software. The book introduces the basics of 
Mathematica and shows readers how to get around in the program. It walks readers through 
all of Mathematica's practical, built-in numerical functions--and covers symbolic 
capabilities, plotting, visualization, and analysis. 

[Ruskeepaal999] H. Ruskeepaa. Mathematica Navigator: Graphics and methods of applied 
mathematics. Academic press, London. 1999. ISBN 0-12-603640-3 (paperback+CD-ROM). 

Mathematica Navigator gives you a general introduction to the use of Mathematica, with 
emphasis on graphics, methods of applied mathematics, and programming. 

The book serves both as a tutorial and as a kmdbook. No previous experience with 
Mathematica is assumed, but the book contains also advimced material and material not 
easily found elsewhere. Valuable for both beginners and experienced users, it is a great 
source of examples of code. 

From the amhor: 
- I would like first to ask, what is the general nature of your book Mathematica Navigator? 
- Before answering, I would like to ask you, whether you know what is the difference 
between an applied mathematician and a pure mathematician? 
- Hm ... , I seem to remember having heard some differences, but no, 1 don't remember imy at 
this moment. Tell me. 
- An applied mathematician has a solution for every problem while a pure mathematician has 
a problem for every solution. 
- Yes, indeed. That is a very describing difference. But how does this maxim relate with my 
question about the nature of your book? 
- I am im applied mathematiciim, and so I took the task of solving every problem - namely in 
using Mathematica. 
- Not a very modest goal... 
- Fnmkly, I took the task to write as useful a guide as possible so that you would have a more 
easy way to the wonderful world of Mathematica. 
- Do you start with the basics? 
- Yes, imd then the book goes carefully through the main material of Mathematica. 
- What are the main areas of Mathematica? 
- Graphics, symbolic calculation, numerical calculation, and programming. 
- And how far does your book go? 
- The book contains some advanced topics and material not easily found elsewhere, such as 
stereographic figures, graphics for four-dimensional functions, graphics of real-life data, 
fractal images, constrained nonlinear optimization, boundary value problems, nonlinear 
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difference equations, bifurcation diagrams, partial differential equations, probability, 
simulating stochastic processes, statistics. 

And for many subjects we also write our own programs, to practice programming. 
- Do you emphasize symbolic or numerical methods? 

- Both are important. For a given problem, we usually first try symbolic methods, and if they 
fail. then we resort to numerical methods. Thus, for each topic, the book presents first 
symbolic methods and then numerical methods. The book gives numerical methods a special 
emphasis. 
- Have you excluded some topics? 
- Topics of a "pure" nature such as number theory, finite fields, quaternions, or graph theory 
are not considered. Commands for manipulating strings, boxes, and notebooks are covered 
only briefly. MathLink is left out (MathLink is a part of Mathematica enabling interaction 
between Mathematica and external programs). 
- Do you like to say something about the writing of the book? 
- The writing was simply exciting. It is one of the most interesting epochs of my life thus far. 
By writing the book I learned a lot about Mathematica and obtained a comprehensive view 
of it. And the more I learned about Mathematica, the more I admired it. 
- What are the fine aspects of Mathematica? 
- It is consistent, reliable, and comprehensive. In addition, Mathematica has very powerful 
commands, produces excellent graphics, and has a wonde1ful inte1face. However, it certainly 
takes some time to get used to Mathematica, but that time is interesting and rewarding, and 
then you have a powerful tool at your disposal. 
- Thank you very much for this interview. 
-Thank you. 

[Wolframl999] S. Wolfram. The Mathematica book. Fourth edition, Wolfram Media I 
Cambridge University Press, 1999. 1470 pages. ISBN 0-52-164314-7. 

The definite reference guide for Mathematica, written by the author of Mathematica, 
Stephen Wolfram. Not a tutmial, but a handbook. The full text of this book is available in the 
indexed help-browser of Mathematica, as well as a searchable document on the web: 
documents. wolfram.com/v 4/index3 .html. 

[Mader1996a] R. Mader, Programming in Mathematica, 3rd ed .. Addison-Wesley Pub., 1996. 

This revised and expanded edition of the standard reference on programming in Mathematica 
addresses all the new features in the latest versions 3 and 4 of Mathematica. 

The support for developing larger applications has been improved, and the book now 
discusses the software engineering issues related to writing and using larger programs in 
Mathematica. As before, Roman Mader, one of the original authors of the Mathematica 
system, explains how to take advantage of its powerful built-in programming language. It 
includes many new programming techniques which will be indispensable for anyone 
interested in high level Mathematica programming. 
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[Mader1996bJ R. Mader, The Mathematica programmer II. Academic Press, 1996. 296 
pages. ISBN 0-12-464992-0 (paperback). This book, which includes a CD-ROM, is a second 
volume to follow The Mathematica Programmer (now out of print) and includes many new 
programming techniques which will be indispensable for anyone interested in high level 
Mathematica programming. 

A9. Web resources 

Webpages are very dynamic, and it is impossible to give a complete overview here. Some 
stable pointers to a wealth of information and support are: 

www.wolfram.com: The official homepage of Wolfram Inc., the maker and distributor of 
Mathematica. Here many links are available for support, add-on packages, books, the 
complete Mathematica book on-line, WebMathematica, GridMathematica, etc. 

www.mathsource.com: MathSource is a vast electronic library of Mathematica materials. 
including immediately accessible Mathematica programs, documents, journals (Mathematica 
in Education, the Mathematica Journal) and many, many exan1ples. Established in 1990, 
MathSource offers a convenient way for Mathematica developers and users to share their 
work with others in the Mathematica community. In MathSource you can either browse the 
archive or search by author, title, keyword, or item number. 

There are many introductions to Mathematica and pages with helpful links. Here are some 
examples: 

Tour of Mathematica (also available in the helpbrowser of Mathematica) 
www.verbeia.com/mathematica/tips/tip_index.html Ted's Tips and Tricks 
www.mathematica.ch/ (in German) 
phong.inf01matik.uni-leipzig.de/-kuska/mview3d.html/ (MathGL3d, an OpenGL translator 
for Graphics3D structures) 
www.unca.edu/-mcmcclur/mathematicaGraphics/ Mathematica graphics examples 
www.wolfram.com/products/applications/parallel/ Parallel computing toolkit 
www.wolfram.com/solutions/mathlink/jlink/ Java toolkit 
www.math.wright.edu/Calculus/Lab/Download/ Calculus teaching material 
forums. wolfram.com/mathgroup/ MathGroup newsgroup archive 
mathforum.org/math.topics.html MathForum by Drexler University 
integrals.wolfram.com/ The Integrator 
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8.1 Convolution 

« FrontEndVision'FEV'; 
Show[Import["retinapsf.~Jif"], ImageSize -> 150]; 
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Figure B.1 Experimental measurements of light that has been reflected from a human eye 
looking at a fine line ('line spread function'). The reflected light has been blurred by double 
passage through the optics of the eye. The amount of unsharpness is a function of the pupil 
diameter: with wider pupil opening the line got more blurred. Source: Campbell and Gubish, 
1996. Taken from [Wandell1995]. 

We take the example of the not-exactly-sharp projection of images on the human retina. Lens 
errors, cornea distortions, the retinal nerve tissue: they all contJibute to the 'smearing effect'. 

In fact, every point in the stimulus gives 1ise to the same blurring effect. Figure 1 shows 
some actual measurements at various pupil diameters. Suppose that the profile of the blur 
function is a Gaussian kernel. Theu every point of the stimulus will become a Gaussian 
function when projected on the retina. We study the 1-D case, and call the blur function 
g [ x, a] . The blur function is also called the filter or the kernel, or the operator (sometime 
we encounter the name stencil or template). 

1 x 2 

g[x_, a_] := Expj'- --] ; 
~ · 2a2 

We define the input signal as f [ x]. and the output signal as g [ x]. We can think of the 
input signal as a series of points nexl to each other. and each of these input points gives rise 
to a blurred output point. We plot the input point function fpnt [ x] (a very narrow function 

around the point x=O) at positions x=O and x=2: 
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fpnt[x_] = If[-0.05 < x <Cl.OS, 1, OJ; 
Block [ { $DisplayFunction = Identity} , 
pl=Plot[fpnt[x], {x, -4,. 4}];p2=Plot[fpnt[x-2], (x, -4, 4}]]; 

Show[GraphicsArray[{pl, :p2)], ImageSize -> 300]; 
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Figure B.2 The sampling function, at two arbitrary positions. 

As an input signal we take an example function consisting of a sum of sine functions of 
different frequencies. We can approximate this function as a set of points very close to each 
other. The amplitude of each point is modulated with the input function, so we plot the 
product f[a] fpnt[x-a]. 

f[x_] =Sin[x] +O.SSin[Sx]; 

Block [ {$DisplayFunction =Identity}, 
pl=Plot[f[x], (x, -4, 4}]; 

p2 =Show [Table [Plot [ f [a] fpnt [x - a], 
{x, -4, 4), PlotPoints->160], {a, -4, 4, .l)]]]; 

Show [GraphicsArray [{pl, p2}], ImageSize -> 350] ; 
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Figure B.3 Left: The input signal f(x), right: the sampled representation. 

Every point is blurred on its own, so we replace every pointfunction fpnt [a] by its blurred 
version g [a]. Every point is widened substantially, and the final step is adding all these 
responses together. 

Block [ {$DisplayFunction =Identity}, 

pl =Show [Table [Plot [ f [a] gauss [x - a, l] , 
{x, -4, 4), PlotPoints-> 160], (a, -4, 4, .l)]]; 

h[x_] =Sum[f[a] gauss[x-a, l], (a, -6, 6, .l)]; 

p2=Plot[h[x], (x, -4, 4}]]; 
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Show[GraphicsArray[ {pl, p2}], ImageSize -> 350] i 

-4 _,., 

Figure B.4 Left: every sample gives rise to a kernel, at the respective position with the 
amplitude of the sample. Right: the summed response is the convolution. 

In the limit of making the plot functions smaller and smaller we get a summation described 
by an integral: the convolution-integral. So we may write for the output h [ x]: 

h[x] = l: f[a] g[x-a, a] Cla 

It describes exactly how the output h [ x] looks like when an input signal f [ x] is processed 
by a system g [ x] . We say that the signal f [ x] is filtered with a filter or kernel g [ x] . We 
also call g [ x] the pointspread-function of the system. Note that the convolution-integral 
integrates from -oo to oo, indicating that we integrate over the whole length of the signal. The 
parameter a is the so-called shift variable. (sometimes the convolution integral is called the 
shift-integral). 

Actually, the sum above is an approximation. The exact output is given by the convolution
integral. Let us plot the integral, and draw your conclusions yourself. We have approximated 
the solution quite well: 

h[x_] •= l: f[a] g[x-a, l] dla; 

pS = Plot[Evaluate[h[x]], (x, -4, 4), ImageSize -> 160]; 

1J6 
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Figure B.5 The convolution as an exact integral of the analytical input function and kernel. 

The output signal looks different from the input signal, and this is exactly what we wanted: 
we have filtered the high frequencies out of the signal. The frequency Sin [ Sx] is vi1iually 

eliminated, as the figure above is almost the low frequency Sin [x] function, as we put in 
the input. This low frequency filter is however 40% attenuated due to the filtering (check the 
amplitudes). 

A short form for writing the convolution integral is the symbol ® , the convolution operator. 
The function h is the convolution of the function f with g 
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h[x] = f[x] & g[x] 

The convolution operator is a linear operator: 

(h1 [x] + h2 [x]) &g[x] = h1 [x] & g[x] + h2 [x] &g [x]; 
(af[x])&g[x] =a (f[x]&9[x]) 

In 2-D we get: 

h[x_, y_] := 1:1: f[a, Ill g[x-a, y-11] ellaelljl 

B.2 Convolution is a product in the Fourier domain 

B. l C onvo/11tio11 

It is often not so easy to calculate the convolution integral. It is often much easier to calculate 
the integral of the convolution in the Fourier domain. This section explains how this works. 
We start from the convolution of the function h(x) with the kernel g(x): 

f (x) = l: h (y) g (x - y) elly 

The Fourier transform F(w) of j(x) is then by definition 

F (w) = l: f (x) e-iox ellx = J:1: h (y) g (x - y) elly e-iox ellx 

We reorder the terms in the integral and make the substitution x - y = T, so we have 
X = T + )' and e-iwx = e-iwr. e-iwy ; 

l: h (y) 1: e-iox g (x -y) ellx elly = l: h (y) 1: e-io (HY) g (~)ell(~+ y) elly 

When we integrate to T, we keep y constant, so d(r+y) is equal to dr. So we get: 

Because e-iwy is constant in the integration to r, we may bring it as a constant outside the 
integral: 

l: h (y) e-ioy elly 1: e-i•< g (~)ell~ = H (w) • G (w) 

where H(w) is the Fourier transform of the function /z(x) and G(w) is the Fourier transform 
of the kernel g(x). So the Fourier transform of a convolution is the product of the Fourier 
transform of the filter with the Fourier transform of the signal. To put it otherwise: 

j(x) = h(x) ® g(x) 

! ! ! 
F(w) = H(w). G(w) 
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We can calculate a convolution h ®g by calculating the Fourier transforms H(w) and G(w), 

multiply them to get F(w), and we get j(x) by taking the inverse Fourier transform of F(w). 

Often this is a much faster method then calculating the convolution integral, because the 
routines that calculate the Fourier transform are so fast. We look at an example where we 
filter noise from the data. We simulate a signal of a noisy ECG recording by some sine 
functions: 

data = Table[ 

2,,. 2,,. 
N[Sin[-2t]+sin[--6t] +0.75(Random[]-1/2)], {t, 256)] 

256 :!56 
ListPlot [data, AspectRatio -> . 2, PlotJoined ->True, 

ImageSize -> 400, AxesLabel -> {"time", "Amp!"} Ji 

Amp! 

Figure B.6 A discrete input signal with additive uncorrelated uniform noise. 

We make a filter with a Gaussian shape and shift it to the origin: 

a=5.ikernel= Table[gauss[x,a], {x,-128,127)]1 
kernel = RotateLeft [ker~,el, 128] i 
ListPlot [kernel, PlotRange -> { (0, 256), All}, PlotJoined ->True, 

AspectRatio -> . 2, AxesLabel -> {"Freq", "Amp!"}, ImageSize -> 400] i 

Amp! 

Figure B.7 The Gaussian kernel in the spatial domain, shifted to the origin. The right half of 
the frequency axis (i.e. 129-256) is often called the negative frequency axis. 

This is a low-pass filter. We now filter (convolve) in the Fourier domain (note that a space 
denotes multiplication in Mathematica): 

conv = Sqrt [256] InverseJPourier[Fourier [data] Fourier [kernel]] 1 
ListPlot [ conv, AspectRatio -> . 2, PlotJoined ->True, 

AxesLabel -> {"time", "Amp!"}, ImageSize -> 400] i 

Amp! 

,;~ .... (\jw 
-~~I so V\J 150 ~ 

Figure B.8 The filtered result. 

As expected, the noise did not pass the filter. 



C. Installing the book and 
packages 

C.1 Content 

TheCD-ROM with the book "Front-End Vision and Multiscale Image Analysis" contains the 
following: 

- the ZIP archive file FrontEndVision. zip with all the necessary files with pathnames. 
This file contains: 

- the directory FrontEndVision/Documentation/English with the collection of 
Mathematica notebooks of the total book. All chapters, appendices, table of contents and the 
referencelist are separate notebooks. This is the sourcecode of the book. 

- the notebook FrontEndVision/FEV.nb and package FrontEndVision/FEV.m. 
This notebook contains the initializations and the image analysis functions used throughout 
the book. The package is loaded as the first command in every notebook of this book that 
contains executable code. Do not edit this package, as it is automatically generated from 

FEV. nb upon saving. 
- the directory FrontEndVision/ images with the images, figures and other data used in 
the book. 
- the directory FrontEndVision/Documentation/English/pdf with the PDF 
versions of all notebooks. 

- the directory FrontEndVision/LiveGraphics3D with the source code and an 
example of the interactive 3D Java viewer LiveGraphics3D. 
- the stylenotebook 

SystemFiles/FrontEnd/StyleSheets/FrontEndVision. nb, which contains 
the style directives (layout and makeup) of the notebooks on your screen and printer. 

- the stylenotebook 

SystemFiles/FrontEnd/StyleSheets/PackageNotebook.nb, which contains 
directives for notebooks to generate a package automatically (as FEV. nb). 

- the file FrontEndVision/binary. exe with is a compiled C++ executable, to read 
binary data fast. This is now integrated in Mathematica. it may be useful for older versions. 

When the kernel of Mathematica is not available, the notebooks can be read with the free 

stand-alone notebook reader Ma thRE~ader. This is the front-end program, to read and view 

the Mathematica notebooks of the book. The latest version of Ma thReader can be 
downloaded for free from www.wolfram.com/products/mathreader. Versions are supplied for 
Windows, Macintosh, Linux and Unix. 
The notebooks of this book can only be run on Mathematica 4.0 and later. 
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C.2 Installation for all systems 

For: Windows 95/98/2000/NT/XP. Macintosh, Unix. Linux. 

Run the command $TopDirect.ory. This returns the directory where the file 

FrontEndVision. zip file should be copied and executed to uncompress the files in that 
directory. 

$TopDirectory 

C:\Prograrn Files\wolfram Research\Mathernatica\4.2 

All files will be automatically installed in the right locations. E.g. for Windows users: 
At the end you should have the following directory where you find your notebooks: 
C:\Program Files\ Wolfram Research\Jvlathematica\4.1 \AddOns\Applications\ 
FrontEndVisi on\Documentati on\Engli sh 

C.3 Viewing the book in the Help Browser 

The book can best be interactively viewed in the Help Browser of Mathematica: 

1. Run the menu command "Rebuild! Help Index" in the Help menu in the top menubar in 
Mathematica. 

The commands in the file 
$TopDirectory\AddOns\Applications\FrontEndVision\Documentation\English\BrowserCateg 
ories.m contains the instructions to generate the appropriate menus in the Help browser; 

2. Open de Help Browser and click on the button "AddOns". In the left menu panel the book 
is now available. 

The notebooks viewed with the Heilp Browser can all be executed as normal notebooks. 
However. the Help browser files are read-only. A particular useful feature is to copy and 
paste the commands in the book through the Help Browser as directly usable code into your 
own notebooks. 

The book has an extensive reference list. The last chapter is the extensive alphabetical index. 
The Help Browser enables quick hypertext jumping to the appropriate chapter and cell where 
the selected keyword appears. The same feature is true for the TableOfContent notebook. 

Some suggestions: 

- Increase the magnification of the Help Browser for all notebooks to e.g. 150% by setting 
the magnification globally for this notebook. This is accomplished , after selection the Help 
Browser as current notebook, with the Option Inspector, available in the Format menu. 
'Show option values for:' global. Search for the keyword 'magnification' and set the value to 
your liking. 
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C.4 Sources of additional applications 

Get the last versions of 
-The OpenGL 30 viewer MathGL3d: 
phong. informatik. uni-lei pzig.de/ ~ kuska/mathgl3dv3/; 
- The Java interactive 30 animation viewer LiveGraphics3D: 
wwwvis.informatik. uni-stuttgart.de/ ~kraus/Li veGraphics3 DI. 



D. First Start with Mathematica: 
Tips & Tricks 

This notebook is only available in the electronic version. 

1. Evaluation 

1.1 Startup 

1.2 Cells 

1.3 Prevent unwanted (large) output to the screen 

1.4 Interrupt, stop and start over 

1.5 Manual shortcuts 

1.6 The help browser 

1.7 Packages 

1.8 Setting the Path to find files 

1.9 Write in mathematical notation 

1.10 The size of notebooks 

1.11 Checking for proper print layout 

1.12 Suggestions 

2. Images 

2.1 Read an image 

2.2 Take a submatrix, a subimage 

2.3 Sampling points from an image 

2.4 Draw a contour on the image 

2.5 Generate an animation 
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2.6 Automatic numbering objects 

2.7 Check the internal structure of a cell 

2.8 Resizing Graphics without regenerating it 

2.9 Display a group of images 

2.10 Text on graphics 

3. Programming 

3.1 Fast summation 

3.2 Random numbers and noise images 

3.3 Gaussian noise 

3.4 Interpolation 

3.5 Pure functions 

3.6 Use internal functions for speed 

3.7 Good practice 

4. 30 

4.1 Changing the ViewPoint 

4.2 Interactive 30 display 

4.3 LiveGraphics3D functions 

2. Images 
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